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Abstract We consider the binary classification problem. Given an i.i.d. sample drawn from

the distribution of an X × {0, 1}−valued random pair, we propose to estimate the so-called

Bayes classifier by minimizing the sum of the empirical classification error and a penalty

term based on Efron’s or i.i.d. weighted bootstrap samples of the data. We obtain exponential

inequalities for such bootstrap type penalties, which allow us to derive non-asymptotic proper-

ties for the corresponding estimators. In particular, we prove that these estimators achieve the

global minimax risk over sets of functions built from Vapnik-Chervonenkis classes. The ob-

tained results generalize Koltchinskii (2001) and Bartlett et al.’s (2002) ones for Rademacher

penalties that can thus be seen as special examples of bootstrap type penalties. To illustrate

this, we carry out an experimental study in which we compare the different methods for an

intervals model selection problem.

Keywords Model selection . Classification . Bootstrap penalty . Exponential inequality .

Oracle inequality . Minimax risk

1 Introduction

Let (X, Y ) be a random pair with values in a measurable space � = X × {0, 1}, and with

unknown distribution denoted by P . Given n independent copies (X1, Y1), . . . , (Xn, Yn) of

(X, Y ), we aim at constructing a classification rule that is a function which would give the

value of Y from the observation of X . More precisely, in statistical terms, we are interested

in the estimation of the function s minimizing the classification error P[t(X ) �= Y ] over all

the measurable functions t : X → {0, 1}. The function s is called the Bayes classifier and it

is also defined by s(x) = IP[Y=1|X=x]>1/2.
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Given a class S of measurable functions from X to {0, 1}, an estimator ŝ of s is determined

by minimization of the empirical classification error γn(t) = n−1
∑n

i=1 It(Xi ) �=Yi over all the

functions t in S. This method has been introduced in learning problems by Vapnik and

Chervonenkis (1971). However, it poses the problem of the choice of the class S. To provide

an estimator with classification error close to the optimal one, S has to be large enough so that

the error of the best function in S is close to the optimal error, while it has to be small enough

so that finding the best candidate in S from the data (X1, Y1), . . . , (Xn, Yn) is still possible.

In other words, one has to choose a class S which achieves the best trade-off between the

approximation error and the estimation error.

One approach proposed to solve this question is Grenander’s (1981) method of sieves
which allows to select one class among a nested sequence S1, S2, . . . . The selection here

is based only on the sample size n, in such a way that the complexity of the selected class

grows with n, but that it does not grow too fast so that the estimation error may be controlled.

However, the fact that the class is chosen independently of the data implies that the obtained

estimator is not satisfactory for all distributions.

The method of Structural Risk Minimization (SRM) initiated by Vapnik (1982) and also

known as Complexity regularization (see Barron 1985, 1991; Barron and Cover, 1991) fills

this gap by using the data to choose the class over which the estimator is constructed. It

consists in selecting among a given collection of functions sets the set S minimizing the

sum of the empirical classification error of the estimator ŝ and a penalty term taking the

complexity of S into account. The quantities generally used to measure the complexity of

some class S of functions from X to {0, 1} are the Shatter coefficients of the associated class

of sets C = {{x ∈ X , t(x) = 1}, t ∈ S} given by:

for k ≥ 1, S(C, k) = max
x1,... ,xk∈X

|{{x1, . . . , xk} ∩ C, C ∈ C}|,

and the Vapnik-Chervonenkis dimension of C defined as:

V (C) = ∞ if for all k ≥ 1, S(C, k) = 2k,

V (C) = sup {k ≥ 1, S(C, k) = 2k} else.

Considering a collection {Sm, m ∈ N∗} of classes of functions from X to {0, 1} and setting

Cm = {{x ∈ X , t(x) = 1}, t ∈ Sm}, Lugosi and Zeger (1996) study the standard penalties

of the form

pen(m) = κ

√
log S(Cm, n2) + m

n
,

which are approximately κ ′√(V (Cm) log n + m)/n. By using an inequality due to Devroye

(1982), they prove that if all the classes Cm are Vapnik-Chervonenkis classes (that is if they

have a finite VC dimension) such that the sequence (V (Cm))m∈N∗ is strictly increasing, and if

the Bayes classifier s belongs to the union of the Sm’s, there exists an integer k such that the

expected classification error of the rule obtained by SRM with such penalties differs from

the optimal error P [s(X ) �= Y ] by a term not larger than a constant times
√

V (Ck) log n/n.

This upper bound is optimal in a global minimax sense up to a logarithmic factor. Given a

class S of functions from X to {0, 1} where C = {{x ∈ X , t(x) = 1}, t ∈ S} is a VC class

with VC dimension V (C), Vapnik and Chervonenkis (1974) actually prove that there exist
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some constants κ1 and κ2 such that for any classification rule ŝ with classification error Lŝ ,

sup
P, s∈S

E [Lŝ − P [s(X ) �= Y ]] ≥ κ1

√
V (C)

n
, ∀n ≥ κ2V (C).

We explain in the next section how the choice of the penalty terms is connected with the

calibration of an upper bound for the quantity supt∈S|γn(t) − P [t(X ) �= Y ] |. Unfortunately,

in addition to the fact that their computation is generally complicated, the penalties based on

the Shatter coefficients or the VC dimensions have the disadvantage to be deterministic and

to overestimate this quantity for specific data distributions. This remark naturally leads to

the idea of data-driven penalization. Buescher and Kumar (1996), Lugosi and Nobel (1999),

Boucheron et al. (2000) introduce some penalties involving the related empirical coverings

or empirical Shatter coefficients. Inspired by the method of Rademacher symmetrization

commonly used in the empirical processes theory (see for instance Van der Vaart and Wellner,

1996), Koltchinskii (2001) and Bartlett et al. (2002) independently propose the so-called

Rademacher penalties which are based on random variables of the form:

E

[
sup
t∈S

1

n

n∑
i=1

εi It(Xi )�=Yi

∣∣∣∣∣ξ
]
,

where ξ denotes the sample (X1, Y1), . . . , (Xn, Yn), and ε1, . . . , εn is a sequence of i.i.d.

Rademacher random variables independent of ξ . They prove oracle type inequalities showing

that such random penalties provide optimal classification rules in a global minimax sense over

sets of functions built from Vapnik-Chervonenkis classes. Lozano (2000) gives the exper-

imental evidence that, for the intervals model selection problem, Rademacher penalization

outperforms SRM and cross validation over a wide range of sample sizes. Bartlett et al.

(2002) also study Rademacher penalization from a practical point of view by comparing it

with other kinds of data-driven methods.

Whereas the methods of Rademacher penalization are now frequently used in the statistical

learning theory, they are not so popular yet in the applied statistics community. In fact,

statisticians often prefer to stick with resampling tools such as bootstrap or jacknife in practice.

We here aim at making the connection between the two approaches. From the asymptotic

results due to Giné and Zinn (1990) about Efron’s bootstrap or Praestgaard and Wellner (1993)

about exchangeable weighted bootstrap, one can indeed expect to find sharp bootstrap upper

bounds for supt∈S|γn(t) − P [t(X ) �= Y ] |. We hence introduce and investigate a new family

of penalties based on classical bootstrap processes such as Efron’s or i.i.d. weighted bootstrap

ones while attending to placing Rademacher penalties among this family.

The paper is organized as follows. In Section 2, we present the model selection by pe-

nalization approach and explain how to choose a penalty function. We study some penalties

based on various symmetric variables, before dealing with the bootstrap type penalties. The

results obtained for the corresponding classification rules generalize Koltchinskii (2001) and

Bartlett et al.’s (2002) ones. As one can see in Section 5 which gives the details of the proofs,

they essentially follow from some exponential inequalities established in Section 4. We fur-

thermore devote Section 3 to an experimental comparison between our new penalization

methods and the Rademacher one for an intervals model selection problem. We finally give

in Section 6 a discussion about this work.
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2 Model selection

We describe here the model selection by penalization approach to construct classification

rules or estimators of the Bayes classifier s. In the following, we denote by S the set of

all the measurable functions t : X → {0, 1}. Given a collection {Sm, m ∈ M} of countable

classes of functions in S (the models) and ρn ≥ 0, for any m in M, we can construct some

approximate minimum contrast estimator ŝm in Sm satisfying:

γn(ŝm) ≤ inf
t∈Sm

γn(t) + ρn/2.

We thus obtain a collection {ŝm, m ∈ M} of possible classification rules and at this stage,

the issue is to choose among this collection the “best” rule in terms of risk minimization.

Let l be the loss function defined by:

l(u, v) = E
[
Iv(X )�=Y − Iu(X )�=Y

]
, for all u, v in S. (1)

Notice that, by definition of s, l(s, t) is nonnegative for every t in S. The risk of any estimator

ŝm of s is given by E [l(s, ŝm)]. Ideally, we would like to select some element m̄ (the oracle)

in M minimizing

E [l(s, ŝm)] = l(s, sm) + E [l(sm, ŝm)] ,

where for every m in M, sm denotes some function in Sm such that

l(s, sm) = inf
t∈Sm

l(s, t).

However, such an oracle m̄ necessarily depends on the unknown distribution of (X, Y ). This

leads us to use the method of model selection by penalization. The purpose of this method,

that originates in Mallows’ C p and Akaike’s heuristics, is actually to provide a criterion which

allows to select, only from the data, an element m̂ in M mimicking the oracle. Considering

some penalty function pen : M → R+, we choose m̂ such that:

γn(ŝm̂) + pen(m̂) ≤ inf
m∈M

{γn(ŝm) + pen(m)} + ρn/2,

and we take as “best” rule the so-called approximate minimum penalized contrast estimator

s̃ = ŝm̂ . (2)

We then have to determine a penalty function such that the risk of the approximate minimum

penalized contrast estimator s̃ is of the same order as

inf
m∈M

E [l(s, ŝm)] = inf
m∈M

{l(s, sm) + E [l(sm, ŝm)]}

or, failing that, at most of the same order as infm∈M{l(s, sm) + √
Vm/n} when for each m

in M, Sm = {IC , C ∈ Cm}, Cm being a VC class with VC dimension Vm . Indeed, as cited in

the introduction, Vapnik and Chervonenkis (1974) proved that the global minimax risk over
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such a class Sm defined by

inf
ŝ

sup
P,s∈Sm

E [l(s, ŝ)]

is of order
√

Vm/n as soon as n ≥ κVm , for some absolute constant κ .

The various strategies to determine adequate penalty functions rely on the same basic

inequality that we present below. Let us fix m in M and introduce the centered empirical

contrast defined for all t in S by

γn(t) = γn(t) − E
[
It(X )�=Y

]
. (3)

By definition,

l(sm, ŝm̂) = γn(sm) − γn(sm) − γn(ŝm̂) + γn(ŝm̂).

Noticing that

γn(ŝm̂) + pen(m̂) ≤ γn(ŝm) + pen(m) + ρn/2

≤ γn(sm) + pen(m) + ρn,

we derive

l(s, s̃) ≤ l(s, sm) + γn(sm) + pen(m) − γn(ŝm̂) − pen(m̂) + ρn, (4)

which holds whatever the penalty function. Looking at the problem from a global minimax

point of view, since E [γn(sm)] = 0, it is a matter of choosing a penalty such that pen(m̂)

compensates for −γn(ŝm̂) and such that E
[
pen(m)

]
is of order at most

√
Vm/n in the VC case.

Hence, we need to control −γn(t) uniformly for t in Sm and m in M and the concentration

inequalities appear as the appropriate tools.

Since we deal with a bounded contrast, we can use the following McDiarmid’s (1989)

inequality which derives from Azuma’s (1967) result for martingale difference sequences.

Theorem 1 (McDiarmid). Let X1, . . . , Xn be independent random variables taking values
in a set A, and assume that φ : An → R satisfies:

sup
x1,... ,xn ,x ′

i ∈A
|φ(x1, . . . , xn) − φ(x1, . . . , xi−1, x ′

i , xi+1, . . . , xn)| ≤ ci ,

for all i ∈ {1, . . . , n}. Then for all x > 0, the two following inequalities hold:

P [φ(X1, . . . , Xn) ≥ E [φ(X1, . . . , Xn)] + x] ≤ e
− 2x2∑n

i=1
c2
i ,

P [φ(X1, . . . , Xn) ≤ E [φ(X1, . . . , Xn)] − x] ≤ e
− 2x2∑n

i=1
c2
i .
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From Theorem 1, we can see that for all m in M, supt∈Sm
(−γn(t)) concentrates around

its expectation. A well-chosen estimator of an upper bound for E[supt∈Sm
(−γn(t))], with

expectation of order
√

Vm/n in the VC case, may therefore be a good penalty.

In this paper, we focus on random penalty functions. This subject has been tackled by

Buescher and Kumar (1996), Lugosi and Nobel (1999) and Boucheron et al. (2000) but

the most interesting works for our approach are the ones due to Koltchinskii (2001) and

Bartlett et al. (2002). Let ξ denote the sample (X1, Y1), . . . , (Xn, Yn). Starting from the

symmetrization tools used in the empirical processes theory, Koltchinskii (2001) and Bartlett

et al. (2002) propose a penalty based on the random variable

R̂m = E

[
sup
t∈Sm

1

n

n∑
i=1

εi It(Xi ) �=Yi

∣∣∣∣∣ξ
]
,

where ε1, . . . , εn is a sequence of independent identically distributed Rademacher variables

such that P [εi = 1] = P [εi = −1] = 1/2 and the εi ’s are independent of ξ . More precisely,

they take M = N∗ and they consider the approximate minimum penalized contrast estimator

s̃ given by (2) with pen(m) = 2R̂m + c1

√
log m/n, for some absolute, positive constant c1.

Setting Lt = P [t(X ) �= Y ], they prove that there exists some constant c2 > 0 such that

E [Ls̃] ≤ inf
m∈M

{
inf

t∈Sm

Lt + E [pen(m)]
}

+ c2√
n

+ ρn,

which can be translated in terms of risk bounds as follows:

E [l(s, s̃)] ≤ inf
m∈M

{
l(s, sm) + E [pen(m)]

}
+ c2√

n
+ ρn .

Moreover, Koltchinskii notes that if the collection of models {Sm, m ∈ M} is taken such that

Sm = {IC , C ∈ Cm},

where each Cm is a VC class of subsets of X with VC dimension Vm , then

E [Ls̃] ≤ inf
m∈M

{
inf

t∈Sm

Lt + κ

(√
Vm

n
+

√
log m

n
+ 1√

n

)}
+ ρn .

Our purpose is to extend this study by investigating penalty functions based on random

variables of the form

E

[
sup
t∈Sm

1

n

n∑
i=1

Zi It(Xi )�=Yi

∣∣∣∣∣ξ
]
,

with various random weights Z1, . . . , Zn .

To avoid dealing with measurability issues, we assume that all the classes of functions

considered in the paper are at most countable.
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2.1 Penalties based on symmetric weights

Noticing that the symmetrization techniques used by Koltchinskii (2001) and Bartlett et al.

(2002) can be applied to any symmetric variables (and not only Rademacher ones) with a

finite first order moment, we focus on penalties based on some quantities

E

[
sup
t∈Sm

1

n

n∑
i=1

Zi It(Xi )�=Yi

∣∣∣∣∣ξ
]
,

where Z1, . . . , Zn are i.i.d. symmetric random weights such that E[|Z1|] < +∞.

We present here an upper bound for the risk of the approximate minimum penalized

contrast estimators obtained via such penalties. In particular, provided that the weights

Z1, . . . , Zn satisfy some moments conditions, if the collection of models is composed of

sets of functions based on VC classes, we show that this risk is at most of the same order as

the global minimax risk when the Bayes classifier is in some model of the collection.

The following result essentially derives from McDiarmid’s inequality combined with a

maximal inequality given in Section 5.1.

Theorem 2. Let ξ = (X1, Y1), . . . , (Xn, Yn) be a sample of n independent copies of a ran-
dom pair (X, Y ) with values in X × {0, 1}, and let Z1, . . . , Zn be i.i.d. symmetric ran-
dom variables independent of ξ such that E [|Z1|] < +∞. Consider a countable collection
{Sm, m ∈ M} of classes of functions in S and a family (xm)m∈M of nonnegative weights such
that

∑
m∈M

e−xm ≤ 	,

for some absolute constant 	. Assume that for the loss function defined by (1), for each m in
M, there exists a minimizer sm of l(s, .) over Sm. Choose a penalty function such that

pen(m) = 2

nE [|Z1|]E

[
sup
t∈Sm

n∑
i=1

Zi It(Xi ) �=Yi

∣∣∣∣∣ξ
]

+ 3

√
xm

2n
.

The approximate minimum penalized contrast estimator s̃ given by (2) satisfies:

E [l(s, s̃)] ≤ inf
m∈M

{l(s, sm) + E
[
pen(m)

]} + 3	

2

√
π

2n
+ ρn .

Assume moreover that Z1, . . . , Zn satisfy the moments condition:

∀k ≥ 2, E [|Z1|k] ≤ k!

2
vck−2, (5)

for some positive numbers v and c, and that n ≥ 4. If for all m in M, Sm = {IC , C ∈ Cm},
where Cm is a VC class with VC dimension Vm ≥ 1, there exist some positive, absolute
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constants κ1 and κ2 such that

E [l(s, s̃)]

≤ inf
m∈M

{
l(s, sm) + 1

E [|Z1|]
(

κ1

√
v

√
Vm

n
+ κ2c

Vm

n
log2 n

)
+ 3

√
xm

2n

}
+ 3	

2

√
π

2n
+ ρn,

and when E [eλZ1 ] ≤ eλ2/2 for any λ > 0,

E [l(s, s̃)] ≤ inf
m∈M

{
l(s, sm) + κ1

E [|Z1|]

√
Vm

n
+ 3

√
xm

2n

}
+ 3	

2

√
π

2n
+ ρn .

Comments:

(i) Since the Rademacher variables satisfy the subgaussian inequality E[eλZ1 ] ≤ eλ2/2 for

any λ > 0, the risk upper bound obtained here generalizes Koltchinskii (2001) and

Bartlett et al.’s (2002) one for Rademacher penalization.

(ii) Consider a collection {Sm, m ∈ M} of at most n classes of functions in S such that for

each m in M, Sm = {IC , C ∈ Cm}, Cm being a VC class with VC dimension Vm ≥ 1.

Assume that the Bayes classifier s associated with (X, Y ) is in some Sm0
of the collection.

If s̃ is the approximate minimum penalized contrast estimator obtained from the above

penalty function based on symmetric weights Z1, . . . , Zn such that (5) holds, we deduce

from Theorem 2 that

E [l(s, s̃)] ≤ ν(v, c, E [|Z1|])
(√

Vm0

n
+

√
log n

n
+ Vm0

n
log2 n

)
+ ρn .

When ρn is smaller than n−1/2, this implies that if log n ≤ Vm0
≤ n/ log4 n then s̃

achieves, up to a constant, the global minimax risk over Sm0
.

(iii) We shall remark that the factor 2 in the expression of the penalty term, which comes

from symmetrization inequalities, is surely pessimistic. All the experiments that we have

carried out indeed lead us to think that the real constant is about 1 and to take in practice

a penalty equal to E[supt∈Sm

∑n
i=1 Zi It(Xi )�=Yi |ξ ]/(E [|Z1|] n).

2.2 Bootstrap penalization

Let Pn be the empirical process associated with the sample ξ = (X1, Y1), . . . , (Xn, Yn) and

defined by Pn( f ) = n−1
∑n

i=1 f (Xi , Yi ), and set P( f ) = E [ f (X, Y )] . For every m in M,

denote by Fm the class of functions { f : � = X × {0, 1} → {0, 1}, f (x, y) = It(x)�=y, t ∈
Sm}. As explained above with (4), we determine an adequate penalty function by controlling

supt∈Sm
(−γn(t)) = sup f ∈Fm

(P − Pn)( f ) uniformly for m inM. Since McDiarmid’s inequal-

ity gives that each supremum concentrates around its expectation, we only need to estimate
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E[sup f ∈Fm
(P − Pn)( f )]. Koltchinskii (2001) and Bartlett et al. (2002) consider the estimator

R̂m = E

[
sup
f ∈Fm

1

n

n∑
i=1

εi f (Xi , Yi )

∣∣∣∣∣ξ
]
,

where ε1, . . . , εn are i.i.d. Rademacher variables independent of ξ . It is interesting here to

notice that this estimator can be written as

R̂m = E
[

sup
f ∈Fm

(
Pn − Pb

n

)
( f )

∣∣∣ξ]
,

where Pb
n denotes the weighted empirical process defined by Pb

n ( f ) =
n−1

∑n
i=1 2Bi f (Xi , Yi ), the Bi ’s being i.i.d. random variables, independent of ξ , with

a Bernoulli (with parameter 1/2) distribution. This expression for R̂m naturally leads to the

idea of introducing estimators of the same form, but with an empirical process Pb
n based

on weights more often used in practice, for instance multinomial weights with parameters

(n, n−1, . . . , n−1). Such a multinomial weighted empirical process is actually well known

by the applied statistics community since it corresponds to the Efron’s bootstrap empirical

process. More generally, if Wn = (Wn,1, . . . , Wn,n) denotes a vector of n exchangeable and

nonnegative random variables independent of ξ and satisfying
∑n

i=1 Wn,i = n, we consider

the exchangeably weighted bootstrap empirical process defined by

Pw
n ( f ) = 1

n

n∑
i=1

Wn,i f (Xi , Yi ).

One of the most classical examples is the i.i.d. weighted bootstrap process with Wn,i =
Vi/Vn, where V1, . . . , Vn are i.i.d. positive random variables independent of ξ and Vn =
n−1

∑n
j=1 Vj .

Now, the question is whether E[sup f ∈Fm
(P − Pn)( f )] is definitely well approximated by

E[sup f ∈Fm
(Pn − Pw

n )( f )|ξ ].

We prove via a non-asymptotic approach that E[sup f ∈Fm

(
Pn − Pw

n

)
( f )|ξ ] is in fact a

sharp upper bound for E[sup f ∈Fm
(P − Pn)( f )] (up to some constants), as Praestgaard and

Wellner’s (1993) asymptotic theory let think. This allows us to obtain some results in the

same vein as Koltchinskii (2001) and Bartlett et al.’s (2002) ones.

The following theorem provides an upper bound for the risk of the approximate minimum

penalized contrast estimator thus constructed. In the particular cases of Efron’s and i.i.d.

weighted bootstraps, one can moreover see that the estimators have some adaptive properties

in a global minimax sense when the collection of models is based on VC classes.

Theorem 3. Assume that n ≥ 4 and let ξ = (X1, Y1), . . . , (Xn, Yn) be a sample of n in-
dependent copies of a random pair (X, Y ) with values in X × {0, 1}. Introduce a vector
Wn = (Wn,1, . . . , Wn,n) of n exchangeable and nonnegative random variables independent
of ξ and satisfying

∑n
i=1 Wn,i = n. Let

γn(t) = 1

n

n∑
i=1

It(Xi )�=Yi and γ w
n (t) = 1

n

n∑
i=1

Wn,i It(Xi )�=Yi .
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Consider a countable collection {Sm, m ∈ M} of classes of functions in S and a family
(xm)m∈M of nonnegative weights such that for some absolute constant 	,∑

m∈M
e−xm ≤ 	.

Assume that for the loss function defined by (1), for each m in M, there exists a minimizer
sm of l(s, .) over Sm. Choose a penalty function such that

pen(m) = 1

E [(Wn,1 − 1)+]
E

[
sup
t∈Sm

(
γn(t) − γ w

n (t)
) ∣∣∣ξ]

+
(

1 + E [|Wn,1 − 1|]
E [(Wn,1 − 1)+]

)√
xm

2n
.

The approximate minimum penalized contrast estimator s̃ given by (2) satisfies:

E [l(s, s̃)] ≤ inf
m∈M

{l(s, sm) + E
[
pen(m)

]} +
(

1 + E [|Wn,1 − 1|]
E [(Wn,1 − 1)+]

)
	

2

√
π

2n
+ ρn .

Consider now the Efron’s bootstrap case, where Wn is a multinomial vector with parameters
(n, n−1, . . . , n−1), and the i.i.d. weighted bootstrap case where Wn,i = Vi/Vn, V1, . . . , Vn

being i.i.d. positive random variables independent of ξ , with

∀k ≥ 2, E
[
V k

1

] ≤ k!

2
vck−2, (6)

for some positive numbers v and c. If for all m in M, Sm = {IC , C ∈ Cm}, where Cm is a VC
class with VC dimension Vm ≥ 1, there exists some positive constant ν which may depend
on v, c, E [V1], E [|V1/Vn − 1|], and E [(V1/Vn − 1)+] such that

E [l(s, s̃)] ≤ inf
m∈M

{
l(s, sm) + ν

(√
Vm

n
+ Vm

n
log2 n +

√
xm

n

)}
+ ρn .

Comments:

(i) The structure of the risk upper bound obtained here in the Efron’s or i.i.d. weighted

bootstrap cases is essentially the same as the bound achieved by the approximate mini-

mum penalized contrast estimator considered in Theorem 2. So one can see in the same

way that it is optimal in a global minimax sense over classes of functions based on VC

classes.

(ii) Furthermore, it is easy to see in the proof of Theorem 3 that the term Vm log2 n/n in the

risk upper bound for the i.i.d. weighted bootstrap can be removed when the (Vi − E[Vi ])’s

satisfy a subgaussian inequality.

(iii) As in Theorem 2, we shall also remark that the constant 1/E [(Wn,1 − 1)+] which appears

in the penalty term for technical reasons is probably not the optimal one. Our practical

study actually tends to show that the real factor is closer to 1 in the Efron’s bootstrap

case, and
√

E [V 2
1 ]/Var [V1] in the i.i.d. weighted bootstrap case, as expected from Giné

and Zinn (1990) and Præstgaard and Wellner’s (1993) asymptotic results.
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3 Simulation study

In this section, we study the data-driven penalties proposed above from a practical point of

view. As Lozano (2000) and Bartlett et al. (2002), we focus on the issue which is usually

referred to as the intervals model selection problem and which can be described as follows.

Let us set for all u, v in N, u ≤ v, [[u, v]] = [u, v] ∩ N. We consider X = {1, . . . , 2N }
and some partition {[[ul , vl ]], l ∈ L} of X . Let X be a random variable uniformly distributed

on X and Y a {0, 1}−valued random variable such that

P [Y = 1|X ∈ S0] = 1

2
+ h and P [Y = 1|X �∈ S0] = 1

2
− h,

where h is some margin parameter in ]0, 1/2[ and S0 = ∪l∈L0⊂L[[ul , vl ]]. Then the target is

the piecewise constant function defined by s(x) = IS0
(x) for x in X .

We choose to distinguish two cases. The first one corresponds to a target based on a

regular partition of X and the second one to a target based on some irregular partition.

The aim of this simulation study is to illustrate the theoretical results stated in the previous

section. Since we consider here the problem from the global minimax point of view, we only

evaluate the relevance of the studied data-driven penalties as estimators for global suprema of

the form supt∈Sm
(−γn(t)) = supt∈Sm

( E [It(X ) �=Y ] − n−1	n
i=1It(Xi )�=Yi ). It is now well known

that the estimation of these global suprema does not provide tight complexity measures,

and that it does not lead to the appropriate penalties when some margin type conditions are

considered (see Bartlett et al., 2005; Bartlett et al., 2004; or Koltchinskii, 2003, for instance

for further details). Hence, what we call here the “ideal” penalty penid (m) = supt∈Sm
(−γn(t))

is not in fact the real ideal penalty as soon as one assumes that some margin condition holds.

However, this issue is out of the scope of the present paper, and it may be the subject of a

future work.

3.1 Regular case

We are interested here in the case where the joint law of (X, Y ) is based on a regular partition

of X = {1, . . . , 2N }. More precisely, we take

S0 =
⋃

k∈{2p+1,p∈N,2p+1≤2J0 −1}
[[(k − 1)2N−J0 + 1, k2N−J0 ]],

with N = 8, J0 = 2, h = 0.05 first, N = 8, J0 = 6, h = 0.1 then.

We choose a collection {Sm, m ∈ M} of regular models such that M = {2, 22, . . . , 2N }
and for all m = 2J in M,

S2J =
{

t : X → {0, 1}, t =
2J∑

k=1

ckI[[(k−1)2N−J +1,k2N−J ]], c1, . . . , c2J ∈ {0, 1}
}

.

Let n ≥ 2N and introduce a sample ξ = (X1, Y1), . . . , (Xn, Yn) drawn from the distribution

of (X, Y ). The target function s is estimated by the minimum penalized contrast estimator
s̃ = ŝm̂ , where
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– for each m in M, ŝm ∈ Sm and n−1
∑n

i=1 Iŝm (Xi )�=Yi ≤ n−1
∑n

i=1 It(Xi )�=Yi for all t in Sm,

– m̂ = argminm∈M
{

n−1
∑n

i=1 Iŝm (Xi ) �=Yi + pen(m)
}
.

The penalty terms that we propose in Section 2 are of the form

E

[
sup
t∈Sm

c1

n

n∑
i=1

Zi It(Xi ) �=Yi

∣∣∣∣∣ξ
]

+ c2

√
xm

n
,

for various (Z1, . . . , Zn).

We consider the following Zi ’s:

(R) Z1, . . . , Zn is a sequence of i.i.d. Rademacher variables.

(E) Zi = (1 − Wn,i ) where (Wn,1, . . . , Wn,n) is a multinomial vector with parameters

(n, n−1, . . . , n−1).

(
) Zi = √
5(1 − Vi/Vn) where (V1, . . . , Vn) is a sample of i.i.d. random variables with a

Gamma(4) distribution.

The case (E) corresponds to the Efron’s bootstrap type penalty term while (
) is a typical

example of the i.i.d. weighted bootstrap type penalty terms (see Praestgaard and Wellner,

1993). Though the weights Vi are frequently taken as exponential random variables with

parameter 1 (see Rubin, 1981; Lo, 1987), all the experiments that we have carried out have

shown that such an option does not work in the present problem. The choice of the Vi ’s with

a Gamma(4) distribution comes from the Bayesian bootstrap investigated by Weng (1989).

A usual choice for the sequence (xm)m∈M consists in xm = log m for all m in M. Since

the VC dimension Vm of {{x ∈ X , t(x) = 1}, t ∈ Sm} is known to be equal to m and since

for the Zi ’s that we consider, E[supt∈Sm
n−1

∑n
i=1 Zi It(Xi ) �=Yi ] is of the order of

√
Vm/n,

we do not take the xm’s into account in the simulation study. Furthermore, the expression

of the penalty is deduced from an evaluation of the quantity penid (m) = supt∈Sm
(−γn(t)).

To optimize the method, the constant c1 in the penalty term has to be chosen so that

E[supt∈Sm
c1n−1

∑n
i=1 Zi It(Xi ) �=Yi |ξ ] ≈ penid (m). An experimental computation of the ratio

E[supt∈Sm
c1n−1

∑n
i=1 Zi It(Xi ) �=Yi ]/E[penid ] for the considered targets in the cases (R), (E)

and (
) leads to a choice of c1 = 1, as in Lozano (2000). Thus, the penalties are taken as

pen(m) = E

[
sup
t∈Sm

1

n

n∑
i=1

Zi It(Xi )�=Yi

∣∣∣∣∣ξ
]
.

In order to conduct the experiments, we need to compute for each m in M,

inf
t∈Sm

1

n

n∑
i=1

It(Xi ) �=Yi and sup
t∈Sm

1

n

n∑
i=1

Zi It(Xi ) �=Yi ,
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for the considered (Z1, . . . , Zn). Our algorithm is constructed from the following observa-

tions. For m = 2J in M,

inf
t∈Sm

1

n

n∑
i=1

It(Xi ) �=Yi = 1

n
inf

t∈Sm

2J∑
k=1

∑
Xi ∈[[(k−1)2N−J +1,k2N−J ]]

It(Xi )�=Yi

= 1

n
min

c1,... ,c2J ∈{0,1}

2J∑
k=1

∑
Xi ∈[[(k−1)2N−J +1,k2N−J ]]

IYi �=ck .

Hence, setting for all p in [[1, 2N ]], q in [[p, 2N ]],

�(p, q) = min
c∈{0,1}

∑
i∈[[1,n]],Xi ∈[[p,q]]

IYi �=c,

(7)

inf
t∈S2J

1

n

n∑
i=1

It(Xi ) �=Yi = 1

n

2J∑
k=1

�((k − 1)2N−J + 1, k2N−J ).

In the same way, if for p in [[1, 2N ]], q in [[p, 2N ]],

�Z (p, q) = max
c∈{0,1}

∑
i∈[[1,n]],Xi ∈[[p,q]]

Zi IYi �=c,

(8)

sup
t∈S2J

1

n

n∑
i=1

Zi It(Xi )�=Yi = 1

n

2J∑
k=1

�Z ((k − 1)2N−J + 1, k2N−J ).

The interest of such expressions lies in the fact that the �((k − 1)2N−J + 1, k2N−J )’s and

�Z ((k − 1)2N−J + 1, k2N−J )’s are very easy to calibrate.

The following figures present the experimental results. The penalty terms are es-

timated by 100 simulations. Figures 1, 2, 5 and 6 display the mean penalty terms

pen(m) to be compared with the mean “ideal” penalty penid , and the mean criteria

crit(m) = n−1
∑n

i=1 Iŝm (Xi )�=Yi + pen(m) as functions of the complexity m with a sample size

equal to 500 for the two considered targets. Figures 3 and 7 display the risks (estimated by

200 experiments) of the chosen classification rules as functions of the sample size n while in

Figs. 4 and 8, one can see the percentages of good model (or complexity) selection obtained

over 200 experiments.

Comments: One can see in Figs. 1 and 5 that all the considered penalties track rather well the

behavior of the bench mark quantity penid (m) = supt∈Sm
(−γn(t)). While the Rademacher and

Efron’s bootstrap penalty terms underestimate penid , the i.i.d Gamma weigthed bootstrap one

overevaluates it. This explains why Rademacher and Efron’s bootstrap penalizations do not

perform as well as i.i.d Gamma weigthed bootstrap penalization when the target is based on a

partition with few pieces (see Figs. 3 and 4). When the problem of intervals model selection

is more complex, that is when the target has 64 pieces, one can notice that Rademacher

penalization has the best performance for sample sizes smaller than 1500, while i.i.d Gamma

weighted bootstrap give the best results when n ≥ 1500. In view of these results, we will

choose i.i.d. Gamma weighted bootstrap penalization when the target is based on a regular
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Fig. 1 Penalty terms for a target with 4 pieces over 256 points with h = 0.05, n = 500
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Fig. 2 Criteria for a target with 4 pieces over 256 points with h = 0.05, n = 500

partition with few pieces or when the sample size is more than 1500, Rademacher penalization

otherwise.

3.2 Irregular case

When the target is not known to be based on some regular partition of X = {1, . . . , 2N },
we can not only consider some collections of regular models any more. In fact, we take a
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Fig. 3 Risks for a target with 4 pieces over 256 points with h = 0.05
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Fig. 4 Percentages of good complexity selection, target with 4 pieces, 256 points, h = 0.05

collection containing, for each complexity D in {2, 22, . . . , 2N }, all the models based on the

partitions of X with D pieces.

For u1, . . . , uD−1 in N with 1 ≤ u1 < u2 < . . . < uD−1 < 2N , we denote by [u1, . . . ,

uD−1] the partition of X such that:

[u1, . . . , uD−1] = {[[1, u1]], [[u1 + 1, u2]], . . . , [[uD−1 + 1, 2N ]]}.
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Fig. 5 Penalty terms for a target with 64 pieces over 256 points with h = 0.1, n = 500

Fig. 6 Criteria for a target with 64 pieces over 256 points with h = 0.1, n = 500

Let D = {2, 22, . . . , 2N } and for all D in D,

MD = {[u1, . . . , u D−1], 1 ≤ u1 < u2 < . . . < uD−1 < 2N }.
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Fig. 7 Risks for a target with 64 pieces over 256 points with h = 0.1
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Fig. 8 Percentages of good complexity selection, target with 64 pieces, 256 points, h = 0.1

We choose the collection of models {Sm, m ∈ M} such that M = ∪D∈D MD and for all

m = [u1, . . . , uD−1] in M, setting u0 = 0 and uD = 2N ,

Sm =
{

t =
D∑

k=1

ckI[[uk−1+1,uk ]], c1, . . . , cD ∈ {0, 1}
}

.
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We are interested here in the case where the joint law of (X, Y ) is based on

S0 =
⋃

k∈{2p+1,p∈N,2p+1≤2J0 −1}
[[Uk−1, Uk]],

with U0 = 1 and U1, . . . , U2J0 −1 randomly chosen on {1, . . . , 2N − 1} in such a way that 1 ≤
U1 < · · · < U2J0 −1 < 2N . We take a target with N = 6, J0 = 2, h = 0.05 first and N = 6,

J0 = 4, h = 0.1 then. Let n ≥ 2N and introduce a sample ξ = (X1, Y1), . . . , (Xn, Yn) drawn

from the distribution of (X, Y ).

Since the penalties that we consider essentially depend on the complexities of the models

in the collection, a natural idea is to group all the models with the same complexity together

(see Lebarbier, 2002, for further details). It is then a matter of selecting a complexity in D
instead of a model in {Sm, m ∈ M}. Let us introduce for all D in D,

SD =
⋃

1≤u1<u2<···<u D−1<2N

S[u1,... ,u D−1].

The chosen classification rule is ŝD̂ such that:

– for each D in D, ŝD belongs to SD and satisfies for all t in SD ,

1

n

n∑
i=1

IŝD (Xi )�=Yi ≤ 1

n

n∑
i=1

It(Xi )�=Yi ,

– D̂ = argminD∈D{n−1
∑n

i=1 IŝD (Xi )�=Yi + pen(D)}.

The penalty pen(D) is taken, as in the regular case, equal to E[supt∈SD
n−1

∑n
i=1 Zi It(Xi ) �=Yi |ξ ],

with the Zi ’s of the cases (R), (E) and (
). Thus, we have to compute for each D in D,� inf
t∈SD

1
n

∑n
i=1 It(Xi )�=Yi ,� ŝD = argmin

t∈SD

1
n

∑n
i=1 It(Xi ) �=Yi ,� sup

t∈SD

1
n

∑n
i=1 Zi It(Xi )�=Yi for various (Z1, . . . , Zn).

Let us see first how to compute inft∈SD n−1
∑n

i=1 It(Xi )�=Yi and supt∈SD
n−1

∑n
i=1 Zi It(Xi ) �=Yi .

As in the regular case, for all D in D, if u0 = 0 and uD = 2N , with � and �Z defined by

(7) and (8), we can prove that

inf
t∈SD

1

n

n∑
i=1

It(Xi ) �=Yi = 1

n
min

u0<u1<···<u D−1<u D

D∑
k=1

�(uk−1 + 1, uk),

and

sup
t∈SD

1

n

n∑
i=1

Zi It(Xi )�=Yi = 1

n
max

u0<u1<···<u D−1<u D

D∑
k=1

�Z (uk−1 + 1, uk).
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Following Lebarbier (2002), we can then use the dynamical algorithm developed by Kay

(1998) which can be described as follows. We set for 1 ≤ p ≤ q ≤ 2N ,

I (p, q) = min
u0=0<u1<···<u p−1<u p=q

p∑
k=1

�(uk−1 + 1, uk),

and

I Z (p, q) = max
u0=0<u1<···<u p−1<u p=q

p∑
k=1

�Z (uk−1 + 1, uk).

For all q in [[1, 2N ]],

I (1, q) = �(1, q) and I Z (1, q) = �Z (1, q),

and for all p in [[1, 2N ]], q in [[p, 2N ]],

I (p, q) = min
r∈[[p−1,q−1]]

{I (p − 1, r ) + �(r + 1, q)}

and

I Z (p, q) = max
r∈[[p−1,q−1]]

{I Z (p − 1, r ) + �Z (r + 1, q)}.

By computing all the �(p, q)’s and �Z (p, q)’s for 1 ≤ p ≤ q ≤ 2N , we can obtain the

values of:

1. I (1, q) and I Z (1, q) for all q in [[1, 2N ]]

2. I (2, q) and I Z (2, q) for q in [[2, 2N ]] from the values of the I (1, r )’s and I Z (1, r )’s

3. and so on,

until we get

I (D, 2N ) = inf
t∈SD

n∑
i=1

It(Xi )�=Yi and I Z (D, 2N ) = sup
t∈SD

n∑
i=1

Zi It(Xi ) �=Yi .

To compute ŝD , we notice that if û0 = 0 and ûD = 2N , then ŝD = ∑D
k=1 ĉkI[[ûk−1+1,ûk ]], with

– [û1, . . . , û D−1] = argmin
1≤u1<...<u D−1<2N

(
min

t∈S[u1 ,··· ,u D−1]

n∑
i=1

It(Xi ) �=Yi

)
,

– ĉk = argmin
c∈{0,1}

( ∑
i∈[[1,n]],Xi ∈[[ûk−1+1,ûk ]] IYi �=c

)
.

Hence, setting for 2 ≤ p ≤ q ≤ 2N ,

J (p, q) = argmin
r∈[[p−1,q−1]]

{I (p − 1, r ) + �(r + 1, q)},

ûD−1 = J (D, N ), ûD−2 = J (D − 1, ûD−1), . . . , û1 = J (2, û2).
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Fig. 9 Penalty terms for a target with 4 pieces over 64 points with h = 0.05, n = 2000
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Fig. 10 Criteria for a target with 4 pieces over 64 points with h = 0.05, n = 2000

The values of the penalties are estimated by 100 simulations. Figures 9, 10, 13 and

14 display the mean penalty terms pen(D) to be compared with the mean of penid (D) =
supt∈SD

(−γn(t)) and the mean criteria as functions of the complexity D for a sample size

of 2000 for the two considered targets. We show in Figs. 11 and 15 the risks (estimated

by 100 experiments) of the chosen classification rules as functions of the sample size. The

percentages of good complexity selection are presented in Figs. 12 and 16.
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Fig. 11 Risks for a target with 4 pieces over 64 points with h = 0.05
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Fig. 12 Percentages of good complexity selection, target with 4 pieces, 64 points, h = 0.05

Comments: Overall, one can observe the same behaviors as in the regular case, though the

complexity of the true model is, as expected, more difficult to select, whatever the penalization

method. The three considered penalty terms resemble closely penid . Figure 11 show that

Rademacher and Efron’s bootstrap penalizations, which have a very similar behavior here,

are less good in terms of risks than i.i.d. Gamma weighted bootstrap penalization for a target
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Fig. 13 Penalty terms for a target with 16 pieces over 64 points with h = 0.1, n = 2000
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Fig. 14 Criteria for a target with 16 pieces over 64 points with h = 0.1, n = 2000

with 4 pieces. However, this trend is reversed when the target is more complex (see Fig. 15).

Consequently, we would rather choose Rademacher or Efron’s bootstrap penalizations if we

had to face a complex problem of classification, i.i.d. Gamma weighted bootstrap penalization

in simpler cases.
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Fig. 15 Risks for a target with 16 pieces over 64 points with h = 0.1
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Fig. 16 Percentages of good complexity selection, target with 16 pieces, 64 points, h = 0.1

4 Exponential inequalities

As we have seen in the beginning of the paper, to obtain the expected upper bounds for the

risk of our estimators, we need to control supt∈Sm
(−γn(t)) uniformly for m in M, where γn

is defined by (3). We then use some exponential inequalities that we present in this section.
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4.1 An exponential inequality based on symmetrization

We propose here a generalization of the exponential inequality for supt∈Sm
(−γn(t)) used

by Koltchinskii (2001) and Bartlett et al. (2002). It is based on symmetrization arguments

combined with McDiarmid’s inequality.

Let ξ = (ξ1, . . . , ξn) be a sample of n independent identically distributed random variables

with values in some probability space � and with common distribution P . Let Pn be the

corresponding empirical process defined by

Pn( f ) = 1

n

n∑
i=1

f (ξi ),

and let

P( f ) = E [ f (ξ1)] .

• Symmetrization inequality

The following lemma directly derives from a symmetrization tool which has been introduced

in the empirical processes theory by Koltchinskii (1981), Pollard (1982) and especially Giné

and Zinn (1984) (see Appendix for the proof).

Lemma 1. Let F be a countable set of measurable functions from � to [0, 1]. For every
sequence of i.i.d. symmetric variables Z1, . . . , Zn independent of ξ such that E [|Z1|] <

+∞,

E
[

sup
f ∈F

(P − Pn) ( f )

]
≤ 2

nE [|Z1|]E

[
sup
f ∈F

n∑
i=1

Zi f (ξi )

]
.

• Exponential bound

Proposition 1. Let ξ = (ξ1, . . . , ξn) be a sample of n i.i.d. random variables with values in
some probability space � and with common distribution P. Denote by Pn the corresponding
empirical process. Consider some countable set F of measurable functions from � to [0, 1].
Let Z1, . . . , Zn be a sequence of i.i.d. symmetric variables independent of ξ and such that
E [|Z1|] < +∞. For any x > 0, the following inequality holds:

P

[
sup
f ∈F

(P − Pn) ( f ) − 2

nE [|Z1|]E

[
sup
f ∈F

n∑
i=1

Zi f (ξi )

∣∣∣∣∣ξ
]

≥ 3

√
x

2n

]
≤ e−x .

Proof: Let

Tn = 2

nE [|Z1|]E

[
sup
f ∈F

n∑
i=1

Zi f (ξi )

∣∣∣∣∣ξ
]
.
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Lemma 1 leads to the inequality:

sup
f ∈F

(P − Pn) ( f ) − Tn ≤ sup
f ∈F

(P − Pn) ( f ) − Tn − E
[

sup
f ∈F

(P − Pn) ( f ) − Tn

]
. (9)

We now use McDiarmid’s concentration inequality stated in Theorem 1. Since every f in F
has its values in [0, 1], we have that for all i in {1, . . . , n}, for all x1, . . . , xn, x ′

i in �,∣∣∣∣∣ sup
f ∈F

1

n

n∑
j=1

(P( f )− f (x j )) − sup
f ∈F

1

n

( ∑
1≤ j≤n, j�=i

(P( f ) − f (x j )) + (P( f )− f (x ′
i ))

)∣∣∣∣∣ ≤ 1

n
.

Let us introduce some copy (ξ ′
1, . . . , ξ ′

n) of ξ = (ξ1, . . . , ξn), independent of ξ and

Z1, . . . , Zn . Setting x = (x1, . . . , xn), xi = (x1, . . . , xi−1, x ′
i , xi+1, . . . , xn) and ξ i =

(ξ1, . . . , ξi−1, ξ
′
i , ξi+1, . . . , ξn), we have∣∣∣∣∣E

[
sup
f ∈F

n∑
j=1

Z j f (ξ j )

∣∣∣∣∣ξ = x

]
− E

[
sup
f ∈F

n∑
j=1

Z j f (ξ j )

∣∣∣∣∣ξ = xi

]∣∣∣∣∣
≤

∣∣∣∣∣E
[

sup
f ∈F

n∑
j=1

Z j f (ξ j )

∣∣∣∣∣ξ = x, ξ ′
i = x ′

i

]
− E

[
sup
f ∈F

n∑
j=1

Z j f
(
ξ i

j

)∣∣∣∣∣ξ = x, ξ ′
i = x ′

i

]∣∣∣∣∣
≤ E

[
sup
f ∈F

∣∣Zi ( f (ξi ) − f (ξ ′
i ))

∣∣ ∣∣∣∣ξ = x, ξ ′
i = x ′

i

]
≤ E [|Z1|] .

Hence,∣∣∣∣∣ 2

nE [|Z1|]E

[
sup
f ∈F

n∑
j=1

Z j f (ξ j )

∣∣∣∣∣ξ = x

]
− 2

nE [|Z1|]E

[
sup
f ∈F

n∑
j=1

Z j f (ξ j )

∣∣∣∣∣ξ = xi

]∣∣∣∣∣ ≤ 2

n
,

and the variable φ(ξ1, . . . , ξn) = (sup f ∈F (P − Pn) ( f ) − Tn) satisfies the assumptions of

McDiarmid’s inequality with ci = 3/n for all i in {1, . . . , n}. With (9), this directly leads to

the result. �

4.2 A bootstrap exponential inequality

We still consider a sample ξ = (ξ1, . . . , ξn) of n independent identically distributed random

variables with values in some probability space � and with common distribution P . Recall

that Pn denotes the empirical process defined by

Pn( f ) = 1

n

n∑
i=1

f (ξi ),

and that

P( f ) = E [ f (ξ1)] .
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If Wn = (Wn,1, . . . , Wn,n) denotes a vector of n exchangeable and nonnegative random

variables independent of ξ and satisfying
∑n

i=1 Wn,i = n, the corresponding exchangeably

weighted bootstrap empirical process is defined by

Pw
n ( f ) = 1

n

n∑
i=1

Wn,i f (ξi ). (10)

Proposition 2. Let ξ = (ξ1, . . . , ξn) be a sample of n independent identically distributed
random variables with values in some probability space � and with common distribution
P. Introduce a vector Wn = (Wn,1, . . . , Wn,n) of n exchangeable and nonnegative random
variables independent of ξ and satisfying

∑n
i=1 Wn,i = n. Denote by Pn the empirical process

associated with ξ and consider the exchangeably weighted bootstrap empirical process
defined by (10). Let F be some countable set of measurable functions from � to [0, 1]. For
any x > 0, the following inequality holds:

P
[

sup
f ∈F

(P − Pn)( f ) − 1

E [(Wn,1 − 1)+]
E

[
sup
f ∈F

(
Pn − Pw

n

)
( f )

∣∣∣ξ]

≥
(

1 + E [|Wn,1 − 1|]
E [(Wn,1 − 1)+]

)√
x

2n

]
≤ e−x .

Proof: Since we do not deal with symmetrized variables any more, we here need to replace

the symmetrization inequality of Lemma 1 by another argument.

By Jensen’s inequality, we get:

E

[
sup
f ∈F

(P − Pn)( f )

]

≤ E

[
sup
f ∈F

1

n

n∑
i=1

E [(Wn,i − 1)IWn,i ≥1]

E [(Wn,1 − 1)+]
(P( f ) − f (ξi ))

]

≤ 1

E [(Wn,1 − 1)+]
E

[
sup
f ∈F

E

[
1

n

n∑
i=1

(Wn,i − 1)IWn,i ≥1(P( f ) − f (ξi ))

∣∣∣∣∣ξ
]]

≤ 1

E
[
(Wn,1 − 1)+

]E

[
sup
f ∈F

1

n

n∑
i=1

(Wn,i − 1)IWn,i ≥1(P( f ) − f (ξi ))

]

≤ 1

E [(Wn,1 − 1)+]
E

[
E

[
sup
f ∈F

1

n

n∑
i=1

(Wn,i − 1)IWn,i ≥1(P( f ) − f (ξi ))

∣∣∣∣∣Wn

]]
.

It is well known that if U and V are independent random variables such that for all g in a

class of functions G, E [g(V )] = 0, then

E
[

sup
g∈G

g(U )

]
≤ E

[
sup
g∈G

(g(U ) + g(V ))

]
. (11)

Springer



Mach Learn (2007) 66:165–207 191

To see this, we only notice that

E
[

sup
g∈G

g(U )
]

= E
[

sup
g∈G

E[g(U ) + g(V )|U ]
]
,

and use Jensen’s inequality. Since Wn is independent of ξ , conditionnally given Wn , the

variables (ξ1IWn,1≥1, . . . , ξnIWn,n≥1) and (ξ1IWn,1<1, . . . , ξnIWn,n<1) are independent and for

all f in F , the variable
∑n

i=1(Wn,i − 1)IWn,i <1(P( f ) − f (ξi )) is centered. So, applying (11)

conditionnally given Wn , one gets:

E
[

sup
f ∈F

(P − Pn)( f )
]

≤ 1

E [(Wn,1 − 1)+]
E

[
sup
f ∈F

1

n

n∑
i=1

(Wn,i − 1)(P( f ) − f (ξi ))

]
,

that is

E
[

sup
f ∈F

(P − Pn)( f )

]
≤ 1

E [(Wn,1 − 1)+]
E

[
sup
f ∈F

(
Pn − Pw

n

)
( f )

]
. (12)

We now need to prove that

sup
f ∈F

(P − Pn)( f ) − 1

E [(Wn,1 − 1)+]
E

[
sup
f ∈F

(
Pn − Pw

n

)
( f )

∣∣∣ξ]

= sup
f ∈F

(P − Pn)( f ) − 1

E [(Wn,1 − 1)+]
E

[
sup
f ∈F

1

n

n∑
i=1

(1 − Wn,i ) f (ξi )

∣∣∣∣∣ξ
]

concentrates around its expectation.

As in the proof of Proposition 1, one can easily see that

φ(ξ1, . . . , ξn) = sup
f ∈F

(P − Pn)( f ) − 1

E [(Wn,1 − 1)+]
E

[
sup
f ∈F

1

n

n∑
i=1

(1 − Wn,i ) f (ξi )

∣∣∣∣∣ξ
]

satisfies the assumptions of McDiarmid’s inequality with ci = (1 + E [|Wn,1−1|]
E [(Wn,1−1)+]

)/n. This

completes the proof of Proposition 2.

�

5 Proofs of Theorems 2 and 3

Theorems 2 and 3 both involve some penalties of the form:

pen(m) = c1E

[
sup
t∈Sm

1

n

n∑
i=1

Zi It(Xi ) �=Yi

∣∣∣∣∣ξ
]

+ c2

√
xm

n
,

with specific random weights Z1, . . . , Zn . To derive adaptive properties for the proposed

estimators, we need to compute E
[
pen(m)

]
, and a fortiori E[supt∈Sm

n−1
∑n

i=1 Zi It(Xi ) �=Yi ].
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5.1 A maximal inequality

This section is devoted to the calibration of an upper bound for E
[
supt∈Sm

∑n
i=1 Zi It(Xi ) �=Yi /n

]
in a VC framework, provided that the Zi ’s satisfy independence and moments conditions

precised below.

Using a result stated in Massart (2003), we can prove the following lemma:

Lemma 2. Let A be some finite subset of [0, 1]n and Z1, . . . , Zn be i.i.d. centered real
random variables satisfying the moments condition:

∀k ≥ 2, E [|Z1|k] ≤ k!

2
vck−2.

If sup(a1,... ,an )∈A
∑n

i=1 a2
i ≤ δ2 and sup(a1,... ,an )∈Asup1≤i≤n|ai | ≤ β for some positive numbers

δ and β, denoting by |A| the cardinality of A, one has:

E

[
sup
a∈A

n∑
i=1

ai Zi

]
≤ δ

√
2v log |A| + cβ log |A|.

If the Zi ’s satisfy the subgaussian inequality E[eλZ1 ] ≤ eλ2/2 for all λ ≥ 0, one has in fact

E

[
sup
a∈A

n∑
i=1

ai Zi

]
≤ δ

√
2 log |A|.

Proof: It is easy to see that under the assumptions of Lemma 2, for all k ≥ 2,

n∑
i=1

E [|ai Zi |k] ≤ k!

2
vδ2(cβ)k−2.

From the special version of Bernstein’s inequality due to Birgé and Massart (1998), we can

deduce that for all λ ∈ [0, 1/(cβ)[,

log E
[
eλ

∑n
i=1 ai Zi

]
≤ λ2vδ2

2(1 − cβλ)
.

Furthermore, in the subgaussian case, for all λ ≥ 0,

log E
[
eλ

∑n
i=1 ai Zi

]
≤ λ2δ2

2
.

Hence, using Lemma 2.3 in Massart (2003) which follows from an argument due to Pisier

(see also Massart and Rio (1998)) we get the expected upper bound.

Let us consider Sm = {IC , C ∈ Cm} where Cm is some countable class of subsets of X .
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For each m in M, denote by Hm the Vapnik-Chervonenkis entropy of Cm that is

Hm = log |{C ∩ {X1, . . . , Xn}, C ∈ Cm}| .

Let Z1, . . . , Zn be i.i.d. centered real random variables satisfying the moments condition:

∀k ≥ 2, E [|Z1|k] ≤ k!

2
vck−2.

Applying Lemma 2 with

A = {(
It(X1)�=Y1

, . . . , It(Xn ) �=Yn

)
, t ∈ {IC , C ∈ Cm}}

gives

E

[
sup
t∈Sm

n∑
i=1

Zi It(Xi )�=Yi

]
≤ (

√
2vnE [Hm] + cE [Hm] ).

If in addition, each Cm is assumed to be a VC class with VC dimension Vm , Sauer’s bound

(see Sauer, 1972) provides the following upper bound:

E

[
sup
t∈Sm

1

n

n∑
i=1

Zi It(Xi )�=Yi

]
≤

√
2v

√
Vm

n

(
1 + log

(
n

Vm

))
+ c

Vm

n

(
1 + log

(
n

Vm

))
.

In fact, by refining this result via some quite classical chaining arguments, we can see that

the factor log (n/Vm) in the dominating term is avoidable. This is the object of the following

theorem. �

Theorem 4. Let ξ = (X1, Y1), . . . , (Xn, Yn) be a sample of n independent copies of a
random pair (X, Y ) with values in X × {0, 1}. Introduce n i.i.d. real random variables
Z1, . . . , Zn centered, independent of ξ and satisfying the moments condition:

∀k ≥ 2, E [|Z1|k] ≤ k!

2
vck−2, (13)

for some positive constants v and c. Let Sm = {IC , C ∈ Cm} where Cm is a VC class with VC
dimension Vm and assume that n ≥ 4. There exist some absolute constants κ1 and κ2 such
that:

E

[
1

n
sup
t∈Sm

n∑
i=1

Zi It(Xi ) �=Yi

]
≤ κ1

√
v

√
Vm

n
+ κ2c

Vm

n
log2 n,

and if for all λ ≥ 0, E[eλZ1 ] ≤ eλ2/2, then

E

[
1

n
sup
t∈Sm

n∑
i=1

Zi It(Xi )�=Yi

]
≤ κ1

√
Vm

n
.
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Proof: The proof of Theorem 4 is based on the following lemma. Let for all a = (a1, . . . , an)

in Rn , ‖a‖2
2 = ∑n

i=1 a2
i . For all ε > 0 and all subsetA of Rn , let H2(ε,A) denote the logarithm

of the maximal number N of elements {a(1), . . . , a(N )} in A such that for every l, l ′ ∈
{1, . . . , N }, l �= l ′, ‖a(l) − a(l ′)‖2

2 > ε2. �

Lemma 3. Let A be some subset of [0, 1]n and Z1, . . . , Zn i.i.d. centered real random
variables. Let δ > 0 such that supa∈A‖a‖2 ≤ δ and assume that there exist some positive
constants v and c such that the Zi ’s satisfy the moments condition (13). Then, one has

E

[
sup
a∈A

n∑
i=1

ai Zi

]
≤ 3

+∞∑
j=0

(
δ
√

v2− j
√

H2

(
2−( j+1)δ,A

) + c(2− jδ ∧ 1)H2

(
2−( j+1)δ,A

))
,

and if for all λ ≥ 0, E
[
eλZ1

] ≤ eλ2/2,

E

[
sup
a∈A

n∑
i=1

ai Zi

]
≤ 3

+∞∑
j=0

2− jδ

√
H2

(
2−( j+1)δ,A

)
.

The proof of this lemma is directly inspired by Lemma 6.1 in Massart (2003) (see Appendix

for further details).

Considering

Bm = {{(x, y) ∈ X × {0, 1}, IC (x) �= y}, C ∈ Cm}

and the set

Am = {(IB(X1, Y1), . . . , IB(Xn, Yn)), B ∈ Bm},

one has

E

[
sup
t∈Sm

n∑
i=1

Zi It(Xi )�=Yi

]
= E

[
sup

a∈Am

n∑
i=1

ai Zi

]
.

Moreover,

sup
a∈Am

‖a‖2 ≤ √
n,

and by definition of Am , for all ε > 0,

H2(
√

nε,Am) = H (ε,Bm, Pn),

where H (ε,Bm, Pn) is the ε−metric entropy of Bm with respect to the empirical measure

n−1
∑n

i=1 δ(Xi ,Yi ). For any probability measure Q, the ε−metric entropy H (ε,Bm, Q) of Bm

with respect to Q is the logarithm of the maximal number N of elements {b(1), . . . , b(N )}
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in {IB, B ∈ Bm} such that for all l, l ′ ∈ {1, . . . , N }, l �= l ′, EQ(b(l) − b(l ′))2 > ε2. Let us

denote by H (ε,Bm) the universal ε−metric entropy of Bm that is

H (ε,Bm) = sup
Q

H (ε,Bm, Q),

where the supremum is taken over all the probabilty measures on X × {0, 1}. Then, for all

ε > 0,

H2(
√

nε,Am) ≤ H (ε,Bm),

and from Lemma 3, we get

E

[
sup
t∈Sm

n∑
i=1

Zi It(Xi ) �=Yi

]

≤ 3
+∞∑
j=0

(√
v2− j

√
nH

(
2−( j+1),Bm

) + c(2− j√n ∧ 1)H
(
2−( j+1),Bm

))
.

Since Bm is a VC class with VC dimension not larger than Vm , Haussler’s (1995) bound leads

to

H
(
2−( j+1),Bm

) ≤ κVm(1 + ( j + 1) log 2) ∀ j ∈ N,

for some positive constant κ . Hence,

E

[
sup
t∈Sm

n∑
i=1

Zi It(Xi )�=Yi

]
≤ 3

+∞∑
j=0

(
√

vκ2− j
√

nVm (1 + ( j + 1) log 2)

+ cκ(2− j√n ∧ 1)Vm (1 + ( j + 1) log 2)).

On the one hand, since the function x �→ 2−x√1 + (x + 1) log 2 is decreasing on ]0, +∞[,

one has

+∞∑
j=0

2− j
√

1 + ( j + 1) log 2 ≤
√

1 + log 2 +
∫ +∞

0

2−x
√

1 + (x + 1) log 2 dx

≤
√

1 + log 2 +
√

1 + log 2

log 2
+

√
π

2 log 2
.

On the other hand, one has

+∞∑
j=0

(2− j√n ∧ 1)(1 + ( j + 1) log 2)

=
∑

j≤ log n
2 log 2

(1 + ( j + 1) log 2) + √
n

∑
j> log n

2 log 2

2− j (1 + ( j + 1) log 2).
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It is easy to see that if n ≥ 4,

∑
j≤ log n

2 log 2

(1 + ( j + 1) log 2) ≤ 1

2 log 2

(
3

2
+ 1

log 2

)
log2 n,

and since x �→ 2−x (1 + (x + 1) log 2) is decreasing,

∑
j> log n

2 log 2

2− j (1 + ( j + 1) log 2) ≤
∫ +∞

log n
2 log 2

−1

2−x (1 + (x + 1) log 2)dx

≤ 1

log 2

(
1 + 2

log 2

)
log n√

n
,

which gives

E

[
1

n
sup
t∈Sm

n∑
i=1

Zi It(Xi ) �=Yi

]
≤ κ1

√
v

√
Vm

n
+ κ2c

Vm

n
log2 n.

The upper bound in the subgaussian case is obtained in the same way.

We can now prove the results stated in Section 2.

5.2 Proof of Theorem 2

• A risk upper bound

Recall that for m in M, s̃ satisfies the inequality (4):

l(s, s̃) ≤ l(s, sm) + γn(sm) + pen(m) − γn(ŝm̂) − pen(m̂) + ρn,

with

γn(t) = γn(t) − E
[
It(X )�=Y

]
.

Applying Proposition 1 with ξ = (X1, Y1), . . . , (Xn, Yn) and F = {(x, y) �→ It(x) �=y, t ∈
Sm ′ } gives that for all m ′ in M, for all x > 0:

P

[
sup
t∈Sm′

(−γn(t)) − 2

nE [|Z1|]E

[
sup
t∈Sm′

n∑
i=1

Zi It(Xi ) �=Yi

∣∣∣ξ]
≥ 3

√
x

2n

]
≤ e−x .

Introduce a family (xm)m∈M of nonnegative weights such that for some absolute constant 	,∑
m∈M

e−xm ≤ 	.
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For ζ > 0, we can deduce from the above inequality that except on a set of probability not

larger than 	e−ζ , one has for every m ′ in M,

sup
t∈Sm′

(−γn(t)) ≤ 2

nE [|Z1|]E

[
sup
t∈Sm′

n∑
i=1

Zi It(Xi )�=Yi

∣∣∣∣∣ξ
]

+ 3

√
xm ′ + ζ

2n
.

This implies that if

	̂m = 1

nE [|Z1|]E

[
sup
t∈Sm

n∑
i=1

Zi It(Xi ) �=Yi

∣∣∣∣∣ξ
]

,

except on a set of probability not larger than 	e−ζ ,

l(s, s̃) ≤ l(s, sm) + γn(sm) + pen(m) + 2	̂m̂ + 3

√
xm̂

2n
− pen(m̂) + ρn + 3

√
ζ

2n

holds. Therefore, if for all m ′ in M,

pen(m ′) = 2

nE [|Z1|]E

[
sup
t∈Sm′

n∑
i=1

Zi It(Xi )�=Yi

∣∣∣∣∣ξ
]

+ 3

√
xm ′

2n
= 2	̂m ′ + 3

√
xm ′

2n
,

then

P
[

l(s, s̃) ≥ l(s, sm) + γn(sm) + pen(m) + ρn + 3

√
ζ

2n

]
≤ 	e−ζ .

By integration with respect to ζ , this leads to:

E [(l(s, s̃) − l(s, sm) − γn(sm) − pen(m) − ρn)+] ≤ 3	

2

√
π

2n
.

Since E [γn(sm)] = 0, we obtain that

E [l(s, s̃)] ≤ l(s, sm) + E [pen(m)] + 3	

2

√
π

2n
+ ρn,

which gives, since m can be taken arbitrarily in M, the final risk bound:

E [l(s, s̃)] ≤ inf
m∈M

{l(s, sm) + E [pen(m)] } + 3	

2

√
π

2n
+ ρn .

• Adaptive properties in a minimax sense

Let for all m in M, Sm = {IC , C ∈ Cm}, where Cm is a VC class with VC dimension Vm ≥ 1

and assume that n ≥ 4.
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Since the Zi ’s satisfy the appropriate independence and moments conditions, a direct appli-

cation of the maximal inequality given in Theorem 4 gives that for all x > 0:

E

[
1

n
sup
t∈Sm

n∑
i=1

Zi It(Xi ) �=Yi

]
≤ κ1

√
v

√
Vm

n
+ κ2c

Vm

n
log2 n,

and if for all λ ≥ 0, E [eλZ1 ] ≤ eλ2/2, then

E

[
1

n
sup
t∈Sm

n∑
i=1

Zi It(Xi )�=Yi

]
≤ κ1

√
Vm

n
.

This concludes the proof of Theorem 2.

5.3 Proof of Theorem 3

• A risk upper bound

From Proposition 2 with ξ = (X1, Y1), . . . , (Xn, Yn) and F = {(x, y) �→ It(x) �=y, t ∈ Sm ′ },
we derive that for all m ′ in M, for all x > 0:

P

[
sup
t∈Sm′

(−γn(t)) − 1

E [(Wn,1 − 1)+]
E

[
sup
t∈Sm′

(γn(t) − γ w
n (t))

∣∣∣ξ]

≥
(

1 + E [|Wn,1 − 1|]
E [(Wn,1 − 1)+]

)√
x

2n

]
≤ e−x .

Introduce a family (xm)m∈M of nonnegative weights such that for some absolute constant 	,∑
m∈M

e−xm ≤ 	.

If ζ > 0, it follows from the above inequality that except on a set of probability not larger

than 	e−ζ , one has for every m ′ in M,

sup
t∈Sm′

(−γn(t)) ≤ 1

E [(Wn,1 − 1)+]
E

[
sup
t∈Sm′

(
γn(t) − γ w

n (t)
)∣∣∣ξ]

+
(

1 + E [|Wn,1 − 1|]
E [(Wn,1 − 1)+]

) √
xm ′ + ζ

2n
.

This implies as the proof of Theorem 2 that if for all m ′ in M,

pen(m ′) = 1

E [(Wn,1 − 1)+]
E

[
sup
t∈Sm′

(
γn(t) − γ w

n (t)
) ∣∣∣ξ]

+
(

1 + E [|Wn,1 − 1|]
E [(Wn,1 − 1)+]

)√
xm ′

2n
,

then for any m in M,

E [l(s, s̃)] ≤ l(s, sm) + E [pen(m)] +
(

1 + E [|Wn,1 − 1|]
E [(Wn,1 − 1)+]

)
	

2

√
π

2n
+ ρn,
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which gives, by an appropriate choice of m in M, the expected risk bound.

• Adaptive properties in a minimax sense

Let for all m in M, Sm = {IC , C ∈ Cm}, where Cm is a VC class with VC dimension Vm ≥ 1

and assume that n ≥ 4.

As in the proof of the minimax properties in Theorem 2, we here aim at using the maximal

inequality given in Theorem 4. The main difficulty that we have to deal with lies in the fact

that the weights (1 − Wn,i ) involved in the penalty are not independent any more.

Consider first the Efron’s bootstrap case, where Wn is a multinomial vector with parame-

ters (n, n−1, . . . , n−1). To remove the dependence of the (1 − Wn,i )’s, we use the classical

tool of Poissonization. Let (U1, . . . , Un) be a sample of n i.i.d. random variables uniformly

distributed on ]0, 1[ independent of ξ such that Wn,i = ∑n
j=1 IU j ∈](i−1)/n,i/n]. Introduce a

Poisson random variable N with parameter n independent of ξ and (U1, . . . , Un) and for all

i in {1, . . . , n}, Ni = ∑N
j=1 IU j ∈](i−1)/n,i/n]. It is easy to check that the Ni ’s are independent

identically distributed Poisson random variables with parameter 1. Furthermore, one has:

∣∣∣∣∣E
[

sup
t∈Sm

1

n

n∑
i=1

(1 − Wn,i )It(Xi ) �=Yi |ξ
]

− E

[
sup
t∈Sm

1

n

n∑
i=1

(1 − Ni )It(Xi )�=Yi |ξ
]∣∣∣∣∣

≤ E

[
sup
t∈Sm

∣∣∣∣∣ 1

n

n∑
i=1

(Ni − Wn,i )It(Xi )�=Yi

∣∣∣∣∣
∣∣∣∣∣ξ

]

≤ 1

n
E

[
n∑

i=1

|Ni − Wn,i |
]
.

Since according to the definition of the Ni ’s,

n∑
i=1

|Ni − Wn,i | =
∣∣∣∣∣ n∑

i=1

(Ni − Wn,i )

∣∣∣∣∣ = |N − n|,

we get:

∣∣∣∣∣E
[

sup
t∈Sm

1

n

n∑
i=1

(1 − Wn,i )It(Xi )�=Yi

∣∣∣∣∣ξ
]

− E

[
sup
t∈Sm

1

n

n∑
i=1

(1 − Ni )It(Xi )�=Yi

∣∣∣∣∣ξ
]∣∣∣∣∣ ≤ 1√

n
.

If

Ŵm = E
[

sup
t∈Sm

(
γn(t) − γ w

n (t)
) ∣∣∣ξ ]

,

then

E [Ŵm] ≤ E

[
sup
t∈Sm

1

n

n∑
i=1

(1 − Ni )It(Xi ) �=Yi

]
+ 1√

n
.

Springer



200 Mach Learn (2007) 66:165–207

The fact that N1 is a Poisson variable with parameter 1 implies that for all k ≥ 3,

E [|1 − N1|k]

k!
≤ E [e|1−N1|] − 1 − E [|1 − N1|] − E [(1 − N1)2]

2
≤ ee − 1

e2
− 2

e
− 1

2
.

Hence the (1 − Ni )’s are i.i.d centered real random variables satisfying the moments condition

(13) with v = 1 and c = 1 and Theorem 4 leads to:

E [Ŵm] ≤
(

κ1

√
Vm

n
+ κ2

Vm

n
log2 n + 1√

n

)
.

The equalities E [(Wn,1 − 1)+] = (1 − 1/n)n and E [|Wn,1 − 1|] = 2 (1 − 1/n)n allow to

complete the proof.

Consider then the i.i.d. weighted bootstrap case, where Wn,i = Vi/Vn, V1, . . . , Vn being

i.i.d. positive random variables independent of ξ . We here prove that

Ŵm = E
[

sup
t∈Sm

(
γn(t) − γ w

n (t)
) ∣∣∣ξ]

is bounded from above by

ν ′(v, c, E [V1])√
n

+ 1

E [V1]
E

[
sup
t∈Sm

1

n

n∑
i=1

(E [V1] − Vi )It(Xi )�=Yi

∣∣∣∣∣ ξ
]

.

Since we have that

Ŵm = E

[
sup
t∈Sm

1

n

n∑
i=1

(
1 − Vi

Vn

)
It(Xi ) �=Yi

∣∣∣∣∣ ξ
]

≤ E

[
sup
t∈Sm

1

n

n∑
i=1

(
Vi

E [V1]
− Vi

Vn

)
It(Xi )�=Yi

∣∣∣∣∣ξ
]
+ E

[
sup
t∈Sm

1

n

n∑
i=1

(
1 − Vi

E [V1]

)
It(Xi )�=Yi

∣∣∣∣∣ξ
]

≤ E

[
1

n

n∑
i=1

∣∣∣∣∣ Vi

E [V1]
− Vi

Vn

∣∣∣∣∣
]

+ 1

E [V1]
E

[
sup
t∈Sm

1

n

n∑
i=1

(E [V1] − Vi ) It(Xi ) �=Yi

∣∣∣∣∣ ξ
]

≤ 1

E [V1]
E

[
V1

Vn
|Vn − E [V1]|

]
+ 1

E [V1]
E

[
sup
t∈Sm

1

n

n∑
i=1

(E [V1] − Vi ) It(Xi ) �=Yi

∣∣∣∣∣ ξ
]

,

it is a matter in fact of controlling E [(V1/Vn)|Vn − E [V1] | ].

Assuming that the Vi ’s satisfy the moments condition (6), the special version of Bernstein’s

inequality proposed by Birgé and Massart (1998) shows that for all x > 0,

P
[
|Vn − E [V1] | ≥

√
2v

√
x

n
+ c

x

n

]
≤ 2e−x , (14)
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and

P
[

Vn ≤ E [V1] −
√

2v

√
x

n
− c

x

n

]
≤ e−x . (15)

Let a = 3
√

2v/E [V1] and
√

b = 2 (
√

2v + √
cE [V1] )/E [V1]. From (14), we deduce that

for all x > 0,

P
[

V1

Vn
|Vn − E [V1] | ≥

(√
2v

√
x

n
+ c

x

n

)
(1 + a

√
x + bx)

]
≤ P

[
V1

Vn
≥ 1 + a

√
x + bx

]
+ 2e−x .

Moreover, since V1/Vn ≤ n,

P
[

V1

Vn
≥ 1 + a

√
x + bx

]
= P

[
V1

Vn
≥ 1 + a

√
x + bx, a

√
x ≤ n, bx ≤ n

]
,

and the exponential inequality (15) leads to:

P
[

V1

Vn
≥ 1 + a

√
x + bx

]

≤ P
[

V1 ≥ (1 + a
√

x + bx)

(
E [V1] −

√
2v

√
x

n
− c

x

n

)
, a

√
x ≤ n, bx ≤ n

]
+ e−x .

For n ≥ 4, we have that

(1 + a
√

x + bx)

(
E [V1] −

√
2v

√
x

n
− c

x

n

)

≥ E [V1] +
(

aE [V1] − 1

2

√
2v − a

√
x

n

√
2v

) √
x

+
(

bE [V1] − b

√
x

n

√
2v − c

4
− ac

√
x

n
− bc

x

n

)
x .

If in addition, a
√

x ≤ n and bx ≤ n, we get:

(1 + a
√

x + bx)

(
E [V1] −

√
2v

√
x

n
− c

x

n

)
≥ E [V1] +

(
aE [V1] − 1

2

√
2v − a√

b

√
2v

) √
x +

(
bE [V1] −

√
2vb − 9c

4

)
x,
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and by definition of a and b, since
√

b ≥ 2
√

2v/E [V1],

(1 + a
√

x + bx)

(
E [V1] −

√
2v

√
x

n
− c

x

n

)
≥ E [V1] +

√
2v

√
x +

(√
b(

√
bE [V1] −

√
2v) − 9c

4

)
x .

Hence,

(1 + a
√

x + bx)

(
E [V1] −

√
2v

√
x

n
− c

x

n

)
≥ E [V1] +

√
2v

√
x +

(
2

√
c

E [V1]

(√
2v + 2

√
cE [V1]

)
− 9c

4

)
x

≥ E [V1] +
√

2v
√

x + cx .

Therefore,

P
[

V1 ≥ (1 + a
√

x + bx)

(
E [V1] −

√
2v

√
x

n
− c

x

n

)
, a

√
x ≤ n, bx ≤ n

]
≤ e−x .

Finally, we obtain that

P
[

V1

Vn
|Vn − E [V1] | ≥

(√
2v

√
x

n
+ c

x

n

)
(1 + a

√
x + bx)

]
≤ 4e−x ,

which implies:

P
[

V1

Vn

∣∣Vn − E [V1]
∣∣ ≥ (1 + a + b)

(√
2v√
n

+ c

n

)√
x ∨ x2

]
≤ 4e−x .

By integration with respect to x > 0, this leads to:

E
[

V1

Vn
|Vn − E [V1] |

]
≤ 4(1 + a + b)

(√
2v√
n

+ c

n

)( ∫ 1

0

1

2
√

x
e−x dx +

∫ +∞

1

2xe−x dx

)

≤ 9(1 + a + b)

(√
2v√
n

+ c

n

)
.

Furthermore, since the (E[V1] − Vi )’s satisfy the moments condition of Theorem 4 with

2v instead of v, we have that

1

E [V1]
E

[
sup
t∈Sm

1

n

n∑
i=1

(E [V1] − Vi )It(Xi )�=Yi

]
≤ 1

E [V1]

(
κ1

√
2v

√
Vm

n
+ κ2c

Vm

n
log2 n

)
,

which gives the expected bound.

Springer



Mach Learn (2007) 66:165–207 203

6 Conclusion

In this conclusion, we wish to point out that the theoretical results presented here do not

allow to come out in favour of one of the investigated penalization schemes. In particular, as

we consider the problem from the global minimax point of view, we can not decide between

Rademacher and bootstrap type penalties.

However, it is now admitted that the global minimax risk is not an ideal bench mark to

evaluate the relevance of classification rules, since it may overestimate the risk in some situ-

ations. Vapnik and Chervonenkis’ (1974) results in the so called zero-error case first raised

this question. Lugosi (2002) and Devroye and Lugosi (1995) then confirmed these reserva-

tions by studying the interpolation case where the best classification error inft∈SP[t(X ) �= Y ]

of a given class S is nonzero but small. By further analyzing the problem, Mammen and

Tsybakov (1999), Tsybakov (2004) and Massart and Nédélec (2005) show that the behav-

ior of the regression function η : x �→ P[Y = 1|X = x] around 1/2 is crucial. They indeed

introduce some margin conditions that can be written in the following general way:

∃h > 0, l(s, t) ≥ hEX [|t(X ) − s(X )|]θ , ∀t : X → {0, 1}. (16)

Consider moreover the following complexity condition: let s belong to S = {IC , C ∈ C}, C
being a VC class with VC dimension V (C). Massart and Nédélec (2005) prove in particular

that under the margin condition (16) with θ ≥ 1 and h ≥ (V (C)/n)1/(2θ ), the Empirical Risk

Minimizer ŝ over S satisfies

E [l(s, ŝ)] ≤ κ1

(
V (C)(1 + log(nh2θ /V (C)))

nh

) θ
2θ−1

.

Then they discuss the optimality of this upper bound in a minimax sense for the special

margin condition |2η(x) − 1| ≥ h for all x in X (that leads to (16) with θ = 1). They obtain

that if P(h) denotes the set of the distributions P satisfying the above complexity and margin

conditions with 2 ≤ V (C) ≤ n, for any classification rule ŝ,

sup
P∈P(h)

E [l(s, ŝ)] ≥ κ2

(
V (C)

nh
∧

√
V (C)

n

)
.

In view of these works, we now aim at developing some model selection procedures which

lead to classification rules adapting better to the margin. Following the ideas initially intro-

duced by Koltchinskii and Panchenko (1999), Bartlett et al. (2005) and Bartlett et al. (2004)

propose some localized versions of Rademacher averages as tight data-dependent measures

of complexity. Recently, it has been proved that these localized Rademacher averages can be

used to construct margin-adaptive model selection procedures (see Boucheron et al., 2005,

for a brief survey, or Koltchinskii, 2003, for a more complete study). In the same spirit, we

could introduce localized versions of our bootstrap penalties. This would entail improving the

inequality given in Proposition 2 under propitious conditions, namely margin type conditions.

Boucheron et al.’s (2000) concentration inequality seems to be the adequate tool, though it

can not be directly applied because of the dependence between the weights involved in the

bootstrap processes. Some refined Poissonization techniques may allow us to overcome this

difficulty, and this may be the subject of a future work. The results that we may obtain would
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however not sort out the main criticism made of all these penalization techniques, that is that

they essentially have theoretical interest.

Nevertheless, we are hopeful that the connection made here between Rademacher penaliza-

tion and the bootstrap approach, which takes advantage of its intuitive qualities, provides new

lines of research towards more operational methods for the construction of margin-adaptive

classification rules.

Appendix: Proofs of Lemmas 1 and 3

Proof of Lemma 1

Introducing some independent copy ξ ′ = (ξ ′
1, . . . , ξ ′

n) of ξ and denoting by P ′
n the corre-

sponding empirical process, we have by Jensen’s inequality:

E
[

sup
f ∈F

(P − Pn) ( f )

]
= E

[
sup
f ∈F

E [
(
P ′

n − Pn
)

( f ) |ξ ]

]

≤ E
[

sup
f ∈F

(
P ′

n − Pn
)

( f )

]
.

Let ε = (ε1, . . . , εn) be a sequence of n i.i.d. Rademacher variables independent of ξ , ξ ′ and

Z1, . . . , Zn . Since for any symmetric random variable Z independent of ε1, the variables

ε1 Z , ε1|Z | and Z are identically distributed, we get:

E
[

sup
f ∈F

(P − Pn) ( f )

]
≤ E

[
sup
f ∈F

1

n

n∑
i=1

εi ( f (ξ ′
i ) − f (ξi ))

]

≤ 2

n
E

[
sup
f ∈F

n∑
i=1

εi f (ξi )

]

≤ 2

nE [|Z1|]E

[
sup
f ∈F

E

[
n∑

i=1

εi |Zi | f (ξi )

∣∣∣∣∣ε, ξ
]]

≤ 2

nE [|Z1|]E

[
sup
f ∈F

n∑
i=1

εi |Zi | f (ξi )

]
.

By using the same symmetrization argument as above, we finally obtain:

E
[

sup
f ∈F

(P − Pn) ( f )
]

≤ 2

nE [|Z1|]E

[
sup
f ∈F

n∑
i=1

Zi f (ξi )

]
.
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Proof of Lemma 3

As in Massart (2003), since A �→ H2(.,A) is nondecreasing with respect to the inclusion

ordering, by continuity of a �→ ∑n
i=1 ai Zi and separability of A, we only need to consider

the case where A is a finite subset of [0, 1]n .

Let us consider for all j in N∗ a mapping � j from A to A such that

log |� j (A)| ≤ H2(2− jδ,A)

and

‖a − � j (a)‖2 ≤ 2− jδ for all a in A.

Since A is finite, there exists some integer J such that for all a in A, �J (a) = a. Thus, if

�0 denotes the mapping which is identically equal to 0, for all a = (a1, . . . , an) in A,

n∑
i=1

ai Zi =
J−1∑
j=0

(
n∑

i=1

[� j+1(a)]i Zi −
n∑

i=1

[� j (a)]i Zi

)

and

E

[
sup
a∈A

n∑
i=1

ai Zi

]
≤

J−1∑
j=0

E

[
sup
a∈A

n∑
i=1

([� j+1(a)]i − [� j (a)]i )Zi

]
.

Moreover, for all j in N,

sup
a∈A

‖� j+1(a) − � j (a)‖2
2 ≤

(
3

2
2− jδ

)2

,

sup
a∈A

sup
1≤i≤n

|[� j+1(a)]i − [� j (a)]i | ≤ ‖� j+1(a) − � j (a)‖2 ∧ 1

≤ 1 ∧ 3(2− j−1δ),

and

|{� j+1(a) − � j (a), a ∈ A}| ≤ e2H2(2−( j+1)δ,A),

by the definition of the � j ’s and the fact that x �→ H2(x,A) is nonincreasing. We can then

apply Lemma 2 to the set {� j+1(a) − � j (a), a ∈ A} and we obtain in the general case:

E

[
sup
a∈A

n∑
i=1

([� j+1(a)]i − [� j (a)]i )Zi

]
≤ 3

√
vH2(2−( j+1)δ,A)2− jδ

+ 2c

(
3

2
2− jδ ∧ 1

)
H2

(
2−( j+1)δ,A

)
,
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and in the subgaussian case:

E

[
sup
a∈A

n∑
i=1

([� j+1(a)]i − [� j (a)]i )Zi

]
≤ 3

√
H2(2−( j+1)δ,A)2− jδ.

This concludes the proof of Lemma 3.
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Giné, E., & Zinn, J. (1990). Bootstrapping general empirical measures. Ann. Probab., 18(2), 851–869.
Grenander, U. (1981). Abstract inference. New York: Wiley.
Haussler, D. (1995). Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-

Chervonenkis dimension. J. Comb. Theory, A 69(2), 217–232.
Kay, S. (1998). Fundamentals of statistical signal processing—Detection theory. Prentice Hall Signal Pro-

cessing Series.
Koltchinskii, V. (1981). On the central limit theorem for empirical measures. Prob. Theory Math. Statist., 24,

71–82.
Koltchinskii, V. (2001). Rademacher penalties and structural risk minimization. IEEE Trans. Inf. Theory,

47(5), 1902–1914.
Koltchinskii, V. (2003). Local Rademacher complexities and oracle inequalities in risk minimization. Technical

report, University of New Mexico. To appear in Ann. Stat.
Koltchinskii, V., & Panchenko, D. (1999). Rademacher processes and bounding the risk of function learning.
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