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Abstract

We describe progress in automatically fitting a plane plus modelled perturba-

tion surface model to represent architectural scenes. There are two areas of

novelty. The first is a method of fitting parametrized models in which the cost

function is based on a combination of disparity and gradient extrema, both

computed over multiple views. The second is the use of an evaluation crite-

ria for model selection, learnt from training examples. We demonstrate the

method on reconstructions of several college scenes from multiple images.

1 Introduction

This1 paper describes progress in the automated reconstruction of piecewise planar mod-

els from multiple images [2, 4, 7, 11, 15]. The work is targetted on architectural scenes.

We investigate two areas here. The first is a method of fitting parametrized model

primitives. The model is fitted to a region of an image using two types of information,

depth and edges, both computed over multiple views. A set of parametrized model prim-

itives appropriate for the targetted scenes are defined and engineered. The models repre-

sent, to a reasonable approximation, indentations such as doors and inset windows, and

protrusion such as bay windows, dormer windows, etc.

The second area investigated is that of model selection: given a set of such models,

how should the one be selected which best “explains” the scene? The answer proposed

is to learn certain characteristics of the types of scene (here architectural) from training

images, and use these characteristics to determine the Bayesian probability of each model.

The approach is influenced by three previous papers: first, the Facade modelling sys-

tem [12] which generated models of excellent visual quality using a representation based

on simple geometric primitives (e.g. cuboids, cylinders) from a small set of images. How-

ever, model selection and fitting in Facade is entirely manual. Second, the approach of

Dick et al [4] in which models (e.g. a window) have strong priors (e.g. on height and

width) specifying their shape and appearance. Third, as an example of a learning ap-

proach, the edge detection method of Konishi and Yuille [6] in which filter responses are

learnt at edges in training images in order to determine segmentations.

In this paper we first fit a coarse piecewise planar model to the scene (section 2) and

then refine each plane by modelling perturbations from it. This differs from the Facade

system (and later in [3]) where perturbations from the plane are computed by dense stereo.

Here, the perturbation is defined by the parametrized models. These models include, for

1We are very grateful to Frederick Schaffalitzky for computing the projective reconstructions for each set of

multiple images, and to helpful discussions with Phil Torr. Funding was provided by a Marie Curie fellowship

and EC project Vibes.



Figure 1: Five images of the College set acquired with a hand held low cost Olympus

C-820L digital camera. The image size is 1024 × 768 pixels.

Figure 2: Automatically generated reconstruction computed from the images of figure 1

(respectively: shaded model, and three shots of textured model). Modelling indentations

(windows, doors) in the walls is the topic of this paper. Note in the close-ups, the aug-

mented walls look much more realistic than mere planes.

example, rectangular blocks and truncated pyramids which are able to represent uncham-

fered and chamfered windows respectively, and are defined in section 3. The models

are quite generic and do not require strong priors. The fitting approach is described in

section 4. A typical example is shown in figure 2.

2 Background – computing piecewise planar shells

This section briefly describes the multiple view calibration, feature matching, and coarse

planar model fitting stages that are the pre-requisite of the parametrized model fitting

methods. The stages are not novel and details are given in previous publications [15].

They are included so that the paper is relatively self-contained.

The input is a set of (three or more) uncalibrated images of the target scene, and

the desired output consists of the following description: a metric reconstruction of the

cameras for each view; 3D points and their images; 3D lines and their images; and a

coarse piecewise planar representation covering the principal planes of the 3D scene.

This is sufficient information to rectify each of the principal planes.

It is assumed that there are three principal directions in the scene (vertical and two

orthogonal horizontal), and that they can be retrieved from images of straight lines. This

assumption is typically valid for the type of architectural scenes targetted in this work.

The method will be illustrated for the five images of a college quad shown in figure 1.

Projective Reconstruction: because the viewpoints are often significantly different in

hand held still photographs, wide baseline matching methods [8] are necessary to compute

interest point matches between views. We use the method described in [9] which is based

on affine invariant descriptors and robust estimation of multiple view geometry (see [5,

13, 14, 16]). The result is a camera corresponding to each image and a set of 3D points,

defined up to an unknown projective transformation of 3-space. The RMS reprojection

error after bundle adjustment is 0.14 pixels.



Metric Reconstruction: vanishing points corresponding to the three principal direc-

tions are computed from image lines in each image independently using a RANSAC

approach. The vanishing points are matched across all the images. The projective re-

construction is then upgraded to metric using two constraints: that the three principal

directions (which are the pre-images of the vanishing points) are mutually orthogonal;

and that the cameras have square pixels. The result is a metric reconstruction of the cam-

eras, 3D points, and three principal directions. The RMS reprojection error after metric

bundle adjustment is 0.15 pixels. The reconstructed 3D point cloud is shown in figure 3.

Figure 3: Two views of the cloud of 3D points computed from the images of figure 1 after

metric rectification. There are 1331 points.

Line matching: lines are matched over all views using an extended version of the al-

gorithm given in [10]. The original algorithm was limited to image triplets, and here the

extension is to any number of views with each view treated equally, i.e. changing the or-

dering of the views does not affect the matching. The 3D line segments are estimated by

minimizing reprojection errors over all views in which the line appears. Deficiencies in

the line detection, such as over segmentation (lines erroneously broken) or inconsistent

end points in different views, are remedied to some extent by combining the information

available from the multiple views. A view of the 3D lines is shown in figure 4a.

Coarse plane fitting: the aim of this stage is to determine the principal planes of the

scene, and hence to form a coarse piecewise planar approximation which will be the

basis for the subsequent plane plus perturbation model fitting. Given the above stages

there is a wealth of geometrical information now available to aid this coarse plane fitting.

The principal directions are important in fitting particular planes in turn. For example,

to extract a vertical wall two strategies may be applied: (1) sweep (or RANSAC) for

a virtual plane in a vertical direction and score the plane’s position by the number of

3D points and lines that lie on it; or (2) score the plane’s position by computing image

cross-correlation between all views using the homography induced by the plane. The

polygonal representation of each plane is determined by their mutual intersections (taking

into account visibility) and the image outline.

Currently, we first use 3D points and lines to generate vertical wall hypotheses, which

are then verified and disambiguated using homography-based image cross-correlation,

maximizing the number of explained image points by a simple optimization technique.

Then, roof planes are obtained either from diagonal 3D lines belonging to the roof or by

sweeping 3D planes around horizontal lines as in [1]. Figure 4b shows the planes fitted,

and figure 4c the wireframe outline of their extent.



Figure 4: 3D reconstruction computed from the images of figure 1: (a) A view of the

3D lines (there are 380 lines); (b) A view of the 3D coarse piecewise planar model. It

includes the five principal scene planes (ground, walls and roofs); (c) The wireframe of

the coarse planar model projected onto the second image.

3 Model definition and enumeration

Each plane of the coarse model is now refined by modelling perturbations from the plane.

In this section we describe the set of models for these perturbations and their parameters.

All that is required to instantiate a model at a point on the plane is a rectangular region

and its depth. The description of model instantiation is deferred until section 5.

3.1 Model set
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Figure 5: Four instances of the generic indentation models: box, truncated pyramid, cir-

cular arch, and gothic arch. The model space is obtained by combining these models and

by varying w, h, and αi. The depth d is known in advance for each model.

The span of the model set is illustrated in figure 5. The simplest instance is that of a

rectangular box where the indentation is perpendicular to the host plane. This model is

specified by four parameters (the position of the left, right, top and bottom lines on the

plane). A truncated pyramid, representing a chamfered window, is obtained by varying

three additional angle parameters (α1, α2, and α3). A model representing a window with

a circular arch is obtained by replacing the top line by a circular arc. Its chamfer angle is

specified by that of the side lines. A gothic arch is obtained in a similar manner.

A particular model is thus specified by the following parameters: the position of the

four sides, the chamfer angles, the type of top (straight, circular gothic). Convexity and

concavity are distinguished by the sign of the depth d.



3.2 Model enumeration

The quality of the fit is assessed by measuring an objective function based on multiview

correspondence, and this is described below in section 4. Here we describe how values

of the various parameters are determined, so that a set of candidate models can be enu-

merated. Models are enumerated (and later fitted) for each boundary separately. We will

illustrate the parameter determination for the right vertical side of the window in figure 6a.

In architectural scenes, the outer and inner boundaries of indentations and protrusions

almost always correspond to edges. These edges are often very weak and cannot be

detected by the usual method of independent edgel detection followed by linking and

line fitting. Instead here the horizontal image gradient is aggregated vertically in order to

achieve a sufficiently high signal to noise ratio to detect the window edge.

Furthermore, since there are multiple views of each wall, and their correspondence is

known from the wall homography, the position of the gradient magnitude extrema from

other views are also available (see figure 6b). This means that an edge that is too weak in

one view can still be located if it is present in several others. An edge which is located in

three or more views is included in the candidate list of parameter values. Typically, 5-15

positions are obtained. A set of parameter values for the left side and bottom boundary

are determined in a similar manner.

Determining the set of values for the remaining parameters (e.g. the chamfer angles) is

slightly more involved because of mutual dependencies. Chamfer angles are determined

to be consistent with the supplied depth and measured image edges. E.g., for the right

vertical side the set of possible pairs [side position, α1] is enumerated to be consistent

with the positions of the candidate vertical edges.

There are three possible top boundaries. In the case of a circular or gothic arch, the

width of the arch is determined by the width between the left and right sides. In the case

of a straight top boundary (a box or truncated pyramid) the set of positions can again be

determined independently of the other sides. The set of hypothesized vertical positions

of the circular and gothic arches is enumerated in a similar manner as in figure 6b. The

gradient is aggregated along the arch curve rather than line segment.

In summary, a set of candidate models specified by their parameter values is enumer-

ated. We now turn to evaluating the model’s fit to the image data.

50 100 150 200 250 300

50

100

150

200

Figure 6: Determining a candidate set of values for the right window boundary. (a) An

example window from the first image of the set in figure 1 with the instantiation region

indicated as a yellow rectangle. (b) The vertically aggregated image gradient from the

corresponding region of images 1 and 2. The edges marked by arrows are consistent

across the multiple views and form candidate positions for the window side.



4 Model selection

Section 3 provides a finite set of models, and our task now is to evaluate this set, and select

the model which “best explains the image data” over the multiple views. Here “best”

means having the highest probability over all the models in the proposed set, and we

adopt a learning approach to determine these probabilities. We first describe how a model

probability is computed, and then an efficient model selection algorithm for comparing

the probabilities across the entire model set.

4.1 Model probability

The probability of each model Mi is determined from the Bayesian rule

P (Mi|D) = P (D|Mi)P (Mi)/P (D)

where D is the measured data. No prior information on which models are in the scene

is assumed, so P (Mi) is equal for all i. The likelihood P (D|Mi) is learnt from ground

truth examples in a training image set as described below.

There is, of course, a choice to be made for which data D to use. We use cross-

correlation over multiple views as it provides a simple means to measure the model fit over

all the views. In more detail, suppose we are computing the cross-correlation between a

reference image I0 image and a second image I for a particular model Mi. The shape

of the model Mi induces a transformation Ti from the reference image to I , which maps

the points between the views, with some points being occluded. The normalized cross-

correlation c(j, i) is then computed for each point j as c(j, i) = ncc[I0(xj), I(Ti(xj))].
The probability p(c) of obtaining a correlation c is provided by training images (see be-

low).

It is assumed that the correlation for each point j is independent (the neighbourhoods

do not overlap) so

P (D|Mi) = Πpointsjp(c(j, i)) (1)

4.2 Learning the correlation probability

Ground truth models are fitted to all the windows of a training image set, i.e. the correct

type of model (e.g. a box window or a gothic window) is fitted in each case. The models

are instantiated manually (the rectangular region around the window is selected), and an

objective function based on multiple view cross-correlation is used to bootstrap the fitting.

Points are selected from edgels computed across the fitted region (including a flange

extended over the host wall, see figure 7a). For each point the cross-correlation, given the

ground truth model, is measured as described above and a normalized histogram of values

computed. Figure 7b shows an example.

If the model were a perfect fit, then the pdf would consist of a single peak at unity.

However, the model is at best only an approximation because structures inside the window

(e.g. window grills, other arches) are unmodelled. The learnt pdf reflects this approxima-

tion.
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Figure 7: (a) The correlation is measured at the edgels shown distributed over the fitted

region. (b) The learnt PDF which maps measured correlation (in the range [0, 1]) to its

corresponding probability. (c) The boundary order followed when evaluating probabilities

over the model set. Model fitting differs for windows which do or do not contain a vertical

occluded edge.

4.3 Evaluating a model

The model is selected by maximizing expression (1). In addition to all of the models in

the set, the plane itself is also included so that evidence for no perturbation from the plane

is also considered.

It might appear that fitting a model involves an expensive search over at least a seven

dimensional parameter space. However, this is not the case because fitting can be parti-

tioned into a set of sequential and independent low-dimensional searches, as illustrated in

figure 7c. For example fitting the top of the model is independent of fitting the bottom.

Furthermore as we run over the set of models the induced transformation Ti is the

same for many points and so the cross-correlation need not be re-evaluated. The most

important contributions occur where a change in model generates a change in occlusion

(e.g. switching between a straight boundary and gothic arch).

5 Model instantiation

Having described the models and their fitting, it only remains to specify how models are

instantiated at a point on a plane. This is described in this section.

The aim is to identify promising sites on the plane which are not consistent with the

fitted coarse plane model, and thus may be better explained by a perturbation from the

plane. The steps involved are illustrated in figure 8.

As the parallax of the window plane with respect to the wall plane can be very small,

high accuracy is required to identify off plane regions and to fit models. Here off plane

points are identified by sweeping a plane in a direction perpendicular to the wall, and

determining a point’s depth by an extrema in the cross-correlation of its neighbourhood.

Groupings of points at the same depth are obtained by clustering.

The result is a rectangular region with known depth corresponding to each cluster of

off-plane points. This provides the instantiation regions for the enumeration and fitting.

6 Results

An overview of the complete algorithm is given in table 1. Results for the image set from

figure 1 are shown in figure 2. The results for two other sets (captured with the same
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Figure 8: Instantiating models by finding off-plane rectangles. (a) Dense 3D points which

lie on the wall plane – the gaps are evident. (b) The points off the plane. (c) Groupings

of the off plane points shown as image regions. (d) In the case of a regular window

grid, the rectangles can be elegantly obtained as the first eigenimage of the SVD of the

score image. This is not used here, but is discussed in section 7. (e) Instantiation regions

computed from (c) and shown as superimposed white rectangles.

Olympus C-820L camera) are shown in figures 9 and 10.

The latter was more difficult: the wall profile is more complex than for the College

sets – there are several planes on the front wall, the windows sides have a complicated

shape, and some of them are close to each other, forming pairs. Since the windows have

multiple depths (they are deeper in the rectangular lower region and shallower in the

top region), the model set was extended by allowing the depth parameter to change in 3

discreet steps. Note, nested window structure (which we do not address) caused the failure

of the algorithm for the window pair in the middle of the wall because it was detected as

a single window.

7 Discussion and future work

We have demonstrated that a plane plus modelled perturbation model can be successfully

fitted using learnt characteristics. Many variations on this approach are possible, including

learning more attributes from the scene (e.g., the distribution of responses to fitting an

incorrect model), and it should also now be applied to other types of scene.

Currently all of the models are fitted individually. Often though in architectural scenes

windows on a facade repeat in design and size, and also are often arranged on a grid with

regular spacing. This would correspond to a non-uniform joint prior. An effective method

of imposing regularity is illustrated in figure 8. These constraints can be used in two

ways: first to make fine adjustments to the fitted models so that for example the tops

are aligned to be collinear. Second, a single model can be fitted in all appropriate cases

and the parameters optimized over all instances: i.e. the shape parameters are global, but

determined from all instances of that model.



Figure 9: Results for the College B image set.

Figure 10: Results for the Library image set.



Given 3+ overlapping views of a static scene:

1. Metric reconstruction of points, lines, and cameras

2. Coarse planar shell model

3. Plane plus modelled perturbation model:

For each plane of the coarse model:

• determine regions for instantiating models

• enumerate the set of models for each region

• select the highest probability model from the set

4. Model generation

• texture map from unoccluded image

• generate VRML model

Table 1: A summary of the main steps of the reconstruction algorithm.
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