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Abstract

The theory of hypothesis testing is used to select a model with
the correct structure and the relation c¢” such a method to the AIC and
FPE criteria is investigated. Parame ralidation and correlation
validation methods are develr-cd for » 1w difference equation models,
Several shortcomings of * nal me 'pecially when applied to

nonlinear systems are de¢
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1. Introduction

The coupled problems of selecting a parametric model of the correct
structure and of validating the created model to ensure that it is
acceptable are studied for nonlinear difference equation models.
Leontaritis and Billings, 1985, and Billings and Voon, 1986a!.

Initially, the likelihood ratio test fGoodwin and Payne, 1977 is
described for the case where the test is between two parametric models
one being a restriction of the other. The likelihood ratio test is then
extended in section 3 to work with a prediction error estimator [Ljung
and Soderstrom 1983, Billings and Voon 1986aI to preoduce a new test
called the log determinant ratio test. An expression relating the power
of the two tests is derived to enable a comparison to be made between
them. An efficient way of calculating the two tests is provided and a
comparison with the traditional F-test ]Astrom and Eykhoff(1973)i 1s
included,

The selection of one model from many competing models is considered
in section 4, The requirement of non-conflicting pairwise comparisons
leads to the criterion which the finally selected model must minimize.
The criterion depends on a significance level, the probability of accepting
a model with one more parameter than the true model. The AIC criterion
[Akaike 1974a,b, Priestley 1981 correspends to the derived criterion for
a particular significance level and thus an explanation of the problems
related to the use of the AIC criterion is included, The other objective
criterion for multiple model selection, the FPE criterion |Akaike 1969,
Priestley 1981f is also considered., It is shown to be asymptotically
equivalent to the AIC criterion and thus to correspond to the same signif-
icance level, Consistemt criteria that correspond to significant levels
which depend on the number of data points are briefly discussed. Stepwise
backward elimination of parameters and stepwise forward inclusion of para-
meters |Draper and Smith 1981[ are also described as practical methods of
selecting a reduced model.

In section 5, two distinct model validation methods are discussed.
Initially a parametric model validation method is described. Next the
non-parametric correlation validation methods are defined rigorously as
proper hypothesis tests and compared with the traditional correlation
validation methods which employ the autocorrelation function of the residuals
and the cross-correlation function between the inputs and the residuals
|Box and Jenkins 1976] . The application of the correlation tests to the
non-linear case and the comparison with the parametric validation methods is
discussed and simulated examples are included to demonstrate the application
of the results.

2. Hypothesis testing

There are many occasions when one is concerned not only with the
estimation of a parameter vector but with the selection of one of two
models that can describe the data, The problem can be formulated as a
statistical hypothesis testing problem |Kendall and Stuart (1967) | .
The key ideas of the classical theory of hypothesis testing follow.
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Two hypotheses are always involved in the problem, The null
hypothesis denoted by HO and the alternative hypothesis denoted by Hl'

The null hypothesis is the one that is not rejected unless the data
provide strong evidence that it is not correct. The null hypothesis
thus corresponds to the established situation which the data try to prove
incorrect. Two types of possible error in the decision can be made.

Type 1 Error: Reject the null hypothesis when it is actually true.
Type II Error: Accept the null hypothesis when it is actually false.

The decision of accepting or rejecting the null hypothesis is based on

the partition of the sample space of the data y into two separate regions.

If the realization of the data y is in the one region, the null hypothesis

is accepted and if it is in the other, the null hypothesis is rejected.

The probability of committing a type I error is called the level of signif-
icance of the test and is denoted by o and the probability of committing a

type II error is denoted by 8.

il

o = Pr (type I error) (D

B = Pr (type II error)

The quantity 1- 8is called the power of the test. The basic idea behind
hypothesis testing is that the partition of the sample space of the data
y is done in such a way that the level of significance is a given small
number and the power of the test 1-B is as large as possible. Thus it
is guaranteed that the probability of rejecting the null hypothesis if it
is true is very small (=a) and the probability of accepting the null
hypothesis if it is not true is as small as possible (=R),.

The test that determines whether the null or the alternative hypothesis
is selected is usually based on a statistic (a function of the data v). The
probability density function of the statistic under the assumption that the
null hypothesis is correct is calculated and the region where the statistic
takes values is divided in two distinct regions. The one is called the
acceptance region and the other the critical region, If the realization
of the statistic falls within the acceptance region the null hypothesis H
is accepted and if it falls within the critical region the alternative
Hl is accepted. The probability of committing a type I error, the level of
significance of the test a, is calculated from the probability density function
of the statistic under the null hypothesis, as the area under the density
function for the critical region. The power of the test 1-8 can only be
calculated if the alternative hypothesis is a specific one. In that case
the probability density function of the statistic under the alternative
hypothesis can be calculated and the area under the density function for the
acceptance region gives the probability of a type II error, @,

3 The likelihood ratio and log determinant ratio test

A very important statistic for hypothesis testing is the ratio A(y) of
the maximum values of the likelihood function under the alternative and the
null hypothesis

p(y!él)
AMy) = ——— (2)
p(ylﬁo)
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where €. is the maximum likelihood estimate of 8 under the alternative
hypothesis H. and 6 is the maximum likelihood estimate of 6 under the
null hypothesis H .° The test based on this statistic is called likeli-
hood ratio test |Boodwin and Payne 1977]. If the ratio is large then the
data are more plausible under the alternative hypothesis than under the
null hypothesis.

The null hypothesis considered here is that s out of the n components
of the parameter vector 6 take a specific value. Let the parameter vector
0 be rearranged so that

al-
H = b (3)

where b is a column vector of dimension s and a is a column vector of
dimension n,-s. The null hypothesis is that the vector b is equal to a
specific vector b* and the alternative hypothesis is that the vector b is
unrestricted

HO: b=b#*
(4)
. b#b*
Hl’ b#b
The vector b* is usually taken as a zero vector and the null hypothesis
represefits a reduced model with s of the parameters equal to zero. The

alternative hypothesis represents the full model with all the parameters
present. The purpose of the test is to find if there is significant
statistical evidence that the more complicated full model gives a better
explanation of the data than the simpler reduced model. The statistic
that is actually used is

d(y) = 2log A(y) (5)

Under the null hypothesis H : b=b%*, the statistic d(y) converges to a chi~-
square distribution with s 8egrees of freedom for the data sequence length
N+ i.e.

d(y) = 2 Tog A=Y (s) (6)

The proof contains some results that will be needed later, therefore a full
but not entirely rigorous version of the proof is given.

L(8) = -log p(y|8) (7

The Hessian of L(6) at the unrestricted maximum.likelihood estimate 6 tends
to the information matrix M. Thus for 6 near 81 it approximately ho}ds that

L(e)zL(51)+ %(e—él)TM(e—él)
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Assuming the null hypothesis is correct the restricted and unrestricted
estimates get close to each other when N+= and thus the restricted estimate

60 minimizes the function L(9) given in (eqn.8). The restricted estimate is the

~

“ T T o m : . .
vector 6 = [hz b* ]". The minimization of (eqn.8) is done with the parameter b

fixed at its assumed true value of b and with a as an independent variable.
Differentiating (eqn.8) with respect to a and equating to zero, the minimizing
value of a, a s i

ey %
ao—al MaaMab(b Hbi) (9)
Substituting this value in (eqn.8) gives
-~ ~ 1 * ~ T T _' ’* A
= + — - —
L(eo) L(el) 2(b'hb1) I:Mbb MabMaaMaﬁj(b bl) el
But A
p(y]o)) . .
d(y)=2log A(y)=2log ——— =2L(80)—2L(61) (11)
| p(v[s )
and from (egn.10)
am)=m-b)" [ "M T ) (12)
¥ e M e e 1

The asymptotic distribution of 6-6, where 6 is the maximum likelihood estimate
and 6 is the true value_of the parameter, is a normal distribution with Zero mean

and covariance matrix M =, the inverse of the information matrix M. Here bl is
%

the unrgstr;cted maximum likelihood estimate of the assumed true value b . The
vector bl-b is thus asymptotically normally distributed with covariance matrix

the lower right partition of M—l. The lower right partition of Mﬁl, from the

- . . - - -1
matrix ilnversion theorem, equals (Mbb MabMaaMab) . The random vector

T T, =1 e & : . : :
(bl b)) [Mbb MabMaaggkbl b ) is thus asymptotically distributed as a chi square

distribution with s degrees of freedom (the dimension of the vector b). Thus
from (eqn.12)

d(y) = 2L(8 )-2L(0, )" (s) (13)

Now that the distribution of the statistie d(y) has been determined, the critical
and the acceptance region, for a specific level of significance @, can be defined.
Let the critical value of the chi-square distribution with s degrees of freedom,
for a level of significance a, be called ky(s). The ky(s) is such that the area
under the chi-square density function to the left of k,(s) is 1-a and to the
right is a. If d(y) is greater than ky(s) (for say a=0.05) there is strong
evidence against the null bypothesis and it is thus rejected.

It has been pointed out that the power of the test 1-g should be as large
as possible so that the probability of accepting the null hypothesis when it is
not true is small. The power of the test can only be calculated if the altern-
ative hypothesis Hy: b#b* is made specific, that is, the true value of b is not
b* but b®. The asymptotic distribution of d(y), assuming that the alternative
‘hypothesis is correct is now a non-central chi-square distribution with s degrees
of freedom and non-centrality parameter h where

b= @ebO)" iy a0 T (b%-b0) 14

The power 1-B of the test is the area under the non-central chi-square distri-~
bution:}%(s,h) to the right of the critical point ka(s) [Goodwin & Payne (1977)|.
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Suppose that the unrestricted maximum likelihood estimate 6. and the
value of L(6.) is calculated. The information matrix M can be eStimated as
khe Hessian * of the function L(8) at the point®. . The restricted estimate
6_ does not actually need tq be calecylated from %he original data because a
very good approximation of § and L(§ ) is given by equations (9) and (10).
This way the value of the st3tistic d?y)=2L(§ )=2L(6.) given by equation (12)
can be evaluated very easily and the likelihoSd ratigs test for several
different hypotheses can be done with minimum effort. In practice equation
(12) is not actually used in the numerical evaluation of d(y) because it uses
the inverse of the matrix M which is time consuming to calculate. The square
root methods and the Househ8%der orthogonal transformation give a very elegant
and efficient numerical solution to the problem.

The proof that the statistic d(y) is asymptotically distributed as a
chi-square distribution with s degrees of freedom was based on only two
assumptions. First, that the unrestricted estimate 6. is asymptotically normally
distributed with covariance matrix a matrix M~! and second, that the Hessian of
the function L(8) at €1 is asymptotically equal to M. In the case of the
prediction error method ILjung and Soderstrom 1983| both these facts hold where
the information matrix M is_repaced by the inverse of the asymptotic covariance
matrix of the estimator H=p.  and the function L(0) by the function NJZ(G),

where N is the number of dita points, Jz(e) = 1 log det Q(8),

y 2
Y oelte) e(e,m”
]

Q) =

=

and e(t,g) represents the prediction errors . The statistic

. 5 ) - 6 15
d(y) 2NJ2(60) 2NJ2(81) (15)
where 6 and 9. are the restricted and the unrestricted prediction error
estimat@s is thus also asymptotically distributed as a chi-square distribution
with s degrees of freedom. The statistic (eqn.15) becomes

d(y) = 2NJ2(60)—2N32(81)=N10g det Q(GG)—Nlog det Q(Gl)

det Q(éo)
=Nlog ————— (16)

det Q(él)

The test based on the statistic d(y) in eqn(l6) will be called the log deter=-
minant ratio (LDR) test. B

The price paid for using the prediction error method is that the power of
the log determinant ratio test is smaller than the likelihood ratio test. In@eed
the asymptotic distribution of the statistic d(y), assuming that the alternative
hypothesis b=b~ is correct, is again a non-central chi-square distribution with
s degrees of freedom and non-centrality parameter h equal to

Oy T T (8]
= (b*-b ") = %D (17
ho= @%b [Hy ~H B H ] (b%b0) )
where H=p_1, and p, is the asymptotic covariance matrix associated with the
predictioni error estimator. The matrix H is always smaller than the optimum

" information matrix M. Thus H<M and consequently H_le— . The lower right
partition of H™l should also be greater or equal to the lower right partition of
M~Ll, From the matrix inversion theorem these partitions are

4 -1 - -1
(Hp —Hop o H ) > g, HT Mo ) (18)

Thus
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T =l } %l -1
—H -
(B Bptay) £ O "M M M) (18

and
( |
ot 13T 3 =12 1T Mt <
B*-b") Eﬁbb HabebHab](b* 55 2 (b%b7) IMbb MabebMaﬁj (b*=b") (20)

The non-centrality parameter h in the case of the log determinant ratio test

is thus always smaller than the non-centrality parameter of the likelihood

ratio test for any b . Given a level of significance o and thus also a critical
value k (s), the area under the non-central chi=-square distribution to the

right of ky(s) is the power of the test 1-8. The area of the non-central chi-
square distribution to the right of k,(s) increases for an increasing non-
centrality parameter h and thus the likelihood ratio test has higher power

than the log determinant ratio test. The two tests are however identical for
Gaussian innovations. The loss of power by using the prediction error method is
usually small since the matrix H is not much smaller than the optimum infor-
mation matrix M for reasonable bell-shaped density functions of the innovations.

The value of the statistic d(y) and of ® can be very easily approximately
evaluated using formulae similar to (eqns.9) 3nd (12). They are

- -\ “
- - R

a =a;~H H_ (b*-b ) (21)
= (b%=b )71 -5t g *—b
d(y) = (b*-b) [be Ho H H. T (b*-b) (22)

~

where H is the Hessian of NJZ(B) at the minimum 61.

In the very special case of ordinary least squares with normally distributed
data, the traditional test to discriminate between two models is the F-test
]Goodwin and Payne (1977)4: The F-test can thus only be used for single-output
systems. The statistic used by the F-test is

Q(6,) = Q(68,) N-n

: g (23)
Q(Sl) s

where here the sample variance Q(8) is scalar. Under the restricted conditions
of ordinary least squares it can be shown that the statistic (eqn.23) is
F(s,N-n,) distributed for any data length N. It has been proposed that the
statistic (eqn.23) is still asymptotically F-distributed for N+= even if the
restrictive conditions of the ordinary least squares are not assumed |Astrom and
Eykhoff (1973)|. The F-test has since become a traditionally used test in
system identification. It will be shown here that the F-test and the log deter-
minant ratio test are asymptotically equivalent. The log determinant ratio test
can then be regarded as a generalization of the F-test to the multivariable case.
Also the F-test is in this way proved to be correct under the very general
conditions assumed for the log determinant ratio test. Let

Q_=0(6_)
= 24
Q,=Q(6,) (24)
The log determinant ratio test accepts the null hypothesis if
Qo
N log — <k (s) (252
Q

where k_(s) is the critical value of the chi-square distribution with s degrees
of freegom and significance level g¢ ., The condition in eqn. (25) can be written



Qo
— <exp(k (s)/N) (26)
Q o

and for Now (eqn.26) is asymptotically equivalent to

Q
2 . 4 %k (s) | (27)
a i

Q

The F-test accepts the null hypothesis if

6
< ka(S’N-nﬁ) (28)

where ky(s,N-ng) is the critical value of the F-distribution with degrees of
freedom s and N-ng. It can be shown theoretically and checked by the tables
giving the critical values of the chi-squared and the F-distribution that

sk (s,@)=k (s) (29)
a o
Thus asymptotically for N-+w condition (eqn.28) becomes

Q_-Q

o]

o

(N—n8)<ka(s) (30)

or since asymptotically N—ne= N

Q _
0 ik
QI‘(U'E ka(S) (31)

which is exactly the condition of the log determinant ratio test. It is
known that the two tests are asymptotically equivalent Soderstrom (1977)
Here it is proved in a different way that they correspond to the same
significance level. In practice, for data of length N>100 and a not very
large number of parameters, the two tests are numerically almost identical,
For instance if ¢=0.05, N=123, n =3, s=2, then the determinant ratio test
is from eqn (26) 0

Q

-2 <1.0499 (32)
Q)

and the F-test is from eqn (28)

Q

-2 <1.0511 (33)
Q

4, Multiple selection methods

The situation where a selection has to be made between two models only
is rather restrictive. The usual case is that there are many different models,
each with its own parameter vector, and a single model must finally be selected.
Here it is assumed that all the models are special cases of a full model with
parameter vector 8, Every other model then is like the full model but with
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some of the elements of the parameter vector 6 equal to zero. The first
problem that has to be solved is the assignment of non-conflicting signif-
icance levels to possible pairwise comparisons of models, For instance
assume the full model to have four parameters, 6 ,82,83,84. Let the model
M1 4 be the one with parameters 6., 6. and 9. Thé rést 'of the reduced
moaels are denoted accordingly. Suppose the model M1 4 is compared with Ml
and out of the two the model M., is selected. The mogel M., is now compareg
with M. and M, is selected. 1% the model M was compareé3direct1y with M
the moéel M Should have been selected. Thé“critical points for the severa
tests that Can be performed have to be chosen so that conflicts do not appear.
Assume no particular preference to any of the available parameters. Suppose
that a comparison between a model and another one with a parameter vector
reduced by one is done. The critical point on this occasion is k(1). In
the case of the parameter vector being reduced by two, the critical point is
k(2). The only way that no conflict occurs is to choose the critical points
such that k(2)=2k(1),k(3)=3k(1),... etc. Now let two models have parameter
vectors 6. and 6, with dimensions n. and n. . Assume also n, <n, and
1 2 61 82 61 82
s=n82--ne . The model with parameter vector el is selected according to the
1
likelihood ratio test if

2L(81)~2L(82)<k(s)=sk(l)=(n62-nel)k(1)=n92k(1)-nelk(l) (34)

or if

2L(Bl)+nelk(1)<2L(82)+n82k(1) (35)

The model that is selected amongst all the several competing models is the one
that minimizes the criterion

C =,2L(e)+nek(1) - (36)

where 6 is the parameter vector of the particular model and n. its dimension.
The term n k(1) is the one that takes into account the complexity of the model
and penalizes the ones with a large number of parameters, In fact the full
model makes the term 2L(8) minimum but the number of parmeters used is also

the largest and the term n_ k(1) assumes its highest walue. Criteria that

take into account the comp?exity of the model are said to follow the 'principle
of parsimony'. The value of the criterical point k(1) is left to be decided
In fAkaike (1974b)[ the value of 2 is proposed and the criterion eqn. (36) with
k(1)=2 is known as Akaike's information criterion (AIC).

AIC=2L(6) +2n, (37)

The AIC criterion was motivated by probabilistic information arguments for the
case where the true system is very complex and an approximating model needs to
be found. It is however shown here that it is a special case of the hypothesis
testing method for a particular choice of significance level. The AIC criterion
has been criticized because it has been shown that it may consistently over-
estimate the true parameter vector | Shibata (1976)| . Different values of the
constant k(1) have been proposed to overcome such problems |Bhansali and
Downham (1977)|. A proper understanding of the reasons behind these modifications
can be obtained if the AIC criterion is considered as a hypothesis testing
criterion with a specific significance level. The significance level of the
AIC criterion is given by the significame level of the chi-square distribution
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with s degrees of freedom and critical value ka(s)=25, where s is the difference

in the number of parameters of the two models to be compared. The significance
levels of the AIC criterion for s = 1,2,...,20 are given in table 1
8 1 2 3 4 5 6 7 8 9 10

@ | 0.156 | 0.135| 0.111| 0,091 | 0.074 | 0.061 [0.050 0.042 | 0.035 | 0.029

s| 12 | 14 16 18 20

o |0.020 | 0.014 | 0.010 | 0.007 |0.005

Table 1

The first observation is that the value of the significance level for s=1

is very large. This means that the probability of selecting a model with
one more parameter than the true parameter vector is not insignificant.

The significance levels for s=2,3,4,5,6 are still relatively large but for
larger values of s they become acceptably small. Thus the AIC criterion

does not have an insignificant probability of accepting a model with
1,2,3,4,5 or even 6 more parameters than the true model. The first and
obvious way to decrease the significance levels is to select a critical

value for s=1 larger than 2. The most commonly used significance levels are
0.05 or 0.01. The critical values of the chi-square distribution with one
degree of freedom for significance levels 0.05 and 0.0l are 3.841 and 6.635
respectively, Thus the criterion eqn (36) with k(1) equal to or higher than
3.841 will reduce the probability of selecting a model with one more parameter
than the true model to an insignificant level. A very convenient value for
k(1) is 4 so that the significance level for s=1 is a=0.0456. The choice of

a value of k(1) greater than 2 in the criterion eqn (36) has been proposed but
without connections to significance levels. The significance levels for

s>l are always smaller than the one for s=1 and thus for the choice k(1)=4,
they are also insignificant.

The disadvantage of all model selection criteria of the form (eqn.36) is
that they assume an a priori knowledge of the probability density function of
the data. In the system identification context this means that the real pro-
bability density function of the innovations must be known. This of course is
a very severe restriction. The prediction error method was created so that this
restriction is relaxed and the performance is only slightly reduced for reason-
able bell-shaped density functions. The test between two models for the prediction
error method is the same as in the likelihood ratio test with the log likelihood
function L(6) replaced by NJ,(®). In the case of selection between many models
the criterion the best model“must minimize is the equivalent of (eqn.36).

C = Nlog det Q(®) + nk (1) (38)

The choice of the significance level k(1) follows the same arguments as in the
case of the likelihood ratio tests and it is thus again reasonable to accept
k(1)=4 for practical situations. The only disadvantage of criterion (eqn.38)
is that the power of the tests might now be slightly lower and thus a larger
number of data are needed to discriminate between different models. In the
case where the distribution of the data is Gaussian the two criteria are
exactly equivalent.

Akaike has proposed another criterion that must be minimized by the finally
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selected model. It is called Final Prediction Error (FPE) criterion |Akaike
1969, Priestley 1981 | and it is

N+
%
N-n

FPE= Q(e) (39)

Obviously it is a criterion for single-output systems only. This criterion
is actually asymptotically equivalent to the AIC criterion adapted to the
prediction error method, i.e. the criterion (eqn.38) with k(1)=2. In fact
assume that the two competing models have parameter vectors 81 and 62 of
dimension n. and n_ . Let

81 82

Q =Q(El ) n.=n
1 1 1 81 (40)
QZZQ(ez) n2=ne
2

The model with parameter vector 81 is selected according to the prediction
error AIC criterion when

NlogQ1+2n1 <NlogQ2+2n2 e
Q1
N log — < 2s <
Q2
Q1
— < exp(2s/N) (41)
Q2
where s=n2—n1

Equation (41) for large N asymptotically becomes

Q
1 a

The model with parameter vector el is selected according to the FPE criterion
when

N+n1 N+n2
T Q== 0 Ak

N nl 1 N—ng 2

Q2 N+n1 N—n2

which asymptotically for large N is equal to (eqn.42). Thus the prediction
error adapted AIC criterion and the FPE criterion are equivalent and so the
FPE criterion corresponds to the same significance levels chosen by the AIC
criterion. Consequently, the FPE criterion also has a significance probability
that it will choose a more complicated model than the true one. If the FPE
criterion is to be equivalent to criterion (eqn.38), it must be transformed to
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2N+k (1)n
2N-k(1)n

The criteria AIC and FPE are called objective criteria because they do not
depend on a subjective choice of significance levels and the model selection
can be done completely automatically. However it has been demonstrated here
that they correspond to a hypothesis testing criteriom with particular
significance levels and thus their objectivity is as good as the choice of
significance levels they correspond to. The significance levels of the
objective criteria are not particularly well chosen and they can consistently
over—estimate the number of needed parameters.

FPE#*= Q(e) (44)

An alternative approach to the hypothesis testing method of model selection
can be provided by Bayesian methods. This approach is analysed in lKasyap
The Bayesian approach requires several assumptions which, it may be
argued, are no more plausible than the choice of the significance level required
by the hypothesis testing approach. Also the results of the Bayesian method can
be 1nterpreted by the hypothesis testlng method when the significance levels of
the pairwise comparisons are chosen in a non- conflicting manner.

The hypothesis testing method is traditionally based on the F-test with
the same significance level for all the pairwise comparisons between models.
Such a method creates inconsistencies which triggered Akaike to create his
'objective' criteria AIC and FPE and Kasyap to investigate the Bayesian approach.
The choice of non-conflicting significance levels avoids this problem and
provides a simple and elegant solution based only on the hypothesis testing
theory.

The probability of accepting a model with less parameters than in the

true parameter vector can be high for a small number of data. The power of
the likelihood ratio and the log determinant ratio tests increases for an
increasing number of data points. In order to make sure that no fewer than the
necessary parameters are accepted, the power of the test for a specific alter-
native hypothesis has to be calculated and if it is not hlgh enough more data
are actually needed to increase the power of the test. It is in the nature of
hypothe51s testing that only if there exists enough evidence the null hypothesis
is rejected, In the case of a small number of data there exists a tendency of
accepting the null hypothesls since the data do not provide enough evidence
against it. A model is comsequently rejected in favour of another one with
more parameters only if the data provide enough evidence that the more compli—
cated model is significantly better. In hypothesis testing a decrease in the
51gn1flcance level o has the consequence that the probability of type II error

B increases and the power of the test 1-8 decreases. If for a particular choice
of significance level o the probability B is found to be extremely small, the
significance level ¢ can be decreased so that B increases and a more balanced
proportion of types of error is obtained. In the case of model selection a
large number of data points has the consequence that the power of the test can
be very high thus a reduction on the significance level can be made. The critical
point k(1) can thus be increased as the number of data points N increases.
Criteria where the critical point k(1) is a function of the number of data points
N have been proposed for the case where the order of a linear model is to be
estimated. They are known as comsistent criteria because asymptotically the
probability of selecting the wrong order is zero. One such choice proposed in

Kasyap (1980)1 and |Rlssanen (1979)| is k(1)=log(N). Another one proposed in

Schwartz (l978)l is k(1) = log(N) In practical situations where the number
of data points is not extremély large, so that the power of the test is not
very small, the choice of k(1) equal to 4 is a reasonable choice which was
found to work well in linear and non-linear identification.
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The procedure followed in order to find the best parametric model is:
decide which is the most complicated model to be considered and let the para-
meter vector of this full model be 0 of dimension ng. Consider all the
reduced models with s of the elements of the full parameter vector 6 forced
to be zero (or some other convenient value). The number of all such models
for some s is

1
Dge

ET?E_:EST' where 0 < s < n (45)
+{n -8

C(ne,S) = 3

The number of all the competing models is

n n
Ze C(ne,s)=2 0 (46)
5=0

n

The criterion C of (eqn.36) or (38) is calculated for all the ? 9 models and
the model that minimizes C is chosen as the best one. The criterion C has
thus to be evaluated 2™0 times. TFor small values of ng this is not a pro-
hibitively large number of times since the criterion can be approximately
evaluated extremely quickly using (eqn.12) or (22). For a slightly large
number of parameters ng the value of 20 becomes excessive. For instance for
n,=10,2"0 =1024, for ng=15, 2M9=32768 and for ng= 30,2"6=1.07%10%. Such a
method of choosing the best model is called a combinatorial method.

One way of reducing the number of times the criterion C has to be cal-
culated in the combinatorial method is to calculate the minimum of C sequen-
tially for the classes $=0,1,2,...,n. and stop when it is found that the mini-
mum value of C for some class is higger than the minimum value for the previous
one. It is hoped that the value of C for classes with even less parameters is
larger. Another way is to start with the class with no parameters and keep on
increasing the number of parameters, i.e., consider the sequence of classes
s=ng,ng-l,...,0, When a class is found that has a minimum value of C higher
than the previous class, no more classes are considered. Again, it can only
be hoped that the optimum class has been found. The number of times the
criterion C has to be evaluated can still be prohibitively large particularly
when fitting nonlinear models and other approximate solutions have to be found.
Two very popular methods in the field of multivariate regression analysis are
the Stepwise Backward Elimination (SBE) of parameters and the Stepwise Forward
includion (SFI) of parameters |Draper and Smith 1981

.

The SBE method first of all calculates the criterion C for the full model
(s0). Then it considers all the models with 1 less parameter than the full
model and calculates the criterion C for all of them. If the minimum value of
C for all these models is greater than that of the full model it stops and
accepts the full model, the model that minimizes C is accepted and the para-
meter that does not exist in this model is deleted and it is never considered
again. The next class of models that is considered is the one with 2 parameters
less than the full model, one of them being the already deleted one. The
minimum value of the criterion for this class is calculated again and compared
with the minimum value of the criterion of the previously considered class. If
it is smaller, the parameter that is missing in the model that minimizes C is
deleted and will never be considered again. The method carries on in this
fashion until some class of the considered models has a minimum value of C
greater than the previously considered class. The advantage of the SBE method
is that the maximum number of times the criterion C needs to be evaluated is
l+n8(ne+1)/2, an extremely large reduction from 2 ©
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The SFI method starts from the model with no parameters (s=ng) and
calculates the criterion C for this model. Then it considers the models
with 1 parameter (s=ne-1) and calculates the minimum value of C for all
these models. Again if the minimum value of C is less than that of the
model with no parameters, the parameter of the model that minimized C is
included and it will always belong to the models considered in the future.
The method carries on including parameters until some class of considered
models has a minimum value of C greater than the previously considered class.
The maximum number of times the criterion C needs to be evaluated is again
1+n8 (n8+1)/2 -

The SBE and SFI methods do not always give the optimum model with the
minimum value of the criterion C provided by the combinatorial method. If
however they both choose the same model there is a certain amount of confidence
that this is also the optimum model. Stepwise Regression is a combination of
SBE and SFI which has been shown to perform extremely well in conjunction with
a periction error estimator [Billings and Voon 1986, Billings and Fadzil
1985]. )

There are some cases where the set of considered models are nested
classes of models with an increasing parameter vector for the classes with
increasing complexity. An example of such models is the set of linear models
with increasing order. If the assumption is made that the model within a
class with all the parameters present gives the criterion C its minimum value,
the selection of the most appropriate class is straight forward. The criterion
C is calculated for the full model of every class and then the class with the
minimum value of C is selected. This is the common way of using the criterion
C for the estimation of the order of a linear system.

5 'Model validation methods

The gemeral appfoach used in the model selection methods is to choose a
full model with a parameter vector 8 and then calculate the value of 6 that
minimizes the loss function L(8) or NJ (6) and the value of the Hessian of
the loss function at the minimum. Thefi all the models with a reduced parameter
vector are considered and the one out of them that minimizes criterion C is
selected as the best one. The calculation of the criterion C for all the
reduced models can easily be done once the Hessian of the full model is known.
Amongst all the models that are special cases of the full model it is thus
certain that the selected one is actually the best. This does not guarantee
though that another model even more complicated than the full model may not be
an even better one. One way of overcoming this difficulty is to choose the
full model as a model so complicated that an even more complicated one would
not be desirable., This might prove a very inappropriate solution. First, such
a full model contains too many parameters and the minimization of the loss
function might be too costly to perform. Second, an over-parametrized model
has inevitably many parameters that are linearly dependent. The Hessian of
the loss function thus becomes almost singular and the numerical methods
employed to minimize the loss function have to be used with extreme care.
Third, the number of reduced models for a full model with many parameters
might become so large that the selection of one of them would be impossible.

A very complicated full model then is not the correct solution. A comparison
between one model and an extension of this model must be done without calcul-
ating the actual minimum of the loss function for the extended model. 1In
this way a model can be shown to be better than any other extended model and
thus validated to be the best possible one. Such an approach to validation
was first considered in |Bohlin (1978)|and it is called the parametric
validation method.
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The traditional methods for validating a model are correlation type
methods where again it is not necessary to perform the estimation of an
extended model. Parametric and the correlation validation methods are
discussed next.

5.1 Parametric validation method

Let the parameter vector of a model be a vector a and the parameter
vector of an extended model be [a ] The restriction of the extended
model when the vector b takes the specific value b*, is the original model.
It is usually t@ken that b#*=0, The parameter vector of the extended model
is then 6 “[a b ] and the parameter vector of the original mode% 1@ &he
vector O "with b restricted to the value b%. It is then © [a b#* 1
Hypothesis testing is used again to decide whether the extended model is
31gn1f1cant1y better than the simpler orlglnal one or not. The null
hypotheSIS is that the orlglnal model is correct and the alternative hypothesis
i's that the extended model is correct. Thus

HO:b=b*
(47)
HI:B#b*

Under the null hypothesis, the statistic d(y) of egns(ll) or (16) is
asymptotically distributed as a chi-square distribution with s degrees of
freedom, where s is the dimension of the vector b. Let the statistic d(y)
correspond to the likelihood ratio test. For the log determinant ratio

test the only difference is that the loss function L(8) is replaced by NJ,(8).
The statistic d(y) ZL(e )=2L(&.) has to be calculated where L(G ) is the
minimum of the loss function L%e) under the null hypothesis and L(8 ) the
minimum under the alternative hypothesis. The difference between %be model
'selection and the validation problem is that in the latter case the minimiz-
ation of the loss function is performed for the restricted model only and the
value of the loss function for the extended model has to be approx1m%t%
Assuming the nul], hypgthesis is correct, i.e. b=b*, the vector © ~La b ] and
the vector § =[a b* are very close to each other for a large number of data.
It then appr8x1mately holds

=T (& oL - ol 8
L(p,) L(%)*[aejeb 0,8 )+ =(6,-8) [ J (48)
The value of that minimizes L(g.) in eqn.8) can be found by equating the
derivative of L(el) to zero. It is then
O 2 T
0 -9 _ [B L] il LSL' . (49)

1 (6] 38 eO a_e_ 60

and substituting eqnJf49) in (48) the statistic d(y) is found to be

T
(50)
d(y)=2L( )-2L(3, )= E‘Llé]e [ 11 Er 8,
o
Let the Hessian of L(8) at the point BO be partitioned as

37, M M
[—__i = aa ab (51)

L) o

T
5 b
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Since 80 is restricted minimum of L(8) when b=b%*, it holds that

B

-3_3_ = 0 (52)

0
6
Thus, using the matrix inversion theorem, equation (50) becomes

s L. -1
i = Eg%] 0 [Mbb MabMaaMab] [g%] g (53)
)

If the gradient and theAHessi%n ethhe loss function L(8) are calculated at
the restricted minimum 9§ = [a b#* ] the value of the statistic d(y) is
given by eqnJ53). The®statistic d(y) can then be compared with sk(1l) and
the null hypothesis is accepted if d(y)<sk(l). The wvalue of k(1) can be
taken, as discussed above, equal to 4. If the null hypothesis is rejegted,
i.e., the extended model is better than the original one, the estimate 6
given in eqn.(49) and the value of L(8.) given by eqn.(50) can be very far
from the true ones. The estimation t%en of 8, has to be made using the
original data y. This method can thus be useé only for validation and not
as a quick way of extending an already estimated model. It gives however
a good starting point for the minimization of the loss function L(&) of the
extended model using the original data vy. In the case of ordinary least
squares where the loss function L(8) is exactly quadratic, equation (49)
gives the exact estimate of the extended model. The calculation of d(y)
wing eqnJ53) does not actually require the inverse of the Hessian since the
powerful and accurate square root methods can be emp loyed. The validation
test that has been described can be proved to have maximum power for long

sets of data [Bohlin (1978)

5.2 Correlation based validation

The traditional validation method used in linear systems identification
is to test that the autocorrelation function of the residuals for the created
model e€(t) 1s an impulse and that the cross-correlation function between the
residuals €(t) and the input u(t) is zero. The formulation of this method
to a properly defined statistical test and the generalization to the non-linear
case is considered next. Several shortcomings of the traditional formulation
of the correlation tests for both linear and non-linear systems are discussed.
A comparison with the maximum power parametric validation tests described
previously is also inclused. The methods presented here are alternatives to
the tests given in Billings and Voon (1983,1986b)

; . ; ; E~1
It is well known that the innovations e(t) must satisfy E[e(t)ly ,utI =0
where for an r-input m-output system

() = 5,00, uy (0 o0 u (0)]"

y(t) = [yl(t), yz(t) ym(t)lT

t T T T-T (34)
and u = [(u(e))", (ult-1))",... (u(1)) 7]

yo = [een’, ge-nt, ... gan§t

or equivalently
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£=1

Efe(t) |e"",u"] =0 (55)

t . . « v
Let the vector x contain all the outputs, innovations and inputs up to the
time t, i.e.

X = e (56)

Conditions (54) and (55) can be collectively written as
E[e(t) | x]=0 (57)

Conditional expected values are difficult to test directly. Alternative
conditions however, derived from eqn{57), can easily be tested. They are
basically conditions of zero cross-correlation between innovations and functions
of previous data. The data up to time t are the vectors yt~l and ut since the
vector et™l is actually a function of the data yE1 and ut,

Let the covariance matrix R of the innovations be factorized as
t
E[ﬁ(t)eT(t)’.x ]=STS (58)

where S is a square root of the covariance matrix of the innovations R. The
innovation process e(t) can be normalized to have unit covariance matrix. Let

w(t) = S Te(t) (59)

where the stochastic process w(t) has unit covariance matrix. Now let some
matrix Z(t) have every element dependent only on the vector xF, i.e.

Z(t)=z(x") (60)
The matrix Z(t) is of dimension sxm where m is the dimension of the output

vector y(t) or equivalently the dimension of the innovation vector e(t). The
matrix Z(t) is assumed to satisfy the law of large numbers for the time average

Z(e)z (t)= 1 T r (61)
1

=

1
L

Clearly this is not a restrictive assumption. The following random vector can
be defined

1 N
b= E Z{t)w(t) (62)
t=1

It is also assumed that the central limit theorem holds for eqn(62). This
assumption is also non-restrictive. The first result given in |Bohlin (1978)]|
is that the random variable w(t) is asymptotically normal with zero mean and
covariance matrix equal to 1 TTI', 1In fact from eqn{62)

N
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1 N
Blu] = 5 21 E[Z(t)w(t)]
£=
N

= %. Z EIZ(xt)W(t)]

£=1 (63
_1 3 ¢ ‘
=& 1 E[2GD Elwe) |xT]

t=1
= 0

F1=0 and where the property of the double expected value

since E [w(t) |x
was used in eqn.(63). Also

|Papoulis (1965)

g N | s 1 : T T
E[uu ]=E[§- 2 Z(t)w(t) % z w (8)Z (k)]
t=1

k=1
., NN . _
=N ) ) E[Z()w(t)w (K)zZ' (k)]
t=1 k=1
'—2 b B T T (t,k
N YT E[E[SEw)w @)zt k) |2 ER)
=1 k=1 ki
w2 8 X T max (t k) T
=N “ } ) E[Z(t) E[w(t)w (k) |x Yz (k)
t=1 k=1
.-2 N
=N Y E[zZe) Z2(e)]
t=1

since EEW(t)WT(k) |xmax(t,k)]=o for t#k. Thus from eqn{b4)
T 1 .t
Efup ] = FIT (65)

The random variable y is thus asymptotically normal with zero mean and
covariance matrix given by eqn.65). The random vector ¥ can be normalized
and the random vector

p =N T 'y (66)

; ; ; ; T
has asymptotically zero mean and unit covariance. The variable d=p p is then
asymptotically chi-square distributed with s degrees of freedom where s is a
dimension of the vector p A validation test can then be based on the statistic
d where

= p%o=N 17 "1y Ly (67)

The null hypothesis is that the given input-output data are generated by a
particular model and the alternative hypothesis is that the data are not
generated by that model. The residuals for the particular model are calculated
and the value of the statistic d in eqn{67) is found. If the value of the
statistic d is outside the acceptance region for a given level of significance
o, the model is not an acceptable one. The acceptance region for a given level
of significance o is the region
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d<ka(s) : (68)

where kyfs) is the critical value of the chi-squared distribution with s degrees
of freedom.

The problem that still has to be investigated is how to choose the matrix
Z (x ). First a comparison between the test 'eqn(68) and the traditional
correlation tests for the linear systems is presented. Such a comparison will
also give some clues about the proper choice of the matrix Z(xt). 1In order to
make the arguments easier to understand, the single-input single-output case
only is discussed, but everything is also valid for the multivariable case.

In the single-output case, the matrix Z(t) is a row vector and the reali-
zation of the statistic d=p p for a particular model can be written as

. N, N . N . -1 B
d=p p=N(1/ } e“(t))( ] z(t)e(t)) [} z(t)z ()] () z(e)e(t)) (69)

t=1 t=1 t=1 t=1
where e€(t) represent the residuals,

For instance if the matrix Z(t) is

zl(t) ]
Z(t)= (70)
zz(t)

then

¢=N(l/z€2(t))[izl(t)e(t) Xzz(t)e(t)] Yz, ()z, (t) Zzl(t)zz(t)] = Zzl(t)s(t)w
12, (0)z,(6) Jz,(e)z, (€) lﬁzz(t)e(t{}

(71)

where every sum is from t=1 to t=N. The traditional validation method in linear
system identification consists of the task of caleculating the autocorrelation of
the residuals and the cross—correlation between the residuals and the inputs and
checking if they fall within a confidence interval, usually ;?//N. It is evident
then that the traditional method corresponds to a choice of the matrix Z(x ) equal
to

ZG)=[e(t-1), e(t-2), ..o , (et )] (72)
and _
2(x)= [u(8), u(t=1), «.. , ult=t )] (73)

where t. is the maximum delay considered in the correlations. The validation
test deScribed before is thus different from the traditional method. The
traditional method can be analysed in order to investigate if it is actually a
properly defined test or just provides an indication that the model is not
acceptable.

Let the variables w(t) be as before, the normalized residuals

W(t) - .E(t) (74)
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and the random vector u then is

N N
w= s L) eeDwie), oy § et pue)]” 732
=] =1
for Z(xt) in eqn(72) and
L o h 7 T
=5 [ w@w@®,..., § ule-t)w(o)] (76)
t=1 t=1

for Z(xt) in eqn{73). Using eqns{ 65) and (61), the vector u, has a diagonal
covariance matrix because the innovations are uncorrelated with previous indo--
vations. If the model is correct, it then asymptotically holds

. N
=G J efen 1 (77)
t=1

where I is the unit matrix. The vector u, is thus orthogonal and the normali-
zation is simply done by dividing by the standard deviation. The vector

I r. N N N T
L Z ge(t=1)e(t) Z e(t=2)e(t) ... Z e(t-td)e(t)
2 t=1 t=1 t=1
e (t) A

1 (78)

Il o~12

t

is thus normally distributed with unit covariance matrix and consequently every
element of the vector p, is independent from the others and with unit covariance.
The traditional wvalidation method consists of testing that every element of the
vector p, is, for some level of significance a, in the region tk, where k, is
the critical value of the normal distribution with level of significance a. If
a=0.0456, then ku=2 and the traditiomal test requires

R
s ) eeke(®)
& @ t=1N 8 e for k = 1,2, ... ,t (79)
N z ez(t) e
t=1

This test is an extremely severe one. If for instance the maximum delay is
t3=50, the probability of accepting the true model is only (1—u)50=0.0969. This
test is thus so severe that it has only 9.7% probability of accepting the true
model. In practice it has been known that a few correlations of the auto-
correlation function of the residuals can be expected to exceed the confidence
limitseven if the model is the correct one. All the careful authors have never
claimed that the traditional test is a proper statistical test but that, as it

is put in |Astrom (1980)!, the calculation of the correlation function is
revealing. Some practical rules have been devised to overcome this difficulty.

A rule of thumb has sometimes been used which says that in practice if the first
five correlations lay within the confidence 1limit, the model is acceptable. Let
us investigate how good such a rule is as a statistical test. The probability of
accepting the true model for o=0.0456 is now (1-2)2=0.792 and thus such a test

is still extremely severe since the probability of rejecting the true model is
almost 217%, an unacceptably large probability. In practice experienced engineers
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can detect a non acceptable correlation function from too many correlations
outside the confidence limit. Such experience is not actually needed if the
proper chi-square test is employed. This test required that

T
p1P1< k (s) (80)
where k,(s) is the critical value of the chi-square distribution with s=t
degrees of freedom. The chi- square test has been introduced in |Bohlin (?971)|
and made more recently in |

The traditional cross-correlation test between residuals and inputs has
exactly the same problems. Every element of the vector u, in eqn.(76) is
individually normally distributed and the traditional tes% for 0=0.0456 is

N
u(t-k)e(t)
2k 2
N (81)
VN ( Z EZ(t))1/2( i u2(t))1/2 YN
t=1 t=1

The covariance matrix of uy_, is not diagonal unless the input signal is a white
noise signal. To calculaté the statistic d of the chi-square test, the covariance
matrix of the vector Z(t) must be calculated first and using eqns{61l) and (67)
the test variable plp. can be found. The inversion of the matrix I''T can

easily be done if it“isS decomposed first by the Cholesky factorization so that

the square root matrix I' is an upper triangular matrix.

A comparison of the correlation chi-square tests where the matrix Z(xt) is
chosen as in eqhs{72) and (73) with the maximum power parametric tests, was first
done in It was found that the correlation tests can in the
case of long tlre constants have a much lower power compared with the parametric
tests. In more ordlnary cases however, the correlation tests are not low
powered tests. Traditionally the vector Z(x ) may consist of residuals or
inputs only. The vector x however also contains the outputs ¥y T+, 1If the
tests with Z(x%t) that consist of residuals or inputs have small power, the tests
with Z(x') that consist of outputs may have a considerably higher power. Define
the wvector

t )
2(x) = [y(e=1), y(e=2), ..., y(e=t )" (82)

For linear systems it was found by simulation that correlation tests with Z(xt)
as in ‘eqns{72), (73) or (82) have not dramatically lower power than the maximum
power parametric tests. In some cases however, the inclusion of the test based
on the vector eqn(82) is important in order to make the correlation tests
comparable with the optimum parametric validation tests.,

It can be argued that since the conditions eqn(54) and (55) are equivalent,
the vector x' need only consist of either residuals and inputs or outputs and
inputs. This is correct but the tests based on an x' that consists of residuals
and inputs may have smaller power compared with the tests based on an xt that
consists ofcutputs. Thus a Z(x ) as in .eqn{82) should also be considered.

In the case of non-linear systems, the validation based on correlation
tests leads to the problem of the choice of the vector Z(xt). It is no longer
sufficient to choose the elements of the vector Z(x%) as past residuals, inputs
or outputs. The elements of the vector 7Z(x%) must be generalized to include
non-linear functions of the elements of the vector xt, and one particular solution
to this is given in Billings and Voon [1986b|. The type of non-linear functions
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that can be used is arbitrary but a very satisfactory choice is the monomials

of the elements of the vector x , Only monomials will be used here as elements
of the vector Z(xY) since they are easy to compute and they are found to perform
very well. In practice the most obvious generalization of the traditional
correlation validation method for linear systems where Z(x') is as in eqnf72)
and (73), are the correlation tests Z(x') that have as elements powers of past
residuals or inputs, i.e.

2G5= [t w2, ., e (83)

or
2= [, @b, .., @)’ (84)
where i=1,2,...

However if the validation of a model is based only on correlation tests with
Z(x%) in the form (83) or (84), it is possible that the validation tests will
have insignificant power. Such a situation is particularly noticeable in the
case of non-linear odd systems (systems that behave in a symmetrical way for
positive and negative inputs) excited by a white noise input signal. The
problem can be solved by creating a more general vector Z(xt), as for instance

Z(xt)=[;i(t—1)gj(t~2),€i(t—z)gj(t—3), e ,Ei(t—td)sj(t—td-l)]T (85)
or
Z(xt)=[ui(t)uj(t—1), uF el (842, .0, ui(t—td)uj(t-td—l)]T (86)
where 1,j=1,2,...

Even more complicated monomials can be used as for instance ul(t)uJ(t—l)uk(t-Z}.
Such choices of Z(xt) can detect for instance that a linear model is wrong when
the non-linear system is odd and the input is a white noise signal. Another

way to generalize the vector Z(xt) in eqn{83) and (84) is to use it as it was
proposed for the linear case, the outputs of the system as well as the inputs

and the residuals. Correlation tests with vectors Z(xL) that include the outputs
were found by simulation to have, quite often, the highest power for non-linear
models. Of course they are always inferior to the maximum powered parametric
tests but they prove to be in a position to discriminate between the correct and
the wrong models in most cases. The vector 7Z(xt) can thus initially be chosen as

Z(Xt) = [yi(t—l), yi(t-Z), s yi (t-—td)]T (87)
or more generally as
2x) = [m(e), m(t-1), ... ,m(e-t )] (88)
where m(t) is a monomial of elements of the vector xt, for instance it could be
m(t)=y3(t—l)uz(t"l)u(t-Z)E(t—l) (89)

Several types of monomials m(t) must be tried before it can be said that a
model is properly validated by the correlation validation tests.

In practice the correlation based tests derivad in Billings and Voon
’1983, 1986b| are augmented with the tests described above to provide the user
with a powerful combination of techniques which indicate which terms have been
omitted from the model |Billings and Voon 1986a, Billings and Fadzil 1985].
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6. Simulation Results

Let the system to be identified have input u(t) and output y(t) where
)

y(t)=0.8y(t-1)+0.2u(t—l)—O.8e(t—1)+0.1y3(t-1)~0.05y(t—1)u2(t—1)—
0.2y (t-1)u(t-1)e(t=1)+e(t) (90)

and where e(t) is a Gaussian white sequence of variance equal to 0.05. The
system will be called S,. An input-output data sequence of 500 points was
generated., The input signal was an independent sequence of uniform distribution
between -3 and 3. The inputs and outputs of the system for the first 100 points
are illustrated in figure 1.

A prediction error method assuming the correct model structure was used to
identify the system S, from the input—output data record. Newton's method with
line search was used Eo minimize the loss function. The first input and output
data points were used as the initial input and output while the initial residual
" was taken equal to zero. The rest of the data points were used for the creation
of the loss function. The initial value of the parameter vector was the ordinary
least squares solution. In five iterations the minimum was found. The inverse
of the Hessian of the loss function at the minimum is the estimate of the
covariance matrix of the parameter vector estimate. The diagonal elements of
this matrix are the variances of the individual parameters. The estimates of
the parameters and their standard deviations are

1 y(t-1)#x1 0.7997E+00(+£0.4725E-02)

2 u(t=1)=%*1 0.1988E+00(+0.9044E-03)

3 e(t-l)#%xl =0.8017E+00(+0.2712E-01)

4 y(t—1)%#3 0.1091E+00(£0.9563E-02)

5 y(t-1)#*%1#u(t-1)%**2 = -0.5115E-01(+0.1250E-02)
6 y(t-1l)#*%1+u(t-1)**1*e(t-1)%*1 = -0.1928E+00(+0.3528E-01)

where the coefficients of the terms on the left-hand side have estimated values
and variances given at the right-hand side. The method produces unbiased
estimates since the true values of the parameters are at least within 2
standard deviations of the estimated values. The response of the estimated
model and the residuals for the first 100 points are illustrated in figure 1.

The same input—output data were used to estimate the parameters of a linear
model with only three parameters.

The loss function was minimized as before and the estimates of the parameters
and their standard deviations are

0.7058E+00 (*0.6280E-02)

]

1 y(t-1)#*1

2 u(t-1)#**1 0.1964E+00 (+0.2227E-02)

3 e(t-1)#**1 — 0.3617E+00 (#0.4240E-01)

The input, the output of the system, the output of the estimated model and
the residuals for the first 100 points are illustrated in figure 2, It is
obvious that there is a large bias of the estimated values of the parameters,
since the true values of the parameters are not within a few standard deviations
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of the estimated values of the parameters. This bias is actually beneficial
if a linear model is to be used, otherwise the model would behave extremely
badly for large values of inputs. The fact that the model used was incorrect
must however be detected by the model validation methods. The non-parametric
correlation validation method was employed first to detect whether the model
was satisfactory.

The traditional correlations between the residuals and past residuals
and inputs are given in figure 3. The confidence interval is the 957 confi-
dence interval. The chi-square correlation tests described in section 5 for
the same correlations are given in figure 4. It can be seen from figure 3
that some correlations are outside the confidence interval. The chi-square
correlation tests however confirm that these values of the correlations are
acceptable and thus correlations of the residuals with past residuals and
inputs cannot detect that the linear model is biased. This was to be expected
since the tested model is the best possible linear one.

Correlations of the residuals with powers of past residuals and inputs
are attempted next. Such correlations are the direct generalization of the
correlations used for linear systems. The chi-square tests for three such
correlations are given in figure 5. The power of these tests is small and
they cannot detect that the linear model is a wrong model.

More general correlations can be considered however and the chi-square
tests based on them are given in figures 6 and 7. The first correlation test
in figure 6 shows that the correlations of the residuals with monomials which
include several delayed inputs can detect that the linear model is inadequate.
The second test in figure 6 shows that the correlations of the residuals with
monomials that include the output of the system provide, in this case, the
correlation test with the maximum power. The rest of the tests in figures 6
and 7 demonstrate that several other correlation tests are not in a position
to detect that the linear model is incorrect.

The parametric validation tests are however the most powerful tests. The
value of the statistic d(y) in eqn(53) for the inclusion of the terms

y3(t—1),y(t—l)u2(t—l) or y(t=1)u(t-1)e(t-1) are

inclusion of the term value of the statistic d(y)
Y3(t—1) 7.8998
y (t=1)u” (e-1) 450.2393
y(t-1Du(t-1)e(t-1) 0.2760

The parametric validation tests confirm that the model expanded with the
first or the second of the above terms is better than the original linear
one since the value of the statistic d(y) is greater than 4. If the first
two of the above terms are included in the model and the statistic d(y) is
computed again for the inclusion of the third term, the value of d(y) is
found to be equal to 41.8130, which correctly indicates that the third term
must be included in the model.

Another model used to identify the system S, was an over-parametrized
model with 13 parameters that corresponds to a t%ird order polynomial
expansion of the model

y(t)=q[y(t-1),u(t-1), e(t-1)]+e(t) (91)
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with only the odd order terms present.
the same as in the previous cases. The
and the estimates of the parameters and

The input-output data sequence was

loss function was minimized as before

their standard deviations are

1 y(t=1)**1 = 0.7996E+00 (£0.5549E-02)
2 u(t-1)**1 = 0.2006E+00 (+#0.2271E-02)
3 e(t-1)**1 = -0.7220E+00 (+0.6938E-01)
4 y(t-1)**3 = 0.1174E+00 (+0.1129E-01)
5 y(t=1)**2%u(t-1)**1 = -0.5559E-02 (+0.3859E-02)

]

6 y(t-1)**2%e(t-1)*%*1 -0.1774E+00 (+0.1318E+00)

7 y(t-l)#**1%u(t-1)*%%2 = -0.5201E-01 (+0.1330E-02)
8 y(t-1)**L*u(t-1)**1%e(t—1)**] = =-0.2045E+00 (+0.4387E-01)
9 y(t-1)**Ll*e(t-1)%**2 = -0.1232E+01 (+0.9800E+00)
10 u(t-1)#**3 = 0.4212E-05 (+0.3273E-03)
11 u(t-1)#**2%e(t-1)**] = -0.5457E-02 (+0.1055E-01)
12 u(t=1)**1l*e(t-1)**2 = -0.9669E-01 (+0.2446E+00)
13 e(t-1)#*3 = -0.2969E+01 (+0.4989E+01)

The input, the output of the system, the output of the estimated model
and the residuals for the first 100 points are given in figure 8. There is
no bias of the estimated value of the parameters since they are all within
a few standard deviations from their correct value. Such a model can however
be greatly reduced since the system S. contains only 6 out of the 13 terms
of the model. The Stepwise Backward "Elimination (SBE) of parameters was
first used to reduce the model. Akaike's information criterion (AIC) and the
criterion C eqn(36) with k(1)=4 for the reduction of every term is

Total Number No of AIC of reduced C of reduced Standard
of eliminated eliminated model - AIC of model - C of Deviation of
parameters parameter full model full model the residuals
1 10 -0.2000E+01 -0.4000E+01 0.4874E-01
2 12 -0.3831E+01 -0.7831E+01 0.4875E-01
3 11 -0.5602E+01 -0.1160E+02 0.4876E-01
4 13 -0.7237E+01 -0.1524E-02 0.4878E-01
5 9 -0.7537E+01 ~-0.1754E+02 0.4886E-01
6 5 -0.7833E+01 -0.1983E+02 0.4895E-01
7 6 -0.5949E+01 -0.1995E+02 0.4914E-01
8 8 0.2271E+02 0.6708E+01 0.5067E-01
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The minima of the two criteria are underlined. The first observation is
that Akaike's criterion does not reduce the model to the correct one. It
keeps an extra term, the term yz(twl)e(t—l) (No 6). It is known that the
AIC criterion tends to over-estimate the number of necessary parameters.
The criterion C with k(1)=4 gives the correct model. The Stepwise Forward
Inclusion (SFI) of parameters is also used to reduce the model. Akaike's
information criterion and the criterion C with k(1)=4 is given for the
inclusion of every term

Total Number No of AIC of reduced C of reduced Standard
of included included model = AIC of model - C of Deviation of
parameters parameter full model full model the residuals
1 1 0.5413E+05 0.5410E+05 very big
2 2 0.3460E+04 0.3438E+04 0.1597E+01
3 7 0.1266E+04 0.1246E+04 0.1769E+00
4 3 0.1614E+03 0.1434E+03 0.5835E~-01
5 4 0.2270E+02 0.6702E+01 0.5067E-01
6 8 -0.5950E+01 -0.1995E+02 0.4914E-01
7 6 =0.7833E+01 -0.1983E+02 0.4895E-01
8 5 =0.7538E+01 -0.1754E+02 0.4886E-01
9 9 -0.7237E+01 =0.1524E+02 0.4878E-01

The SFI method gives exactly the same final model as the SBE method.

Again Akaike's criterion over-estimates the number of the necessary parameters.
The slight numerical difference in the value of the criteria that correspond
to the same reduced models in the case of the SBE and SFI methods is caused
by the completely different numerical methods employed in the two cases. The
SBE method is faster because the decomposed Hessian of the loss function of
every reduced model is used for the next elimination of a parameter but it is
slightly inaccurate because of accumulation of numerical errors. The SFI
method is slower because the Hessian of the loss function of every reduced
model is calculated from the original undecomposed Hessian of the full model
but numerically more accurate because every reduced model does not depend on
the decomposed Hessian of the reduced model of the previous step.

7. Conclusions

The problems of model selection and model validation have been studied
for both linear and nonlinear systems. The problem of selecting one out of
two models was formulated as a hypothesis testing problem, If the maximum
likelihood estimation method is used, the selection of the best model is
provided by the likelihood ratio test and if the prediction error estimation
method is used, the selection of the best model is provided by a test given the
name log determinant ratio test. An efficient method of approximately cal-
culating the two tests, using the Hessian of the loss function at the minimum
has been presented. The traditionalF-test for single-input single-output
systems was shown to be asymptotically equivalent to the log determinant ratio
test. The selection of one model among many competing models was then consid-
ered. It was shown that the significance levels for the many possible pairwise
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comparisons must be chosen in a restricted way if conflicts are to be

avoided. The criterion which the finally selected model must minimize

was thus derived. Akaike's AIC criterion corresponds to the criterion
derived for a specific significance level. The relatively high significance
level that corresponds to the AIC criterion provided an explanation for the
tendency of this criterion to overestimate the number of required parameters.
The other objective criterion, the FPL criterion, was shown to be asymptoti-
cally equivalent to the AIC subjective. The objective criteria AIC and FPE
were proposed so that they could perform the model selection in a completely
automatic way, independent of subjection choices of significance levels.
However, it has been demonstrated that they actually correspond to a specific
significance level and thus they just predetermine the significance level that
should be used. The methods of stepwise forward inclusion of parameters and
of stepwise backward elimination of parameters were described as methods

of selecting a reduced model when the number of competing models is excessive.

Model wvalidation methods have been studied and a parametric valid-
ation method was derived and its relation with the approximate calculation
of the likelihood ratio or the log determinant:-ratioc test was shown. The
correlation validation methods were then studied. The chi-square tests were
described and : compared with the traditional linear correlation tests
involving the autocorrelation function of the residuals and the cross-corre-
lation function between residuals and inputs. An extension of the tradition-
ally used correlations was also provided by considering correlations between
residuals and past inputs. The correlation tests for linear systems were then
modified to suit non-linear systems. It was shown that correlations of the
residuals with non-linear functions of past outputs are very important in
the validation of non-linear systems.
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