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This article reviews the principle of minimum description length (MDL) for problems of model selection. By viewing statistical modeling
as a means of generating descriptions of observed data, the MDL framework discriminates between competing models based on the
complexity of each description. This approach began with Kolmogorov’s theory of algorithmic complexity, matured in the literature on
information theory, and has recently received renewed attention within the statistics community. Here we review both the practical and
the theoretical aspects of MDL as a tool for model selection, emphasizing the rich connections between information theory and statistics.
At the boundary between these two disciplines we � nd many interesting interpretations of popular frequentist and Bayesian procedures.
As we show, MDL provides an objective umbrella under which rather disparate approaches to statistical modeling can coexist and be
compared. We illustrate the MDL principle by considering problems in regression, nonparametric curve estimation, cluster analysis, and
time series analysis. Because model selection in linear regression is an extremely common problem that arises in many applications,
we present detailed derivations of several MDL criteria in this context and discuss their properties through a number of examples. Our
emphasis is on the practical application of MDL, and hence we make extensive use of real datasets. In writing this review, we tried
to make the descriptive philosophy of MDL natural to a statistics audience by examining classical problems in model selection. In the
engineering literature, however, MDL is being applied to ever more exotic modeling situations. As a principle for statistical modeling
in general, one strength of MDL is that it can be intuitively extended to provide useful tools for new problems.
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1. OVERVIEW

The principle of parsimony, or Occam’s razor, implicitly
motivates the process of data analysis and statistical model-
ing and is the soul of model selection. Formally, the need for
model selection arises when investigators must decide among
model classes based on data. These classes might be indistin-
guishable from the standpoint of existing subject knowledge
or scienti� c theory, and the selection of a particular model
class implies the con� rmation or revision of a given theory. To
implement the parsimony principle, one must quantify “parsi-
mony" of a model relative to the available data. Applying this
measure to a number of candidates, we search for a concise
model that provides a good � t to the data. Rissanen (1978)
distilled such thinking in his principle of minimum descrip-
tion length (MDL): Choose the model that gives the shortest
description of data. In this framework a concise model is one
that is easy to describe, whereas a good � t implies that the
model captures or describes the important features evident in
the data.

MDL has its intellectual roots in the algorithmic or
descriptive complexity theory of Kolmogorov, Chaitin, and
Solomonoff (cf. Li and Vitányi 1996). Kolmogorov, the
founder of axiomatic probability theory, examined the rela-
tionship between mathematical formulations of randomness
and their application to real-world phenomena. He ultimately
turned to algorithmic complexity as an alternative means of
expressing random events. A new characterization of prob-
ability emerged based on the length of the shortest binary
computer program that describes an object or event. (A pro-
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gram can “describe” an object by “printing” or in some way
exhibiting the object. Typically, an object is a binary string,
and exhibiting the string is nothing more than printing the
individual 0’s and 1’s in order and stopping in � nite time.)
We refer to this quantity as the descriptive complexity of the
object. Up to a constant, it can be de� ned independent of any
speci� c computing device, making it a universal quantity Kol-
mogorov 1965, 1968 (cf., Cover and Thomas 1991). Because
this descriptive complexity is universal, it provides a useful
way to think about probability and other problems that build
on fundamental notions of probability. In theory, it can also
be used to de� ne inductive inference in general (or statistical
inference in particular) as the search for the shortest program
for data.

Unfortunately, the descriptive complexity of Kolmogorov is
not computable (cf. Cover and Thomas 1991) and thus can-
not be used as a basis for inference given real data. Rissa-
nen modi� ed this concept when proposing MDL, sidestepping
computability issues. First, he restricted attention to only those
descriptions that correspond to probability models or distri-
butions (in the traditional sense); he then opted to empha-
size the description length interpretation of these distributions
rather than the actual � nite-precision computations involved.
In so doing, Rissanen derived a broad but usable principle for
statistical modeling. By considering only probability distribu-
tions as a basis for generating descriptions, Rissanen endowed
MDL with a rich information-theoretic interpretation; descrip-
tion length can be thought of as the number of digits in a
binary string used to code the data for transmission. Formally,
then, he equated the task of “describing” data with coding. Not
surprisingly, the development of MDL borrowed heavily from
Shannon’s work on coding theory (Shannon 1948). Because
of the close ties, we frequently use the terms “code length”
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and “description length” interchangeably. As we demonstrate,
the connection between MDL and information theory provides
new insights into familiar statistical procedures.

In Rissanen’s formulation of MDL, any probability distri-
bution is considered from a descriptive standpoint; that is, it
is not necessarily the underlying data-generating mechanism
(although it does not exclude such a possibility). Thus MDL
extends the more traditional random sampling approach to
modeling. Many probability distributions can be compared in
terms of their descriptive power, and if the data in fact fol-
low one of these models, then Shannon’s celebrated source
coding theorem (cf. Cover and Thomas 1991) states that this
“true" distribution gives the MDL of the data (on average and
asymptotically).

An important precursor to Rissanen’s MDL is the work of
Wallace and Boulton (1968), who applied the idea of mini-
mum message length (MML) to clustering problems. While
based on code length, MML exclusively uses a two-part cod-
ing formulation that is most natural in parametric families (see
Sec. 4.2; Baxter and Oliver 1995; Wallace and Freeman 1987).
The original MML proposal stopped short of a framework
for addressing other modeling problems, and recent advances
seem to focus mainly on parameter estimation. In contrast,
Rissanen formulated MDL as a broad principle governing sta-
tistical modeling in general. Two other approaches to model
selection that are in� uential and important in their own right
are those of Akaike (1974) and Schwarz (1978). In his deriva-
tion of AIC, A Information Criterion, Akaike (1974) gives
for the � rst time formal recipes for general model selection
problems from the point of view of prediction. It is fasci-
nating to note the crucial role that the information-theoretic
Kullback–Leibler divergence played in the derivation of AIC,
because we demonstrate in this article that Kullback–Leibler
divergence is indispensable in the MDL framework. Schwarz
(1978) took a Bayesian approach to model selection, deriving
an approximation to a Bayesian posterior when the posterior
exists. This approximate Bayesian model selection criterion
has a form very similar to AIC and is termed the Bayesian
information criterion (BIC).

MDL has connections to both frequentist and Bayesian
approaches to statistics. If we view statistical estimation in
a parametric family as selecting models (or distributions)
indexed by the parameters, then MDL gives rise to the max-
imum likelihood (ML) principle of parameter estimation in
classical statistics. It is therefore a generalization of the ML
principle to model selection problems where ML is known
to fail. The performance of MDL criteria has been evaluated
very favorably based on the random sampling or frequen-
tist paradigm (e.g., Barron, Rissanen, and Yu 1998; Hannan,
McDougall, and Poskitt 1989; Hannan and Rissanen 1982; Lai
and Lee 1997; Speed and Yu 1994; Wei, 1992). Moreover,
MDL has close ties with the Bayesian approach to statistics.
For example, B IC has a natural interpretation in the MDL
paradigm, and some forms of MDL coincide with Bayesian
schemes (cf. Sec. 3). Because of the descriptive philosophy,
the MDL paradigm serves as an objective platform from which
we can compare Bayesian and non-Bayesian procedures alike.

The rest of the article is organized as follows. Section 2
introduces basic coding concepts and explains the MDL prin-
ciple. We begin with Kraft’s inequality, which establishes

the equivalence between probability distributions and code
lengths. We illustrate different coding ideas through a sim-
ple example of coding or compressing up-and-down indicators
derived from daily statistics of the Dow Jones industrial aver-
age. We emphasize that using a probability distribution for
coding or description purposes does not require that it actually
generate our data. We revisit MDL at the end of Section 2 to
connect it to the ML principle and Bayesian statistics. We also
de� ne the notion of a “valid” description length, in the sense
that valid coding schemes give rise to MDL selection rules
that have provably good performance. (This issue is explored
in depth in Sec. 5.) Section 3 formally introduces different
forms of MDL such as two-stage (or multistage in general),
mixture, predictive, and normalized ML.

Section 4 contains applications of MDL model selection
criteria in linear regression models, curve estimation, cluster
analysis, and time series models. Our coverage on regression
models is extensive. We compare well-known MDL criteria
to AIC and B IC through simulations and real applications.
These studies suggest an adaptive property of some forms of
MDL, allowing them to behave like AIC or B IC, depending on
which is more desirable in the given context. (Hansen and Yu
1999 further explored this property.) Cluster analysis is also
considered in Section 4, where we apply MML (Wallace and
Boulton 1968). We end this section by � tting an autoregressive
moving average (ARMA) model to the Dow Jones datasets,
comparing predictive MDL (PMDL), AIC and B IC for order
selection.

Section 5 reviews theoretical results on MDL. These are
the basis or justi� cation for different forms of MDL to be
used in parametric model selection. In particular, we mention
the remarkable pointwise lower bound of Rissanen (1986a)
on expected (coding) redundancy and its minimax counterpart
of Clarke and Barron (1990). Both lower bounds are exten-
sions of Shannon’s source coding theorem to universal coding.
Section 5 ends with an analysis of the consistency and predic-
tion error properties of MDL criteria in a simple example.

2. BASIC CODING CONCEPTS AND THE MINIMUM
DESCRIPTION LENGTH PRINCIPLE

2.1 Probability and Idealized Code Length

2.1.1 The Discrete Case. A code £ on a set ¡ is sim-
ply a mapping from ¡ to a set of codewords. In this section
we consider binary codes so that each codeword is a string of
0’s and 1’s. Let ¡ be a � nite set and let Q denote a probabil-
ity distribution on ¡. The fundamental premise of the MDL
paradigm is that ƒ log2 Q, the negative logarithm of Q, can
be viewed as the code length of a binary code for elements or
symbols in ¡.

Example 1: Huffman’s Algorithm. Let ¡ D 8a1 b1 c9 and
let Q denote a probability distribution on ¡ with Q4a5 D
1=2 and Q4b5 D Q4c5 D 1=4. Following Huffman’s algorithm
(Cover and Thomas 1991, p. 92), we can construct a code
for ¡ by growing a binary tree from the end nodes 8a1 b1 c9.
This procedure is similar to the greedy algorithm used in
agglomerative, hierarchical clustering (Jobson 1992). First, we
choose the two elements with the smallest probabilities, b and
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c, and connect them with leaves 0 and 1, assigned arbitrar-
ily, to form the intermediate node bc with node probability
1=4C1=4 D 1=2. We then iterate the process with the new set
of nodes 8a1 bc9. Because there are only two nodes left, we
connect a and bc with leaves 0 and 1, again assigned arbitrar-
ily, and reach the tree’s root. The tree obtained through this
construction, along with the resulting code, are given explic-
itly in Figure 1. Let L be the code length function associated
with this code so that L4a5 D L405 D 1, L4b5 D L4105 D 2, and
L4c5 D L4115 D 2. It is easy to see that in this case, our code
length is given exactly by L4x5 D ƒ log2 Q4x5 for all x 2 ¡.
When we encounter ties in this process, Huffman’s algorithm
can produce different codes depending on how we choose
which nodes to merge. For example, suppose that we start
with a uniform distribution on ¡, Q4a5 D Q4b5 D Q4c5 D 1=3.
At the � rst step in Huffman’s algorithm, if we join a and b,
then the resulting code is a ! 00, b ! 011 and c ! 1. On
the other hand, if we begin by joining b and c1 then we arrive
at the same code as in Figure 1. Fortunately, no matter how
we handle ties, the expected length (under Q) of the resulting
code is always the same; that is, the expected value of L4x5

computed under the distribution Q4x5 will be the same for all
Huffman codes computed for Q4x5.

Clearly, the Huffman code constructed in our example is
not unique, because we can permute the labels at each level in
the tree. Moreover, depending on how we settle ties between
the merged probabilities at each step in the algorithm, we can
obtain different codes with possibly different lengths. We illus-
trated this point in the example, where we also indicated that
despite these differences, the expected length of the Huffman
code (under the distribution Q) is always the same. An inter-
esting feature of the code in Example 1 is that any string of 0’s
and 1’s can be uniquely decoded without introducing separat-
ing symbols between the codewords. The string 0001110, for
example, must have come from the sequence aaacb. Given
an arbitrary code, if no codeword is the pre� x of any other,
then unique decodability is guaranteed. Any code satisfying
this codeword condition is called a pre�x code. By taking their
codewords as end nodes of a binary tree, all Huffman codes
are in this class.

In general, there is a correspondence between the length
of a pre� x code and the quantity ƒ log2 Q for a probability
distribution Q on ¡. An integer-valued function L corresponds
to the code length of a binary pre� x code if and only if it

Figure 1. Constructing a Huffman code in Example 1. (a) The binary
tree on which the code is based; (b) the ’ nal mapping.

satis� es Kraft’s inequality,
X

x2¡

2ƒL4x5 µ 1 (1)

(see Cover and Thomas 1991 for a proof). Therefore, given a
pre� x code £ on ¡ with length function L, we can de� ne a
distribution on ¡ as

Q4x5 D 2ƒL4x5

P
z2¡ 2ƒL4z5

for any x 2 ¡0

Conversely, for any distribution Q on ¡ and any x 2 ¡, we can
� nd a pre� x code with length function L4x5 D ‘ƒ log2 Q4x5’,
the smallest integer greater than or equal to ƒ log2 Q4x5.
Despite our good fortune in Example 1, Huffman’s algo-
rithm does not necessarily construct a code with this prop-
erty for every distribution Q. [We can only guarantee that
the length function L derived from Huffman’s algorithm is
within 2 of ‘ƒ log2 Q’. Although slightly more complicated,
the Shannon–Fano–Elias coder produces a length function that
satis� es L D ‘ƒ log2 Q’ exactly (Cover and Thomas 1991).]

Now, suppose that elements or symbols of ¡ are generated
according a known distribution P or, in statistical terms, that
we observe data drawn from P . Given a code £ on ¡ with
length function L, the expected code length of £ with respect
to P is de� ned as

L£
D

X

x2¡

P4x5L4x5 0 (2)

As we have seen, if £ is a pre� x code, then L is essentially
equivalent to ƒ log2 Q for some distribution Q on ¡. Shan-
non’s Source Coding Theorem states that the expected code
length (2) is minimized when Q D P , the true distribution of
our data.

Theorem 1: Shannon’s Source Coding Theorem. Suppose
that elements of ¡ are generated according to a probability
distribution P . For any pre� x code £ on ¡ with length func-
tion L, the expected code length L£ is bounded below by
H4P5, the entropy of P . That is,

L£ ¶ H4P5 ² ƒ
X

a2¡

P4a5 log2 P4a51 (3)

where equality holds if and only if L D ƒ log2 P .

The proof of the “if” part of this theorem follows from
Jensen’s inequality, and the “only if” part is trivial. Broadly,
codes based on P remove redundancy from the data without
any loss of information by assigning short codewords to com-
mon symbols and long codewords to rare symbols. (We pro-
vide a formal de� nition of redundancy in Section 5.) This is
the same rationale behind Morse code in telegraphy.

By applying Huffman’s algorithm to the distribution P , we
obtain a code that is nearly optimal in expected code length.
Cover and Thomas (1991) prove that the Huffman code for
P has an expected length no greater than H4P5 C 1. We must
emphasize, however, that any distribution Q de� ned on ¡ —
not necessarily the data-generating or true distribution P —
can be used to encode data from ¡. In most statistical appli-
cations, the true distribution P is rarely known, and to a large
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extent this article is concerned with codes built from various
approximations to P .

Ultimately, the crucial aspect of the MDL framework is not
found in the speci� cs of a given coding algorithm, but rather
in the code length interpretation of probability distributions.
For simplicity, we refer to LQ

D ƒ log2 Q as the code length
of (the code corresponding to) a distribution Q, whether or
not it is an integer. The unit is a bit, which stands for binary
digit and is attributed to John W. Tukey. (Later in the article,
we also use the unit nat when a natural logarithm is taken.)

Example 2: Code Length for Finitely Many Integers.
Consider the � nite collection of integers ¡ D 8112131
: : : 1N 91 and let Q denote the uniform distribution on ¡, so
that Q4k5 D 1=N for all k 2 ¡. Let �log2 N be the integer
part of log2 N . By applying Huffman’s algorithm in this set-
ting, we obtain a uniform code with length function that is
not greater than �log2 N for all k but is equal to �log2 N for
at least two values of k. Whereas we know from Shannon’s
Source Coding Theorem that an expected code length of such
a code is optimal only for a true uniform distribution, this
code is a reasonable choice when very little is known about
how the data were generated. This is simply a restatement of
Laplace’s Principle of Indifference, which is often quoted to
justify the assignment of uniform priors for a Bayesian anal-
ysis in discrete problems.

Example 3: Code Length for Natural Numbers. Elias
(1975) and Rissanen (1983) constructed a code for the natu-
ral numbers ¡ D 811 2131 : : : 9 starting with the property that
the code length function decreases with a 2 ¡. The rate of
decay is then taken to be as small as possible, subject to the
constraint that the length function must still satisfy Kraft’s
inequality. Rissanen argued that the resulting pre� x code is
“universal” in the sense that it achieves essentially the shortest
coding of large natural numbers. Its length function is given by

logü
2 n 2D

X

j>1

max4log4j5

2 n1 05 C log2 c01 (4)

where log4j5

2 4¢5 is the jth composition of log2, (e.g., log425

2 n D
log2 log2 n) and

c0 2D
X

n>1

2ƒ log ü
2 n D 20865: : :

2.1.2 The Continuous Case. Suppose that our data are no
longer restricted to a � nite set, but instead range over an arbi-
trary subset of the real line. Let f denote the data-generating
or true density. Given another density q de� ned on ¡, we can
construct a code for our data by � rst discretizing ¡ and then
applying, say, Huffman’s algorithm. In most statistical appli-
cations, we are not interested in ¡, but rather in its Carte-
sian product ¡n corresponding to an n-dimensional continu-
ous data sequence xn D 4x11 : : : 1 xn5. Then, if we discretize ¡
into equal cells of size „, the quantity ƒ log24q4xn5 � „n5 D
ƒ log2 q4xn5 ƒ n log2 „ can be viewed as the code length of
a pre� x code for the data sequence xn. We say that „ is the
precision of the discretization, and for � xed „ we refer to
ƒ log2 q4xn5 as an idealized code length. In Section 3.1 we
return to discretization issues arising in modeling problems.

From a straightforward generalization of Shannon’s source
coding theorem to continuous random variables, it follows that
the best code for a data string xn is based on its true or gen-
erating density f4xn5. In this case, the lower bound on the
expected code length is the differential entropy

H4f 5 D ƒ
Z

log2 f4xn5f 4xn5 dxn0 (5)

2.2 A Simple Example

In this section we consider coding a pair of long binary
strings. We not only illustrate several different coding
schemes, but also explore the role of postulated probability
models Q in building good codes. This is a valuable exercise,
whether or not it is appropriate to believe that these strings
are actually generated by a speci� c probabilistic mechanism.
Although our emphasis is on coding for compression purposes,
we have framed the following example so as to highlight the
natural connection between code length considerations and
statistical model selection. Each of the coding schemes intro-
duced here is discussed at length in the next section, where
we take up modeling issues in greater detail.

Example 4: Code Length for Finite, Binary Strings. For
the 6,430-day trading period July 1962–June 1988, we con-
sider two time series derived from the Dow Jones industrial
average (DJ IA). Let pt denote the logarithm of the index at
day t and de� ne the daily return, Rt , and the intraday volatil-
ity, Vt , as

Rt
D Pt

ƒ Ptƒ1 and Vt
D 09Vtƒ1

C 01R2
t 1 (6)

where V0 is the unconditional variance of the series Pt . The
data for this example were taken from the Social Sciences
Data Collection at UC San Diego (SSDC, 2001) where one
can also � nd references for the de� nitions (6).

Consider two “up-and-down” indicators derived from the
daily return and intraday volatility series. The � rst indicator
takes the value 1 if the return Rt on a given day was higher
than that for the previous day, Rtƒ1 (an “up”), and 0 other-
wise (a “down”). In terms of the original (logged) DJ IA series
Pt , we assign the value 1 if Pt

ƒ 2Ptƒ1 C Ptƒ2 ¶ 0, so that
our � rst indicator is derived from a moving average process.
The second variable is de� ned similarly, but instead tracks
the volatility series, making it a function of another moving
average process. This gives us two binary strings of length
n D 61430ƒ 1 D 61429. There are 3,181 or 49.49% 1’s or ups
in the return difference indicator string, compared to 2,023
or 31.47% 1’s in the volatility difference string. Figure 2
presents the last 1,000 observations from each series. To coor-
dinate with our construction of binary strings, we have plotted
daily differences so that ups correspond to positive values and
downs correspond negative values. In the panels below these
plots, grayscale maps represent the average number of ups cal-
culated in 10-day intervals (with black representing 10 con-
secutive trading days for which the given series increased and
white indicating a period of 10 downs). The activity clearly
evident at the right in these plots corresponds to the stock mar-
ket crash of October 19, 1987. As one might expect, the intra-
day volatility jumped dramatically, whereas the overall return
was down sharply from the previous day.
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Figure 2. Differences of the Daily Returns (a) and Volatility (b) Series for the Last 1,000 Days of Our Study Period. The horizontal line in each
plot corresponds to y D 0. The grayscale maps represent the average number of ups calculated in 10-day intervals (with black representing 10
consecutive trading days for which the given series increased; and white indicating a period of 10 downs).

Using these strings, we describe three coding algorithms,
each assuming that the length of the string, n D 61429, is
known to both sender and receiver. Imagine, for example,
that a � nancial � rm in San Francisco needs to transmit this
up-and-down information (as a batch) to its branch in San
Diego. Clearly, each string can be transmitted directly with-
out any further coding, requiring n D 61429 bits. By entertain-
ing different probability distributions, however, we might be
able to decrease the code length needed to communicate these
sequences.

Two-Stage Coding. Suppose that the sender uses a
Bernoulli(p) model to send the series. Then p must be esti-
mated from the series and sent � rst. Let k be the num-
ber of ups in the series, so that there are only n different
p D k=n’s that one could send. Using the uniform coding
scheme of Example 2, this takes log2 n D 614291 or 13 bits.
Once p is known to both sender and receiver it can be used
in the next stage of coding. For example, suppose that we
view a string xn D 4x11 : : : 1 xn5 2 80119n as n iid observa-
tions from the Bernoulli distribution with p D k=n. From the
form of this distribution, it is easy to see that we can encode
every symbol in the string at a cost of ƒ log24k=n5 bits for
a 1 and ƒ log241 ƒ k=n5 bits for a 0. Therefore, transmit-
ting each sequence requires an additional ƒk log24k=n5ƒ 4nƒ
k5 log241ƒ k=n5 bits after p is known, giving us a total code
length of

log2 n C 6ƒk log24k=n5ƒ 4n ƒ k5 log241 ƒ k=n570 (7)

Under this scheme, we pay 6,441 (> 61429) bits to encode the
ups and downs of the return series, but only 5,789 (< 61429)
bits for the volatility series. Therefore, relative to sending this
information directly, we incur an extra cost of .2% on the
return string, but save 10% on the volatility string.

From a modeling standpoint, we could say that an iid
Bernoulli model is postulated for compression or coding of a

given string and that the Bernoulli probability p is estimated
by k=n. The � rst term in (7) is the code length for sending k
or the estimated p, whereas the second term is the code length
for transmitting the actual string using the Bernoulli model or
encoder. The success of the probability model is determined
by whether there is a reduction in code length relative to the
n bits required without a model. From the second term in (7),
we expect some improvement provided that k=n is not too
close to 1=2, and this saving should increase with n. But when
k D n=2,

ƒk log24k=n5 ƒ 4n ƒ k5 log241ƒ k=n5 D n1

and the Bernoulli model does not help. Considering our daily
up-and-down information, we were able to decrease the code
length for transmitting the volatility string by about 10%,
because the proportion of 1’s in this sequence is only 031. For
the return string, on the other hand, the proportion of ups is
close to 1=2, so that the second term in (7) is 61428, just 1
bit shy of n D 61429. After adding the additional 13-bit cost
to transmit p, the Bernoulli encoder is outperformed by the
simple listing of 0’s and 1’s.

Mixture Coding (With a Uniform Prior). If we assume
that each binary string comprises iid observations, then by
independence we obtain a joint distribution on xn that can be
used to construct a coder for our daily up-and-down informa-
tion. Suppose, for example, that we postulate an iid Bernoulli
model, but rather than estimate p, we assign it a uniform prior
density on 601 17. We can then apply the resulting mixture dis-
tribution to encode arbitrary binary strings. If, for example, a
sequence xn D 4x11 : : : 1 xn5 consists of k 1’s and 4n ƒ k5 0’s,
then

m4xn5 D
Z 1

0
pk41ƒ p5nƒk dp

D â4k C 15â4n ƒ k C 15

â4n C 25
D kW4n ƒ k5W

4nC 15W
1
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where m is used to denote a “mixture.” Thus the code length
of this (uniform) mixture code is

ƒ log2 m4xn5 D ƒ log2 kW4n ƒ k5WC log24n C 15W0 (8)

In terms of our original binary series, by using this mixture
code we incur a cost of 61434 bits to transmit the return string
and 51782 bits for the volatility binary string. While remaining
consistent with our results for two-stage coding, we have saved
7 bits on both sequences. So far, however, we have yet to
design a coding scheme that costs less than n D 61429 bits for
the return indicators.

Although many mixture codes can be created by making
different choices for the prior density assigned to p, the dis-
tribution m4¢5 is guaranteed to have a closed-form expression
only for a family of so-called conjugate priors. In general,
numerical or Monte Carlo methods might be necessary to eval-
uate the code length of a mixture code.

Predictive Coding. Imagine that the up-and-down infor-
mation for the return series was to be sent to San Diego on
a daily basis, and assume that the sender and receiver have
agreed to use a � xed code on 80119. For simplicity, suppose
that they have decided on a Bernoulli encoder with p D 1=2.
Each day, a new indicator is generated and sent to San Diego
at a cost of ƒ log241=25 D 1 bit. For the following 61429 days,
this would total 61429 bits. (This is equivalent to simply list-
ing the data without introducing a model.) Such a coding
scheme could not be very economical if, on average, the num-
ber of “up days” was much smaller than the number of “down
days” or vice versa. If instead we postulate an iid Bernoulli
model with an unknown probability p, then all of the previous
information, known to both sender and receiver, can be used
to possibly improve the code length needed to transmit the
sequence. Suppose that over the past t ƒ1 days, ktƒ1 ups or 1’s
have been accumulated. At day t, a new Bernoulli coder can
be used with the Laplace estimator Optƒ1

D 4ktƒ1
C 15=4t C 15,

avoiding dif� culties when ktƒ1
D 0 or t ƒ 1. At the outset,

sender and receiver agree to take p0
D 1=2. If on day t we see

an increase in the return of the DJ IA, then the Bernoulli coder
with p D Optƒ1 is used at a cost of Lt415 D ƒ log2

Optƒ1 bits.
Otherwise, we transmit a 0, requiring Lt405 D ƒ log241ƒ Optƒ15

bits.
This accounting makes use of so-called “fractional bits.” In

practical terms, it is not possible to send less than a single bit
of information per day. But if we delay transmission by sev-
eral days, then we can send a larger piece of the data at a
much lower cost. When the delay is n days, this “predictive”
method is equivalent to the batch scheme used in mixture cod-
ing (sending the entire data string at once). We have chosen
to sidestep this important practical complication and instead
present predictive coding as if it could be implemented on a
daily basis. The broad concept is important here, as it is sim-
ilar to other frameworks for statistical estimation, including
P. Dawid’s prequential analysis.

For a string xn D 4x11 0001xn5 with k 1’s and 4nƒk5 0’s, the
total code length over 6,429 days is

nX

tD1

Lt4xt50

Equivalently, a joint probability distribution on 801 19n has
been constructed predictively:

q4xn5 D
nY

tD1

Opxt

tƒ141 ƒ Optƒ15
1ƒxt 1 (9)

where

ƒ log2 q4xn5 D
nX

tD1

Lt4xt50

Rewriting (9), we � nd that

ƒ log2 q4xn5 D ƒ
nX

tD1

xt log2
Optƒ1 C 41ƒ xt5 log241ƒ Optƒ15

D ƒ
X

t2xt D1

log2
Optƒ1

ƒ
X

t2xt D0

log241ƒ Optƒ15

D ƒ
X

t2xt D1

log24ktƒ1
C 15 ƒ

X

t2xt D0

log24t ƒ ktƒ15

C
nX

tD1

log24t C 15

D ƒ log2 kWƒ log24nƒ k5W C log24n C 15W1

which is exactly the same expression as (8), the code length
derived for the uniform mixture code (an unexpected equiv-
alence to which we return shortly). Although the bits are
counted differently, the code lengths are the same. Thus, from
the previous example, the predictive code lengths are 61434
bits and 51782 bits for the return and volatility strings. In
some sense, the predictive coder is designed to learn about p

from the past up-and-down information and hence improves
the encoding of the next day’s indicator. This form of cod-
ing has intimate connections with machine learning with its
focus on accumulative prediction error (see Haussler, Kearns,
and Schapire 1994) and the prequential approach of Dawid
(1984, 1991). Clearly, predictive coding requires an ordering
of the data that is very natural in on-line transmission and
time series models, but conceptually less appealing in other
contexts like multivariate regression. As in this case, how-
ever, when a proper Bayes estimator is used in the predic-
tive coder, the ordering can sometimes disappear in the � nal
expression for code length. A proof of this somewhat surpris-
ing equivalence between predictive and mixture code lengths
has been given by Yu and Speed (1992) for a general multi-
nomial model.

In the time series context, predictive coding offers us the
ability to easily adapt to nonstationarity in the data source,
a tremendous advantage over the other schemes discussed so
far. For example, suppose that we use only the number of
ups encountered in the last 1,000 days to estimate p in a
Bernoulli model for the next day’s indicator. When applied to
the volatility difference indicator series, we save only 3 bits
over the 51782 needed for the simple predictive coder, imply-
ing that this string is fairly stationary. To explore the pos-
sible dependence structure in the volatility difference indica-
tor string, we postulated a � rst-order Markov model, estimat-
ing the transition probabilities from the indicators for the last
1,000 days. Under this scheme, we incur a cost of 5,774 bits.
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Figure 3. Autocorrelation Functions for the Differences of the Return (a) and Volatility (b) Series. With 6,429 points, the usual con’ dence
intervals barely appear as distinct from the solid line y D 0.

Such a small decrease is evidence that there is little depen-
dence in this string, and that the biggest saving in terms of
code length comes from learning the underlying probability p

in an iid Bernoulli model. This is because the volatility differ-
ence series Vt

ƒ Vtƒ1 exhibits very little correlation structure,
despite the fact that volatility series itself is an exponentially
weighted moving average. Figure 3 plots the autorcorrelation
function for each of the differenced volatility and return series.
In terms of the derived up-and-down indicators, the volatil-
ity string has a � rst-order autocorrelation of ƒ002, practically
nonexistent.

The indicator string derived from the return series is a dif-
ferent story, however. As with the volatility string, estimating
p based on the previous 1,000 days of data does not result in a
smaller code length, suggesting little nonstationarity.However,
there is considerably more dependence in the return string.
Although the underlying series Rt has little autocorrelation
structure, the differences Rt

ƒRtƒ1 exhibit a large dependence
at a lag of 1 (see Fig. 3). The � rst-order autocorrelation in
the return difference indicator string is ƒ042, indicating that
our Markov model might be more effective here than for the
volatility string. In fact, by postulating a � rst-order Markov
model (estimating transition probabilities at time t from all of
the previous data), we reduce the code length to 6,181, a 4%
or 253-bit saving over the 6,434 bits required for the simple
predictive coder. By instead estimating the transition probabil-
ities from the last 1,000 days of data, we can produce a further
decrease of only 10 bits, con� rming our belief that the return
difference indicator string is fairly stationary. Under this cod-
ing strategy, we are � nally able to transmit the return string
using fewer than n D 61429 bits. In general, predictive coding
can save in terms of code length even when an iid model is
considered. When dependence or nonstationarity are present,
we can experience even greater gains by directly modeling
such effects, say through a Markov model. Of course, with
some effort the two-stage and mixture coding schemes can
also incorporate these features, and we should see similar code
length reductions when the data support the added structure.

2.3 The Miminum Description Length Principle

In the previous two sections we motivated the code length
interpretation of probability distributions and illustrated the
use of models for building good codes. Although our focus
was on compression, motivation for the MDL principle can
be found throughout Example 4; probability models for each
binary string were evaluated on the basis of their code length.
In statistical applications, postulated models help us make
inferences about data. The MDL principle in this context sug-
gests choosing the model that provides the shortest descrip-
tion of our data. For the purpose of this article, the act of
describing data is formally equivalent to coding. Thus, when
applying MDL, our focus is on casting statistical modeling as
a means of generating codes, and the resulting code lengths
provide a metric by which we can compare competing mod-
els. As we found in Example 4, we can compute a code length
without actually exhibiting a code (i.e., generating the map
between data values and code words), making the implemen-
tation details somewhat unimportant.

As a broad principle, MDL has rich connections with more
traditional frameworks for statistical estimation. In classical
parametric statistics, for example, we want to estimate the
parameter ˆ of a given model (class)

­ D f4xn—ˆ5 2 ˆ 2 ä 2k

based on observations xn D 4x11 : : : 1 xn5. The most popular
estimation technique in this context is derived from the Max-
imum Likelihood Principle (ML principle) pioneered by R.
A. Fisher (cf., Edwards 1972). Estimates Ô

n are chosen so
as to maximize fˆ4x

n5 over ˆ 2 ä. As a principle, ML is
backed by Ô

n’s asymptotic ef� ciency in the repeated-sampling
paradigm (under some regularity conditions) and its attainment
of the Cramer–Rao information lower bound in many expo-
nential family examples (in the � nite-sample case). From a
coding perspective, assume that both sender and receiver know
which member fˆ of the parametric family ­ generated a data
string xn (or, equivalently, both sides know ˆ). Then Shannon’s
Source Coding Theorem states that the best description length
of xn (in an average sense) is simply ƒ logfˆ4xn5, because on
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average the code based on fˆ achieves the entropy lower bound
(5). Obviously, minimizing ƒ log2 fˆ4x

n5 is the same as maxi-
mizing fˆ4x

n5, so that MDL coincides with ML in parametric
estimation problems. Thus in this setting, MDL enjoys all of
the desirable properties of ML mentioned earlier. In modeling
applications like those discussed in Example 4, however, we
had to transmit ˆ1 because the receiver did not know its value
in advance. Adding in this cost, we arrive at a code length

ƒ logfˆ4x
n5 C L4ˆ5

for the data string xn. Now if each parameter value requires
the same � xed number of bits to transmit, or rather if L4ˆ5

is constant, then the MDL principle seeks a model that mini-
mizes ƒ logfˆ4x

n5 among all densities in the family. (This is
the case if we transmit each value of ˆ with a � xed precision.)

It is well known, however, that ML breaks down when one
is forced to choose among nested classes of parametric mod-
els. This occurs most noticeably in variable selection for linear
regression. The simplest and most illustrative selection prob-
lem of this type can be cast as an exercise in hypothesis test-
ing.

Example 5. Assume that xn D 4x11 : : : 1 xn5 are n iid
observations N 4ˆ1 15 for some ˆ 2 21, and that we want to
test the hypothesis H0 2 ˆ D 0 versus H1 2 ˆ 6D 0. Equivalently,
we want to choose between the models

­0
D 8N 401 159 and ­1

D 8N 4ˆ115 2 ˆ 6D 09

on the basis of xn. In this case, if we maximize the likelihoods
of both models and choose the one with the larger maximized
likelihood, then ­1 is always chosen unless Nxn

D 0, an event
with probability 0 even when ­0 is true.

Note that ML has no problem with the estimation of ˆ if
we merge the two model classes ­0 and ­1. Clearly the
formulation of the model selection problem is responsible for
the poor performance of ML. To be fair, the ML principle was
developed only for a single parametric family, and hence it is
not guaranteed to yield a sensible selection criterion.

The Bayesian approach to statistics has a natural solution to
this selection problem. After assigning a prior probability dis-
tribution to each model class, the Bayesian appeals to the pos-
terior probabilities of these classes to select a model (see, e.g.,
Bernardo and Smith 1994). Given the formulation of the fore-
going problem, the assignment of priors is a subjective matter,
which in recent years has been made increasingly on the basis
of computational ef� ciency. Some attempts have been made
to reduce the level of subjectivity required for such an analy-
sis, producing “automatic” or “quasi-automatic” Bayesian pro-
cedures (Berger and Pericchi 1996; O’Hagan 1995). A sim-
ple solution involves use of B IC, an approximation to the
posterior distribution on model classes derived by Schwarz
(1978). Although based on the assumption that proper priors
have been assigned to each class, this approximation effec-
tively eliminates any explicit dependence on prior choice. The
resulting selection rule takes on the form of a penalized log-
likelihood, ƒ logf Ô

n
4xn5 C k=2 logn, where Ô

n is the ML esti-
mate of the k-dimensional parameter ˆ.

To repair ML in this context, recall that Fisher � rst derived
the likelihood principle within a single parametric family,
starting from a Bayesian framework and placing a uniform
prior on the parameter space (Edwards 1972). Let L­ denote
the description length of a data string xn based on a sin-
gle family or model (class) ­ . Because MDL coincides with
ML when choosing among members of ­ , we can think of
2ƒL­ as the “likelihood" of the class given xn. Now, applying
Fisher’s line of reasoning to models, we assign a uniform prior
on different families and maximize the newly de� ned “likeli-
hood.” This yields the principle of MDL for model selection.

In Example 4, however, we presented several different cod-
ing schemes that can be used to de� ne the description length
L­ of a given model class ­ . Although many more schemes
are possible, not all of these are usable for statistical model
selection. As our emphasis is on a coding interpretation, we
want to know under what general conditions these schemes
provide us with “valid” description lengths based on ­ (in
the sense that they yield selection rules with provably good
performance). At an intuitive level, we should select a code
that adequately represents the knowledge contained in a given
model class, a notion that we make precise in Section 5. Ris-
sanen’s (1986a) pointwise lower bound on the redundancy for
parametric families is a landmark for characterizing the statis-
tical properties of MDL criteria. Roughly, the expected redun-
dancy of a code corresponds to the price that one must pay
for not knowing which member of the model class generated
the data xn. Rissanen (1986a) demonstrated that for a regu-
lar parametric family of dimension k, this amounts to at least
k=2 logn extra bits. Any code length that achieves this lower
bound quali� es (to � rst order in the parametric case) as a valid
description length of the model class given a data string xn,
and the associated model selection criteria have good theoret-
ical properties.

An alternative measure for studying description length
comes from a minimax lower bound on redundancy derived
by Clarke and Barron (1990). Both the pointwise and mini-
max lower bounds not only make compelling the use of MDL
in statistical model selection problems, but also extend Shan-
non’s source coding theorem to so-called universal coding,
where the source or true distribution is only known to belong
to a parametric family. A more rigorous treatment of this theo-
retical material is presented in Section 5. It follows from these
results that ƒ logf Ô

n
4xn5Ck=2 logn (modular a constant term)

is a valid code length for our parametric family introduced
at the beginning of this section. We recognize this expression
as BIC. More careful asymptotics yields a tighter bound on
redundancy that can be met only if Jeffreys’s prior is inte-
grable in the particular family under study (see Barron et al.
1998).

The appearance of B IC as a valid code length and the more
re� ned result about Jeffreys’s prior are just two of a number
of connections between MDL and Bayesian statistics. Among
the various forms of MDL presented in Example 4, mixture
coding bears the closest direct resemblance to a Bayesian anal-
ysis. For example, both frameworks can depend heavily on
the assignment of priors, and both are subject to the require-
ment that the corresponding marginal (or predictive) distri-
bution of a data string is integrable. When this integrabil-
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ity condition is not met, the Bayesian is left with an inde-
terminant Bayes factor, and the connection with pre� x cod-
ing is lost (as Kraft’s inequality is violated). [This situation
is most commonly encountered under the assignment of so-
called weak prior information that leaves the marginal distri-
bution improper. For example, as improper priors are speci-
� ed only up to a multiplicative constant, the associated Bayes
factor (a ratio of predictive or marginal densities) inherits an
unspeci� ed constant.] Both schemes also bene� t from “real-
istic” priors, although the classes entertained in applications
tend to be quite different. [MDL has found wide application in
various branches of engineering. For the most part, Rissanen’s
reasoning is followed “in spirit” to derive effective selection
criteria for the problem at hand. New and novel applications
of MDL include generating codes for trees for wavelet denois-
ing (Moulin, 1996; Saito, 1994).] In terms of loss functions,
because MDL minimizes the mixture code length, it coin-
cides with a Maximum a Posteriori (MAP) estimate derived
using 0–1 loss. MDL parts company with Bayesian model
selection in the treatment of hyperparameters that accompany
a prior speci� cation. Rissanen (1989) proposed a (penalized)
ML approach that we examine in detail in Section 4.1.1 for
ordinary regression problems. Also, given Kraft’s inequality,
MDL technically allows for subdistributions. In applications
involving discrete data, the only available coding scheme often
does not sum to 1 or, equivalently, is not Kraft-tight.

In addition to mixture MDL, we have applied both two-
stage and predictive coding schemes to the indicator series
from Example 4. In the next section we introduce one more
code based on the so-called normalized ML. Although these
forms do not have explicit Bayesian equivalents, they can be
thought of as building a marginal density over a model class
or parametric family that is independent of the parameters.
Hence when the code for the model class corresponds to a
proper distribution, or is Kraft-tight, one can borrow Bayesian
tools to assess uncertainty among candidate models. (This type
of analysis has not been explored in the MDL literature.) In
general, MDL formally shares many aspects of both frequen-
tist and Bayesian approaches to statistical estimation. As Ris-
sanen has noted, MDL provides an objective and welcome
platform from which to compare (possibly quite disparate)
model selection criteria. We are con� dent that the rich connec-
tions between information theory and statistics will continue
to produce new forms of MDL as the framework is applied to
increasingly challenging problems.

3. DIFFERENT FORMS OF DESCRIPTION LENGTH
BASED ON A MODEL

In this section we formally introduce several coding
schemes that provide valid description lengths of a data string
based on classes of probability models, in the sense that they
achieve the universal coding lower bound to the logn order
(cf. Sec. 5). We use the description lengths discussed here in
our implementation of MDL for the model selection problems
in Sections 4 and 5. Three of these schemes were introduced in
Example 4 for compression purposes. In that case, probability
models helped us build codes that could be used to communi-
cate data strings with as few bits as possible. The only neces-
sary motivation for enlisting candidate models was that they

provided short descriptions of the data. In statistical applica-
tions, however, probability distributions are the basis for mak-
ing inference about data, and hence play a more re� ned role in
modeling. In this section we follow the frequentist philosophy
that probability models (approximately) describe the mecha-
nism by which the data are generated.

Throughout this section, we focus mainly on a simple para-
metric model class ­ comprising a family of distributions
indexed by a parameter ˆ 2 2k . Keep in mind, however, that
the strength of the MDL principle is that it can be successfully
applied in far less restrictive settings. Let xn D 4x11 x21 : : : 1 xn5
denote a data string, and recall our model class

­ D f4xn—ˆ5 2 ˆ 2 ä 2k 0

For convenience, we consider coding schemes for data trans-
mission, so that when deriving code or description lengths
for xn based on ­ , we can assume that ­ is known to
both sender and receiver. If this were not the case, then we
would also have to encode information about ­ , adding to
our description length. Finally, we calculate code lengths using
the natural logarithm log, rather than log2 as we did in the
previous section. The unit of length is now the nat.

Next we revisit the three coding schemes introduced brie� y
in Example 2.2. We derive each in considerably more gen-
erality and apply them to the hypothesis testing problem of
Example 4. Building on this framework, in Section 4 we pro-
vide a rather extensive treatment of MDL for model selection
in ordinary linear regression. A rigorous justi� cation of these
procedures is postponed to Section 5. There, we demonstrate
that in the simple case of a parametric family, these coding
schemes give rise to code lengths that all achieve (to � rst
order) both Rissanen’s pointwise lower bound on redundancy
and the minimax lower bound covered in Section 5 (Clarke
and Barron 1990). This implies that these schemes produce
valid description lengths, each yielding a usable model selec-
tion criterion via the MDL principle.

3.1 Two-Stage Description Length

To a statistical audience, the two-stage coding scheme is
perhaps the most natural method for devising a pre� x code for
a data string xn. We � rst choose a member of the class ­ 1

and then use this distribution to encode xn. Because we are
dealing with a parametric family, this selection is made via
an estimator Ô

n1 after which a pre� x code is built from f Ô
n
.

Ultimately, the code length associated with this scheme takes
the form of a penalized likelihood, the penalty being the cost
to encode the estimated parameter values Ô

n.

Stage 1: The Description Length L4 Ô
n5 for the Estimated

Member Ô
n of the Model Class. In the � rst stage of this cod-

ing scheme, we communicate an estimate Ô
n obtained by,

say, ML or some Bayes procedure. This can be done by
� rst discretizing a compact parameter space with precision
„m

D 1=
p

n (m for the model) for each member of ˆ, and
then transmitting Ô

n with a uniform encoder. Rissanen (1983,
1989) showed that this choice of precision is optimal in reg-
ular parametric families. The intuitive argument is that 1=

p
n

represents the magnitude of the estimation error in Ô
n and

hence there is no need to encode the estimator with greater
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precision. In general, our uniform encoder should re� ect the
convergence rate of the estimator we choose for this stage.
Assuming the standard parametric rate 1=

p
n, we pay a total

of ƒk log1=
p

n D k=2 logn nats to communicate an estimated
parameter Ô

n of dimension k.
Although the uniform encoder is a convenient choice, we

can take any continuous distribution w on the parameter space
and build a code for Ô

n by again discretizing „m
D 1=

p
n with

the same precision:

L4 Ô
n5 D ƒ logw46 Ô

n7„m
5 C k

2
logn1

where 6 Ô
n7„m

is Ô
n truncated to precision „m. In the MDL

paradigm, the distribution w is introduced as an ingredient
in the coding scheme, not as a Bayesian prior. But if we
have reason to believe that a particular prior w re� ects the
likely distribution of the parameter values, then choosing w
for description purposes is certainly consistent with Shannon’s
Source Coding Theorem. Clearly, both recipes lead to descrip-
tion lengths with the same � rst-order term,

L4 Ô
n5

k

2
logn1

where k is the Euclidean dimension of the parameter space.

Stage 2: The Description Length of Data Based on the
Transmitted Distribution. In the second stage of this scheme,
we encode the actual data string xn D 4x11 : : : 1 xn51 using the
distribution indexed by 6 Ô

n7„m
. For continuous data, we follow

the prescription in Section 2.1.2, discretizing the selected dis-
tribution with precision „d (d for the data). In this stage we
can take „d to be machine precision. The description length
for coding xn is then

ƒ logf 4x11 : : : 1 xn
—6 Ô

n7„m
5 ƒ n log„d0

When the likelihood surface is smooth as in regular parametric
families, the difference

logf 4x11 : : : 1 xn
—6 Ô

n7„m
5 ƒ logf4x11 : : : 1 xn

— Ô
n5

is of a smaller order of magnitude than the model description
length k=2 logn. In addition, the quantity n log„d is constant
for all the models in ­ . Hence we often take

ƒ logf 4x11 : : : 1 xn
— Ô

n51

the negative of the maximized log-likelihood for the maximum
likelihood estimator (MLE) Ô

n, as the simpli� ed description
length for a data string xn based on f4¢— Ô

n5.
Combining the code or description lengths from the two

stages of this coding scheme, we � nd that for regular paramet-
ric families of dimension k, the (simpli� ed) two-stage MDL
criterion takes the form of B IC,

ƒ logf 4x11 : : : 1 xn
— Ô

n5 C k

2
logn0 (10)

Again, the � rst term represents the number of nats needed to
encode the date sequence xn given an estimate Ô

n, whereas the
second term represents the number of nats required to encode

the k components of Ô
n to precision 1=

p
n. It is worth noting

that the simpli� ed two-stage description length is valid if one
starts with a 1=

p
n-consistent estimator other than the MLE,

even though traditionally only the MLE has been used. This is
because only the rate of a 1=

p
n estimator is re� ected in the

logn term. In more complicated situations, such as the clus-
tering analysis presented in Section 4, more than two stages
of coding might be required.

Example 4 (Continued). Because ­0
D 8N 401 159 con-

sists of a single distribution, we know from Shannon’s source
coding theorem that the cost for encoding xn D 4x11 : : : 1 xn5 is

L04x
n5 D 1

2

nX

tD1

x2
t

C n

2
log42� 50

Next, consider encoding xn via a two-stage scheme based on
the class

­1
D 8N 4ˆ115 2 ˆ 6D 090

If we estimate ˆ by the MLE Ô
n

D Nxn, then the two-stage
description length (10) takes the form

L14x
n5 D 1

2

nX

tD1

4xt
ƒ Nxn52 C n

2
log42� 5 C 1

2
logn0 (11)

Thus, following the MDL principle, we choose ­0 over ­1

based on the data string xn if

— Nxn
— <

p
log4n5=n0

In this case the MDL criterion takes the form of a likelihood
ratio test whose signi� cance level shrinks to 0 as n tends to
in� nity.

3.2 Mixture Minimum Description Length and
Stochastic Information Complexity

The mixture form of description length naturally lends itself
to theoretical studies of MDL. In Section 5 we highlight con-
nections between this form and both minimax theory and the
notion of channel capacity in communication theory (Cover
and Thomas 1991). Because mixture MDL involves integrat-
ing over model classes, it can be hard to implement in practice.
To get around such dif� culties, it can be shown that a � rst-
order approximation to this form coincides with the two-stage
MDL criterion derived earlier. The proof of this fact (Clarke
and Barron 1990) mimics the original derivation of B IC as
an approximate Bayesian model selection criterion (Schwarz
1978; Kass and Raftery 1995). An alternative approxima-
tion yields yet another form of description length known as
Stochastic Information Complexity (S IC). As we demonstrate,
mixture MDL shares many formal elements with Bayesian
model selection because the underlying analytical tools are the
same. However, the philosophies behind each approach are
much different. In the next section we explore how these dif-
ferences translate into methodology in the context of ordinary
linear regression.

The name “mixture" for this form reveals it all. We base
our description of a data string xn on a distribution obtained
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by taking a mixture of the members in the family with respect
to a probability density function w on the parameters,

m4xn5 D
Z

fˆ4xn5w4ˆ5 dˆ0 (12)

Again, we introduce w not as a prior in the Bayesian sense,
but rather as a device for creating a distribution for the data
based on the model class ­ . Given a precision „d , we follow
Section 2.1.2 and obtain the description length

ƒ logm4xn5 D ƒ log
Z

f4x11 : : : 1 xn
—ˆ5w4ˆ5 dˆ C n log„d 0

Ignoring the constant term, we arrive at

ƒ log
Z

f 4x11 : : : 1 xn
—ˆ5w4ˆ5 dˆ0 (13)

This integral has a closed-form expression when f4¢—ˆ5 is an
exponential family and w is a conjugate prior, as is the case
in Example 4. When choosing between two models, the mix-
ture form of MDL is equivalent to a Bayes factor (Kass and
Raftery 1995) based on the same priors. A popular method for
calculating Bayes factors involves using Markov chain Monte
Carlo (McMC) (George and McCulloch 1997), which can be
applied to obtain the description length of mixture codes.

Example 4 (Continued). If we put a Gaussian prior w D
N 401 ’5 on the mean parameter ˆ in ­1 (note that ’ is the
variance), then we � nd that

ƒ logm4xn5 D n

2
log42� 5 C 1

2
logdet4In

C ’Jn5

C 1
2

x0
n4In

C ’Jn5
ƒ1xn1 (14)

where In is the n� n identity matrix and Jn is the n� n matrix
of 1’s. Simplifying the foregoing expression, we arrive at

1
2

X

t

x2
t
ƒ 1

2

n

1C 1=4n’5
Nx2
n

C n

2
log42� 5 C 1

2
log41 C n’50

(15)

Comparing this to the description length for the two-stage
encoder (11), we � nd a difference in the penalty,

1
2

log41 C n’51 (16)

which (to � rst order) is asymptotically the same as that associ-
ated with B IC, 1=2 logn. Depending on the value of the prior
variance ’ , (16) represents either a heavier (’ > 1) or a lighter
(’ < 1) penalty. Figure 4 presents a graphical comparison for
two values of ’ .

An analytical approximation to the mixture m4¢5 in (12) is
obtained by Laplace’s expansion when w is smooth (Rissanen
1989). Essentially, we arrive at a two-stage description length,
which we will call S IC:

S IC4xn5 D ƒ logf4xn— Ô
n5 C 1

2
logdet4 Oèn51 (17)

Figure 4. Comparison of the Penalties Imposed by BIC ( —— ) and
the Mixture Form of MDL for ’ D 5 ( – – – ) and ’ D 2 ( ¢ ¢ ¢ ¢ ). The sample
size n ranges from 1 to 50.

where Ô
n is the MLE and Oèn is the Hessian matrix of

ƒ logf 4xn—ˆ5 evaluated at Ô
n. For iid observations from a reg-

ular parametric family, and as n ! ˆ,

1
2

logdet4 Oèn5 D 1
2

logdet4nI4 Ô
n5541 C o4155

D k

2
logn41 C o41550 (18)

Here I4¢5 is the Fisher information matrix of a single obser-
vation. The middle term in this chain of equalities,

1

2
logdet4nI 4 Ô551 (19)

can be interpreted as the number of nats needed to encode the
k estimated parameter values if we discretize the jth parameter
component with a precision SE4 Ô

j 5 D 1=
p

nIjj4ˆ5 (provided
that the estimated parameters are either independent or the
discretization is done after the parameter space is transformed
so that the information matrix under the new parameteriza-
tion is diagonal). It is obviously sensible to take into account
the full estimation error, and not just the rate, when discretiz-
ing. The � nal equality in (18) tells us that in the limit, S IC is
approximately B IC or two-stage MDL. For � nite sample sizes,
however, S IC’s penalty term is usually not as severe as B IC’s,
and hence in some situations, S IC outperforms B IC. Rissanen
(1989, p. 151, table 6) illustrated this difference by demon-
strating that S IC outperforms two-stage MDL when selecting
the order in an autoregression model with n D 50. In Section 4
we present many more such comparisons in the context of
ordinary linear regression.
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3.3 Predictive Description Length

Any joint distribution q4¢5 of xn D 4x11 : : : 1 xn5 can be writ-
ten in its predictive form,

q4xn5 D
nY

tD1

q4xt
—x11 : : : 1 xtƒ150

Conversely, given a model class ­ , it is a simple matter to
obtain a joint distribution for xn given a series of predic-
tive distributions. In many statistical models, the condition-
als fˆ4xj

—x11 : : : 1 xjƒ15 share the same parameter ˆ. [Typi-
cally, f4x15 D f04x15 will not depend on ˆ, however.] For iid
data generated from a parametric family ­ , this is clearly
the case. Other applications where this property holds include
time series, regression, and generalized linear models. Sup-
pose that for each t we form an estimate Ô

tƒ1 from the � rst
4t ƒ 15 elements of xn. Then the expression

q4x11 : : : 1 xn5 D
Y

t

f Ô
tƒ1

4xt
—x11 : : : 1 xtƒ15 (20)

represents a joint distribution based on the model class ­ that
is free of unknown parameters. The cost of encoding a data
string xn using (20) is

ƒ logq4x11 : : : 1 xn5 D ƒ
X

t

logf Ô
tƒ1

4xt
—x11 : : : 1 xtƒ150 (21)

The MDL model selection criterion based on this form of
description is called PMDL for its use of the predictive distri-
bution (20). PMDL is especially useful for time series mod-
els (Hannan and Rissanen 1982; Hannan et al. 1989; Huang
1990).

By design, predictive MDL is well suited for time series
analysis, where there is a natural ordering of the data; on-
line estimation problems in signal processing; and on-line data
transmission applications like the binary string example dis-
cussed Section 2. At a practical level, under this framework
both sender and receiver start with a predetermined encoder f0

to transmit the � rst data point x1. This accounts for the leading
term in the summation (21). At time t, because the previous
4t ƒ 15 points are known at each end of the channel, the dis-
tribution f Ô

tƒ1
4xt

—x11 : : : 1 xtƒ15 is also known. This is the tth
term in the summation (21). By using the predictive distribu-
tions to sequentially update the code, both the encoder and
decoder are in effect learning about the true parameter value
and hence can do a better job of coding the data string (pro-
vided that one member of the model class actually generated
the data).

Example 4 (Continued). If we take the initial density f0

as N 40115 and set

Ô
tƒ1

D Nxtƒ1
D 1

t ƒ 1

tƒ1X

iD1

xi

(with Nx0 D 0) based on ­1, then

ƒ logq4xn5 D ƒ
nX

tD1

logf Ô
tƒ1

4xt
—xtƒ15

D n

2
log42� 5 C 1

2

nX

tD1

4xt
ƒ Nxtƒ15

20 (22)

The reasoning that we followed in deriving PMDL is iden-
tical to the prequential approach to statistics advocated by
Dawid (1984, 1991). The form (21) appeared in the litera-
ture on Gaussian regression and time series analysis as the
predictive least squares criterion long before the development
of MDL, and early work on PMDL focused mainly on these
two applications. The interested reader is referred to Hannan
and Rissanen 1982; Hannan and Kavalieris 1984; Rissanen
1986b; Hannan et al. 1989; Hemerly and Davis 1989; Wei
1992; Gerencsér 1994; Speed and Yu 1994. The recent results
of Qian, Gabor, and Gupta (1996) extended the horizon of this
form of MDL to generalized linear models.

In Section 4 we illustrate the application of PMDL to the
(differenced) daily return series studied in Example 3. In this
case we work with the “raw” data rather than the binary up-
and-down string treated earlier. Although in special cases, such
as multinomial, the ordering disappears when a Bayes esti-
mator is used for the prediction, in general PMDL depends
on a sensible ordering of the data. It is not clear how use-
ful it will be in, say, multivariate regression problems. To get
around this problem, Rissanen (1986b) suggested repeatedly
permuting the data before applying PMDL, and then averag-
ing the predictive code lengths. In Section 4 we avoid these
complications and discuss PMDL only in the context of time
series data.

3.4 Other Forms of Description Length

The MDL principle offers the opportunity to develop many
other forms of description length besides the three discussed
earlier. In Section 5 we present some of the theoretical vali-
dation required for new coding schemes or, equivalently, new
MDL criteria. For example, weighted averages or mixtures
of the three common forms will give rise to new descrip-
tion lengths that all achieve the pointwise and minimax lower
bounds on redundancy and hence can be used for model selec-
tion. Further investigation is required to determine how to
choose these weights in different modeling contexts.

Recently, Rissanen (1996) developed an MDL criterion
based on the normalized maximum likelihood (NML) coding
scheme of Shtarkov (1987) (Barron et al. 1998). For a � avor
of how it was derived, we apply NML to the binary DJ IA up-
and-down indicators introduced in Section 2.

Example 3 (Continued): Normalized Maximum Likelihood
Coding. As was done in the two-stage scheme, we � rst trans-
mit k. Then both sender and receiver know that the indicator
sequence must be among the collection of strings of size n
with exactly k 1’s. This group of sequences is known as the
type class T4n1 k5. Under the iid Bernoulli model, each string
in the type class is equally likely, and we can use a uniform
code on T4n1 k5 to communicate its elements. When applied
to the return string, the NML code requires log2

nW
kW4nƒk5W 1 or

6,421 bits, giving us a total code length of 6,434 bits when
we add the cost of encoding k. This represents a saving of
7 bits over the two-stage encoder described in Section 2, in
which xn was transmitted using an iid Bernoulli encoder with
Opn

D k=n in the second stage.

In general, the NML description of a data string works by
restricting the second stage of coding to a data region identi-
� ed by the parameter estimate. In the foregoing example, this
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meant coding the return string as an element of T 4n1 k5 rather
than 801 19n. Rissanen (1996) formally introduced this scheme
for MDL model selection and discussed its connection with
minimax theory. We explore another application of this code
when we take up ordinary linear regression in the next section.

4. APPLICATIONS OF MINIMUM DESCRIPTION
LENGTH IN MODEL SELECTION

4.1 Linear Regression Models

Regression analysis is a tool for investigating the depen-
dence of a random variable y on a collection of potential pre-
dictors x11 : : : 1 xM . Associate with each predictor xm a binary
variable ƒm, and consider models given by

y D
X

ƒmD1

‚mxm
C …1 (23)

where … has a Gaussian distribution with mean 0 and unknown
variance ‘ 2. The vector ƒ D 4ƒ11 : : : 1 ƒM 5 2 80119M is used
as a simple index for the 2M possible models given by (23).
Let ‚ƒ and Xƒ denote the vector of coef� cients and the design
matrix associated with those variables xm for which ƒm

D 1.
In this section we apply MDL to the problem of model selec-
tion or, equivalently, the problem of identifying one or more
vectors ƒ that yield the “best” or “nearly best” models for y

in (23). In many cases, not all of the 2M possibilities make
sense, and hence our search might be con� ned to only a sub-
set of index vectors ƒ .

The concept of “best,” or more precisely, the measure by
which we compare the performance of different selection cri-
teria, is open to debate. Theoretical studies, for example, have
examined procedures in terms of either consistency (in the
sense that we select a “true” model with high probability) or
prediction accuracy (providing small mean squared error), and
different criteria can be recommended depending on the cho-
sen framework. Ultimately, no matter how we settle the notion
of “best,” the bene� t of a selection rule is derived from the
insights that it provides into real problems. Mallows (1973)
put it succinctly: “The greatest value of the device [model
selection] is that it helps the statistician to examine some
aspects of the structure of his data and helps him to recog-
nize the ambiguities that confront him.” In general, we should
apply any selection procedure with some care, examining the
structure of several good-� tting models rather than restricting
our attention to a single “best” model. This point tends to be
lost in simulation studies that necessitate blunt optimization
of the criterion being examined.

At the end of this section, we present two applications
that illustrate different practical aspects of model selection for
regression analysis. The � rst application involves the iden-
ti� cation of genetic loci associated with the inheritance of
a given trait in fruit � ies. Here MDL aids in evaluating
speci� c scienti� c hypotheses. In the second application, we
construct ef� cient representations for a large collection of
hyperspectral (curve) data collected from common supermar-
ket produce. Model selection is used in this context as a tool
for data (dimension) reduction before application of (MDL-
like) cluster analysis.

Our review of regression problems draws from various
sources on MDL (Barron et al. 1998; Rissanen 1987, 1989;
Speed and Yu 1993) as well as from the literature on Bayesian
variable selection (George and McCulloch 1997; Kass and
Raftery 1995; O’Hagan 1994; Smith and Spiegelhalter 1980).
Because the need for selection in this context arises frequently
in applications, we derive several MDL criteria in detail.

4.1.1 Several Forms of Minimum Description Length for
Regression. Following the general recipe given in the previ-
ous sections, the MDL criteria that we derive for regression
can all be written as a sum of two code lengths,

L4y—Xƒ1ƒ5 C L4ƒ5 0 (24)

This two-stage approach (see Sec. 3.1) explicitly combines
both the cost to encode the observed data y using a given
model ƒ and the cost to transmit our choice of model. For the
second term, we use the Bernoulli41=25 model discussed in
Section 2.2 to describe the elements of ƒ; that is, the ƒm are
taken be independent binary random variables and the proba-
bility that ƒm

D 1 is 50%. Following this approach, each value
of ƒ has the same probability,

P4ƒ5 D 1
2

k 1
2

Mƒk

D 1
2

M

0 (25)

Thus the cost L4ƒ5 D ƒ logP4ƒ5 is constant. When we have
reason to believe that smaller or larger models are preferable,
a different Bernoulli model (with a smaller or larger value of
p) can be used to encode ƒ. This approach has been taken in
the context of Bayesian model selection and is discussed at
the end of this section.

Having settled on this component in the code length, we
turn our attention to the � rst term in (24), the cost of encoding
the data, L4y—Xƒ1ƒ5. We next will describe different MDL
schemes for computing this quantity. To simplify notation, we
drop the dependence on model index. Pick a vector ƒ and let
‚ D ‚ƒ denote the k D kƒ coef� cients in (23) for which ƒm

D 1.
Similarly, let X D Xƒ be the design matrix associated with the
selected variables in ƒ . For the most part, we work with ML
estimates for both the regression coef� cients ‚ [also known as
ordinary least squares (OLS) estimates] and the noise variance
‘ 2,

O‚ D 4X 0X5ƒ1X 0y and O‘ 2 D ˜y ƒ X O‚˜2=n0 (26)

Finally, we use RSS to represent the residual sum of squares
corresponding to this choice of O‚.

Two-Stage Minimum Description Length. Recall from
Section 3.1 that two-stage MDL for a parametric model class
is equivalent to B IC. Using the linear regression model (23),
the code length associated with the observed data y is then
given by the familiar forms

1
2‘ 2

RSS C k

2
logn (27)

when ‘ 2 is known and

n

2
logRSS C k

2
logn (28)
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when it is unknown. To derive these expressions, we have
applied the formula (10) using the estimators (26) and drop-
ping constants that do not depend on our choice of model.

In both cases, the penalty applied to the dimension k

depends on the sample size n. Related criteria like Mallows’s
Cp (Mallows 1973) and Akaike’s AIC differ only in the size
of this penalty:

Cp
D 1

2‘ 2
RSS C k and AIC D n

2
logRSS C k1 (29)

where we have again ignored terms that do not depend on our
choice of model. [The form of Cp given here applies when ‘ 2

is known. If it is not known, Mallows (1973) suggested using
an unbiased estimate b‘ 2.] While keeping the general form of
these criteria, various authors have suggested other multipliers
in front of k that can offer improved performance in special
cases. (See Hurvich and Tsai 1989 and Sugiura 1978 for a cor-
rected version of AIC for small samples; Hurvich, Simonoff,
and Tsai 1998 for AIC in nonparametric regression; and Mal-
lows 1995 for an interpretation of Cp when a different value of
the penalty on model size is desired.) In Section 4.1.3 present
an application in which a multiple of BIC penalty is proposed
as the “correct” cost for a particular class of problems arising
in genetics.

Mixture Minimum Description Length and Stochastic Infor-
mation Complexity. In Section 3.2 we formally introduced
the use of mixture distributions for constructing valid descrip-
tion lengths based on parametric classes. Because this form
of MDL is structurally similar to a Bayesian analysis, our
discussion of mixture MDL for regression problems is rela-
tively brief and borrows heavily from a classical treatment of
Bayesian variable selection for linear models. The framework
for applying mixture codes in this context was given by Ris-
sanen (1989).

Under the regression setup, we form a mixture distribution
for y (conditional on our choice of model and the values of
the predictors X) by introducing a density function w4‚1‘ 25,

m4y—X5 D
Z

f 4y—X1‚1 ’5 w4‚1’5 d‚ d’0 (30)

To obtain a closed-form expression for m4y—X5, Rissanen
(1989) took w as a member of the natural conjugate fam-
ily of priors for the normal linear regression model (23),
namely the so-called “normal inverse-gamma” distributions
(see the Appendix). Under this density, the noise variance ‘ 2

is assigned an inverse-gamma distribution with shape param-
eter a. Then, conditional on ‘ 2, the coef� cients ‚ have a nor-
mal distribution with mean 0 and variance–covariance matrix
‘ 2=cè, where è is a known positive de� nite matrix. In his
original derivation, Rissanen (1989) selected è to be the k � k

identity matrix. Sidestepping this decision for the moment, the
mixture code length for y computed from (13) is given by

ƒ log m4y—X5 D ƒ log m4y—X1 a1 c5

D ƒ 1
2

log —cèƒ1— C 1
2

log —cèƒ1 C X tX—

ƒ 1

2
loga C n C 1

2
log 4aC Rc5 1 (31)

where

Rc
D Rc

D yty ƒ ytX 4cèƒ1 C XtX5
ƒ1

X ty0

In (31) we have made explicit the dependence of the mixture
code length on the values of two hyperparameters in the den-
sity w: a, the shape parameter of the inverse-gamma distribu-
tion for ‘ 2, and c, the (inverse) scale factor for ‚.

Rissanen (1989) addressed the issue of hyperparameters by
choosing a and c to minimize the quantity (31) model by
model. It is not dif� cult to see that Oa D Rc=n, whereas for most
values of è, Oc must be found numerically. An algorithm for
doing this is given in the Appendix. By treating a and c in this
way, however, we lose the interpretation of ƒ logm4y—X1 Oa1 Oc5

as a description length. To remain faithful to the coding frame-
work, the optimized hyperparameter values Oa and Oc must also
be transmitted as overhead. Explicitly accounting for these
extra factors yields the mixture code length

ƒ logm4y—X1 Oa1 Oc5 C L 4 Oa5 C L 4 Oc5 0 (32)

Because Oa and Oc are determined by maximizing the (mixture
or marginal) log-likelihood (31), they can be seen to estimate
a and c at the standard parametric rate of 1=

p
n. Therefore, we

take a two-stage approach to coding Oa and Oc and assign each
a cost of 1=2 logn bits. Rissanen (1989) argued that no matter
how one accounts for the hyperparameters, their contribution
to the overall code length should be small. This reasoning is
borne out in our simulation studies. At the end of this section
we return to the issue of coding hyperparameters and discuss
reasonable alternatives to the two-stage procedure motivated
here.

An important ingredient in our code length (32) is the prior
variance–covariance matrix, è. As mentioned earlier, for most
values of è we cannot � nd a closed-form expression for Oc and
instead must rely on an iterative scheme. (A general form for
the procedure is outlined in the Appendix.) Rissanen (1989)
gave details for the special case è D Ik� k. We refer to the crite-
rion derived under this speci� cation as iMDL, where i refers to
its use of the identity matrix. In the Bayesian literature on lin-
ear models, several authors have suggested a computationally
attractive choice for è, namely è D 4XtX5ƒ1. Zellner (1986)
christened this speci� cation the g-prior. In our context, this
value of è provides us with a closed-form expression for Oc.
After substituting Oa D Rc=n for a in (31), it is easy to see that

1= Oc D max 4F ƒ 11 05 with F D 4y 0y ƒ RSS5

kS
1 (33)

where F is the usual F ratio for testing the hypothesis that
each element of ‚ is 0, and S D RSS=4n ƒ k5. The compu-
tations are spelled out in more detail in the Appendix. The
truncation at 0 in (33) rules out negative values of the prior
variance. Rewriting (33), we � nd that Oc is 0 unless R2 > k=n,
where R2 is the usual squared multiple correlation coef� cient.
When the value of Oc is 0, the prior on ‚ becomes a point
mass at 0, effectively producing the “null” mixture model cor-
responding to ƒ D 401 : : : 1 05. [The null model is a scale mix-
ture of normals, each N 401 ’5 and ’ having an inverse-gamma
prior.] Substituting the optimal value of Oc into (31) and adding
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the cost to code the hyperparameters as in (32), we arrive at
a � nal mixture form,

gMDL D

8
>><
>>:

n

2
logS C k

2
logF C logn1 if R2 ¶ k=n

n

2
log

y 0y

n
C 1

2
logn otherwise1

(34)

which we call gMDL for its use of the g-prior. From this
expression, we have dropped a single bit that is required to
indicate whether the condition R2 < k=n is satis� ed and hence
which model was used to code the data. When R2 < k=n, we
apply the null model, which does not require communicating
the hyperparameter Oc. Hence a 1=2 logn term is missing from
the lower expression.

Unlike most choices for è, the g-prior structure provides an
explicit criterion that we can study theoretically. First, because
n=n D 1 ¶ R2, this version of mixture MDL can never choose a
model with dimension larger than the number of observations.
A little algebra clearly shows that gMDL orders models of the
same dimension according to RSS; that is, holding k � xed, the
criterion (34) is an increasing function of RSS. This property
is clearly shared by AIC, BIC, and Cp . Unlike these criteria,
however, gMDL applies an adaptively determined penalty on
model size. Rewriting (34) in the form

n

2
logRSS C �

2
k1 (35)

we � nd that � depends on the F -statistic, so that gMDL adapts
to behave like AIC or B IC depending on which is more desir-
able (Hansen and Yu, 1999).

Finally, in Section 3.2 we applied a simple approximation
to the mixture form of MDL to derive the so-called Stochastic
Information Complexity (S IC) (17). For a model index ƒ, the
Hessian matrix of the mixture m4¢5 in (12) based on the k C 1
parameters ‚ and ’ D ‘ 2 is given by

1
O’ X 0X 0

0 n

2 O’2

0

Therefore, a little algebra reveals S IC,

S IC4ƒ5D nƒkƒ2
2

logRSSC k

2
lognC 1

2
logdet6X 0X71 (36)

where we have omitted an additive constant that is indepen-
dent of model choice.

Normalized Maximum Likelihood. As mentioned in Sect-
ion 3.4, the NML form of MDL (Barron et al. 1998; Rissanen
1996) is new, and only some of its theoretical properties are
known. It is motivated by the ML code introduced by Shtarkov
(1987). Recall that the ML estimates of ‚ and ’ D‘ 2 are given
by (26). Let f 4y—X1‚1’5 be the joint Gaussian density of the
observed data y, so that the NML function is

Of4y5D f4y—X1 O‚4y51 O’4y55
R

¹4r1’05
f4z—X1 O‚4z51 O’4z55dz

1 (37)

where ¹4r1’05D8z— O‚04z5X0X O‚4z5=nµr1 O’4z5¶’09. In this
case the maximized likelihood is not integrable, and our solu-
tion is to simply restrict the domain of Of to ¹ . Recall that

we did not encounter this dif� culty with the Bernoulli model
studied in Section 3.4, where given the number of 1’s, the
binary sequences had a uniform distribution over the type
class. Using the suf� ciency and independence of O‚4y5 and
O’4y5, one obtains

ƒ log Of 4y5D n

2
logRSSƒ logâ

nƒk

2
ƒ logâ

k

2

C k

2
log

r

’0

ƒ2log42k50 (38)

To eliminate the hyperparameters r and ’0, we again minimize
the foregoing code length for each model by setting

Or D
O‚04y5X 0X O‚4y5

n
D y0y ƒRSS

n
and O’0 D RSS

n
0

By substituting these values for r and ’0 into (38), we obtain
the selection criteria nMDL (n for normalized),

nMDLD n

2
logRSSƒ logâ

nƒk

2
ƒ logâ

k

2

C k

2
log

y0y ƒRSS
RSS

ƒ2log42k50 (39)

Technically, we should also add 1=2logn for each of the opti-
mized hyperparameters as we had done for gMDL. In this case
the extra cost is common to all models and can be dropped.
Rewriting this expression, we � nd that

nMDL D n

2
logSC k

2
logF

C nƒk

2
log4nƒk5ƒ logâ

nƒk

2

C k

2
log4k5ƒlogâ

k

2
ƒ2logk1

up to an additive constant that is independent of k. Applying
Stirling’s approximation to each â 4¢5 yields

nMDL
n

2
logSC k

2
logF C 1

2
log4nƒk5ƒ 3

2
logk0

We recognize the leading two terms in this expression as the
value of gMDL (34) when R2 >k=n. This structural similarity
is interesting given that these two MDL forms were derived
from very different codes.

Our derivation of nMDL follows Barron et al. (1998), who
remedied the nonintegrability of the maximized likelihood by
restricting Of to the bounded region ¹ . Recently, Rissanen
(2000) addressed this problem by applying another level of
normalization. Essentially, the idea is to treat the hyperparam-
eters ’0 and r as we did ‚ and ’ . The maximized likelihood
(39) is normalized again, this time with respect to O’0

D O’04y5

and Or D Or4y5. Following a straightforward conditioning argu-
ment, Rissanen (2000) found that this second normalization
makes the effect of the hyperparameters on the resulting code
length additive and hence can be ignored for model selection.
[ In deriving his form of NML, Rissanen (2000) also handled
the issue of coding the model index ƒ differently than we have
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in (24). Another normalization is applied, this time across a
set of model indices ì.] Ultimately, the � nal NML criterion
derived in this way differs from our nMDL rule in (39) by
only an extra logk. Rissanen (2000) applied his NML selec-
tion criterion to wavelet denoising, illustrating its performance
on a speech signal.

Stine and Foster (1999) also explored the derivation
of NML for estimating the location parameter in a one-
dimensional Gaussian family, but proposed a different solu-
tion to the nonintegrability problem. They suggested a numer-
ically derived form that is shown to have a certain minimax
optimality property (up to a constant factor). In general, the
derivation of NML in such settings is still very much an area
of active research. We present nMDL here mainly to illustrate
the reasoning behind this form, and comment on its similarity
to gMDL.

Discussion. As mentioned at the beginning of this section,
there are alternatives to our use of the Bernoulli41=25 model
for coding the index ƒ . For example, George and Foster
(2001) took the elements of ƒ to be a priori independent
Bernoulli random variables with success probability p. They
then selected a value for p by ML (in the same way that we
treated the parameters a and c). In early applications of model
selection to wavelet expansions, the value of p was � xed at
some value less than 1=2 to encourage small models (Clyde,
Parmigiani, and Vidakovic 1998).

The use of a normal inverse-gamma prior with èD 4XtX5ƒ1

appears several times in the literature in Bayesian model selec-
tion. For example, Akaike (1977) essentially derived gMDL
for orthogonal designs, and Smith and Spiegelhalter (1980)
used this prior when considering model selection based on
Bayes factors where aD0 and c Dc4n5 is a deterministic func-
tion of sample size. These authors were motivated by a “cali-
bration” between Bayes factors and penalized selection crite-
ria in the form of B IC and AIC (see also Smith 1996; Smith
and Kohn 1996). Finally, Peterson (1986) built on the work of
Smith and Spiegelhalter (1980) by � rst choosing èD 4XtX5ƒ1

and then suggesting that c be estimated via (marginal) ML
based on the same mixture (31). This is essentially Rissanen’s
(1989) prescription.

Throughout our development of the various MDL criteria,
we have avoided the topic of estimating the coef� cient vector
‚ once the model has been selected. In the case of AIC and
BIC, it is common practice to simply rely on OLS. But the
resemblance of mixture MDL to Bayesian schemes suggests
that for this form, a shrinkage estimator might be more natu-
ral. For example, the criterion gMDL is implicitly comparing
models not based on O‚, but rather on the posterior mean (con-
ditional on our choice of model)

max 1ƒ 1
F

10 O‚

associated with the normal inverse-gamma prior and the
regression model (23). Here F is de� ned as in the gMDL cri-
terion (34). Recall that the condition that F >1 is equivalent
to the multiple R2 being larger than k=n. Interestingly, this
type of shrinkage estimator was studied by Sclove (1968) and
Sclove, Morris, and Radhakrishnan (1972), who showed it to

have improved mean squared error performance over OLS and
other shrinkage estimators. In the case of iMDL, the coef-
� cient vector ‚ is estimated via classical ridge regression.
Of course, Bayesian methods can be applied more generally
within the MDL framework. For example, in Section 3.1 we
found that any

p
n-consistent estimator can be used in the

two-stage coding scheme. This means that we could even sub-
stitute Bayesian estimators for ‘ 2 and ‚ in the two-stage cri-
terion (28) rather than O‚ and O‘ 2. The beauty of MDL is that
each such scheme can be compared objectively, regardless of
its Bayesian or frequentist origins.

Next, in several places we are forced to deal with hyperpa-
rameters that need to be transmitted so that the decoder knows
which model to use when reconstructing the data y. We have
taken a two-stage approach, attaching a � xed cost of 1=2logn

to each such parameter. Rissanen (1989) proposed using the
universal prior on integers Lü after discretizing the range of the
hyperparameters in a model-independent way. If prior knowl-
edge suggests a particular distribution, then naturally it should
be used instead. In general, the values of the hyperparameters
are chosen to minimize the combined code length

4 Oa1 Oc5Dmin
4a1c5

8L4y—X1a1c5CL4a5CL4c591 (40)

where the � rst term represents the cost of coding the data
given the value of the hyperparameters, Oa and Oc, and the sec-
ond term accounts for the overhead in sending them. In our
derivation of iMDL and gMDL, we took the latter terms to be
constant, so that we essentially selected the hyperparameters
via ML (mixture or marginal). In the simulation study pre-
sented in the next section, each reasonable method for incor-
porating the cost of the hyperparameters produced selection
criteria with similar prediction errors. As a � nal note, the the-
oretical material in Section 5 justi� es the use of MDL only
when the values of the hyperparameters are � xed. The mini-
mization in (40) complicates a general analysis, but certainly
selection rules can be studied on a case-by-case basis when
explicit forms appear (as in the case of gMDL). We leave a
detailed discussion of this material to future work.

4.1.2 A Simulation Study. When choosing between mod-
els with the same number of variables, AIC and each of the
MDL procedures B IC, gMDL, and nMDL select the model
with the smallest RSS. Therefore, to implement these crite-
ria, it is suf� cient to consider only the lowest-RSS models
for dimensions 1121: : : 1M . When the number of predictors is
relatively small (say, less than 30), it is not unreasonable to
perform an exhaustive search for these models by a routine
branch-and-bound algorithm (see Furnival and Wilson 1974
for a classic example). Unfortunately, the criteria iMDL and
S IC involve characteristics of the design matrix X, requir-
ing a different technique. An obvious (and popular) choice
involves greedy, stepwise model building. In this case, some
combination of stepwise addition (sequentially adding new
variables that create the largest drop in the model selection
criterion) and deletion (removing variables that have the least
impact on the criterion) can be used to identify a reasonably
good collection of predictors. Rissanen (1989) discussed these
greedy algorithms in the context of (approximately) minimiz-
ing iMDL or S IC. The recent interest in Bayesian computing
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has produced a number of powerful McMC schemes for vari-
able selection. To apply these ideas to MDL, � rst recall that
the mixture form is based on an integrated likelihood (12) that
we can write as m4y5Dp4y—ƒ5 for model indices ƒ . Assuming
that each ƒ 2 80119M is equally likely a priori, we � nd that

m4y5Dp4y—ƒ5/ p4ƒ—y51

a posterior distribution over the collection of possible models.
Candidate chains for exploring this space include the Gibbs
sampler of George and McCulloch (1993); the importance
sampler of Clyde, DeSimone, and Parmigiani (1996), appli-
cable when the predictor variables are orthogonal; and the
Occam’s window scheme of Madigan, Raftery, and Hoeting
(1997). In the simulation study described here, however, the
number of covariates is small, so we can simply evaluate S IC
and iMDL on all possible models to identify the best.

To understand the characteristics of each MDL criterion, we
consider three simulated examples. These have been adapted
from similar experiments of Tibshirani (1996) and Fourdrinier
and Wells (1998). In each case, we work with datasets com-
prising 20 observations from a model of the form

y Dx‚C‘ …1 (41)

where x 228 has a multivariate normal distribution with mean
0 and variance–covariance matrix Vij

D2�—iƒj—, i1j D11: : : 18,
and … is an independent standard normal noise term. Table 1
compares several MDL selection criteria across 100 datasets
simulated according to (41), where �D 05, ‘ D41 and ‚228

is assigned one of three (vector) values listed in Table 1. We
quote both the average size of models selected by each crite-
ria as well as the median model error, where model error is
de� ned as

E8x O‚ƒx‚92 D 4 O‚ƒ‚50V4 O‚ƒ‚51

with O‚ obtained by an OLS � t with the selected variables. In
Table 1 we also include the signal-to-noise (SNR) ratio for
each set of simulations, where we take

SNR D‚0V‚=‘ 20

The row labeled OLS represents a straight OLS � t to the com-
plete set of variables.

In this simulation, we initially compared AIC, B IC, gMDL,
S IC, and nMDL. An anonymous referee suggested that as AIC
is based on large-sample approximations, a modi� ed crite-
rion, A ICC, is a more appropriate comparison. This form was
derived by Sugiura (1978) for use in small samples and was
later studied by Hurvich and Tsai (1989). In our notation this
criterion is given by

AICC D n

2
logRSSC n

2
1Ck=n

1ƒ4kC25=n
0

It is well known that when the data-generating mechanism
is in� nite-dimensional (and includes the candidate covariate
variables), then AIC is an optimal selection rule in terms of
prediction error; that is, A IC identi� es a � nite-dimensional
model that, although an approximation to the truth, has good

prediction properties. But, when the underlying model is in
fact � nite-dimensional (the truth belongs to one of the model
classes being evaluated), A IC tends to choose models that are
too large. The criterion AICC was derived under the assump-
tion of a � nite truth, and avoids the asymptotic arguments
used in the original derivation of AIC. Computationally, this
criterion is also amenable to the branch-and-bound techniques
mentioned earlier.

In general, except for S IC, the MDL criteria outperformed
AIC, AICC1 and BIC. Note that A ICC improves over AIC in
all but the case of entirely weak effects, and even here the dif-
ference is small. This improvement is to be expected, because
as the data-generating model is among the candidates being
evaluated, precisely the � nite-dimensional setup under which
AICC was derived. The selection rule iMDL seems to perform
exceedingly well in each simulation setup, although its per-
formance degraded slightly when we considered larger sample
sizes. In only one of the simulation suites did gMDL perform
poorly relative to the other MDL schemes, namely the third
case with entirely weak effects. When we increase the sam-
ple size to 50 but maintain the same SNR, gMDL recovers,
and its model error rivals that of iMDL. Another interesting
effect to mention in Table 1 is that in the third case (weak
effects), model selection with iMDL outperforms OLS and
AIC. In principle, A IC is known to work well in this situation.
When we reran these simulations with �D0, corresponding to
independent predictors, A IC did in fact improve to the level
of iMDL. The implicit shrinkage performed by iMDL when
evaluating models through (32) is apparently responsible for
iMDL’s excellent performance here. We hasten to add, how-
ever, that in all cases, once a model is selected, we are simply
performing an OLS � t to obtain O‚ (from which the model error
is derived). For both mixture forms of MDL and for all of the
simulations, the shrinkage procedures based on Oc improve on
these OLS estimates.

Given the penalties on k imposed by AIC and B IC, one can
expect A IC to favor larger models and BIC to be more con-
servative. This can be seen in each of our simulation results.
But the MDL forms can be thought of as imposing an adaptive
penalty on model size. For comparison purposes, we computed
an equivalent penalty in a neighborhood of the best model
identi� ed by the MDL criteria. To be more precise, Figure 5
plots the iMDL criterion versus model size, evaluated for the
28 D512 possible models using data from a single run of the
simulation described earlier. De� ne iMDLü 4k5 to be the min-
imum value of iMDL among all models of size k and let
RSS ü 4k5 be the residual sum of squares for that model. Then
consider the quantity

‹4k5D2
h
iMDL ü 4k5ƒ n

2
logRSS ü 4k5

i
0

If we replaced iMDL with either AIC or B IC in this de� ni-
tion, then the difference ‹4kC15ƒ‹4k5 would be 2 or logn.
(Although the expressions for AIC and BIC can be manip-
ulated in other ways to tease out the penalty on dimension,
we have chosen differences because most of the MDL expres-
sions are only known up to additive constants.) To get a rough
idea of the price placed on dimension by the MDL criteria,
we looked at this difference in the neighborhood of the min-
imum. In Figure 5, the heavy black line joins the two points
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Figure 5. Calculating an Equivalent Penalty for the MDL Criteria. In
this case we consider iMDL and restrict our attention to a difference of
the two points connected by heavy black segments.

used to evaluate ‹4k5. The average equivalent penalty across
the 100 replicates of each simulation is given in Table 1. The
adaptability of these procedures is immediately evident from
the � rst and third simulation setups. When faced with a sin-
gle, strong effect, for example, the penalties associated with
iMDL and gMDL are larger than that of BIC, forcing smaller
models; whereas when given a number of small effects, the

Table 1. Simulation Results for n D20 Observations From (41). In each case, �D 5 and ‘ D4.

Median Average Proportion Equivalent
Criterion model error model size correct penalty

‚D (510101010101010) OLS 901 800 0 0
(SNR 3.2) gMDL 100 104 07 400

nMDL 402 203 02 204
iMDL 104 105 06 307
BIC 302 109 04 300
AIC 503 208 02 200
AICC 303 109 04 302
SIC 706 401 004 100

‚D (31105101012101010) OLS 906 800 0 0
(SNR 3.2) gMDL 706 208 02 306

nMDL 706 305 03 206
iMDL 608 300 03 207
BIC 800 303 02 300
AIC 805 308 02 200
AICC 706 300 03 306
SIC 806 501 007 100

‚D0075 ü (111111111111111) OLS 905 800 100 0
(SNR 1.4) gMDL 1005 209 00 209

nMDL 907 306 00 108
iMDL 903 304 00 109
BIC 1100 300 00 300
AIC 1002 305 00 200
AICC 1006 208 00 305
SIC 1005 408 006 100

penalty shrinks below that for AIC allowing iMDL to capture
larger models. S IC tends to impose a penalty that is much
weaker than AIC, leading to its discouraging results.

These simulations demonstrate a distinct performance
advantage in the adaptive forms of MDL, gMDL and iMDL,
over B IC, AIC, and AICC in model selection. The theoreti-
cal properties of gMDL and iMDL are currently under study
(Hansen and Yu 1999). Interestingly, both of these forms share
much in common with the new empirical Bayes criteria of
George and Foster (1998) and the Peel method of Fourdrinier
and Wells (1998). In the next section we investigate the use of
MDL in two applied problems. In the � rst case, we propose
a hand-crafted procedure to perform model selection within
a restricted class of problems. We � nd that the adaptivity of
MDL produces results that are (automatically) equivalent to
this specialized approach. In the second example, we apply
MDL to curve estimation. We use the output from this proce-
dure later to illustrate a form of MDL for cluster analysis.

4.1.3 Applying Minimum Description Length in Practice:
Two Regression Examples

The Genetics of a Fruit Fly. Our � rst example comes from
genetics and has been developed into a variable selection prob-
lem by Cowen (1989), Doerge and Churchill (1996), and Bro-
man (1997). The data we consider were collected by Long
et al. (1995) as part of an experiment to identify genetic loci,
locations on chromosomes, that in� uence the number of bris-
tles on the fruit � y Drosophila melanogaster.

The experimental procedure followed by Long et al. (1995)
was somewhat complicated, but we attempt to distill the essen-
tial features. First, a sample of fruit � ies was selectively inbred
to produce two family lines differentiated on the basis of
their abdominal bristles. Those � ies with low bristle counts
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was separated into one parental line L, whereas those with
high counts formed another line, H. Several generations of
� ies were then obtained from these two populations through
a backcross. That is, the H and L lines were crossed to yield
the so-called � rst � lial generation F1, and then the F1 � ies
were again crossed with the low parental line L. Ultimately,
66 inbred family lines were obtained in this way, so that the
individual � ies within each group were genetically identical at
19 chosen genetic markers (or known locations on the chro-
mosomes). Abdominal bristle counts were collected from a
sample of 20 males and 20 females from each of these popu-
lations. By design, all of the � ies bred in the backcross inher-
ited one chromosome from the � rst � lial generation F1 and
one chromosome from the low parental line L, so that at each
of the genetic markers they had either the LL or HL geno-
type. The goal of this experiment was to identify whether the
genotype at any of the 19 genetic markers in� uenced observed
abdominal bristle counts.

Let yij , iD11: : : 166, j D112, denote the average number of
bristles for line i, tabulated separately for males, correspond-
ing to j D1, and females, corresponding to j D2. Consider a
model of the form

yij
DŒC�sj

C
X

l

‚lxil
C

X

l

„lsjxil
C…ij1 (42)

where sj is a contrast for sex, s1 Dƒ1 and s2 DC1; and
xil

Dƒ1 or C1 according to whether line i had genotype LL
or HL at the lth marker, lD11: : : 119. Thus the full model
(42) includes main effects for sex and genotype as well as
the complete sex � genotype interaction, a total of 39 vari-
ables. The error term …ij is taken to be Gaussian with mean
0 and unknown variance ‘ 2. In this framework identifying
genetic markers that in� uence bristle counts becomes a prob-
lem of selecting genotype contrasts in (42). Following Bro-
man (1997), we do not impose any hierarchical constraints on
our choice of models, so that any collection of main effects
and interactions can be considered. Thus, in the notation of
Section 4.1 we introduce an index vector ƒ 2 8011939 that
determines which covariates in (42) are active. (We have inten-
tionally excluded the intercept from this index, forcing it to
be in each model.)

Broman (1997) considered variable selection for this prob-
lem with a modi� ed B IC criterion,

B IC‡
D n

2
logRSSC‡

k

2
logn1 (43)

where ‡D2, 2.5, or 3. Broman (1997) found that placing
a greater weight on the dimension penalty log4n5=2 is nec-
essary in this context to avoid including spurious markers.
As with the data from Long et al. (1995), model selection
is complicated by the fact that the number of cases n col-
lected for backcross experiments is typically a modest multi-
ple of the number of possible predictor variables. Aside from
practical considerations, Broman (1997) motivated (43) by
appealing to the framework of Smith (1996) and Smith and
Kohn (1996). These authors started with the mixture distribu-
tion (31) derived in Section 4.1.1, taking the improper prior
speci� cation aDd D0 in (A.2) and (A.3). Instead of � nding
optimal values for c, they considered deterministic functions

c Dc4n5. This approach was also taken by Smith and Spiel-
gelhalter (1980), who attempted to calibrate Bayesian analy-
ses with other selection criteria AIC. If we set c4n5Dn‡ for
all models, then from (31) we roughly obtain Broman’s cri-
terion (43). (This argument is meant as a heuristic; for the
precise derivation of (43), see Broman 1997.) The larger we
make ‡, the more diffuse our prior on ‚ becomes. Because
the same scaling factor appears in the prior speci� cation for
models of different dimensions, the mass in the posterior dis-
tribution tends to concentrate on models with fewer terms.

Because the number of markers studied by Long et al.
(1997) was relatively small, Broman (1997) was able to use
a branch-and-bound procedure to obtain the optimal model
according to each of the criteria (43). By good fortune, these
three rules each selected the same eight-term model,

yij
DŒC�sj

C‚2xi2
C‚5xi5

C‚9xi9
C‚13xi113

C‚17xi117

C„5sjxi5
C…ij1 (44)

which includes the main effect for sex, � ve genotype main
effects (occurring at markers 2, 5, 9, 13, and 17), and one
sex � genotype interaction (at marker 5). To make a compari-
son with the MDL selection rules derived in Section 4.1.1, we
again performed an exhaustive search for AIC, B IC, gMDL1

and nMDL. As noted earlier, a number of McMC schemes can
be applied to � nd promising models based on iMDL and S IC.
We chose the so-called focused sampler of Wong, Hansen,
Kohn, and Smith (1998). (The speci� c sampler is somewhat
unimportant for the purpose of this article. Any one of a num-
ber of schemes could be used to accomplish the same end.)
In Figure 6 we overlay these criteria, plotting the minimum of
each as a function of the model dimension k. For easy com-
parison, we mapped each curve to the interval 60117. As noted
by Broman (1997), B IC and hence also AIC chose larger mod-
els that were primarily supersets of (44) involving 9 and 13
terms. Our two forms of mixture MDL, gMDL and iMDL,
and the NML criterion, nMDL, were each in agreement with
Broman’s B IC‡, selecting (44). Using the device introduced
in the previous section (see Fig. 4), we � nd that the equiva-
lent penalty imposed by gMDL was 7.4, which corresponds
to an ‡D704=lognD704=log132D105. For nMDL the story
was about the same, with an equivalent penalty of 700 (or
an ‡ of 1.4). Finally, iMDL had a penalty of 6.4 for an ‡

of 1.3. These � ndings are satisfying in that our automatic pro-
cedures produced the same results as selection rules that have
been optimized for the task of identifying nonspurious genetic
markers from backcross experiments. Somewhat disappoint-
ingly, strict minimization of S IC identi� es a model with 12
variables (and an equivalent penalty of 1.6, less than half of
B IC’s log132D409). From Figure 5, however, we see that S IC
curve is extremely � at in the neighborhood of its optimum,
implying that an 11-term model provides virtually the same
quality of � t. For kD11, S IC selects a model that is a subset
of that chosen according to AIC, but contains all of the terms
in the model identi� ed by BIC.

To summarize, we have compared the performance of sev-
eral forms of MDL to a special-purpose selection criterion
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Figure 6. Comparing Several Different Model Selection Criteria:
gMDL, ( —– ), nMDL ( – ¢ – ), BIC ( – – ), iMDL ( – – ¢ ), AIC ( - - - ¢ ), SIC
(.......).

(43). For the most part, our results are consistent with those of
Broman (1997), identifying (44) as the best model. The only
poor performer in this context was S IC, which fell between
the poorly performing criteria AIC and B IC.

Figure 7. Spectral Re‘ ectance Curves Collected From Six Varieties of Supermarket Produce. In (a)–(f) we plot ’ ve representative curves. Knot
locations selected by gMDL and BIC are marked by vertical lines in (f).

The Color of Supermarket Produce. Our second regres-
sion example involves model selection in the context of
function estimation. Figure 7 presents a number of spectral
re� ectance curves obtained from samples of common fruits
and vegetables. Measurements were taken on samples from
some 70 varieties of popular produce, with the ultimate goal
of creating a recognition system that could augment super-
market checkout systems. For example, in Figure 6(a), each
curve represents the color of a lemon measured at a small
spot on its surface. The intensity of light re� ected by its skin
is recorded as a function of wavelength, producing a single
curve in Figure 7. Because of noise considerations, we have
restricted our measurements to a subset of the visible spec-
trum between 400 and 800 nm, recording values in 5-nm inter-
vals. To remove the effects of varying surface re� ectivity and
to account for the possibility that the intensity of the incident
light may vary from measurement to measurement, each curve
has been normalized (across wavelength) to have mean 0 and
variance 1.

To make sense of these curves, consider the sample of limes
represented in Figure 6(c). Limes are green because chloro-
phyll in their skin absorbs light strongly in the region between
680 and 700 nm. The dip in this region is evident in each of
the lime measurements. Similarly, several of the bananas in
our sample must have been slightly green, because a few of
the corresponding curves also drop in this region. In general,
plant pigments absorb light in broad, overlapping bands, and
hence we expect our re� ectance curves to be smooth func-
tions of wavelength. The underlying chemistry manifests itself
by varying the coarse features of each measurement. Finally,
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as should be apparent from Figure 6, our experimental setup
allowed us to capture these curves with very little noise.

In this section our goal is to derive a compact representa-
tion of these curves to be used for recognition purposes (see
also Furby, Kiiveri, and Campbell 1990). Dimension reduc-
tion is accomplished by simple projections onto an adaptively
determined space of functions. Suppose that we observe each
curve at n distinct wavelengths x11: : : 1xn. Then consider the
candidate basis functions of the form

Bi4x5DK4x1xi5 for iD11: : : 1n1

where K4¢1¢5 is some speci� ed kernel function. There are a
number of choices for K, most falling into the class of so-
called radial basis functions often used in neural networks
(Hertz, Krough, and Palmer 1991). We choose instead to
use the kernels that appear in the construction of smoothing
splines (Wahba 1990; Wong, Hansen, Kohn, and Smith 1997).
Then, having settled on a basis, we search for an approxima-
tion of the form

f4x5 �0
C�1xC

X

i2ƒiD1

‚iBi4x51 x 2 6400180071 (45)

where f is the true re� ectance measurement taken from a sam-
ple of fruit and ƒ 280119n again indexes the candidate basis
functions. Variable selection in (45) with Bi de� ned through
smoothing spline kernels is equivalent to choosing knot loca-
tions in a natural spline space (Schumaker 1993). Note that in
this case we always include a constant term and a linear term
in our � ts. (Because of our normalization, we do not need the
constant term, but we include it in the equation for complete-
ness.) In this context, Luo and Wahba (1997) used a stepwise
greedy algorithm to identify a model, and Wong et al. (1997)
used the focused sampler after constructing a computationally
feasible prior on ƒ. Finally, recall that a traditional smoothing
spline estimate would � x ƒ D 411: : : 115 and perform a penal-
ized � t (Wahba 1990). Hansen and Kooperberg (1998) gave a
general discussion of knot location strategies.

As mentioned earlier, the data presented in Figure 7 were
collected as part of a larger project to create a classi� er for
recognizing supermarket produce based solely on its color.
Although we ultimately applied a variant of penalized dis-
criminant analysis (Hastie, Buja, and Tibshirani 1995), a rea-
sonably accurate scheme involves dimension reduction (45)
followed by simple linear discriminant analysis (LDA) on the
coef� cients ‚i. Therefore, we adapted the MDL criteria to
handle multiple responses (curves). Our search for promising
indices ƒ now represents identifying a single spline space (45)
into which each curve is projected, producing inputs (coef� -
cients) for a classi� cation scheme like LDA. Given our exten-
sion of the MDL procedures to multiple responses, it is also
possible to simply “plug in” each of these schemes to the � ex-
ible discriminant analysis technique of Hastie, Tibshirani, and
Buja (1994). The expansion (45), with its curve-by-curve pro-
jection into a � xed linear (although adaptively selected) space,
can be applied directly in this algorithm.

For our present purposes, we have roughly 30 curves for
each variety shown in Figure 7, for a total of 176 response
vectors. Because of the size of the problem, the best B IC and

gMDL models were computed using the focused sampler of
Wong et al. (1997). We restricted our attention to these two
forms purely on the basis of computational burden. The iter-
ations (66) required by iMDL are prohibitive given our cur-
rent implementation of the algorithm. It is, of course, pos-
sible to take shortcuts with greedy, deterministic searches as
proposed by Rissanen (1989). But to simplify our presenta-
tion, we restrict our attention to only these two forms. In each
case, we used 10,000 iterations of the sampler to identify the
best expansion (45). To simplify our exposition even further,
we were pleased to � nd that B IC and gMDL agreed on the
number of knots, and hence their placement as both select the
minimal RSS model among candidates of the same dimen-
sion. Figure 7 highlights the locations of the selected knots,
or rather the points xi that correspond to kernel functions
Bi4¢5DK4¢1xi5 in the approximation (45). The higher density
of knots in the neighborhood of 700 nm is expected. Because
of chlorophyll’s absorption properties, re� ectance curves col-
lected from green plants often exhibit a sharp rise in this
region, known as the red edge.

Based on these selected knot locations, we now project each
curve into the linear space de� ned in (45). In the next section
we apply the coef� cients from these projections to a MDL-
like clustering scheme.

4.2 Clustering Analysis

In this section we apply a close cousin of MDL introduced
by Wallace and Boulton (1968) and re� ned by Wallace and
Freeman (1987). Originally designed for cluster analysis, their
principle of minimum message length (MML) also appeals to
a notion of code length to strike a balance between model
complexity and � delity to the data. Under this framework, a
two-part message is constructed, analogous to the two-stage
coding scheme discussed in Sections 2 and 3. For cluster anal-
ysis, a mixture of parametric models is proposed, so that the
� rst part of the MML message consists of

¡ the number of clusters or components
¡ the number of data points belonging to each cluster
¡ the parameters needed to specify each model
¡ the cluster membership for each data point.

In the second part of the message, the data are encoded using
the distribution of the speci� ed model exactly as described in
Sections 2 and 3. As with MDL, the best MML model is the
one with the shortest message length. In the words of Wallace
and Boulton (1968), “a classi� cation is regarded as a method
of economical statistical encoding of the available attribute
information.”

When possible, MML attempts to divide the data into homo-
geneous groups (implying that the model for each component
captures the structure in the data), while penalizing the overall
complexity or rather the total number of components. For the
moment, the only practical difference between two-stage MDL
and MML involves the precise encoding of the selected model.
(As these details are somewhat technical, the interested reader
is referred to Baxter and Oliver 1995.) Observe, however, that
the restriction to two-part messages limits MML from taking
advantage of other, more elaborate coding schemes that still
give rise to statistically sound selection schemes.
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To illustrate MML or the practical application of MDL to
cluster analysis, we consider the produce data from the pre-
vious section. Recall that each spectral re� ectance curve was
projected onto a spline space (45) with the 14 knot loca-
tions speci� ed in Figure 7. When combined with the linear
term in (45), we obtain 15 estimated coef� cients for each
of our 176 curves. To this dataset we applied MML clus-
ter analysis using SNOB, a public-domain Fortran program
developed by Wallace’s group at Monash University in Mel-
bourne, Australia. (The SNOB program and a number of rel-
evant documents can be found through David Dowe’s Web
site http://www.cs.monash.edu.au/ dld.) Wallace and Dowe
(1994) have described the mixture modeling framework on
which SNOB is based.

When clustering Gaussian data, each component of the mix-
ture has a multivariate normal distribution with a diagonal
covariance matrix. At present, SNOB assumes that all intra-
class correlations are 0. Following a suggestion in the doc-
umentation, we orthogonalized the entire dataset via a prin-
cipal components decomposition. Figure 8 plots the scores
corresponding to the � rst two components, labeling points
according to the class of each fruit. Clear divisions can be
seen between, say, the limes and bananas. The cantaloupe
measurements stretch across a broad area at the bottom of
this plot, an indication that it will be dif� cult to separate
this class from the others. This is perhaps not surprising
given the different colors that a cantaloupe can exhibit. The
10-cluster SNOB model is superimposed by projecting each
Gaussian density in the mixture onto the space of the � rst two-

Figure 8. Mixture Modeling via MML. SNOB ’ nds 10 clusters for
the projected re‘ ectance curves. The ovals are contours of constant
probability for the clusters that exhibit signi’ cant variation in the ’ rst two
principal component directions. B = Banana, Li = Lime, Le = Lemon,
C = Cantaloupe, O = Orange, G = Garlic.

dimensional principal components. Again, each component in
this mixture is a Gaussian with diagonal variance–covariance
matrix. In some cases the SNOB clusters capture isolated
groups of fruits (the bananas, lemons and limes, for example),
whereas in other cases the color appears in too many different
varieties.

4.3 Time Series Models

Our � nal application of MDL is to time series analysis. We
emphasize predictive MDL, which is especially natural in this
setting. Our benchmarks will be AIC and B IC. In this context,
determining the orders of an ARMA process is a common
model selection problem. Throughout this section we focus on
Gaussian ARMA(p1q) models, speci� ed by the equation

xt
D”1xtƒ1 C ¢¢¢C”pxtƒp

CZt
Cˆ1Ztƒ1 ¢¢¢CˆqZtƒq 1 (46)

where the variables Zt are iid Gaussian with mean 0 and vari-
ance ‘ 2. As is customary, we assume that the polynomials

1ƒ”1zƒ ¢¢¢ƒ”pzp D0 and 1ƒˆ1zƒ ¢¢¢ƒˆq zq D0

have no roots in —z—<1, so that (46) describes a stationary,
second-order Gaussian process.

Given parameter values ”D 4”11: : : 1”p5 and ˆ D
4ˆ11: : : 1ˆq5, and a series x11: : : 1xt , it is straightforward
to make predictions from (46) to times tC11tC21: : : con-
ditional on the � rst t data points. For example, following
Brockwell and Davis (1991, p. 256), xtC1 has a Gaussian
distribution with mean OxtC1 and variance ‘ 2rt , which are
calculable from the recursive formulas
8
><
>:

OxtC1 DPt
iD1 ˆit4xtC1ƒi

ƒ OxtC1ƒi51 1µt <max4p1q5

OxtC1
D”1xt

C : : : C”pxtC1ƒp

CPq
iD1 ˆit4xtC1ƒi

ƒ OxtC1ƒi51 t ¶max4p1q5

(47)

The extra parameters ˆit and rt can be obtained recursively by
applying the so-called innovation algorithm (Brockwell and
Davis, 1991, prop. 5.2.2.) to the covariance function of the
ARMA process.

We now turn to de� ning two forms of MDL in this context.
For ease of notation, we collect the parameters ”, ˆ, and ‘ 2

into a single vector ‚. To emphasize the dependence of OxtC1

and rt on ‚, we write

OxtC14‚5 and rt4‚50

Hence the predictive density of xtC1 conditional on x11: : : 1xt

is given by

qt4xtC1
—‚5D 2� rt‘

2 ƒ 1
2 exp ƒ 1

2rt‘
2
4xtC1

ƒ OxtC15
2 1

and the likelihood for ‚ based on x11: : : 1xn is simply

q4‚5D
nY
t

qt4xtC1—‚50 (48)

Letting O‚n denote the MLE in this context, two-stage MDL
takes on the now familiar form of B IC,

ƒlogq4 O‚n5C pCq C1

2
logn0
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The consistency proof of the two-stage MDL or BIC fol-
lows from Hannan and Quinn (1979) for autoregressive mod-
els and from Gerencsér (1987) for general ARMA processes.
As explained earlier, the complexity penalty logn=2 comes
from coding the parameter values at the estimation rate 1=

p
n.

Huang (1990) showed that when an AR model is not stable,
this complexity penalty should be adjusted to the new estima-
tion rate. For example, this leads to a complexity term logn

for the explosive case where the estimation rate is 1=n.
When modeling time series data, the predictive form of

MDL is perhaps the most natural. Expressing the likelihood
predictively, we arrive at the criterion

PMDL4p1q5Dƒ
nX

tD1

logqt4xtC1
— O‚t50 (49)

A closely related quantity for assessing the orders in ARMA
models is the so-called accumulated prediction error (APE),

APE4p1q5D
nX

t

4xtC1 ƒ OxtC15
21

although APE was used long before the MDL principle. The
computational cost of PMDL can be enormous for general
ARMA models, because the parameter estimate O‚t in (49)
must be updated for each new observation. Hannan and Rissa-
nen (1982) and Lai and Lee (1997) have proposed methods for
reducing this cost. Consistency proofs for PMDL order selec-
tion were given for AR models by Hannan et al. (1988) and
Hemerly and Davis (1989), and for general ARMA models by
Gerencsér (1987).

Although deriving a mixture form of MDL appears possi-
ble by appealing to the state-space approach to ARMA pro-
cesses (Carlin, Polson, and Stoffer 1992), selecting (compu-
tationally feasible) priors remains an active research area in
its own right. In the next example, we apply AIC, B IC1 and
PMDL to the actual values (differenced) of the return series
studied in Section 2.

Example 3 (Continued). In Figure 2(a) we presented � rst
differences of the daily return series. Although our interest at
that point was on compressing the string of ups and downs,
we now focus on the series itself. To ease the computational
burden of PMDL, we chose to update the parameter estimates
only every 100 days. We also restricted our attention to the
� rst 6,100 data points, intentionally stopping short of the spike
induced by the stock market crash in 1987. Using the time
series tools in S-PLUS, we � t our parameter estimates and
recursively evaluated the likelihood (48) conditioned on the
� rst 100 days. The standard analysis tools in S-PLUS allowed
for a quick order determination via AIC and B IC. These crite-
ria indicated that a simple MA(1) was in order. We then con-
sidered models where p and q varied (independently) over the
range 0–5, and found that PMDL also favors a MA(1) model.
This result agrees with our initial work on the up-and-down
series from Section 2. Undoubtedly, the (twice-differenced)
DJ IA series is much more complex than a simple ARMA pro-
cess, but our goal here is to illustrate the application of MDL,
not to dabble in the stock market.

5. THEORETICAL RESULTS ON MINIMUM
DESCRIPTION LENGTH

In Section 3 we mentioned that the validity of an MDL
model selection criterion depends on properties of the underly-
ing coding scheme or, more precisely, the resulting description
lengths. In this section we formalize these ideas in the context
of regular parametric families (model classes). We � rst derive
pointwise and minimax lower bounds on the code length with
which data strings can be encoded with the help of a class
of models. Coding schemes yielding description lengths that
achieve these lower bounds are said to produce valid MDL
model selection criteria. Next, we return to the hypothesis tests
of Example 4 and verify that the two-stage, predictive, and
mixture forms of description length all achieve these lower
bounds. It has been shown that under very general conditions,
MDL model selection criteria are consistent when the data-
generating model belongs to the class being considered (Bar-
ron et al. 1998). We end this section by illustrating why this is
the case, using the same simple framework of Example 4. For
a more thorough treatment of the theoretical justi� cations of
MDL, the interested reader is referred to Barron et al. (1998).

5.1 Rissanen’s Pointwise Lower Bound

Given a parametric family or model class

­ D8fˆ4xn5 2ˆ 2ä 2k91

let Eˆ8¢9 denote the expectation with respect to a random vari-
able (data string) Xn with density fˆ . ( In contrast to previous
sections, here we are more careful when referring to random
variables Xn versus points xn 22n.) Using this notation, the
differential entropy of fˆ de� ned in (5) becomes

Hˆ4X
n5DƒEˆ logfˆ4X

n50

For any density (or pre� x code) q4xn5, the Kullback–Leibler
divergence between fˆ and q is given by

Rn4fˆ1q5 D Eˆ log
fˆ4X

n5

q4Xn5

D Eˆ
ƒlogq4Xn5ƒ ƒlogfˆ4Xn5 0 (50)

Here Rn4fˆ1q5 represents the expected extra nats needed to
encode the data string Xn using q rather than the opti-
mal scheme based on fˆ . In coding theory, Rn is called the
(expected) redundancy of q.

De� ning a valid description length for a data string based on
models from the class ­ reduces to � nding a density q that
achieves the “smallest” redundancy possible for all members
in ­ . To make this concrete, we � rst derive a lower bound on
redundancy in a well-de� ned global sense over the entire class
­ , and then illustrate choices for q that achieve it. We begin
with a pointwise result � rst derived by Rissanen (1986a).

Assume that a
p

n-rate estimator Ô4xn5 for ˆ exists and
that the distribution of Ô4Xn5 has uniformly summable tail
probabilities,

Pˆ8
p

n˜ Ô4Xn5ƒˆ˜¶ logn9µ„n1 for all ˆ and
X

n

„n <ˆ1
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where ˜ˆ˜ denotes some norm in 2k. Then for any density q,
Rissanen (1986a) found that

liminf
n!ˆ

Eˆ log6fˆ4Xn5=q4Xn57

4k=25logn
¶ 11 (51)

for all ˆ 2ä, except on a set of ˆ with a Lebesgue measure 0.
This exceptional set depends on q and k. Viewing ƒlogq4Xn5

as the code length of an idealized pre� x code, (51) implies that
without knowing the true distribution fˆ , we generally need at
least klogn=2 more bits to encode Xn, no matter what pre� x
code we use.

Shannon’s Source Coding Theorem (Sec. 2) quanti� es the
best expected code length when symbols from a known data-
generating source are encoded with the density q (denoted by
the distribution function Q in Sec. 2). Rissanen’s lower bound
(51) extends this result to the case in which we only know
that the “true” source belongs to some model class ­ . In
coding theory this is referred to as the problem of universal
coding. Historically, the pointwise lower bound was the � rst
to appear, followed by the minimax approach discussed in the
next section. The two approaches were connected by Merhav
and Feder (1995), who obtained a lower bound on redundancy
for abstract spaces. The pointwise lower bound (51), has been
generalized to a special nonparametric class of models in den-
sity estimation by Rissanen, Speed, and Yu (1992), and their
arguments should apply to other nonparametric settings.

5.2 Minimax Lower Bound

The bound (51) holds for almost every value of ˆ 2ä—
hence the term pointwise. We now turn to a minimax version
of this result, again focusing on parametric classes. (The inter-
ested reader is referred to Barron et al. (1998) for the minimax
approach in MDL and nonparametric estimation.)

First, we de� ne the minimax redundancy to be

RC
n

Dmin
q

sup
ˆ2ä

Rn4fˆ1q50 (52)

This expression has a simple interpretation as the minimum
over all coding schemes for Xn of the worst-case redundancy
over all parameter values ˆ. Next, consider a prior distribution
w4ˆ5 on the parameter space ä and de� ne the Bayes redun-
dancy associated with a density q relative to w as

R ü
n4q1w5D

Z

ä

Rn4fˆ1q5w4dˆ50 (53)

The minimal Bayes redundancy for a given w is given by

Rn4w5Dmin
q

R ü
n4q1w51 (54)

which is achieved by the mixture distribution

mw4xn5D
Z

ä

fˆ4x
n5w4dˆ50 (55)

To see this, write

R ü
n4q1w5ƒR ü

n4mw1w5D
Z

¸ n
log

mw4xn5

q4xn5
mw4dxn5¶01

where the last relation holds from Jensen’s inequality. Evalu-
ating (54) at mw yields

Rn4w5 D R ü
n4mw1w5

D
Z

ä

Z

¸ n
log

fˆ4xn5

mw4xn5
fˆ4dxn5w4dˆ50

With a slight abuse of notation, if we let ä also denote the
random variable induced by the prior w, then the preced-
ing expression is known as the mutual information Iw4ä3Xn5

between ä and the random variable Xn DX110001Xn (Cover
and Thomas 1991). Thus we have established that

Rn4w5D Iw4ä3Xn50 (56)

The quantity Iw measures the average amount of informa-
tion contained in the data Xn about the parameter ä and was
used to measure information in a statistical context by Lindley
(1956).

Let Rƒ
n denote the worst-case minimal Bayes redundancy

among all priors w,

Rƒ
n

D sup
w

Rn4w50 (57)

This quantity also carries with it an information-theoretic
interpretation. Here Rƒ

n is referred to as the channel capac-
ity, C4ä3Xn5. Following Cover and Thomas (1991), we envi-
sion sending a message comprising a value of ˆ through a
noisy channel represented by the conditional probability of Xn

given ˆ. The receiver then attempts to reconstruct the message
ˆ from Xn, or rather estimates ˆ from Xn. Assuming that ˆ is
to be sampled from a distribution w4ˆ5, the channel capacity
represents the maximal message rate that the noisy channel
allows. The capacity-achieving distribution “spaces” the input
values of ˆ, countering the channel noise and aiding message
recovery (see Cover and Thomas 1991).

Now observe that the channel capacity C4ä3Xn5 bounds
the minimax redundancy RC

n (52) from below,

RC
n

D min
q

sup
ˆ2ä

Rn4fˆ1q5

¶ sup
w

min
q

Z

ä

Rn4fˆ1q5w4dˆ5

D sup
w

min
q

R ü
n4q1w5 (58)

D sup
w

Rn4w5 (59)

² C4ä3Xn51

where (58) and (59) are simply the de� nitions of the Bayes
redundancy (53) and the minimal Bayes redundancy (57).

Haussler (1997) demonstrated that in fact the minimax
redundancy (52) is equal to the channel capacity,

RC
n

DC4ä3Xn5DRƒ
n 0 (60)

According to this result, if we can calculate the capacity of
the channel de� ned by the pair w and fˆ , then we can get
the minimax redundancy immediately. This statement was � rst
proved by Gallager (1976), although the minimax result of
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this type for general loss functions was known before this
point (Le Cam 1986). (See also Csiszár 1990; Davisson 1973;
Davisson and Leon-Garcia 1980.)

To be useful, this equivalence requires us to compute the
channel capacity for a pair w and fˆ. Unfortunately, this can
be a daunting calculation. But when both the prior and den-
sity function are smooth, a familiar expansion can be used to
derive a reasonable approximation. Let I 4ˆ5 denote the Fisher
information matrix de� ned by

Ii1j4ˆ5DE

"
¡

¡ˆi

logf 4X—ˆ5
¡

¡ˆj

logf 4X—ˆ5

#

for all i1j D11: : : 1k0

Assume that the observation sequence Xn DX110001Xn are iid
(or memoryless in the parlance of information theory) from
some distribution fˆ in the class ­ . Under regularity con-
ditions on the prior w and the model class ­ , Clarke and
Barron (1990) derived the following expansion in the general
k-dimensional case (see Ibragimov and Has’minsky 1973, for
the one-dimensional case). Let K be a compact subset in the
interior of ä. Then, given a positive, continuous prior density
w supported on K, the expected redundancy (51) evaluated at
the mixture distribution mw (55) can be expanded as

Rn4fˆ1mw5D k

2
log

n

2� e
C log

p
detI4ˆ5

w4ˆ5
Co4151

where the o415 term is uniformly small on compact subsets
interior to K. Averaging with respect to w yields an expan-
sion for the minimal Bayes redundancy, or mutual informa-
tion, (56),

Rn4w5 D Iw4ä3Xn5

D k

2
log

n

2� e
C

Z

K

w4ˆ5log

p
detI4ˆ5

w4ˆ5
dˆ Co4150

The middle term is maximized by Jeffreys’s prior (when this
prior is well de� ned),

w ü 4ˆ5D
p

detI4ˆ5
R

K

p
detI4ˆ5dˆ

1

Hence the minimax redundancy satis� es

RC
n

D min
q

sup
ˆ2ä

Rn4fˆ1q5

D k

2
log

n

2� e
C log

Z

K

p
detI 4ˆ5dˆ Co4150 (61)

Recalling the equivalence (60) and the channel capacity
interpretation of the worst-case minimal Bayes redundancy,
Jeffreys’s prior is now seen to be the capacity-achieving dis-
tribution for the channel de� ned by the pair w and fˆ4xn5.
Intuitively, sampling a message ˆ according to Jeffreys’s prior
will result in channel inputs that are well separated in the
sense that the probability of correctly reconstructing the mes-
sage from Xn is high.

The leading term in (61) is the same k=2logn as in Ris-
sanen’s pointwise lower bound (51). Any code that achieves
this leading term (to � rst order) on expected redundancy over
a model class quali� es as a code to be used as the description
length in the MDL selection for a model. (Barron et al. 1998
addressed qualifying coding schemes based on the constant
term.) Such codes fairly represent all of the members in the
model class (in the minimax sense) without the knowledge of
exactly which distribution generated our data string.

To gain perspective, we now contrast the analysis of the
Kullback–Leibler divergence Rn4fˆ1q5 de� ned in (51) carried
out for derivation of AIC with the analysis presented earlier.
For AIC, we replace the distribution q with f ˆ̂

n
, where Ô

n is
the MLE of ˆ. (Note that f ˆ̂

n
is an estimator of the joint den-

sity of xn, but is not a joint distribution. Thus it cannot be used
to generate a code.) Under standard assumptions, the estimate
Ô
n converges to ˆ in such a way that Rn4fˆ1f Ô

n
5 has a neg-

ative 1=2�2
k limiting distribution. Thus the Kullback–Liebler

divergence Rn4fˆ1f Ô
n
5 has a limiting mean of ƒk=2. This limit

accounts for half of AIC’s bias correction, the half associated
with Kullback–Leibler divergence from fˆ due to parameter
estimation (see Findley 1999, Sakamoto, Ishiguro, and Kita-
gawa 1985, p. 54). The minimax calculation in (61) is focused
on a q , which is a joint density of xn and determined by
the set ä. Moreover, Rissanen (1996) showed that the mini-
max redundancy is achieved asymptotically by the joint den-
sity (when it exists) corresponding to the NML code. That is,
f Ô

n
4xn5=Cn, where Cn is the normalization constant required

to make f Ô
n
4xn5 into a joint density or a code. The ƒk=2

term from the unnormalized MLE as in AIC case appears as
k=2log1=e1 and the rest of the terms in (61) give the asymp-
totic expansion of Cn (Barron et al. 1998). Hence MDL criteria
that achieve minimax redundancy can be viewed as more con-
servative criteria than AIC from the perspective of Kullback–
Leibler divergence.

For more general parameter spaces, Merhav and Feder
(1995) proved that the capacity of the induced channel is
a lower bound on the redundancy that holds simultaneously
for all sources in the class except for a subset of points
whose probability, under the capacity-achieving probability
measure, vanishes as n tends to in� nity. Because of the rela-
tionship between channel capacity and minimax redundancy,
this means that the minimax redundancy is a lower bound on
the redundancy for “most" choices of the parameter ˆ, hence
generalizing Risssanen’s lower bound.

For the case when the source is memoryless (i.e., when
the observations are conditionally independent given the true
parameter ˆ, and have a common distribution fˆ, ˆ 2ä),
Haussler and Opper (1997) obtained upper and lower bounds
on the mutual information in terms of the relative entropy
and Hellinger distance. Using these bounds and the relation
between the minimax redundancy and channel capacity, one
can obtain asymptotic values for minimax redundancy for
abstract parameter spaces.

5.3 Achievability of Lower Bounds by Different Forms
of Description Length

In regular parametric families (model classes), the forms
of description length introduced in Section 3 all achieve the
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k=2logn asymptotic lower bounds on redundancy in both the
pointwise and minimax senses. They thus qualify as descrip-
tion lengths (to � rst order) to be used in MDL model selec-
tion. We illustrate this through our running Example 4 from
Section 2.3. Our notation for a random data string now reverts
to that from Section 4, so that xn represents a random sequence
x11: : : 1xn.

Example 4 (Continued): Two-Stage Minimum Description
Length. Trivially, because ­0 consists of a single distribu-
tion, the expected redundancy of L0 given in (4) is 0. Now,
for ˆ 6D0

ƒlogfˆ4x
n5D n

2
log42� 5C 1

2

nX

tD1

4xt
ƒˆ520

Thus the expected redundancy between fˆ and the code length
function L1 (11) is given by

Eˆ logfˆ4x
n5ƒL14x

n5 D n

2
Eˆ8 Nxn

ƒˆ92 C 1

2
logn

D 1
2

C 1
2

logn1

which for kD1 achieves the pointwise lower bound (51).
Heuristically, for a general k-dimensional regular parametric

family, it is well known that the quantity

ƒlog
f Ô4xn5

fˆ4xn5

has an asymptotic �2
k distribution; hence its expected value

should be k=2, which is of smaller order than k=2logn. Thus
the two-stage description length achieves the lower bound.

Mixture Minimum Description Length. As with the two-
stage scheme, the redundancy of L0 is 0, because ­0 consists
of a single model. Now, starting with (15), we can calculate
the expected redundancy for L1,

1
2

log41Cn’5C 1
2

n

1C1=4n’5
Eˆ

Nx2 ƒ
X

t

ˆEˆxt
C 1

2
nˆ2

D 1

2
log41Cn’5C 1

2

n

1C1=4n’5
41=nCˆ25ƒnˆ2=2

D 1
2

lognCO4151

which clearly achieves the pointwise lower bound (51). In
addition, given any prior distribution w on ä, we can con-
struct a pre� x code according to the mixture distribution mw

(55). The corresponding code length is

L4xn5Dƒlog
Z

w4dˆ5fˆ4x
n50

As mentioned earlier, under certain regularity conditions,
Clarke and Barron (1990) showed that the redundancy of the
mixture code has the following asymptotic expansion for a
regular family of dimension k:

Rn4mw1ˆ5D k

2
log

n

2� e
C 1

2
log

p
detI4ˆ5

w4ˆ5
Co4150

It follows that the mixture code achieves the minimax lower
bound, and, as we mentioned earlier, Jeffreys’s prior maxi-
mizes the constant term in the minimax redundancy (Barron
et al. 1998).

Predictive Minimum Description Length. Using (22), it is
easy to check the redundancy

Eˆ4ƒlogq4xn5C logfˆ4xn55 D 1

2

nX

tD1

41C1=t5ƒn=2

D 1
2

nX

tD1

1=t

D 1
2

lognCO4150

Thus it achieves the lower bound (51) and can be used as the
description length for data based on model ­1. As with the
previous two forms, the expected redundancy of L0 is 0.

For more general cases, Rissanen (1986b, thm. 3) proved
that the predictive code based on the MLE achieves the point-
wise redundancy lower bound under regularity conditions.

5.4 Assessing Minimum Description Length Model
Selection Procedures in Terms of Consistency
and Prediction Errors

Although MDL has a solid motivation from the viewpoint
of noiseless compression of data, which itself has a close tie
to statistical estimation, it is not clear a priori whether or not
MDL will lead to model selection procedures that are sensible
statistically. One criterion used in assessing model selection
procedures is consistency when a � nite-dimensional “true”
model is assumed. That is, as the sample size gets large, a con-
sistent procedure will pick the correct model class with prob-
ability approaching 1. The two-stage, predictive, and mixture
forms of MDL are consistent in the regression case (Speed
and Yu 1994). In general, different MDL forms are consistent
under very weak conditions (Barron et al. 1998). The predic-
tive code takes the form of predictive least squares in time
series and stochastic regression models. (See Hemerly and
Davis 1989 for time series models and Wei 1992 for general
stochastic regression models and the consistency of the predic-
tive form.) We illustrate the consistency of MDL through the
two-stage code in our running example. Under the same � nite-
dimensional “true" model assumption, as an alternative to the
consistency assessment, Merhav (1989) and Merhav, Gutman,
and Ziv (1989) analyzed model selection criteria by studying
the best possible under� tting probability while exponentially
restricting the over� tting probability.

Example 4 (Continued). Recall that two-stage MDL or
B IC will select ­0 if — Nxn

—µ
p

logn=n. When ­1 is true, the
probability of under� tting is

Pr4­0 is selected5 D Pˆ4— Nxn
—µ

p
logn=n5

Pˆ4N 40115¶ˆ
p

nƒ
p

logn5

O4eƒnˆ2=250
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Similarly, when ­0 is true, the probability of over� tting is

Pr4­1 is selected5 D Pˆ4— Nxn
—>

p
logn=n5

D Pˆ4—N 40115—>
p

logn5

O41=
p

n50

Thus two-stage MDL yields a consistent model selection rule.

In general, an exponential decay rate on the under� tting
probability and an algebraic decay rate on the over� tting prob-
ability hold for the predictive and mixture MDL forms, and
also for other regression models (Speed and Yu 1994). Con-
sistency of MDL follows immediately. It also follows from an
examination of the under� tting probability that for � nite sam-
ple sizes, consistency is effected by the magnitude of ˆ2 (or
squared bias in general) relative to n, and not by the absolute
magnitude of ˆ2. Speed and Yu (1994) also studied the behav-
ior of MDL criteria in two prediction frameworks: prediction
without re� tting and prediction with re� tting. In both cases,
MDL (and B IC) turned out to be optimal if the true regres-
sion model is � nite-dimensional. A IC is not consistent, but the
consequence in terms of prediction errors is not severe; the
ratio of AIC’s prediction error and that of any form of MDL
(or BIC) is bounded.

No model is true in practice, but the � nite-dimensional
model assumption in regression does approximate the prac-
tical situation in which the model bias has a “cliff” or a
sharp drop at a certain submodel class under consideration, or
when the covariates can be divided into two groups of which
one is very important and the other marginal and no impor-
tant covariates are missing from consideration. But when bias
decays gradually and never hits 0, the consistency criterion
does not make sense. In this case prediction error provides
insight into the performance of a selection rule. Shibata (1981)
showed that A IC is optimal for these situations, at least in
terms of one-step-ahead prediction error. The simulation stud-
ies in Section 4 illustrate that by trading off between bias
and variance, it is possible to create examples in which B IC
outperforms AIC and vice versa. A similar point was made
by Speed and Yu (1994). When the covariates under consid-
eration are misspeci� ed or super� uous, Findley (1991) gave
examples both in regression and time series models in which
the bigger model always gives a smaller prediction error thus
suggesting that A IC is better for these particular models. For
exactly these reasons, we believe that adaptive model selec-
tion criteria likc gMDL are very useful.

6. CONCLUSIONS

In this article we have reviewed the principle of MDL and
its various applications to statistical model selection. Through
a number of simple examples, we have motivated the notion
of code length as a measure for evaluating competing descrip-
tions of data. This brings a rich information-theoretic interpre-
tation to statistical modeling. Throughout this discussion, our
emphasis has been on the practical aspects of MDL. Toward
that end, we developed in some detail MDL variable selection
criteria for regression, perhaps the most widely applied mod-
eling framework. As we have seen, the resulting procedures
have connections to both frequentist and Bayesian methods.

Two mixture forms of MDL, iMDL and gMDL1 exhibit a cer-
tain degree of adaptability, allowing them to perform like AIC
at one extreme and B IC at the other. To illustrate the scope of
the MDL framework, we have also discussed model selection
in the context of curve estimation, cluster analysis, and order
selection in ARMA models.

Some care has gone into the treatment of so-called valid
description lengths. This notion is important, as it justi� es
the use of a given coding scheme for comparing competing
models. Any implementation of MDL depends on the estab-
lishment of a universal coding theorem, guaranteeing that the
resulting selection rule has good theoretical properties, at least
asymptotically. The two-stage, mixture, predictive, and nor-
malized ML coding schemes all produce valid description
lengths. Our understanding of the � nite-sample performance
of even these existing MDL criteria, will improve as they � nd
greater application within the statistics community. To aid this
endeavor, the MDL procedures discussed in this article will be
made available by the � rst author in the form of an S-PLUS
library.

Inspired by algorithmic complexity theory, the descriptive
modeling philosophy of MDL adds to other, more traditional
views of statistics. Within engineering, MDL is being applied
to ever-more exotic modeling situations, and there is no doubt
that new forms of description length will continue to appear.
MDL provides an objective umbrella under which rather dis-
parate approaches to statistical modeling can coexist and be
compared. In crafting this discussion, we have tried to point
out interesting open problems and areas needing statistical
attention. At the top of this list is the incorporation of uncer-
tainty measures into the MDL framework. The close ties with
Bayesian statistics yields a number of natural suggestions in
this direction, but nothing formal has been done in this regard.
The practical application of MDL in nonparametric problems
should also provide a rich area of research, because theoret-
ical results in this direction are already quite promising (see,
e.g., Barron and Yang, 1998; Yang 1999).

APPENDIX: TECHNICAL DETAILS FOR MIXTURE MDL

We begin with the normal inverse-gamma family of conjugate pri-
ors for the normal linear regression model (23). Setting ’ D‘ 2, these
densities are given by

w4‚1’5/’
ƒdCkC2

2 exp
ƒ4‚ƒb5tV ƒ14‚ƒb5Ca

2’
(A.1)

and depend on several hyperparameters: a1d 22, the vector b 22k ,
and a k� k symmetric, positive de� nite matrix V . Valid ranges for
these parameters include all values that make (A.1) a proper density.
Under this class of priors, the mixture distribution (30) has the form

ƒlogm4y—X5D 1
2

log—V —ƒ 1
2

log—V ü —ƒ d

2
logaC d ü

2
loga ü 1 (A.2)

ignoring terms that do not depend on our particular choice of model,
where

d ü DdCn1 V ü D4V ƒ1 CXtX5ƒ11 b ü DV ü 4V ƒ1bCX ty51

and

a ü DaCyty CbtV ƒ1bƒ4b ü 5t4V ü 5ƒ1b ü 0
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The derivation of m4y—X5, the marginal or predictive distribution of
y, is standard and was given by O’Hagan (1994).

To implement this mixture form of MDL, we must settle on values
for the hyperparameters. In his original derivation, Rissanen (1989)
considered normal inverse-gamma priors with

dD11 V Dcƒ1è1 and b D 401: : : 1050 (A.3)

After making these substitutions, we then want to minimize the
expression (A.2) over the two hyperparameters a and c. First, a
straightforward calculation gives us the closed-form expression OaD
Rc=n. Substituting Oa for a, we arrive at the log-likelihood

ƒ logm4y—X1 Oa1c5Dƒ1

2
log cèƒ1 C 1

2
log cèƒ1 CXtX C n

2
logRc 0

(A.4)

Surprisingly, we obtain this form no matter how we select d in our
prior speci� cation (A.3), so d D1 is not a restrictive choice. This form
is in fact equivalent to a mixture distribution computed under the
so-called weak prior corresponding to aDd D0, a choice of hyper-
parameters that assigns the improper prior 1=’ to ’ .

Unfortunately, optimizing over c presents us with a more dif� cult
problem. After differentiating (31), we � nd that Oc must satisfy

OcD kR Oc

R Oc trace6èƒ14 Ocèƒ1 CX 0X5ƒ1 7Cnyt X4 Ocèƒ1 CXtX5
ƒ1 èƒ1 4 Ocèƒ1 CXt X5

ƒ1 X ty
0

(A.5)

This expression can be be applied iteratively, with convergence typ-
ically requiring fewer than 20 steps, depending on the starting val-
ues. In deriving what we have called iMDL, Rissanen (1989, p. 129)
exhibited a slightly different relationship for the special case of
èD Ik� k . (The difference is presumably the result of transcription
errors.) To obtain gMDL, we instead choose èD4XtX5ƒ1 , and we
arrive at the expression for Oc given in (33) either by direct substitu-
tion in (A.5) or by minimizing (A.4).

[Received October 1999. Revised December 1999.]
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