
Model Selection Approach Suggests Causal Association
between 25-Hydroxyvitamin D and Colorectal Cancer
Lina Zgaga1,2,3*., Felix Agakov1,4., Evropi Theodoratou1, Susan M. Farrington2, Albert Tenesa2,5,

Malcolm G. Dunlop2, Paul McKeigue1, Harry Campbell1,2*

1 Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom, 2 Colon Cancer Genetics Group and Academic Coloproctology, Institute of

Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom, 3 Andrija Stampar School of Public Health, Medical

School, University of Zagreb, Zagreb, Croatia, 4 Pharmatics Limited, Edinburgh, United Kingdom, 5 The Roslin Institute, Royal (Dick) School of Veterinary Studies, University

of Edinburgh, Midlothian, United Kingdom

Abstract

Introduction: Vitamin D deficiency has been associated with increased risk of colorectal cancer (CRC), but causal
relationship has not yet been confirmed. We investigate the direction of causation between vitamin D and CRC by
extending the conventional approaches to allow pleiotropic relationships and by explicitly modelling unmeasured
confounders.

Methods: Plasma 25-hydroxyvitamin D (25-OHD), genetic variants associated with 25-OHD and CRC, and other relevant
information was available for 2645 individuals (1057 CRC cases and 1588 controls) and included in the model. We
investigate whether 25-OHD is likely to be causally associated with CRC, or vice versa, by selecting the best modelling
hypothesis according to Bayesian predictive scores. We examine consistency for a range of prior assumptions.

Results: Model comparison showed preference for the causal association between low 25-OHD and CRC over the reverse
causal hypothesis. This was confirmed for posterior mean deviances obtained for both models (11.5 natural log units in
favour of the causal model), and also for deviance information criteria (DIC) computed for a range of prior distributions.
Overall, models ignoring hidden confounding or pleiotropy had significantly poorer DIC scores.

Conclusion: Results suggest causal association between 25-OHD and colorectal cancer, and support the need for
randomised clinical trials for further confirmations.
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Introduction

In 1980, it was first hypothesised that vitamin D is a protective

factor against colorectal cancer (CRC) [1]. It has subsequently

been shown that higher vitamin D intake [2], higher serum 25-

hydroxyvitamin D (25-OHD) [3] and residence in regions with

strong UVB radiation [4] are all associated with lower CRC risk

and cancer death [5]. The majority of the available evidence

comes from ecologic correlations or observational studies.

Unbiased attempts to investigate causality in these studies are

unreliable, as study design cannot completely account for the effect

of potential confounders such as obesity or physical activity [6,7].

Nevertheless, experimental studies [8,9], randomized controlled

trials [2,10] and application of Hill’s criteria for causality [11,12]

support a possible causal role of vitamin D deficiency in colorectal

cancer. The volume of observational and in vitro evidence and the

potential large public health importance should associations prove

to be causal, require further investigation.

While awaiting results from randomised clinical trials, statistical

and machine learning methods allow the investigation of causality

in observational studies. One such method is Mendelian random-

ization (MR). MR is an application of instrumental variable (IV)

analysis that uses genetic polymorphisms as instruments

[13,14,15]. It has become increasingly more popular, since

genome-wide association studies (GWAS) identified numerous

genetic variants that can be used as ‘‘instruments’’ [16].

Conventional MR approaches assume that: (i) genotypes are

randomized; (ii) genetic variants considered as instruments affect

the outcome only by modifying the biomarker, i.e. there are no

pleiotropic effects of these variants on the outcome; (iii) variations

between true and observed biomarkers are negligible (no

observation noise) [17,18,19,20]. If these assumptions hold,
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inference of causality from observational data is theoretically valid,

although conclusions are sensitive to the chosen instruments [21]

and may not be valid when the effects of the instruments on the

biomarkers are weak. Despite their popularity, it has been argued

that MR methods push the problem of causal inference to another

realm, as their assumptions are generally unverifiable [22]. For

example, it is rarely possible to exclude pleiotropy or estimate

effects of such exclusions on the resulting estimate, especially for

multiple instruments [23,24]. Also, in classic MR it is difficult to

assess how the causal estimates are affected by different

assumptions about distributions of the latent confounders.

Another important limitation of MR is that it lacks a formal

model comparison framework for inferring the direction of causality

when pleiotropy and confounding cannot be excluded as possible

explanations. The classic approach estimates the size of the causal

effect [25], but does not assess the relative value of causal vs.

reverse causal explanations. This may not matter in a long-term

cohort study where the temporal sequence from biomarker to

outcome is clear, but it limits the ability to infer causality from

cross-sectional or case-control data. Also note that in pleiotropic

models the causal and reverse models are not nested, and classical

tests for nested cannot be easily used. A more general approach to

learning the direction of causality is the Likelihood-based

Causality Model Selection (LCMS) method suggested by [26],

who propose selection of the best modelling hypothesis by

comparing likelihood-based scores for direct causal, reverse, and

pleiotropic models. While this approach relaxes the assumption of

no pleiotropy of the classic MR method, it does not allow for latent

confounders or measurement noise. Additionally, because their

method is not Bayesian, it cannot be easily scaled to large

problems where high-dimensional genotypes and/or phenotypes

are used as instruments.

We have previously performed a MR analysis to investigate the

possible causal effect of plasma 25-OHD on colorectal cancer risk

[27]. Our results were inconclusive and a causal relationship

between low 25-OHD and CRC was neither clearly demonstrated

nor excluded.

In this study, we set out to investigate the causal effect of 25-

OHD on colorectal cancer risk. We extend conventional

approaches (MR and LCMS) by: (i) allowing pleiotropic links

between the instruments and disease, (ii) accounting for the noise

in the measurement and (iii) modelling of ‘‘hidden confounders’’,

i.e. unmeasured factors that can affect biomarker and disease. We

proceed by selecting the best modelling hypothesis according to

Bayesian predictive scores, and investigate its consistency for a

broad range of prior assumptions. Our approach builds on the

strengths of MR and LCMS but relaxes their restrictive

assumptions, which results in models that better fit the data

according to the considered criteria.

Methods

We studied a subset of individuals from the SOCCS Study

(1999–2006) [27,28]. In total, 2645 individuals with all relevant

measurements available were included in this study (1057 cases

and 1588 controls). Ethical approval for the SOCCS study was

obtained from the MultiCentre Research Ethics committee for

Scotland (reference number 01/0/05) and from the Research and

Development Office of NHS Lothian (reference number 2003/

W/GEN/05). All participants gave informed written consent. The

subjects completed a questionnaire enquiring about lifestyle.

Questionnaire collected data on general medical history, physical

activity (hours of cycling and other sports activities, 4 groups),

socio-economic status (Carstairs Deprivation Index), smoking

habits, regular intake of aspirin and NSAIDs, height, weight,

and other. Participants also completed a semi-quantitative food

frequency (http://www.foodfrequency.org) and supplements ques-

tionnaires, which were used to calculate the vitamin D intake (see

[27,29]).

Total plasma 25-OHD (25-OHD2 and 25-OHD3), the main

storage form of vitamin D, was measured by liquid chromatog-

raphy-tandem mass spectrometry (LC-MS/MS) method [30]. 25-

OHD concentration was standardized to remove the prominent

effect of the season when blood was taken, and May-adjusted

measurement was used in the analyses (as described in [29]).

In this study, we used 16 SNPs associated with CRC in GWAS:

rs6691170, rs6687758, rs10936599, rs16892766, rs7014346,

rs10795668, rs3802842, rs7136702, rs11169552, rs4444235,

rs4779584, rs9929218, rs4939827, rs10411210, rs961253,

rs4925386 [31,32,33,34,35,36] and four SNPs associated with

25-OHD: rs2282679, rs12785878, rs10741657, rs6013897 [37].

We have reduced dimensionality of genetic factors to 6 principal

components.

Probabilistic Graphical Modelling
Relationships between biomarkers and outcomes can be

described by ‘‘Bayesian networks’’ represented by directed acyclic

graphs, where nodes correspond to random variables, edges
describe conditional independence structures, and every two nodes

are conditionally independent of each other given their parents.

Such models have been widely explored in statistical and machine

learning literature; their key advantage is that they can sometimes

be used to differentiate causality from mere statistical associations

[38,39,40].

As argued e.g. by MacKay (35.3, [41]), a Bayesian approach to

causality inference may be based on model selection, where models

describing different causal hypotheses are considered and com-

pared. For example, when priors on confounding and pleiotropic

effects are specified, the weight of evidence favouring a causal

model over an alternative one can be evaluated even though the

classical criteria for identification of causal effects in graphical

models [42,43] are not met. The fact that the same model is

selected for a broad range of domain-specific priors may indicate

the direction of causality (which may need to be further validated

through controlled experiments). This approach is attractive,

because it is applicable in real-world situations where both

confounding and pleiotropy may be present.

The graphical structure of the generic model considered in this

paper is shown on Figure 1. This extends the previously

introduced method of [44] by allowing for pleiotropic effects of

genotypes on biomarkers and outcomes. We consider several

variants of basic model, e.g. by reversing the direction of the link

between vitamin D and colorectal cancer, or removing it entirely.

For all such models, we compute likelihood-based scores which

indicate how well the model fits the data, in accordance with

recently introduced approach [45,46,47].

Outcome, Biomarker and Predictor variables. We ex-

amine the relationship between colorectal cancer (outcome, y) and

May-standardised plasma 25-OHD (biomarker, with the true

unobserved concentration denoted by x and the corresponding

noisy measurement denoted by xt) as shown on Figure 1. Note

that xt accommodates measurement error and biological oscilla-

tions. We account for known confounding by including the vector

of predictor variables g, which contains data on general and

environmental factors (age, sex, BMI, physical activity, family

history of CRC, NSAIDs intake, socio-economic status, total

caloric intake, alcohol intake, smoking, consumption of red meat

and dietary vitamin D intake) and genetic factors. Prior to the

Vitamin D and Colorectal Cancer
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analysis, all predictor variables were scaled to have: mean = 0 and

SD = 1.

Unmeasured (or hidden) confounders. We assume that

joint effects of unmeasured confounders on biomarker and

outcome are approximately additive and may be summarized by

a hidden (latent) variable z (Figure 1), where z follows a Gaussian

distribution with mean = 0 and SD = 1. Gaussianity of latent

factors is a standard assumption of mixed linear models [48] and

may be justified by the Central Limit theorem (which postulates

that the sum of a large number of independent effects is

approximately normally distributed, under certain conditions).

The constraint on the variance of the confounder is needed to

ensure identifiability of its effect on biomarkers and outcomes; we

choose it so that confounder z lies on the same scale as the scaled

predictor variables. During inference the confounder is margin-

alized out by computing averages over its probability distribution,

which is a standard way of accounting for hidden variables in

probability theory [41].

Model parameterization. Agakov et al. introduced the

Sparse Instrumental Variable method (SPIV) [46]. They assume

that all conditional distributions in the model shown on Figure 1
are linear Gaussians, with the inverse gamma priors on the

variances of noise terms, and sparsity-inducing Laplace priors on

coefficients of the linear mappings [46]. They consider the

maximum a posteriori approximation of inference; define an

expectation-maximization (EM) algorithm for fitting their model

to data, and use cross-validation to further tune hyperparameters.

We largely follow this construction, but assume a binary outcome

variable y (case/control) and a sparse logistic regression model for

the probability of CRC given the genotypes, biomarker, and

hidden confounders. Also, in contrast to [46], instead of using

point estimates of the parameters, we consider the more general

full Bayesian treatment approximated by Markov Chain Monte

Carlo (MCMC).

Priors/parameters. Similarly to [49] we considered zero-

mean Laplace priors on the linear coefficients with the concen-

tration hyperparameter gam1. Models with larger gam1 are more

likely to have their links pruned in the posterior mode (see Figure
S1).We investigate the relationship between CRC and 25-OHD

for a range of prior distributions (assuming gam1 is 0.025 unless

stated otherwise). The concentration around zero encodes our

belief that large genotypic and phenotypic effects are unlikely,

while the fat tails of the Laplace component allow for possible rare

large associations.

We denoted precisions (inverse variances) of linear predictors as

precx, precxt, precy and precz for the true 25-OHD, measurement of

25-OHD, effects on disease status, and unmeasured confounders

respectively. For these, we have used both fixed values for ensuring

identifiability of the random effects and indicative of our beliefs in

the magnitude of the observation noise, and the conjugate Gamma

priors. Smaller values of the precisions correspond to wider

confidence intervals associated with every measurement.

Probabilistic inference and model selection. Several

likelihood-based scores may in principle be considered [50,51].

Here we select the best model by using deviance information

criterion (DIC) readily computable from MCMC samples [51].

DIC balances quality of fit and complexity of a model, which helps

avoid overfitting. Preferred modelling hypotheses are character-

ized by lower DICs, providing the best combination of quality and

simplicity.

Models are compared by examining their DIC score differences.

Roughly, absolute differences of above 10 units definitely rule out

the model with the higher DIC, and differences between 5 and 10

are substantial [51,52]. We investigate consistency of the best

model under different assumptions about priors on the fixed effects

of the covariates, random effects of the confounders, and the

measurement noise. For the best such settings, we also compare

posterior means of the models’ deviances.

Experiments
In all experiments, we used the entire set of genotypic scores and

environmental factors associated with either CRC or 25-OHD.

The aim of experiment 1 was to determine the importance of

unmeasured confounders and their implication on the inference of

causality. We compared 3 models: the full causal model with

confounders (M1), the causal model without confounders (M2), and

the reverse model without confounders (M3) (Figure 2A). We

allowed for a possibility of pleiotropic dependencies where both

the biomarker and the outcome were affected by predictor

variables (the genotypes and environmental factors). The models

were then compared for a range of prior distributions and

Figure 1. Graphical representation of the basic model: y –
outcome (colorectal cancer, CRC); x – true concentration of the
biomarker, 25-OHD; xt – measured concentration of the
biomarker, 25-OHD; g – a vector of predictor variables: age,
sex, smoking, BMI, physical activity, family history, NSAIDs
intake, socioeconomic status, total caloric intake, alcohol
intake, consumption of red meat, dietary vitamin D intake
and SNPs associated with CRC or 25-OHD; z – unmeasured,
hidden confounders. Link u represents the effect of predictor
variables on 25-OHD, w is the effect of 25-OHD on CRC, wg is the effect
of predictor variables on the CRC, v is the effect of unmeasured
confounders on the 25-OHD and wz is the effect of unmeasured
confounders on colorectal cancer.
doi:10.1371/journal.pone.0063475.g001
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assumptions about the observation noise, and the best modelling

hypothesis was selected based on the DIC score.

In experiment 2, we considered the noisy extensions of the

conventional causal (M4) and reverse (M5) models of the LCMS

approach [26,53] with a model where the association between the

biomarker and outcome was explained entirely by an unmeasured

confounder (M6), as shown on Figure 2B. The purpose of this

experiment was two-fold: (i) to demonstrate restrictiveness of the

assumption of no latent confounders in LCMS, and (ii) to show

that a Bayesian treatment of the classic instrumental variable

method [44] would not be able to identify causality by favouring a

non-causal over a causal explanation. As in experiment 1, we

selected the best model for a range of prior parameter settings.

The purpose of experiment 3 was to compare the full causal

and reverse models where the confounders were modelled

explicitly (Figure 2C). Note that both of these models are

likelihood-equivalent; e.g. for each setting of parameters of one

there exists a setting of parameters of the other which results in an

identical likelihood. The approach considered here handled such

symmetry by choosing the Laplace prior distribution on the

magnitudes of the linear effects, which encoded our prior belief

that very large genotypic and phenotypic effects are rare (see

Appendix S1).

In the exploratory phase of experiment 3, we considered

independent priors on the direct associations between the

biomarker and the outcome (gam1,w link) and the confounding

effects (gam2, v and wz links), which were made different in order to

further increase the flexibility of the method. A random sample of

500 cases and 500 controls was used to make an exploration of

different prior assumptions more efficient. We performed multiple

runs of the Markov chains from random initializations to account

for possible variations in the deviance scores (see Methods S1 for

more details) for a broad range of prior distributions.

In the final phase of experiment 3, using the complete

dataset we compared the full causal (M7) and reverse (M8) models

where the confounders were modelled explicitly. We performed

multiple repetitions keeping sparsity parameter gam1 fixed to the

best value from the earlier low-dimensional phase, but varied

precisions to check consistency of the results.

Results

The study population is described in Table 1. Both crude and

May-standardised 25-OHD levels were strongly associated with

CRC in the univariate model (p = 1.2E-10 and 6.9E-9, respec-

tively), model adjusted for age and sex (p = 3.5E-10 and 2.9E-8,

respectively) and in fully adjusted model (p = 5.5E-10 and 2.0E-8,

respectively). Moreover, predicted vitamin D level (using all

covariates) was also associated with CRC (p = 0.048), suggesting

that chosen covariates are predictive of vitamin D and can indeed

be considered as valid candidate instruments. Results were

consistent when data was split into training and testing datasets

(data not shown).

Experiment 1. Importance of Confounders for the
Inference of Causality

For the first setting in Experiment 1, DIC scores for causal and

reverse causal models without confounders were DICM2 = 42,132

and DICM3 = 41,911, respectively. The significantly lower DIC

score for reverse causal model (DIC difference = 221 units)

indicates its superiority over the causal model. However, DIC

score for the full causal model with confounders (M1) was

significantly lower (DICM1 = 23,797), yielding a very large DIC

difference of 45,929 and 45,708 units in support of M1, when

Figure 2. Graphical representation of models compared in
Experiments 1 to 3 are shown. A. Experiment 1. M1 - full causal
model with confounders, M2 - causal model without confounders, and
M3 - reverse model without confounders. B. Experiment 2. We
compare conventional causal (M4) and conventional reverse causal (M5)
models (both (i) assume absence of pleiotropic effects of instruments
on biomarkers and outcomes, (ii) explicitly exclude unmeasured
confounders from modelling and (iii) account for the noise in the
measurement) with the model where the association between the
biomarker and outcome is modelled entirely by unmeasured confound-
ers (M6). C. Experiment 3. We compare full causal (M7) and full
reverse causal model (M8), allowing for pleiotropic relationships and
accounting for hidden, unmeasured confounders.
doi:10.1371/journal.pone.0063475.g002
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compared to M2 and M3, respectively. Results were consistent

across all tested settings (Table 2). This suggests that the model

accounting for unmeasured confounders by far outperforms models

without confounders.

Experiment 2. Comparison with LCMS Models
DIC scores for the conventional causal and reverse causal

models considered by LCMS [26,53] were DICM4 = 43,347 and

DICM5 = 41,915, respectively, for the first setting in Experiment 2.

A DIC score difference of 1,432 in favour of M5 suggests that

reverse causal relationship between 25-OHD and CRC is more

likely. However, a model that assumes only an indirect association

between 25-OHD and CRC through unmeasured confounders

(M6), fits the data significantly better than either of the previous

models (M4 and M5), as is suggested by DIC score differences of

43,266 and 41,834 units, respectively. Results were consistent

across all tested settings (Table 3).

Experiment 3. Inference of Causality between Plasma 25-
OHD and CRC

In the exploratory stage of experiment 3, we performed 30

comparisons varying gam1 and gam2. Unsurprisingly, for sparser

Table 1. Study cohort.

Variable ALL CONTROLS CASES

N 2645 1588 1057

Age, years 62.8 (10.3) 62.9 (10.2) 62.6 (10.4)

Gender, % female 41.98 41.44 43.99

25-OHD, ng/ml 11.25 (6.96–16.94) 12.25 (7.60–18.00) 10.25 (5.94–15.36)

BMI 26.69 (4.50) 26.77 (4.67) 26.57 (4.24)

Physical Activity, N (%)

cat 1 1471 (55.61) 861 (54.22) 610 (57.71)

cat 2 686 (25.54) 415 (26.13) 271 (25.64)

cat 3 309 (11.68) 197 (12.41) 112 (10.60)

cat 4 179 (6.77) 115 (7.24) 64 (6.05)

Family health risk, N (%)

low 2471 (93.42) 1572 (98.99) 899 (85.05)

medium 158 (5.97) 15 (0.94) 143 (13.53)

high 16 (0.6) 1 (0.06) 15 (1.42)

NSAIDS, N (%)

yes 900 (34.03) 573 (36.08) 327 (30.94)

no 1745 1015 730

Carstairs Deprivation Index, N (%)

1 255 (9.64) 156 (9.82) 99 (9.37)

2 579 (21.89) 344 (21.66) 235 (22.23)

3 730 (27.6) 442 (27.83) 288 (27.25)

4 616 (23.29) 368 (23.17) 248 (23.46)

5 256 (9.68) 156 (9.82) 100 (9.46)

6 147 (5.56) 88 (5.54) 59 (5.58)

7 62 (2.34) 34 (2.14) 28 (2.65)

Energy intake, Kcal/day 2575 (982) 2521 (926) 2657 (1057)

Alcohol, g/day 7.9 (1.8–18.8) 8.1 (1.8–19.34) 7.6 (1.9–18.6)

Smoking, N (%)

never 1155 (43.67) 699 (44.02) 456 (43.14)

former 1062 (40.15) 617 (38.85) 445 (42.1)

current 428 (16.18) 272 (17.13) 156 (14.76)

Red meat, portion/day 1.24 (0.8–1.72) 1.23 (0.79–1.75) 1.25 (0.82–1.69)

Vitamin D (from food), mg/day 4.27 (3.16–5.79) 4.42 (3.24–5.95) 4.04 (3.06–5.59)

Vitamin D (from supplements), N (%)

.5 mg/day 151 (5.71) 85 (5.35) 66 (6.24)

.2.5 mg/day 498 (18.83) 307 (19.33) 191 (18.07)

Mean (standard deviation) or median (interquartile range) is shown for continuous variables and number (percent) is shown for categorical variables.
Physical activity is estimated from the reported hours of cycling and other sports activities (4 categories) and Carstairs Deprivation Index was used to describe socio-
economic status.
doi:10.1371/journal.pone.0063475.t001
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models (higher values of gam1) the difference in the scores of full

causal and reverse models becomes less significant. This is

intuitive, because for larger gam1 the models are approximately

decoupled, and any difference is largely due to the sampling noise

(Figure S1). Mean DIC was calculated for each gam1 setting, and

it was confirmed that dense models fit the data better (22801.12,

21816.54, 21598.58, 21571.33 and 21557.48, respectively).

When focusing on denser models (gam1#0.25), in 15/18

iterations there was overwhelming (DIC differences in the range

of 10.6 to 3,919) and in 2 substantial (DIC differences of 9.7 and

5.2) evidence in favour of the full causal model, and in one

iteration it was not possible to distinguish a preferred model with

certainty, although the causal model was favoured (DIC differ-

ence = 3.2 units) (Figure 3). Results of all comparisons are shown

in Table 4 and more detail in Table S1.

Finally, we used all available data to compare full causal and full

reverse causal models. We consistently observed evidence in

support of the direct causal relation between low 25-OHD and

CRC. Across all the noise parameter settings that we explored, the

full causal model provided a better explanation of data than the full reverse

causal model: DIC differences were between 580 and 10,715 units in

favour of the full causal model (Figure 4 and Table 5, for DIC
components see Table S2).

DIC scores computed here [51] generalize AIC scores used for

inferring the direction of causality in LCMS [26,53]. However, it

has been argued that they may underpenalize model complexity

[50]. By assuming that the full reverse model has approximately

the same complexity as the full causal model, we additionally

compared the best of the causal and reverse models according to

their mean posterior deviances (Dbar). (Note that 21/2 Dbar may

also be viewed as the ‘‘cooling limit’’ of thermodynamic

integration used for approximating marginal likelihoods of the

models [54]). Again, we found evidence of 11.5 natural log units in

favour of the causal model.

Note that this is opposite to the results found by explicitly

excluding the presence of hidden confounding (experiments 1 and

2); however, we have shown that according to the DIC scores, the

models allowing for hidden confounders resulted in better

explanations of the data than the models that did not allow for

confounders. We also consistently observed that lower levels of 25-

OHD are associated with CRC case status. Together, these results

suggest that low plasma 25-OHD levels may be causally associated

with CRC risk.

Discussion

In this paper, we show evidence in support of a causal

relationship between low plasma 25-OHD and colorectal cancer

risk. The study was conducted by implementing novel method-

ology that extends the conventional instrumental variable

approach and the more recent, likelihood-based causality model

selection method [26], by accounting both for confounding by

unknown factors and allowing pleiotropic relationships.

SPIV and Improvement in the Methodology
Conventional approaches to the problem of causal inference are

based on strong and often unrealistic assumptions about data. In

practice such assumptions may be violated, which can lead to poor

models and biased causal estimates [22,55]. If one carefully selects

instruments or sub-samples data to approximately satisfy the

restrictive assumptions, inference in MR and LCMS is mathe-

matically sound, but the results will generally be sensitive to the

selections and can lead to varying conclusions [21,46,56]. In this

paper we apply a different, model selection based strategy called

SPIV, where we jointly consider genotypic factors predictive of

either biomarkers or outcomes without relying on strong

assumptions of the classical methods. The fact that the same ‘‘full

causal’’ model explains the data better than alternative modelling

hypotheses as shown for a broad range of domain-supported prior

distributions is indicative of possible causality and justifies further

controlled experiments.

Table 2. Likelihood-based deviance information criterion
(DIC) scores for 3 models compared in Experiment 1 are
shown.

MODEL setting 1 setting 2 setting 3

full causal
model with
confounders

23,797** 22,547** 23,003**

causal model
without
confounders

42,132 212,173 21,300

reverse causal
model without
confounders

41,911 210,996 21,183

DIC has been computed from MCMC samples; preferred modelling hypotheses
are characterized by lower DICs. The full causal model with confounders (M1)
suggests causal relationship between 25-OHD and colorectal cancer and also
models hidden confounding, causal model without confounders (M2) also
proposes causal relationship, but hidden confounding is disregarded, and
reverse model without confounders (M3) proposes that colorectal cancer leads
to lower levels of 25-OHD, also ignoring hidden confounding. Digits after
decimal point have been omitted from the table for clarity.
Setting 1: precxt = 200, precx = 200, precy = 100; Setting 2: precxt = 1000,
precx = 1000, precy = 0.1; Setting 3: precxt = 100, precx = 100, precy = 100. Sparsity
parameter gamma is set to 0.025 in all models. In model with confounders (M1),
precz = 1.
**indicates the best model for each setting.
doi:10.1371/journal.pone.0063475.t002

Table 3. Likelihood-based deviance information criterion
(DIC) scores for conventional causal (M4) and conventional
reverse causal (M5) models, both (i) assume absence of
pleiotropic effects of instruments on biomarkers and
outcomes, (ii) explicitly exclude unmeasured confounders
from modelling and (iii) account for the noise in the
measurement; and for the model where the association
between the biomarker and outcome is modelled entirely by
unmeasured confounders (M6); these models have been
compared in Experiment 2.

MODEL setting 1 setting 2 setting 3

conventional causal
(without confounders)

43,347 218,230 21,883

conventional reverse
(without confounders)

41,915 211,254 21,189

no causal link but accounting
for unmeasured confounders

81** 21,549** 689**

Digits after decimal point have been omitted from the table.
Setting 1: precxt = 200, precx = 200, precy = 100; Setting 2: precxt = 1000,
precx = 1000, precy = 0.1; Setting 3: precxt = 100, precx = 100, precy = 100. Sparsity
parameter gamma is set to 0.025 in all models. In model with confounders (M6)
precz = 1.
**indicates the best model for each setting; preferred modelling hypotheses are
characterized by lower DICs.
doi:10.1371/journal.pone.0063475.t003
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The model selection based strategy underlying SPIV was

advocated by some of the most prominent machine learning

scientists [41], applied by Schadt et al. for a subset of models [26],

further developed by Agakov et al. [46], and recently theoretically

investigated by Winn [57]. It offers important extensions of the

common methodology and may be used even in situations where

relationships are pleiotropic or confounded by unknown/unmea-

sured factors (see Table 6 and Appendix S1 for more detail).

Our approach can accommodate models underlying the conven-

tional methods as limiting special cases.

We have previously described an inverse association between

plasma 25-OHD concentration and CRC in this study population.

However, results of Mendelian randomisation study we conducted

were inconclusive [27].

In this study, by applying SPIV we consistently observed

evidence in support of the direct causal relation between low 25-

OHD and an increased risk of CRC, when pleiotropic and

confounding effects were modelled explicitly, which is in

agreement with previous work [58,59]. Such inference became

possible by relaxing the strong assumptions of common approach-

es and exploiting Bayesian model selection. Our results were

consistent for a wide range of biologically plausible zero-centred

heavy-tailed prior distributions.

We also show that models ignoring hidden confounders or

pleiotropy have significantly worse likelihood-based scores then

models accounting for them. This raises the question of reliability

of causal inference in weaker models that ignore confounding

and/or pleiotropy. Experiment 2 showed that the causal and

reverse models considered by LCMS [26,53] are inferior to models

allowing for latent confounding. This also shows that Bayesian

treatment of classic MR [44] would not be able to infer causality

and would favour a non-causal explanation through confounders.

Limitations and Future Work
An important limitation of our study is that only a small number

of genotypes and environmental covariates were used as instru-

ments, while there is overwhelming evidence that complex traits

may potentially be explained by a very large number of common

SNPs [60]. Future studies should consider employing larger

number of genetic markers as instruments. Note that while high-

dimensional instruments may be integrated into our framework

relatively easily, this is less easy in the classic non-Bayesian

methods due to the problems with weak instruments and possible

overfitting [23,24,26,53].

Another limitation of our strategy is that, in contrast to the

standard approaches to causality, it does not formally guarantee

equivalence of the causal ‘‘do-calculus’’ to probabilistic inference.

However, our approach makes more realistic assumptions about

the data and results in stronger models of the underlying

phenomena, which is manifested by significantly better likeli-

hood-based scores than models underlying the standard methods.

In situations when the underlying models generating the data were

Figure 3. Likelihood of causal association between low 25-OHD and colorectal cancer is compared with the reverse causal
hypothesis, (proposing CRC leads to lower 25-OHD), in a subset of data comprising a random sample of 500 cases and 500
controls. DIC score differences arising from the comparison of the full causal and reverse causal models, for a range of parameter settings are shown.
Positive values indicate preference for the causal model. Mean DIC (black line) represents the average DIC for all causal and reverse causal models
considered (lower mean DIC scores suggest better models), for any given setting of sparsity gam1 parameter (higher gam1 favours sparser models -
links between nodes are increasingly more likely to be pruned). We consider independent gamma priors on the associations concerning confounding
effects (gam2) in order to attenuate the strong effect of confounder and to artificially boost the importance of the link between 25-OHD and
colorectal cancer. Overall, optimal models are the denser ones (characterised by smaller values of gam1 parameter, most links remain in the model),
and large positive DIC differences provide overwhelming evidence for a direct causal relation between low 25-OHD and colorectal cancer.
doi:10.1371/journal.pone.0063475.g003
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Table 4. Likelihood of causal association between low 25-OHD and colorectal cancer (M7) is compared with the reverse causal
hypothesis (proposing CRC leads to lower 25-OHD, M8), in a subset of data comprising a random sample of 500 cases and 500
controls.

gam2

0.1 0.5 1.0 3.0 10.0 20.0

gam1 MODEL DIC difference DIC difference difference DIC difference DIC difference DIC difference
mean
DIC

0.025 causal 24415.1 21663.6 25545.9 23414.2 23707.8 25481.7

reverse 21563.2 21565.4 21564.4 21564.3 21565.4 21562.4

2851.9 98.2 3981.5 1849.9 2142.4 3919.3 22801.1

0.1 causal 21884.7 23511.6 21727.2 21944.3 21773.4 21568.8

reverse 21567.3 21560.6 21574.4 21565.2 21561.8 21559.1

317.4 1951.0 152.8 379.1 211.6 9.7 21816.5

0.25 causal 21569.3 21572.8 21892.8 21565.6 21623.8 21579.4

reverse 21564.1 21562.2 21565.1 21562.4 21563.3 21562.3

5.2 10.6 327.7 3.2 60.5 17.1 21598.6

1 causal 21568.4 21569.5 21582.2 21568.3 21565.6 21564.1

reverse 21591.7 21580 21566.3 21574.2 21563.9 21561.9

223.3 210.5 15.9 25.9 1.7 2.2 21571.3

10 causal 21556.4 21558.8 21557.7 21558.4 21554.7 21555.5

reverse 21559.0 21564.9 21557.7 21564.2 21554.1 21548.4

22.6 26.1 20.1 25.8 0.6 7.1 21557.5

Deviance information criterion (DIC) score differences between two models are shown for a range of parameter settings; positive values indicate preference for the causal model.
Mean DIC represents the average DIC including all causal and reverse causal models considered (lower mean DIC scores suggest better models), for any given setting of sparsity gam1
parameter (higher gam1 favours sparser models - links between nodes are increasingly more likely to be pruned). We consider independent gamma priors on the associations
concerning confounding effects (gam2) in order to attenuate the strong effect of confounder and to artificially boost the importance of the link between 25-OHD and colorectal
cancer. Overall, optimal models are the denser ones (characterised by smaller values of gam1 parameter, most links remain in the model), and large positive DIC differences provide
overwhelming evidence for a direct causal relation between low 25-OHD and colorectal cancer. Details on DIC components are in Table S1.
*Noise parameters are set to: precxt = 1000, precx = 1000, precy = 0.1.
doi:10.1371/journal.pone.0063475.t004

Figure 4. Likelihood of causal association between low 25-OHD and colorectal cancer is compared with the reverse causal
hypothesis, (proposing CRC leads to lower 25-OHD), on the complete dataset and for a range of parameter settings. DIC score
differences between models are shown; positive values indicate that causal association is more likely. Mean DIC (red line) is calculated as the average
DIC for all causal and reverse causal models considered for any given parameter setting (smaller values indicate better models). Large positive DIC
differences provide overwhelming evidence for a direct causal relation between low 25-OHD and colorectal cancer. * Settings: S1: precx = 1000,
precxt = 1000, precy = 0.1; S2: precx = 100, precxt = 100, precy = 100; S3: precx = 1000, precxt = 1000, precy = 10; S4: precx = 100, precxt = 100,
precy = 200; S5: precx = 20, precxt = 20, precy = 200.
doi:10.1371/journal.pone.0063475.g004

Vitamin D and Colorectal Cancer

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e63475



known, the model selection approach similar to the one presented

here has shown excellent quality of reconstruction of the

underlying relationships (e.g. [46]; see also [26,53] for earlier

studies excluding latent variables where the biomarkers were gene

expressions, and [57] for a recent theoretic formalization of the

model selection approach to causal inference).

In the proposed Bayesian approach, inference is affected by

prior distributions. This was partially mitigated by considering

multiple such priors within the considered super-Gaussian family

encoding sparsity in the posterior modes and allowing for rare

large effects. In the future, other priors may be considered and

effects investigated for a broader range of different assumptions

about hyperparameters.

In this paper we have selected the best model by using the DIC

criterion that balances predictive accuracy and model complexity.

The DIC generalizes the Akaike Information Criterion [51], is

easily available for MCMC samples, and often used in epidemi-

ology [61]. The DIC scores consistently indicate preference for a

causal hypothesis across the range of the considered priors. Also,

for most of the considered settings, the DIC has resulted in a

positive complexity estimate (pD, see Table S1). However, for

other settings, the DIC may not be an accurate score, which may

be the case e.g. for multi-modal posteriors [50,62]. Other selection

scores, e.g. the ones based on annealed importance sampling [63]

and thermodynamic approximations of Bayes factors [54,64]

developed in statistical physics should be considered in the future,

although they are significantly more expensive to compute. One

technical limitation is the computational cost of the MCMC

approximation of the Bayesian inference, which may be addressed

in the future by considering alternative approaches to approximate

inference [65].

Finally, it is currently unclear if colorectal cancer progression (or

treatment) affects 25-OHD concentration. Our data has been

collected at a single time point after the diagnosis. The apparent

causal relationship suggested by this work may be further validated

by collecting multiple temporally repeated measurements and

replicating the analysis.

Conclusion
Extended instrumental variable analysis (SPIV) indicates a

causal association between low plasma 25-OHD and colorectal

cancer risk. Our findings support the need for randomised clinical

trials aimed at a further assessment of the role of vitamin D in

colorectal cancer risk and suggest that investment in this field may

be justified. With rising interest in instrumental variable

approaches and Mendelian randomisation, it is important to be

aware of the method limitations and requirements; failure to do so

may seriously bias the inference of causality.

Supporting Information

Figure S1 Examples of A. dense, B. sparse and C. decoupled

models. The effect of increasing values of gamma sparsity

parameter and consequential disappearing of the links in the

model finally results in the decoupled model when gamma is large

(eg. 10).

(TIF)

Table S1 Likelihood of causal association between low 25-OHD

and colorectal cancer (M7) is compared with the reverse causal

hypothesis (proposing CRC leads to lower 25-OHD, M8), in a

subset of data comprising a random sample of 500 cases and 500

controls. DIC score differences between two models are shown for

a range of parameter settings; positive values indicate preference

for the causal model. Mean DIC represents the average DIC

including all causal and reverse causal models considered (lower

mean DIC scores suggest better models), for any given setting of

sparsity gam1 parameter (higher gam1 favours sparser models -

links between nodes are increasingly more likely to be pruned). We

consider independent gamma priors on the associations concern-

ing confounding effects (gam2) in order to attenuate the strong

effect of confounder and to artificially boost the importance of the

link between 25-OHD and colorectal cancer. Overall, optimal

Table 5. Likelihood of causal association between low 25-
OHD and colorectal cancer is compared with the reverse
causal hypothesis (proposing CRC leads to lower 25-OHD), on
the complete dataset and for a range of parameter settings.

setting

S1 S2 S3 S4 S5

DIC causal 210,480 211,074 24,242 22,203 3,004

DIC reverse 24,161 2358 23,661 1,115 5,214

DIC difference 6,319 10,715 580 3,318 2,210

mean DIC 27,321 25,716 23,952 2544 4,109

Deviance information criterion (DIC) score differences between models are
shown; positive values indicate that causal association is more likely. Mean DIC
is calculated as the average DIC for all causal and reverse causal models
considered for any given parameter setting (smaller values indicate better
models). Large positive DIC differences provide overwhelming evidence for a
direct causal relation between low 25-OHD and colorectal cancer. Details on DIC
components are in Table S2. Digits after decimal point have been omitted
from the table.
*Settings: S1: precx = 1000, precxt = 1000, precy = 0.1; S2: precx = 100,
precxt = 100, precy = 100; S3: precx = 1000, precxt = 1000, precy = 10; S4:
precx = 100,precxt = 100, precy = 200; S5: precx = 20, precxt = 20, precy = 200.
doi:10.1371/journal.pone.0063475.t005

Table 6. Comparison of the Sparse Instrumental Variable
approach (SPIV) with Likelihood-based Causality Model
Selection (LCMS) and Mendelian Randomization (MR).

SPIV LCMS MR

Pleiotropy yes yes no

Latent confounding yes no yes

Observation noise yes1 no no

Model selection yes yes no2

Weak instruments3 yes no no

1By observation noise we mean variations between true and observed
biomarkers, and their different treatment in the underlying models.
2Model selection implies probabilistic model comparison based on likelihood
scores that can be used, for example, to infer the direction of causality. Note
that while the classic MR can be used to compute p-values for causal and
reverse models Timpson et al. (2011), it cannot be easily used to assess relative
value of causal vs reverse causal explanations. In classic MR, formal and fair
comparisons are further complicated by the fact that the causal and reverse
models are not nested and use non-overlapping sets of instruments. The more
recent Bayesian treatment of MR suggested by McKeigue et al. (2010) can in
principle be used for model selection, but is limited to selecting either the
conventional causal or non-causal explanation under the assumption of no
pleiotropy.
3Because SPIV is Bayesian and can use prior information to break symmetries
between causal and reverse models, it can be used to infer the direction of
causality even if only weak instruments are available.
doi:10.1371/journal.pone.0063475.t006
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models are the denser ones (characterised by smaller values of

gam1 parameter, most links remain in the model), and large

positive DIC differences provide overwhelming evidence for a

direct causal relation between low 25-OHD and colorectal cancer.

(DOC)

Table S2 Likelihood of causal association between low 25-OHD

and colorectal cancer is compared with the reverse causal

hypothesis (proposing CRC leads to lower 25-OHD), on the

complete dataset and for a range of parameter settings. DIC

components for both models are shown. Mean DIC is calculated

as the average DIC for all causal and reverse causal models

considered for any given parameter setting (smaller values indicate

better models). Large positive DIC differences provide over-

whelming evidence for a direct causal relation between low 25-

OHD and colorectal cancer.

(DOC)

Methods S1

(DOCX)

Appendix S1 On causality and improvement over con-
ventional methods.

(DOCX)
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