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MODEL SELECTION FOR A FAMILY OF DISCRETE
FAILURE TIME DISTRIBUTIONS

BERNHARD KLAR 1

Universität Karlsruhe

Summary

In recent years, a large number of new discrete distributions have appeared in the literature.
However, flexible discrete models which, at the same time, allow for easy statistical infer-
ence, are still an exception. This paper makes a detailed analysis of a family of discrete
failure time distributions which meets both requirements. It examines the maximum like-
lihood estimation of the unknown parameters and presents a goodness-of-fit test for this
model. The test is used for the selection of an appropriate model for datasets of frequencies
of the duration of atmospheric circulation patterns.

Key words: model selection; goodness-of-fit test; discrete distribution; failure time model; maxi-
mum likelihood estimation.

1. Introduction

This paper examines a family of discrete failure time distributions and its application to
meteorological datasets. Although discrete time models occur quite naturally in many appli-
cations, for example in reliability theory or biology, there are only a few results on discrete life
time distributions in the literature (apart from the geometric distribution that is characterized
by a constant hazard rate). Besides a brief discussion in Kalbfleisch & Prentice (1980) about
discrete failure distributions that can be obtained from continuous distributions such as the
Weibull, discrete failure models are examined, for instance, in Salvia & Bollinger (1982),
Xekalaki (1983), Padgett & Spurrier (1985). Their models have one or two parameters and
allow constant, increasing or decreasing failure rates. The datasets considered below show
that these models are not flexible enough in some cases. Moreover, they give no probability
theory for the estimators, so their statistical inference has no rigorous foundation.

Other increasing failure rate distributions are the Poisson and the binomial distribution,
whereas the negative binomial distribution has constant, increasing or decreasing failure rate
depending on the parameter (see e.g. Johnson, Kotz & Kemp, 1992). However, these distri-
butions are not typically used as failure time models because there are no simple expressions
for the hazard function. Again, these distributions are not versatile enough for our purposes.

Adams & Watson (1989) introduced a very flexible parametric discrete time failure model.
Because the number of parameters can be chosen arbitrarily, the model allows for a variety of
hazard function and probability mass function shapes (as Figs 1–8 below show). The model is
convenient for statistical inference. There are reasonably simple forms for the survivor func-
tion and the probability mass function because they are finite products of the hazard function
(a property that is not shared by continuous models).
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We used this model to fit datasets of frequencies of the duration of atmospheric circulation
patterns that are a basic part of a space–time model for daily rainfall (Bárdossy & Plate,
1992). In their work, B́ardossy & Plate used the generalized Poisson distribution (Consul,
1989) to model the overdispersion relative to the Poisson distribution. However, a careful
analysis (Henze & Klar, 1995) showed that this assumption may not be justified in many
cases. Although it is certainly not possible to give a theoretical justification for a particular
distribution, the development of an atmospheric circulation pattern suggests the application
of a lifetime distribution.

The paper is organized as follows. Section 2 describes the discrete failure model and
some of its properties. We point out that, in its original definition, the model does not always
generate a proper probability distribution. In specific applications to survival analysis (for
example, the time to recurrence of symptoms that might never occur), improper distributions
may be appropriate. However, we wish to apply the model in a situation where the variables
must be finite, so we need to modify the model in order that a proper distribution results. Sec-
tion 3 takes a closer look at the estimation of the parameters; in particular, it establishes the
uniqueness of the maximum likelihood estimator (MLE). Furthermore, it proves, rigorously,
the assertion of Adams & Watson (1989), that the asymptotic distribution of the estimator is
multivariate normal. In Section 4 we briefly describe a goodness-of-fit test for discrete distri-
butions and use it as a model selection procedure for frequencies of the duration of circulation
pattern. In our opinion, it is preferable to the selection procedure used by Adams and Watson.

2. The Discrete Failure Time Model

Adams & Watson (1989) introduced the following parametric discrete failure time model.
Let G and g denote the distribution function and the probability density function of a con-
tinuous symmetric distribution, i.e.

g(x) = g(−x), G(x) = 1−G(−x) (x ∈ R).

Then by means of a (low order) polynomial

ξ(t) = θ0 + θ1t + · · · + θmtm, (1)

whereθ = (θ0, θ1, . . . , θm)′ ∈ 2 = Rm+1, the hazard mass functionh is defined by

h(t) = Pr(T = t | T ≥ t) = G
(
ξ(t)

)
(t ∈ N0),

where N0 denotes the non-negative integers andT is a non-negative, integer-valued random
variable representing failure time. From the well-known formulas

h(t) = p(t)

S(t)
and S(t) =

t−1∏
s=0

(
1− h(s)

)
, (2)

wherep denotes the probability mass function (pmf) andS(t) = Pr(T ≥ t) is the probability
of survival until time t, it follows that

S(t) =
t−1∏
s=0

G
(− ξ(s)

)
and p(t) = G

(
ξ(t)

) t−1∏
s=0

G
(− ξ(s)

)
. (3)
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Throughout the following,G is the logistic function

G(x) = 1

1+ e−x
. (4)

This seems to be the most appropriate choice, as already mentioned by Adams & Watson
(1989). Although other possible choices ofG, such as the normal distribution function, result
in models of comparable smoothness and flexibility, statistical inference is more involved.

For m ≥ 1, S(∞) = lim t→∞ S(t) = 0 only if θm > 0, whereasS(∞) ∈ (0, 1) if
θm < 0 (note that the infinite product

∏∞
k=0(1− ak), ak ∈ (0, 1), converges to a positive

number if, and only if,
∑∞

k=0 ak converges). Hence it is necessary that the highest order
coefficient is positive to ensure that a proper pmf is defined by (3). One way to overcome
this drawback is to restrict the parameter space, but this raises difficulties in the estimation
and testing procedure. Moreover, the possible shapes of the model would be restricted in an
undesirable way.

Normalizing the pmf with
(
1−S(∞)

)−1 is not appropriate because then the normalized
hazard function

h′(t) = p(t)

S(t)− S(∞)
= G

(
ξ(t)

)
1−∏∞

s=k G
(− ξ(s)

)
would not have a simple form any longer.

In practical applications, however, one observes that even ifθm is negativeS(∞) is
nearly zero. For instance, form = 2 and θ0 = −14.8, θ1 = 0.0736, θ2 = −0.000122
(see Adams & Watson, 1989 Example 3.4) we haveS(∞) ≈ 0.02. Hence for theoretical
considerations we modify the polynomial in (1) and define

ξ(t) = θ0 + θ1t + · · · + θmtm + εtm+1 (ε > 0),

whereε is an arbitrary but fixed positive constant. From a practical point of view, the last
term should not affect estimation of the parameter vectorθ; henceε should be chosen to be
very small (or even omitted) in a computer implementation.

From the definition of the hazard function it is obvious thath is increasing if and only
if the polynomialξ is increasing. For the special casem = 0 the distribution has constant
failure rate, i.e. it is a geometric distribution. With regard to the shape of the pmf we have the
following result.

Theorem 2.1.For t ∈ N0,

p(t + 1)− p(t) < 0⇐⇒ e−ξ(t+1) − e−ξ(t) + 1 > 0. (5)

Hence p is decreasing if ξ is decreasing or if 0 ≤ ξ(t) ≤ ξ(t + 1). In the case m = 1 the
pmf is unimodal with the mode at the point

t0 = max

{
0,

[
ln(1− e−α1)− α0

α1

]
+ 1

}
,

where [x] denotes the greatest integer not exceeding x.
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Proof. From (2) we obtain

p(t + 1) = h(t + 1)

h(t)

(
1− h(t)

)
p(t),

which yields

p(t + 1)− p(t) = p(t)

h(t)

[
h(t + 1)

(
1− h(t)

)− h(t)
]
.

Becausep(t) andh(t) are positive, we get

p(t + 1)− p(t) < 0⇐⇒ h(t + 1)
(
1− h(t)

)− h(t) < 0,

from which (5) follows. The result form = 1 is an immediate consequence.

A drawback of the introduced model is that there are no simple expressions for the sur-
vivor function, probability mass function, moments, etc. For simulation purposes, however,
this seems not to be a severe restriction of the applicability of the model. Moments can be
computed from

E(T p) =
∞∑
t=1

(
tp − (t − 1)p

)
S(t), (6)

which follows directly from the well-known formula

E
(|X|p) =

∫ ∞
0

p tp−1Pr
(|X| > x

)
λ(dx),

whereλ denotes Lebesgue measure. Using (6) we also obtain the existence of all moments,
i.e.

E(T p) <∞ (p ∈ N). (7)

3. Maximum Likelihood Estimation

Let ft denote the observed frequency of the valuet, t ∈ N0, in a sample(x1, . . . , xn) of
sizen and definent =

∑
s≥t fs . Here,x1, . . . , xn are the realized values of random variables

X1, . . . , Xn which are independent and identically distributed (iid) according top. From the
definition of the likelihood function

L(θ) =
n∏

i=1

p(xi) =
∞∏
t=0

p(t)ft

we obtain

L(θ) =
∞∏
t=0

[
h(t)ft

(
1− h(t)

)nt−ft
] =

∞∏
t=0

[
G

(
ξ(t)

)ft G
(− ξ(t)

)nt−ft
]
.

Hence, the log-likelihood functionL (θ) = logL(θ) is given by

L(θ) =
∞∑
t=0

[
ft logG

(
ξ(t)

)+ (nt − ft ) logG
(− ξ(t)

)]

=
∞∑
t=0

[
ft ξ(t)− nt log

(
1+ eξ(t)

)]
. (8)
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Differentiation yields the score vector

∂L(θ)

∂θk

=
∞∑
t=0

tk
[
ft − nt G

(
ξ(t)

)]
(k = 0, . . . , m),

and the elementsIjk of the observed information matrixI (θ)

Ijk = − ∂L(θ)

∂θj ∂θk

=
∞∑
t=0

[
tj+knt G

(
ξ(t)

)
G

(− ξ(t)
)]

(j, k = 0, . . . , m).

Lemma 3.1. Let k0 = max{t ∈ N0 : ft > 0}, i.e. k0 is the largest value which occurs in the
sample. Then, for the determinant of the observed information matrix, we have

detI (θ) = 0 if m > k0,

and
detI (θ) > 0 if 0 ≤ m ≤ k0.

Furthermore, I (θ) is positive definite in the second case.

Proof. Putting
c(t) = nt G

(
ξ(t)

)
G

(− ξ(t)
)
, (9)

we have

Ijk =
k0∑

t=0

tj+kc(t) (j, k = 0, . . . , m).

Note thatc(t) > 0 for 0 ≤ t ≤ k0. I (θ) is the usual product of the(m + 1) × (k0 + 1)

matrix A = (aij ), whereaij = c(j) j i and the(k0+ 1)× (m+ 1) matrix B = (bij ), where
bjk = jk. Now, if m > k0, we can define a square matrix̄A by adding(m−k0) zero columns
to A and another square matrix̄B by adding(m− k0) zero rows toB. This does not affect
the result of the multiplication, i.e. we still haveI (θ) = ĀB̄. By means of the multiplication
rule for determinants, it immediately follows that

detI (θ) = detĀ detB̄ = 0.

If m ≤ k0, we can apply a rule for computing the determinant of a matrix which is the product
of two rectangular matrices (see e.g. Kowalewski, 1948 p.66). This yields

detI (θ) =
∑

i0<···<im

det







c(i0) · · · c(im)

i0c(i0) · · · imc(im)
...

...

im0 c(i0) · · · immc(im)







1 i0 · · · im0 )

1 i1 · · · im1 )

...
...

...

1 im · · · imm







=
∑

i0<···<im

c(i0) · · · c(im) detV(i0, . . . , im)′ detV(i0, . . . , im),

where i0, . . . , im ∈ {0, . . . , k0} and V(i0, . . . , im) denotes the Vandermonde matrix of
i0, . . . , im. From detV(i0, . . . , im) =∏m

k=0
∏k−1

j=0(ik − ij )
2 we obtain

detI (θ) =
∑

i0<···<im

m∏
k=0

c(ik)

m∏
k=0

k−1∏
j=0

(ik − ij )
2 > 0. (10)

Since this holds for arbitrarym ≤ k0, the same is valid for all sub-determinants ofI (θ).

Hence the last assertion of the lemma follows.
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Corollary 3.2. If m ≤ k0, the inverse of the observed information matrix is given by

[
I (θ)

]−1
ij
= (−1)i+j

detI (θ)

∑
i0<···<im−1

s
i0,...,im−1
m−i s

i0,...,im−1
m−j

m−1∏
k=0

c(ik)

m−1∏
k=0

k−1∏
j=0

(ik − ij )
2,

where c(t) is defined in (9), detI (θ) is given in (10) and s
t1,...,tm
i are the elementary symmetric

functions of t1, . . . , tm, defined by s
t1,...,tm
0 = 1 and

s
t1,...,tm
i =

∑
ν1<···<νi

tν1 · · · tνi
(1≤ i ≤ m).

Proof. Let I (ij) denote the square matrix which is obtained fromI (θ) by deleting thei th row
and thej th column. LetA(i) (B(j)) denote the matrix which is obtained from the matrixA
(B) in the proof of Lemma 3.1 by deleting thei th row (j th column). We then haveI (ij) =
A(i) B(j), and proceeding in the same way as in the proof of Lemma 3.1, we obtain

detI (ij) =
∑

i0<···<im−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c(i0) · · · c(im−1)

...
...

ii−1
0 c(i0) · · · ii−1

m c(im−1)

ii+1
0 c(i0) · · · ii+1

m c(im−1)

...
...

im0 c(i0) · · · immc(im−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
...

...

i
j−1
0 · · · i

j−1
m−1

i
j+1
0 · · · i

j+1
m−1

...
...

im0 · · · imm−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

=
∑

i0<···<im−1

m−1∏
k=0

c(ik) s
i0,...,im−1
m−i s

i0,...,im−1
m−j

(
detV(i0, . . . , im−1)

)2
,

wherei0, . . . , im−1 ∈ {0, . . . , k0} and thes
t1,...,tm
i are the elementary symmetric functions of

t1, . . . , tm as defined above. Observing that

[
I (θ)

]−1
ij
= (−1)i+j detI (ij)

detI (θ)
,

the assertion follows.

Theorem 3.3.Suppose that ft > 0 for at least m+ 2 integers. Then

(a) the log-likelihood function L(θ) is a strictly concave function of θ,

(b) there is a unique maximum likelihood estimate θ̂ n ∈ 2,

(c) L(θ) has no other maxima or minima or other stationary points in 2.

Proof. Since the matrix of the second derivatives ofL(θ), which is the negative of the ob-
served information matrixI (θ), is negative definite by Lemma 3.1,L(θ) is strictly concave
and has at most one maximum point.
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Let the sequence(θ(1), θ (2), . . . , θ (k)) ∈ 2, converge to the boundary∂2 of 2, i.e.
limk→∞ ‖θ(k)‖ = ∞. We prove that, under the above assumptions, limk→∞ L(θ(k)) = −∞
holds.

Sinceft > 0 for at leastm + 2 integers, there are at leastm + 1 integerst0, . . . , tm
such thatfti > 0 andnti − fti > 0. Assuming the existence of a constantc > 0 such that
L(θ(k)) ≥ −c for eachk, there is a vectoru = (u0, . . . , um) such that fori = 0, . . . , m,

and for eachk
−ui ≤ θ

(k)
0 + · · · + θ(k)

m tmi + εtm+1
i ≤ ui

(otherwise (8) shows thatL(θ(k)) would tend to−∞). This is equivalent to

‖V(t0, . . . , tm) θ(k)‖ ≤ ‖u′‖
for some vectoru′, where V(t0, . . . , tm) is the Vandermonde matrix oft0, . . . , tm. Since
V(t0, . . . , tm) is regular, this implies

‖θ(k)‖ ≤ ‖V(t0, . . . , tm)−1u′‖
for eachk, a contradiction. Hence the theorem is proved.

Remarks.

1. Note that the requirement of Theorem 3.3 is met with probability tending to 1 as the
sample size tends to infinity.

2. In the condition, it is not possible to replacem+2 by m+1 as the number of parameters
would suggest. For instance, letm = 1, f0, f1 > 0 andft = 0, t > 1; hencen0−f0 =
f1 > 0 andnt − ft = 0, t > 0. Then

L(θ) = f0 log
(
G(θ0)

)+ f1 log
(
G(−θ0)

)+ f1 log
(
G(θ0 + θ1)

)
has no stationary points.

In what follows we have to check some regularity conditions to obtain standard asymp-
totic results for the maximum likelihood estimator (MLE)θ̂ n. Write p(·, θ) instead ofp(·)
to make the dependence on the parameter vector explicit. Throughout the following, assume
that X, X1, . . . , Xn are iid p(·, θ), θ ∈ 2. The distributionsPθ corresponding top(·, θ)

are identifiable, i.e.θ 6= θ ′, θ, θ ′ ∈ 2 implies Pθ 6= Pθ ′ . Moreover, the distributions have
common support for allθ ∈ 2, and all third derivatives ofp(·, θ) with respect toθ exist for
all θ ∈ 2.

To prove that further standard regularity conditions in the context of maximum likelihood
estimation hold, note that

logp(x, θ) = logG
(
ξ(x)

)+
x−1∑
s=0

logG
(− ξ(s)

)
,

∂ logp(x, θ)

∂θj
= xj −

x∑
s=0

sjG
(
ξ(s)

)
, (11)

∂2 logp(x, θ)

∂θj ∂θk

=
x∑

s=0

sj+kG
(
ξ(s)

)
G

(− ξ(s)
)
, (12)

∂3 logp(x, θ)

∂θi∂θj ∂θk

=
x∑

s=0

si+j+kG
(
ξ(s)

)
G

(− ξ(s)
)(

G
(
ξ(s)

)−G
(− ξ(s)

))
, (13)
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wherei, j, k ∈ {0, . . . , m}. By (11), Eθ [∂ logp(X, θ)/∂θj ] = 0 for j = 0, . . . , m, since

Eθ

[ X∑
s=0

sjG
(
ξ(s)

)] =
∞∑

x=0

[ x∑
s=0

sjG
(
ξ(s)

)]
p(x, θ) =

∞∑
s=0

sjG
(
ξ(s)

)
S(s) = Eθ [Xj ] ,

where Eθ
[
Xj

]
was shown to be finite in (7). Next, we have (cf. (12))

−Eθ

[
∂2 logp(X, θ)

∂θj ∂θk

]
=
∞∑

x=0

x∑
s=0

sj+kG
(
ξ(s)

)
G

(− ξ(s)
)
p(x, θ)

=
∞∑

s=0

sj+kG
(
ξ(s)

)
G

(− ξ(s)
)
S(s)

=
∞∑

s=0

sj+kG
(− ξ(s)

)
p(s, θ)

= Eθ

[
Xj+kG

(− ξ(X)
)]

(j, k = 0, . . . , m),

where the existence of the last expectation follows again from (7). The same result holds for
the elementsIjk(θ) of the Fisher information matrixIF (θ), defined by

Ijk(θ) = Eθ

[(
∂

∂θj
logp(X, θ)

)(
∂

∂θk

logp(X, θ)

)]
.

Hence they satisfy

Ijk(θ) = −Eθ

[
∂2

∂θj ∂θk

logp(X, θ)

]
.

For fixedθ ∈ 2, define matricesI r (θ), r = 1, 2, . . . , with elements

I r
jk(θ) =

r∑
s=0

sj+kG
(− ξ(s)

)
p(s, θ) (j, k = 0, . . . , m).

In the same way as in the proof of Lemma 3.1 it follows that

0 < detIm(θ) < detIm+1(θ) < · · · .

Since limr→∞ I r (θ) = IF (θ) entails limr→∞ detI r (θ) = detIF (θ), we see thatIF (θ) is
positive definite.

To show the existence of functionsMijk(x) such that for alli, j, k = 0, . . . , m,

sup
θ∈2

∣∣∣∣∂
3 logp(x, θ)

∂θi∂θj ∂θk

∣∣∣∣ ≤ Mijk(x),

where Eθ
(
Mijk(X)

)
<∞, recall that 0< G(·) < 1; therefore (13) implies

sup
θ∈2

∣∣∣∣∂
3 logp(x, θ)

∂θi∂θj ∂θk

∣∣∣∣ ≤
x∑

s=0

si+j+k = Mijk(x).

To see that the expectation ofMijk(X) is finite note that

Eθ

[ X∑
s=0

si+j+k

]
=
∞∑

s=0

si+j+kS(s),

where the series on the right side converges.
Since the standard regularity conditions for maximum likelihood estimation are fulfilled,

we have the following theorem; for a proof see Lehmann (1983 Theorem 6.4.1).
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Theorem 3.4.For the MLE θ̂ n = θ̂ n(X1, . . . , Xn) which exists and is unique under the
assumption of Theorem 3.3, we have:

(a) θ̂ n is consistent, i.e. for all ε > 0 and j = 0, . . . , m

Pr(|θ̂ n
j − θj | > ε) −→ 0 asn→∞;

(b)
√

n(θ̂n − θ) is asymptotically normal with mean zero and covariance matrix [IF (θ)]−1

and has the representation

√
n(θ̂n − θ) = 1√

n

n∑
i=1

`(Xi, θ)+ εn,

where εn converges in probability to zero as n→∞, and the vector ` is the product of
the score vector times the inverse of the information matrix, i.e.

j̀ (Xi, θ) =
m∑

k=0

[
∂ logp(Xi, θ)

∂θk

∣∣∣∣
θ

[IF (θ)]−1
jk

]
(j = 0, . . . , m);

(c) θ̂ n
j is asymptotically efficient, i.e.

√
n(θ̂n

j − θj )
d−→ N(0, [IF (θ)]−1

jj ) (j = 0, . . . , m),

where
d−→ denotes convergence in law.

3.1. Numerical Computation of the Maximum Likelihood Estimator

In order to find the MLEθ̂ n one has to maximizeL(θ) or one has to find the root of the
MLE equations∇θL(θ) = 0. In both cases usually some variant of the Newton algorithm is
applied. Since theθj in general decrease inj, the problem is badly scaled. This is particularly
the case if one uses the following step-up procedure for the selection of the degree of the
polynomial ξ(·) (cf. Adams & Watson, 1989 Sect. 3.3). The composite null hypothesisθ ∈
20 = {θ ∈ 2 : θm = 0} within the parametric model can be tested using the likelihood ratio
statistic

3 = supθ∈20
L(θ)

supθ∈2 L(θ)

or the statisticλ = −2 log3, which is asymptotically distributed asχ2
1 under the above

regularity conditions. The degree of the polynomial is successively increased until two con-
secutive terms are non-significant. The degree is then chosen to be the last value for which a
significant result has been obtained. It is obvious that in the last two steps of this procedure
the highest coefficients of the polynomial are nearly zero.

For this reason it is necessary to get good starting points for the search algorithm. As
a first trial one could equate the hazard functionh(t) = G

(
ξ(t)

)
with the empirical hazard

h̄t = ft/nt for t = 0, . . . , m. This leads to the first approximation̄θn = V(0, . . . , m)−1 ξ̄

where ξ̄t = log
(
ft/(nt − ft )

)
, t = 0, . . . , m. However, this procedure gives poor results in

most cases.
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Therefore,h(t) and h̄t should be equated for allt with nt > ft > 0. This results in an
over-determined system of equations for the polynomialξ̄ of degreem+ 1 for which a least
squares solution can be obtained. Evaluating the polynomial atm + 1 points leads, in the
same way as above, to an approximation toθ̂ n which is very satisfactory in our experience.

Even more important is an appropriate rescaling of the problem in such a way that all
components of the solution vector are of the same order of magnitude. We suggest rescaling
with θ ′j = 10j θj (j = 0, . . . , m), which permits the numerical solution of all optimization
problems in the next section without difficulties. Without rescaling, we found that the opti-
mization algorithm (we used algorithmE04LBFof theNAG library) needed several thousand
iteration steps for a satisfactory solution or even terminated without result if the degree of the
polynomial was 5 or more.

4. Goodness-of-fit Testing and Data Analysis

Let X, X1, . . . , Xn, . . . be a sequence of iid random variables taking non-negative integer
values. The problem is to test the hypothesis H0 that the unknown distribution ofX belongs
to the class of discrete failure time distributions with pmfp(·, θ), (θ ∈ 2).

For this purpose, we use the Cramér–von Mises statistic for discrete data

Cn = n

∞∑
k=0

[
Fn(k)− F(k, θ̂n)

]2
p(k, θ̂n),

whereF(·, θ) is the distribution function corresponding to the distribution with pmfp(·, θ),

andFn(·) is the empirical distribution function ofX1, . . . , Xn, i.e.

Fn(t) = 1

n

n∑
j=1

1{Xj ≤ t}.

From Henze (1996 Corollary 3.4), it follows that a limiting null distribution ofCn exists. Note
that the representation of

√
n(θ̂n−θ) in Theorem 3.4(b) together with the foregoing regularity

conditions imply Henze (1996 assumption A1) (for details, see Durbin, 1973 Sect. 4); further
Henze (1996 assumption A2) can be seen to hold. Since the null distribution ofCn, Hn,θ (t) =
Pθ(Cn ≤ t) depends onθ, it can be estimated by the following Monte Carlo procedure.

GivenX1, . . . , Xn, computeθ̂ n. Then computeC∗j,n = Cn(X
∗
j1, . . . , X

∗
jn), 1≤ j ≤ b,

where, conditionally onX1, . . . , Xn, the random variablesX∗j1, . . . , X
∗
jn, 1 ≤ j ≤ b, are

iid with pmf p(·, θ̂n). Denoting byc∗n,b(α) the (1− α)-quantile ofH ∗n,b, where

H ∗n,b(t) =
1

b

b∑
j=1

1{C∗j,n ≤ t}

is the empirical distribution function ofC∗1,n, . . . , C
∗
b,n, the hypothesis H0 is rejected at level

α if Cn exceedsc∗n,b(α).

Since θ̂ n converges in probability toθ, Henze (1996 Theorem 3.6) shows that this
bootstrap version of the Cramér–von Mises test has asymptotic levelα.

The next result shows that the test based onCn is consistent against each alternative
distribution with finite moment of orderm + 2 having a support of at leastm + 2 points.
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The latter condition is a natural requirement that ensures the existence of a unique MLE with
probability 1 asn→∞ (cf. Theorem 3.3).

All quantities computed under the alternative distribution are given an indexA, e.g. we
write pA(·) for the pmf of the distribution.

Theorem 4.1.Let X1, X2, . . . be a sequence of iid random variables from any alternative
distribution with finite moment of order m + 2 and a support {x ∈ N0 : pA(x) > 0} which
consists of at least m+2 points. Then the power of the test tends to 1 if the number of Monte
Carlo samples tends to infinity as n→∞, i.e. we have

Pr(Cn > c∗n,b(α))→ 1 as n, b→∞.

Proof. The assumption on the support implies 0< hA(t) < 1 for at leastm+ 1 points. By
that it can be seen that

inf
θ∈2

sup
t∈N0

|FA(t)− F(t, θ)| > 0,

whereFA denotes the distribution function of the alternative distribution. The consistency of
the test now follows from Henze (1996 Remark 3.7), providedθ̂ n converges in probability to
someθ ∈ 2. To this end, consider the function

g(θ) = EA[log p(X, θ)] =
∞∑
t=0

[
pA(t) logG

(
ξ(t)

)+ SA(t + 1) logG
(− ξ(t)

)]
.

The definitions ofG andξ together with the inequality

∞∑
t=0

SA(t + 1)tm+1 ≤ EA(Xm+2) <∞

show thatg(θ) is finite.
As in Lemma 3.1 (or the proof of the positive definiteness ofIF (θ) on p.334, if the distri-

bution has infinite support), it can be seen that the matrix of second derivatives(gjk)j,k=0,...,m,

where

gjk = −
∞∑
t=0

tj+kSA(t)G
(
ξ(t)

)
G

(− ξ(t)
)

(j, k = 0, . . . , m),

is negative definite (note that, sinceSA(t) > 0 for at leastm + 1 points t, the assumption
of Lemma 3.1 is fulfilled). Hence, by the same reasoning as in the proof of Theorem 3.3, we
obtain thatg(θ) is a strictly concave function with a unique maximum pointθ̄ . Defining

gn(θ) = 1

n
L(

θ, (Xi)
n
1

) =
∞∑
t=0

(ft

n
logG

(
ξ(t)

)+ nt − ft

n
logG

(− ξ(t)
))

,

we havegn(θ)→ g(θ) for all θ ∈ 2 almost surely by Glivenko–Cantelli. This implies the
almost sure convergence of the MLÊθn to θ̄ .
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TABLE 1

Absolute frequencies of the durations of atmospheric circulation patterns 1, 2, 8 and 10

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15

sp 0 2 10 6 5 2
su 1 9 18 18 8 8 4 3 3

ACP 1
au 3 6 15 8 9 3 0 4 2 0 0 0 1
wi 1 3 4 8 1 7 4 1 0 1 1 0 0 0 0 1

sp 1 12 15 11 7 10 7 3 0 1 3 1 0 1 0 1
su 5 9 21 17 18 10 9 2 4 3 1 0 1 1 0 0 1

ACP 2
au 3 6 19 18 14 11 8 8 6 4 1 0 2 1 0 1
wi 2 10 16 22 15 15 11 7 4 4 1 4 1 1

sp 2 7 16 12 6 1 0 2 1
su 1 4 14 9 6 6 1 2 0 1 0 1

ACP 8
au 4 9 11 10 2 1 4 1 0 1
wi 2 5 20 6 7 5 4 2 0 0 0 0 0 1

sp 5 7 16 15 4 4 1 3 2 1 0 0 0 1
su 2 9 21 17 11 3 6 2 0 4 1 0 1

ACP 10
au 2 10 23 15 10 9 5 2 1 0 1 0 0 0 1 0 1
wi 4 18 18 15 11 10 2 2

As mentioned in Section 1, the discrete time failure model under consideration may be in-
corporated into a space–time model for daily precipitation. A crucial part of this model is a set
{a1, . . . , ak} of k possible atmospheric circulation patterns (ACPs) following a semi-Markov
process. The random duration ofai is described by a discrete distribution with parameters de-
pending only oni and the season. Since the Generalized Poisson distribution, which was used
hitherto for this purpose, turned out to be of limited flexibility, we examined the adequacy of
the discrete failure model for fitting the duration of theACPs. We applied the above-mentioned
goodness-of-fit test to various datasets consisting of observed durations of circulation patterns
in Central Europe for the period 1951–1989. TheACPs are classified according to the scheme
of the German Weather service which distinguishes between 29 different circulation patterns,
numbered from 1 to 29.

Table 1 shows the absolute frequencies of the duration ofACPs 1, 2, 8 and 10. In each
case, theACPs are analysed separately for the seasons spring (sp), summer (su), autumn (au)
and winter (wi). Note thatt = 0 corresponds to a duration of one day, etc. The results of
the goodness-of-fit tests forACPs 1 and 2 and forACPs 8 and 10 are given in Table 2 and
Table 3, respectively. There,m is the degree of the polynomialξ(·), n is the sample size,
and θ̂0, . . . , θ̂m are the MLEs forθ0, . . . , θm. The bootstrap sample sizeb was always taken
to be 499 in order to have 500 samples altogether (including the original one). The entrypC

gives the position

pC = 1+
b∑

j=1

1{C∗jn < Cn}

of Cn within the set of the bootstrap sample values. The hypothesis H0, which implies that
the model is appropriate, is rejected at levelα if pC > [b(1− α)] + 1.

The main conclusion is that the proposed model is flexible enough to fit the data in almost
all cases. In general, four parameters are necessary to yield a satisfactory approximation.
The largerp-values form = 4 show that an additional free parameter yields no further
improvement.
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TABLE 2

Test results for atmospheric circulation patterns 1 and 2

ACP 1 ACP 2
sp su au wi sp su au wi

n = 25 n = 72 n = 51 n = 32 n = 73 n = 102 n = 102 n = 113

θ̂0 −3.33 −2.32 −1.78 −2.05 −1.89 −1.76 −2.25 −2.35
m = 1 θ̂1 1.20 0.46 0.23 0.17 0.15 0.12 0.21 0.25

pC 428 500 498 498 498 500 499 500

θ̂0 −4.40 −2.94 −2.27 −2.73 −2.34 −2.35 −2.78 −2.89
θ̂1 2.36 1.02 0.64 0.56 0.45 0.45 0.53 0.59

m = 2
θ̂2 −0.25 −0.08 −0.05 −0.03 −0.03 −0.03 −0.03 −0.03

pC 424 472 480 395 466 491 473 430

θ̂0 −9.83 −4.20 −2.83 −3.51 −2.97 −2.92 −3.36 −3.68
θ̂1 11.01 2.89 1.41 1.30 1.15 0.97 1.11 1.43

m = 3 θ̂2 −4.14 −0.72 −0.25 −0.18 −0.18 −0.12 −0.15 −0.23
θ̂3 0.516 0.058 0.014 0.008 0.008 0.004 0.007 0.012

pC 268 54 290 441 422 110 345 75

θ̂0 −9.22 −4.13 −2.90 −3.10 −3.20 −2.91 −3.52 −3.71
θ̂1 9.73 2.73 1.57 0.65 1.52 0.95 1.34 1.48
θ̂2 −3.25 −0.63 −0.33 0.05 −0.32 −0.11 −0.23 −0.25

m = 4
θ̂3 0.263 0.038 0.026 −0.020 0.025 0.003 0.017 0.015
θ̂4 0.0251 0.0010 −0.0006 0.0010 −0.0006 0.0000 −0.0004 −0.0001

pC 296 104 316 461 442 170 301 118

TABLE 3

Test results for atmospheric circulation patterns 8 and 10

ACP 8 ACP 10
sp su au wi sp su au wi

n = 47 n = 45 n = 43 n = 52 n = 59 n = 77 n = 80 n = 80

θ̂0 −1.92 −2.01 −1.56 −1.77 −1.59 −1.89 −1.64 −2.10
m = 1 θ̂1 0.49 0.31 0.29 0.25 0.18 0.24 0.14 0.55

pC 500 500 492 500 500 500 500 382

θ̂0 −2.76 −2.79 −1.89 −2.45 −2.03 −2.48 −2.35 −2.33
θ̂1 1.36 0.93 0.66 0.77 0.54 0.71 0.62 0.84

m = 2
θ̂2 −0.14 −0.08 −0.06 −0.06 −0.04 −0.05 −0.04 −0.06

pC 327 455 450 499 497 500 494 375

θ̂0 −3.74 −3.86 −2.32 −3.22 −2.55 −3.45 −3.26 −2.71
θ̂1 3.03 2.23 1.55 1.73 1.26 1.93 1.61 1.78

m = 3 θ̂2 −0.77 −0.43 −0.39 −0.30 −0.23 −0.38 −0.26 −0.49
θ̂3 0.059 0.025 0.030 0.015 0.012 0.022 0.011 0.050

pC 222 309 236 492 403 223 396 204

θ̂0 −3.02 −3.88 −2.37 −3.12 −2.60 −3.85 −3.32 −2.88
θ̂1 0.55 2.26 1.73 1.54 1.39 2.64 1.69 2.55
θ̂2 1.02 −0.44 −0.50 −0.22 −0.29 −0.70 −0.29 −1.12

m = 4
θ̂3 −0.370 0.027 0.054 0.002 0.021 0.070 0.015 0.216
θ̂4 0.0319 −0.0001 −0.0015 0.0005 −0.0004 −0.0023 −0.0001 −0.0136

pC 161 339 332 488 426 63 416 110
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TABLE 4

Results of the likelihood ratio test

ACP 8, winter ACP 10, autumn ACP 10, winter
m Log-likelihood λm Log-likelihood λm Log-likelihood λm

0 −120.037 −190.190 −173.664
1 −113.411 13.25 −184.472 11.44 −152.582 42.16
2 −108.013 10.80 −175.384 18.18 −151.871 1.42
3 −104.605 6.82 −166.158 18.45 −150.137 3.47
4 −104.554 0.10 −166.137 0.04 −149.641 0.99
5 −101.767 5.57 −165.391 1.49 −149.218 0.85

At the 10% level and form = 3, we reject H0 only in one case, namely for the winter
data ofACP 8. Looking at the observed frequencies of this dataset, the sharp peak fort = 2
(which corresponds to a duration of theACP of 3 days) seems to cause the strong rejection of
the failure model in this case. This presumption is confirmed by inspection of the observed
and fitted frequencies. Increasing the degree of the polynomial yieldspC = 496 for m = 5
and pC = 472 for m = 6. Hence seven parameters are necessary if the model is not to be
rejected at the 5% level.

Here, we want to compare the results of the goodness-of-fit test with the step-up proce-
dure described in Section 3.1. Table 4 shows the value of the log-likelihood function and the
test statisticλm for three selected cases.

The results are in good agreement with the results of the goodness-of-fit test. For the
winter data ofACP 8 we do not find any two successive terms which are non-significant
at the 5% level up tom = 5. A further increase of the degree of the polynomial yields
λ6 = 6.00, λ7 = 0.66, λ8 = 0.66. Hence the step-up procedure suggests the use of seven
parameters.

For the autumn data ofACP 10, the values ofλm clearly indicate that 4 parameters are
necessary. In the last case, the winter data ofACP 10, the results are somewhat ambiguous.
At the 10% level, a linear polynomial is sufficient forξ, whereas at the 5% level,m = 3 is
necessary. This coincides with the goodness-of-fit test with estimatedp-values of 0.76 for
m = 1 and 0.41 form = 3.

However, it should be clear that the likelihood ratio step-up procedure provides only a
guideline about the selection of the number of parameters but says nothing about the actual fit
of the data. Furthermore, since the maximum likelihood principle inevitably leads to choosing
the highest possible dimension, one has to introduce a termination criterion which seems to be
a little arbitrary. Instead of the step-up procedure described above one could also use Akaike’s
(1974) or Schwarz’s (1978) selection rules.

In contrast to this, higherp-values in the case of a greater number of parameters clearly
point out an overspecification of the model. In addition, the test indicates whether the model
is compatible with the data. For these reasons, we favour the goodness-of-fit test as a model
selection tool of the likelihood ratio procedure.

Since
√

n(θ̂n − θ) tends in law to a normal distribution,
√

n
(
ξ̂ (t)− ξ(t)

)
also tends to

a normal distribution with asymptotic variance

σ 2
t = (1, t, . . . , tm)′ [IF (θ)]−1 (1, t, . . . , tm).

Similarly,
√

n
(
ĥ(t)− h(t)

)
, whereĥ(t) = G

(
ξ̂ (t)

)
is the estimated hazard function, has an

asymptotic normal distribution with varianceg
(
ξ(t)

)2
σ 2

t .
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Fig. 1. Survivor function of autumn data for
ACP 10,m = 1

Fig. 2. Hazard function of autumn data for
ACP 10,m = 1
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Fig. 3. Survivor function of autumn data for
ACP 10,m = 2

Fig. 4. Hazard function of autumn data for
ACP 10,m = 2
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Fig. 5. Survivor function of autumn data for
ACP 10,m = 3

Fig. 6. Hazard function of autumn data for
ACP 10,m = 3
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Fig. 7. Survivor function of winter data for
ACP 10,m = 3

Fig. 8. Hazard function of winter data for
ACP 10,m = 3
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The Fisher information matrixIF (θ) can be estimated byI (θ̂n)/n with the observed
information matrixI (θ), so an estimate forσ 2

t /n is

σ̂ 2
t = (1, t, . . . , tm)′ [I (θ̂n)]−1 (1, t, . . . , tm).

Therefore, a two-sided approximate confidence interval forh(t) at the 95% level is given by

ĥ(t) ± 1.96g
(
ξ̂ (t)

)
σ̂t .

Similarly, an estimate of the survivor function is given by

Ŝ(t) =
t−1∏
s=0

G
(
ξ̂ (s)

)
.

Adams & Watson (1989 Sect. 3.2) give an approximation for the variance of
√

n
(
Ŝ(t)−S(t)

)
.

Figures 1, 3, 5 and 7 show the estimated and observed survivor function together with
the 95% confidence bands for the autumn data ofACP10 (m = 1, 2 and 3) and for the winter
data ofACP 10 (m = 3). Figures 2, 4, 6 and 8 illustrate the estimated and observed hazard
function for the same datasets. The observed values are marked with an asterisk, adjacent
points connected by lines. For better visualization, the estimates and the confidence intervals
are plotted as lines, but they are meaningful only at the discrete points 1, 2, 3, . . . . The figures
are a confirmation of the results of the testing procedure.
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