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We investigate the performance of empirical criteria for comparing and selecting quantitative 
models from among a candidate set. A simulation based on empirically observed param-

eter values is used to determine which criterion is the most accurate at identifying the correct 
model specification. The simulation is composed of both nested and nonnested linear regression 
models. We then derive posterior probability estimates of the superiority of the alternative 
models from each of the criteria and evaluate the relative accuracy, bias, and information 
content of these probabilities. To investigate whether additional accuracy can be derived from 
combining criteria, a method for obtaining a joint prediction from combinations of the criteria 
is proposed and the incremental improvement in selection accuracy considered. 

Based on the simulation, we conclude that most leading criteria perform well in selecting the 
best model, and several criteria also produce accurate probabilities of model superiority. Com-
putationally intensive criteria failed to perform better than criteria which were computationally 
simpler. Also, the use of several criteria in combination failed to appreciably outperform the 
use of one model. The Schwarz criterion performed best overall in terms of selection accuracy, 
accuracy of posterior probabilities, and ease of use. Thus, we suggest that general model com-
parison, model selection, and model probability estimation be performed using the Schwarz 
criterion, which can be implemented (given the model log likelihoods) using only a hand 
calculator. 
(Model Selection; Cross-Validatiot~;Akaike's Criteriotl; Schzoarz' Criterioll;AIC;  BIC; BCVL; Bayesiatz 
Methods;  Cortzbinatiot~of Forecasts) 

1. Introduction 
Research in forecasting and other areas of management 
science often involves the selection of the best available 
model from among a candidate set. For example, fore-
casting market share may involve selecting between an 
attraction model and a multiplicative model or the se-
lection between a naive extrapolation model and an 
econometric model. Often the competing models reflect 
different or even conflicting assumptions, and the se-
lection of a model thus amounts implicitly to acceptance 
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of the assumptions and theoretical structure of the ac-
cepted model. 

We focus on the selection of models using empirical 
criteria. There are many such criteria available to the 
researcher, each of which evaluates the relative consis-
tency of the alternative models with the available data. 
We use a simulation based on empirically observed pa-
rameter values to test the performance of the leading 
criteria. We begin by asking which criterion is the most 
accurate at identifying the correct model. We then show 
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how posterior probabilities of the superiority of the al- 
ternative models can be derived from the various cri- 
teria, and evaluate the relative accuracy, bias, and in- 
formation content of these probabilities. Finally, fol- 
lowing the approach adopted in the combination of 
forecasts literature, we develop a method for combining 
the different criteria and evaluate the incremental ac- 
curacy that results. 

Previous research has focused solely on identifying 
which criterion is the most accurate. This work has been 
both analytical and empirical. The analytical work has 
been used largely to motivate the development of new 
criteria. For example, Allenby (1990) introduces his cri- 
terion by arguing that the Akaike and Schwarz criteria 
over-emphasizes parsimony, while his does not. This 
finding conflicts with Shibata's (1976) earlier finding 
that Akaike under-emphasizes parsimony. Our results 
will help to resolve this apparent contradiction. 

The previous empirical work has appeared in different 
fields and has resulted in few consolidating generaliza- 
tions. Rust and Schmittlein (1985) compared how well 
different criteria were able to discriminate between al- 
ternative piecewise linear regression models. Their re- 
sults gave some indication that the simple penalty func- 
tion approaches of Akaike and Schwarz were capable 
of performing just as well as more complicated criteria. 
However, they considered only nonnested models of 
equal dimension. Clayton et al. ( 1986) also restricted 
themselves to models of equal dimension, investigating 
competing exponential and normal models. This study 
also gave preliminary indications that a simple penalty 
function approach (Akaike) could perform as well as 
or better than the more cumbersome cross-validation 
procedures. Homburg ( 1991) considered competing 
nonnested covariance structure models. The Akaike and 
Schwarz criteria performed substantially better than the 
cross-validation approaches, with the Schwarz criterion 
doing the best of all. 

When evaluated separately, these studies offer few 
general conclusions beyond the particular model spec- 
ifications that are considered. When viewed together, 
the studies appear to suggest that the simple model se- 
lection approaches, such as the Akaike and Schwarz 
criteria, are every bit as good as (or better than) the 
more complicated approaches. In each of these studies, 
the simulations relied upon model parameters arbitrarily 
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chosen by the researchers. We seek to construct a truer 
test, by basing our simulations on actual data sets and 
empirically estimated parameters. We also enrich our 
model comparison by including both nested and non- 
nested alternatives and comparisons of models of both 
equal and unequal dimensions. 

While it previously has been shown that it is possible 
to derive posterior probabilities of model superiority 
from many of the criteria (Rust and Schmittlein 1985), 
we extend this finding to a more general class of criteria. 
We then compare these posterior probabilities with the 
identity of the correct model, to identify which of the 
resulting posterior predictions are the most accurate, 
which show evidence of bias (over-confidence or under- 
confidence), and which provide the most information 
to the researcher. 

In the forecasting literature, it is well established that 
combining the forecasts of several forecasters can im- 
prove forecasting accuracy (Clemen 1989, Makridakis 
and Winkler 1983, Bates and Granger 1969). Research- 
ers have also shown that when forecasts are positively 
correlated, the incremental benefit from additional 
forecasts may be surprisingly small (Clemen and Wink- 
ler 1985, Morrison and Schmittlein 1991). Also, when 
the costs of obtaining the forecasts is considered, the 
optimal number of forecasts becomes even smaller 
(Chen and Anandalingam 1990). Combination of fore- 
casts is generally recognized to be a subset of the general 
topic of the combination of models. The present research 
is concerned not with the combination of models, but 
rather with the combination of criteria for evaluating 
models. Thus we wish to select the single best model, 
but are willing to consider a combination of model se- 
lection criteria. The combination of forecasts literature 
suggests that if the criteria are sufficiently independent, 
use of multiple criteria may improve model selection. 
Very similar criteria are probably redundant and do not 
justify the additional effort required. If all the criteria 
are highly dependent, then little will be gained from 
using multiple criteria. Theoretical considerations are 
not available to address these issues. Empirical explo- 
ration is necessary but has not previously been at-
tempted. 

The different model selection criteria are introduced 
in 52 together with a description of the approaches 
used to derive posterior probabilities from each criteria. 
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The accuracy and any apparent biases of these criteria 
in identifying the correct model specification are 
investigated in 53. Also discussed in 53 are the relative 
accuracy, bias, and information content in the posterior 
probabilities. Section 4 contains an assessment of the 
merits of combining criteria, and the paper concludes 
with a review of the findings and a recommendation as 
to which criterion should be used. 

2. Model Selection Criteria 
We consider only gelleva1 model selection criteria-gen- 
era1 enough to require only that the competing models 
have a likelihood function and a finite number of es- 
timated parameters. As a result, we do not limit the 
scope of the research to criteria capable only of evalu- 
ating nested models. For the purposes of this paper, we 
further limit our attention to criteria which have been 
prominent in the recent literature. All the criteria we 
investigate have appeared in the last 25 years. 

To assist in introducing and describing each criterion, 
the criteria are classified into split sarlzple, jackktlife, and 
full sample criteria. Split sample criteria require that the 
empirical data be divided into two parts: an estimation 
sample and a validation sample. Model parameters are 
estimated on the estimation sample, and then model 
performance is tested on the validation sample. Jack- 
knife criteria (Stone 1974, Geisser and Eddy 1979, Cooil 
et al. 1987) do a similar cross-validation, one obser- 
vation at a time. Each data point is held out in turn, the 
model parameters are estimated on the rest of the points, 
and the likelihood of the holdout point is evaluated. A 
"pseudo-likelihood," the product of the individual point 
likelihoods, is then computed and used to compare 
model performance. 

Full sample criteria calculate the maximum likelihood 
and then adjust for parsimony by subtracting a penalty 
term which is an increasing function of the number of 
estimated parameters. These criteria are the easiest 
computationally, and have gained widespread popu- 
larity as a result. 

2.1. Split Sample Criteria 
The two major criteria proposed are the Predictive 
Sample Reuse Quasi-Bayes (PSRQB) criteria of Geiser 
and Eddy (1979) and the Cross-Validated Likelihood 
(CVL) criteria (Stone 1974, Geisser and Eddy 1979, Rust 
and Schmittlein 1985). Both these criteria can be used 

on either a split sample basis or a jackknife basis, so we 
will refer to the split sample versions as PSRQB(Sp1it) 
and CVL(Sp1it). 

2.1.1. PSRQB(Sp1it). The general idea behind 
PSRQB (Geisser and Eddy 1979) is to begin with diffuse 
priors for the parameters, and then update the param- 
eter distribution, based on the estimation sample. This 
posterior distribution for the parameters is then used to 
obtain the likelihood of the validation sample. In gen- 
eral, this approach leads to a discouraging amount of 
computational complexity, including the necessity of 
performing numerical integration in what could be a 
high-dimensional space. 

However, for linear regression models a closed form 
expression for the likelihood may be obtained, based 
on results giving the conditional predictive densities of 
regression models (Zellner 1971, p. 235). If X is the 
estimation sample predictor variable matrix (rows cor- 
responding to observations and columns corresponding 
to variables), Z is the validation sample predictor vari- 
able matrix, 6is the vector of estimated coefficients, W 
is the vector of holdout Y's (where Y is the dependent 
variable), S is the sample sum of square error, k is the 
number of observations in the estimation sample, p is 
the number of observations in the validation sample, 
and u is the number of predictor variables, then the 
predictive likelihood is, following Zellner (1971, p. 235) 
and using results of Dickey ( 1967),' 

where 

M = X'X + Z'Z, 

~ ( L - z ~ - 1 ) / 2I I - ZM-'Z'I ' I 2  
C K , and 

f ( k + p  - u - l , p ,  1 )  

2.1.2. CVL(Sp1it). CVL (Stone 1974, Geisser and 
Eddy 1979, Rust and Schmittlein 1985) is a very general 

' The authors are grateful to Bruce Cooil for his help in deriving the 
"constant" o f  proportionality for the PSRQB linear regresson case. 
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and computationally simpler quasi-Bayesian model 
comparison criterion. The central idea is to estimate pa- 
rameters on the estimation sample, and then evaluate 
the likelihood on the validation sample. For the case of 
one criterion variable Y, with a normal error term, for 
example, the cross-validated likelihood is: 

2.2. Jackknife Criteria 
Again, the two major criteria are based on PSRQB and 
CVL. We refer to the jackknife versions of these criteria, 
following previous notational conventions (Stone 1974, 
Rust and Schmittlein 1985) as PSRQB(L'9 and 
CVL(L*). The L" designation refers to the cross-
validated pseudo-likelihood, using a resampling pro- 
cedure which treats each data point in turn as the 
validation sample and the remaining points as the es- 
timation sample (Stone 1974, Geisser and Eddy 1979). 

2.2.1. PSRQB(L*). To calculate PSRQB(L.7 we 
again potentially will be forced to conduct numerical 
integrations in high-dimensional spaces, among other 
computational indignities. Only this time there is an 
integration for every holdout point! Again, things be- 
come manageable for the case of linear regression mod- 
els. Let Y,,, be the criterion variable vector, excluding 
point i ,  X(,,be the independent variable matrix excluding 
point i ,  B,,, be the coefficient vector estimated from all 
points besides i ,  S ( ,,be the sample sum of square error, 
excluding point i ,  N is the total sample size, and all 
other notation as defined previously. Then the quasi- 
Bayes likelihood, again following Zellner and Dickey, 
is 

where 

and f ( .) is defined as previously. 
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2.2.2. CVL(L*). The simplifying assumptions of 
CVL make CVL(L") much easier to compute (in gen- 
eral) than PSRQB(L*). Let L,,,  be the likelihood of Y,, 
obtained from the parameter estimates from an esti- 
mation sample which deletes point i .  Define: 

Then the cross-validated pseudo-likelihood used by 
CVL(L*) is 

2.3. Full Sample Criteria 
Full sample criteria do not rely on data splitting to obtain 
their fit statistics, but rather are based on the log like- 
lihood on the data as a whole. Three full sample criteria 
we will consider are those proposed by Akaike, 
Schwarz, and Allenby. 

( 1) Akaike. Akaike ( 1974) proposed an astonish- 
ingly simple model comparison criterion, based on an 
information theoretic rationale. This criterion uses a 
penalty term to penalize the log maximum likelihood 
for lack of parsimony. If In L is the log maximum like- 
lihood, Akaike's criterion is computed as2 

A = In L - (number of parameters). (6 )  

In the regression case, with v independent variables, 
there are v + 1 total estimated regression coefficients, 
yielding : 

( 2 )  Schwarz. Schwarz ( 1978) criticized Akaike's 
criterion as being asymptotically nonoptimal and pro- 
vided a simple alternative, based on a Bayesian argu- 
ment. His mathematical results lead to a revised form 
of the penalty function, but again one which is simple 
computationally. His criterion is: 

(3 )  Allenby. A third full sample criterion has been 

Both Akaike's criterion and Schwarz's criterion often appear in 
slightly different form, multiplied by a numerical constant 
(usually - i ) .  
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proposed by Allenby (1990). Using an approximation 
based on a Bayesian approach, he arrives at the criterion 

of parameters) I . ( 8 )  

2.4. Posterior Probability Criteria 
Consider the case in which a researcher is selecting ei- 
ther model 1 or model 2. Suppose that selection of the 
correct model leads to an expected benefit of one unit 
of utility (there is something to be gained from choosing 
the correct model). Suppose also that the difference in 
cost between employing model 1 and employing model 
2 is AC. Let P(1)  and 1 - P(1)  be the respective posterior 
probabilities assigned to models 1 and 2. 

Under what circumstances should the researcher se- 
lect model I?  He/she should select model 1 only if the 
difference in expected benefits exceeds the difference 
in costs. That is, model 1 should be selected iff: 

P ( 1 )  - [I  - P(1) ]> AC, or 

Thus we see that selecting the most appropriate model 
depends on both the model posterior probabilities and 
the difference in cost of implementation. Note that if 
costs of implementation are equal, then the model with 
the higher posterior probability should be chosen. In 
such circumstances the posterior probabilities provide 
a measure of the extent to which a criterion favors the 
preferred model. If AC is large enough, then model 1 
should never be chosen. Conversely, if AC is negative 
enough, then model 1 should always be chosen. Thus 
model posterior probabilities may be used, in conjunc- 
tion with implementation costs, to trade off the benefit 
of selecting the better model against the comparative 
cost of its implementation. 

As it turns out, all the criteria described earlier in this 
section may also be used to generate posterior odds or, 
if one assumes the correct model is in the candidate set, 
posterior probabilities. In this section and the remainder 
of the paper we will, for the sake of consistency and 
the familiarity of Bayesian posterior probability calcu- 
lations, make the required assumption and refer to the 
probabil i ty  of nzodel correctrzess or  s ~ p e r i o r i t y . ~  

Not making the required assumption merely results in a renormal- 
ization, but does not affect the relative results. 

The criteria of 552.1 and 2.2 all produce cross-
validated likelihoods for the competing models. These 
are then easily converted to posterior odds or posterior 
probabilities. For example, if L, denotes the cross-
validated likelihood (or pseudo-likelihood) of model j 
then the posterior probability of model j *  is: 

Lp (  j*) = --L (10)
2, L, ' 

if the prior probabilities of the models are equal. Oth- 
erwise, if p, is the prior probability of model j, then: 

Although it is not widely realized, all the criteria of 
52.3 also may be used to produce model posterior prob- 
abilities. For example, Stone (1977) showed that 
Akaike's criterion is asymptotically equivalent to the 
jackknifed pseudo-likelihood whenever the model is 
correct. This suggests the use of Akaike's criterion to 
produce posterior probabilities, given a set of correct or 
approximately correct models (Rust and Schmittlein 
1985). Preliminary tests have shown this approach to 
work well (Fornell and Rust 1989). The approximate 
"posterior" model likelihood is given as: 

L = exp(A). (12) 

Similar approximations also result directly from the 
criteria of Schwarz and A l l e n b ~ . ~  Because both criteria 
are approximations to the posterior log likelihood, the 
likelihood approximations are simply 

L = exp(B). (13) 

L = exp(C). (14) 

This use of the Schwarz criterion is new, but follows 
logically from its derivation. 

2.5. Transformed Dependent Variables 
If the dependent variable is transformed in one of the 
competing models, then the likelihood itself must be 
transformed, through the use of a Jacobian. Let us con- 
sider, for the sake of illustration, the competing models 

Allenby (1990)explicitly shows how his approximation may be used 
to generate posterior odds. 
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Let L, and L2 be the respective likelihoods for the two 
models, in terms of Y and In Y, respectively. Then L 
must be transformed, because it is in terms of the trans- 
formed dependent variable In Y. Then 

In general, if zu(y )  is a transformation of Y, then the 
untransformed likelihood is 

where J(Y, ) is the Jacobian of the transformation, eval- 
uated at data point i .  

3. Which Criteria Are Best? 
In this section we address the question of which of the 
general model selection criteria perform best in selecting 
the correct model, when the correct model is in the con- 
sideration set. We assess the performance of the differ- 
ent criteria by how often they identify the correct model 
and whether there is any evidence of bias in the selec- 
tions. The section also contains an assessment of the 
relative accuracy, presence of bias, and information 
content of the posterior probabilities derived from each 
criterion. 

3.1. An Empirically Derived Simulation 
We based our simulation on 15 empirical data sets which 
had previously been used to test the forecasting accuracy 
of market share models (Brodie and DeKluyver 1984). 
The data sets represented 15 brands from three New 
Zealand markets. Three of the brands were chocolate 
biscuits (cookies), five were liquid detergents, and seven 
were toothpastes. For each brand there were 28 bi- 
monthly observations (1975-1980) of market share, 
advertising, price, distribution, and other marketing 
variables, extracted from Nielsen retail audits and a na- 
tional advertising audit. 

We examined two sets of models. The first set of 
models is a static model versus a dynamic model of 
market share. The static model is" 

See Brodie and DeKluyver (1984) for detailed descriptions of the 
operationalizations of the variables. 

M S t = c u + P I P , + P 2 D f + P 3 A t + ~  where (18)  

M S ,  = market share at period f; 

P, = price at f; 

D, = distribution at t;  
A ,  = advertising at f; 

t = error term, assumed i.i.d. normal; and 
cu = constant. 

The dynamic model includes a lagged dependent 
variable, MS,-, 

This set of models is nested. 
The second set of models is a multiplicative (log) 

model versus a linear model. The multiplicative model 
is 

In MS,  = a + P I  In P, + P2 In D, 

while the linear model is equivalent to the above dy- 
namic model (equation 19) .  The multiplicative model 
is linearized using logs, and thus both models are in- 
herently linear, although they are not nested. 

Both competing models were estimated on all 15 data 
sets, for both sets of models. We then constructed 675 
simulated data sets, 15 replications for each of the 15 
sets of empirical data, for each of the three distinct con- 
ditions (true model is static/linear, dynamic, or log). 
For example, for the static model condition, the coeffi- 
cient estimates and error variance estimate were as-
sumed to be the true values, for each of the 15 data 
sets. Then the 15 replication data sets were constructed 
by simulating a random error term around the predicted 
dependent variable value. Thus, the simulated data sets 
are reflective of the actual data, even though the de- 
pendent variable values are simulated. All the inde- 
pendent variable intercorrelations are retained. 

We tested how accurately each criterion chose the 
correct model and produced posterior probabilities of 
model correctness. For the purpose of comparison, we 
also tested several nongeneral criteria: a nested F test 
and a likelihood ratio chi-square (both at the 95% level) 
for the static vs, dynamic comparison; the Box-Cox cri- 
terion for the linear vs. log comparison; and adjusted 
R 2  (ADJR) for both comparisons (not general because 
a single dependent variable is required). We can thus 
see whether or not the general criteria do as well as 
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Table 1 

Criteria 

Schwarz 
Akaike 
CVL(L') 
PSRQB(L*) 
ADJR 
Allenby 

Model Selection Accuracy: Comparison of Individual Criteria 

Static Dynamic Linear Log 
(1 8)' (1 9) (20) (1 9) Total % Correct Rank 

PSRQB(Sp1lt) 
CVL(Split) 
Log L(95%) 
F(95%) 
BOX-COX 

' Number correct out of 225 replications. 

'Number correct out of 900 replications. 

Equat~on number (see text). 

criteria which were designed specifically for the kind of 
model comparison encountered. 

3.2. Model Selection Accuracy 
Table 1 summarizes the performance of the various cri- 
teria, for the four true model conditions. There were a 
total of 225 selections in each cell. We see that the 
Schwarz and Akaike criteria, as well as both the jack- 
knife criteria, do a consistently good job of selecting the 
correct model. In the dynamic-static comparison, the 
traditional F-test and likelihood ratio test do a very good 
job of picking the correct model, although they are not 
significantly better than Schwarz or CVL(L"'). 

Dividing the analysis into the static-dynamic and 
linear-log cases provides further insights. In Table 2 we 
test whether any of the criteria are significantly biased 
in favor of one of the model specifications. Table 2 re-
ports the z-scores for tests of whether the success rates 
are significantly different for the competing models (as- 
suming a Ber?iotllli process). In the static-dynamic case 
we see that again the Schwarz, Akaike, and CVL(L") 
criteria perform best. Allenby (1990) had suggested that 
the Akaike and Schwarz criteria would overly empha- 
size parsimony, ~ ~ h i l e  his would not. The comparison 
of proportions test indicates that the hypotheses that 
Akaike and Schwarz each produce equal selection 
probabilities for the static vs. more complicated dynamic 
model and cannot be rejected at the 95% level. Allenby's 

criterion, on the other hand, significantly favors the less 
parsimonious model, which would suggest that the ap- 
proximation on which Allenby's criterion is based may 
contain a systematic bias. This may be caused by 
Allenby's use of the approximation of the fit on the 
entire sample as a proxy for cross-validated fit. This 

Table 2 Selection Bias by Model Selection Scenario 

Criteria Dynamic vs. Static (2-score) Linear vs. Log (2-score) 

Schwarz 
Akaike 
CVL(Spl1t) 
PSRQB(L*) 
CVL(L') 
PSRQB(Sp1it) 
Allenby 
ADJR 
F 
BOX-COX 

' The mlnus sign indicates static is preferred, but in t h ~ s  case not signifi- 
cantly. 

'The positive sign indicates linear is preferred, but in this case not sig- 
nificantly. 

* S~gn~f icantat 0.05 level. Az-score greater than 1.96 (2.58) would suggest 
that the probability that a method signif~cantly prefers one of the two models 
IS less than 5% (1%). 
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results in an advantage for more complicated models, 
because their fit has fewer degrees of freedom. 

The linear vs. log comparison shows that the full 
sample criteria all do equivalently well because model 
parsimony does not influence selection (the log and lin- 
ear models have the same number of parameters). The 
jackknife criteria also do well, and the split criteria do 
somewhat worse. Table 2 shows that none of the criteria 
has a significant bias with regard to the linear-log com- 
parison. 

3.3. Posterior Probability Accuracy 
The results in Table 3 allow us to evaluate the relative 
accuracy, bias, and information content in the posterior 
probabilities derived from each criterion. Each of the 
criteria was used to generate 900 posterior probability 
estimate^.^ To calculate actual probabilities of success 
for each criterion, these 900 estimates were sorted in 
order of confidence between 0.5 and 1.0. The estimates 
were then sequentially allocated into 45 ordered groups 
(20 estimates in each group). For each of these 45 
groups a meall  posterior probabil i ty  was calculated by 
finding the mean of the 20 posterior probability esti- 
mates. Meal1 ac tual  success was measured by the pro- 
portion of times (out of 20) that the criterion chose the 
true model (gave probability greater than or equal to 
0.5 that the true model was correct). 

Accuracy and bias in the posterior probability esti- 
mates from each criterion were evaluated by regressing 
the mean posterior probability estimate against mean 
actual success. Perfect predictions would result in a 
constant of zero, coefficient of one, and all the variance 
in the dependent variable being explained. Investigation 
of the information content in the various posterior 
probability estimates recognizes that a criterion can 
perform well in this regression test by making few con- 
fident predictions. If the criterion reports that both al- 
ternatives are equally likely, its posterior probability es- 
timate does not provide any more information than the 
priors, as each specification is correct the same number 
of times. Only posterior probability estimates that differ 
from 0.5 yield additional information and offer an op- 

For each of 15 simulations, 15 data sets, and four simulation scenarios. 

'Given that there are only 2 alternative model specifications, in each 
case the preferred specification had a minimum posterior probability 
of 0.5. 
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Table 3 Posterior Probability Accuracy: Comparison of Criteria 

Results of Regressing Mean Posterior 
Probabilihes on Mean Actual Success 

Sum of Logs* 
Criteria Constant ( n )  Coeffic~ent(0) R2 X 

Schwarz -0.0339 
(0.0749) 

Akalke 0.0355 
(0 0777) 

CVL(Li) 0.0494 
(0.0859) 

PSRQB(Split) 0.0017 
(0.0700) 

Allenby 0.1843 
(0.0945) 

CVL(Split) 0.2280' 
(0 0701) 

PRSQB(L') 0 4379' 
(0.1571) 

The sample slze for each regression was 45 

The terms ~n brackets under each parameter are standard errors 

'See equatlon (21) 

' Slgnlflcantly dlfferent f rom zero (O = 0 05) 

Slgnlflcantly dlfferent f rom one (n = 0 05) 

portunity for incorrect predictions. The information 
content in each criterion's posterior probabilities was 
evaluated by summing the log of each criterion's pos- 
terior probability estimates: 

900 

x =  2 L , .  (21)  
1 = 1  

The higher the value of X ,  the more confident were the 
posterior probabilities. The sum of the logs of the priors 
is equal to -623.8, which provides a lower bound for 
this measure. 

Schwarz, Akaike, CVL(L"), and PSRQB(Sp1it) pro- 
vided the most accurate posterior probabilities, with no 
significant biases and around 70% of the variance in 
mean actual success explained by the posterior proba- 
bility estimates. Schwarz and Akaike also provided im- 
pressive information content, while CVL(L") and 
PSRQB(Sp1it) contributed the least information of all 
seven of the criteria. 

The lack of information content in the PSRQB(Sp1it) 
estimates offers an explanation for why there was no 
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significant bias in the posterior probabilities from this 
split sample approach while the jackknifed version's 
posterior probabilities were significantly biased. The 
jackknifing procedure on PSRQB resulted in posterior 
probabilities that were more confident than any of the 
other six criteria, while the estimates from the split 
sample approach were the least confident. When the 
posterior probabilities do not differ from the priors, the 
posteriors provide no additional information and afford 
no opportunity to introduce bias. Therefore, biases will 
be more apparent when the posterior probabilities are 
more confident. 

The posterior probability estimates for Allenby and 
CVL(Sp1it) were also systematically biased and were 
poor predictors of actual success. The /3 parameter es- 
timates (significantly less than one) indicate that the 
posterior probability predictions are overly optimistic, 
while the R 2  reported for these three criteria are no- 
ticeably smaller than those reported for the other criteria. 

3.4. 	 Time Requirements and Ease of Use 
The Schwarz, Akaike, and Allenby criteria require only 
the log maximum likelihood, plus the simple calculation 
of a penalty term. Their calculation is virtually instan- 
taneous (about 0.1 seconds CPU time for each-all runs 
performed on a 486 PC),  and the criteria are very easy 
to implement. The CVL procedures require several steps. 
First, the sample must be split (either once or many 
times). Model coefficients must be estimated for each 
sample split. Finally, the likelihood must be calculated 
for each validation sample. These criteria are consid- 
erably more trouble than the Akaike, Schwarz, and Al- 
lenby approaches. While CPU time is not a major cost, 
it does offer an approximation of the relative complexity 
of the different criteria. CVL(Sp1it) required an average 
of about 0.2 seconds CPU time, and CVL(L") required 
an average of 4.1 seconds. 

Most complicated and difficult to use are the PSRQB 
approaches. They require all the effort of the CVL ap- 
proaches, plus the necessity of numerical integration, 
in most instances. Often the numerical integration will 
need to be accomplished in a high-dimensional space, 
which can be computationally forbidding. Even when, 
as in our simulations, closed-form solutions exist, these 
criteria are relatively slow, although not infeasible time- 
wise. PSRQB(Sp1it) required an average of 0.3 seconds 
of CPU time, and PSRQB(L") an average of 9.0 seconds. 

3.5. 	 Caveats 
We must qualify all our performance results with the 
observation that we have investigated only a small 
fraction of the model comparison scenarios which are 
possible. Thus, it is always possible that (for reasons 
unforeseen) there may exist conditions under which 
criteria which performed poorly in our study may in- 
stead perform very well. There is considerable room for 
further empirical and theoretical study to determine the 
conditions under which particular criteria may show a 
differential advantage. 

4. 	 How Many Criteria Should Be 
Used? 

One might wonder whether combining two or more 
criteria might produce better results than using any sin- 
gle criterion. To investigate what advantages can be 
gained from combining model selection criteria, we 
propose a method for combining criteria and explore 
whether combinations of criteria are more accurate at 
identifying the correct model specification. 

4.1. 	 A Method for Combining Criteria 
In this subsection we propose a method for combining 
model selection criteria. Our situation differs from the 
usual combination of forecasts scenario because selec- 
tion of a model is categorical, while a forecast is quan- 
titatively scaled. Let PL,,,, denote the posterior likelihood 
of model j according to criterion nz, as calculated in 
subsection 2.4, except normalized to sum to one across 
models. Assume that there exists a linear combination 

x, = 	C Pll,~L,lll, (22)  
Ill  

for which choosing the model with the highest X, will 
maximize the likelihood of choosing the correct model. 
Specifically, assume that 

where Y, is a true model indicator, and t is an extreme 
value distributed error term which reflects that the linear 
combination is fallible in selecting the true model. We 
assume that the model j for which Y, is largest is the 
true model. These are the standard logit assumptions. 
By calibrating the model (estimating the /3 coefficients) 
and testing its predictive performance, we should be 
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Table 4 Estimation and Prediction Results: Combinations of Criteria 

W h ~ c h  Criteria Were ~n Each O p t ~ m a l  Combina t~on?  
S ~ z e  of O p t ~ m a l  Combina t~on  

Schwarz J J J J J 


PSRQB(L*) J J J 


CVL(Split) J J 


CVL(L') J J 


Allenby J J 


PSRQB(Split) 

Akaike 

Constant J J J J 


l nd~ca tes  that t h ~ s  c r l te r~a  was Included in the relevant o p t ~ m a l  comb~nat ion .  

Incremental Accuracy From C o m b ~ n ~ n g  Criteria 

2 Log L ike l~hood  34031 340.07 322.12 321.58 

%Correct (Est) 84.8 86.9 87.2 86.9 86.7 

%Correct (Val.) 78.1 80.0 80.6 81.4 81.4 


able to ascertain the benefits of combining several com- binations on the validation sample, and recorded the 
parison criteria. proportion of the time the correct model was chosen, 

for each combination of criteria. 
4.2. Research Design 
For the four simulation scenarios (static correct, dynamic 4.3. Results 
correct, linear correct, log correct) we randomly selected Table 4 shows the accuracy of the combinations of cri- 
nine of the fifteen data sets to serve as an estimation teria on both the estimation and the validation sample. 
sample, and reserved the remaining six data sets for The Schwarz criterion was the single best selection cri- 
validative testing. We constructed a dependent variable, terion (for the estimation sample), choosing the correct 
which was one when the model was correct and zero model 84.8% of the time. It is striking that, even in the 
otherwise. To create variance in the dependent variable, estimation sample, there is very little improvement with 
we considered the wrong model in four randomly cho- the number of criteria. In fact, the correct selection per- 
sen data sets of the nine estimation data sets, and three centage actually declines somewhat, even though the 
randomly chosen data sets of the six validation data log likelihood continues to improve. This is possible be- 
sets.' cause the combinations can become "more sure" of 

We then estimated a logit model with model correct- which model is correct (increasing the posterior prob- 
ness (one or zero) as dependent variable and PL,,,,'s as abilities) . 
independent variables. The wrong model PL,,,, was used The relative performance of the combinations of cri- 
if the dependent variable was zero, while the correct teria could be tested by obtaining posterior likelihoods 
model was used if the dependent variable was one. Us- of the different numbers of criteria, assuming that one 
ing the estimation sample and considering all possible of the combinations is the true model and that they 
combinations, we first found the best pair of criteria, have equal prior probabilities. The posterior likelihoods 
then the best triple, quadruple, quintuple, and sextuple. will then be proportional to the proportion of correct 
We also found the best individual criterion, and the selections. However, it is obvious that this Bayesian test 
coefficients for the model which included all seven cri- will not differentiate between the combination of criteria 
teria. We then tested the predictive ability of the corn- very much, since the performance of the worst com- 

bination (78.1%) is still about 95% of the performance 
s Otherwise, there would be no  variance in the dependent variable. of the best combination (82.5%).  
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An alternative test may be conducted on th,e esti- 
mation sample. Some of the combinations are nested 
within others, permitting a likelihood ratio chi-square 
test. By this test, using all seven criteria results in a -2 
log likelihood of 296.647, compared to 381.578 for one 
criterion. The chi-square value is thus 84.931, which 
exceeds the 0.05 critical value of 12.592. Similar tests 
show the 7-combination's superiority over all the others. 
This gives some evidence that using a combination of 
criteria may be superior. However, given our large Sam- 
ple size, statistical significance is not surprising. Given 
a large enough sample size, arzy unique information 
added by a criterion will produce significance. It is clear 
that the practical gains from employing multiple criteria 
may be small. For example, using all seven criteria, as 
would be indicated by the likelihood ratio tests, im- 
proved prediction in the validation sample only from 
78.1% to 80.0% (versus using only the Schwarz crite- 
rion). 

5. Conclusions 
We conclude that the use of more than one model se- 
lection criterion may be unwarranted. This is apparently 
due to the fact that all good model selection criteria are 
highly intercorrelated. Thus, following the logic of 
Clemen and Winkler (1985), very little additional in- 
formation is imparted, and even a very large number 
of criteria might not add very much in selection accu- 
racy. 

Given that it is best to use only one criterion, which 
criterion should it be? Based on our analyses, as well as 
those of several previous studies, we conclude that the 
Schwarz and Akaike criteria both do a good job of se- 
lecting the best model. Of the two, the Schwarz criterion 
appears to be the most consistently accurate. The esti- 
mated posterior probabilities from the Schwarz criterion 
were also the most accurate predictions of the criterion's 
actual accuracy. Thus, by using the Schwarz criterion, 
we may accurately select the correct model, and at the 
same time generate posterior probabilities of model cor- 
rectness, conditional on the correct model being in the 
consideration set. What's more, the necessary calcula- 
tions to implement this criterion are very simple and 
can be performed in seconds on a hand calculator, given 
the log maximum likelihoods of the competing models. 

In summary, we conclude that the best available gen- 
eral approach to selecting quantitative models is also 
one which is startingly easy to implement. Using the 
Schwarz criterion is likely to result in accurate model 
selections and an accurate evaluation of the relative 
likelihood that the selected model is best.9 

The authors appreciate the helpful comments of John D. C. Little 
and John R. Hauser, and the statistical assistance of Bruce Cooil. 
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