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Model Selection for High Dimensional Quadratic

Regression via Regularization

Ning Hao, Yang Feng, and Hao Helen Zhang∗

Abstract

Quadratic regression (QR) models naturally extend linear models by considering

interaction effects between the covariates. To conduct model selection in QR, it is

important to maintain the hierarchical model structure between main effects and in-

teraction effects. Existing regularization methods generally achieve this goal by solving

complex optimization problems, which usually demands high computational cost and

hence are not feasible for high dimensional data. This paper focuses on scalable regular-

ization methods for model selection in high dimensional QR. We first consider two-stage

regularization methods and establish theoretical properties of the two-stage LASSO.

Then, a new regularization method, called Regularization Algorithm under Marginal-

ity Principle (RAMP), is proposed to compute a hierarchy-preserving regularization

solution path efficiently. Both methods are further extended to solve generalized QR

models. Numerical results are also shown to demonstrate performance of the methods.

Keywords: Generalized quadratic regression, Interaction selection, LASSO, Marginality

principle, Variable selection.
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1 Introduction

Statistical models involving two-way or higher-order interactions have been studied in

various contexts, such as linear models and generalized linear models (Nelder, 1977; McCul-

lagh & Nelder, 1989), experimental design (Hamada & Wu, 1992; Chipman et al., 1997),

and polynomial regression (Peixoto, 1987). In particular, a quadratic regression (QR) model

formulated as

Y = β0 + β1X1 + · · ·+ βpXp + β1,1X
2
1 + β1,2X1X2 + · · ·+ βp,pX

2
p + ε (1)

has been considered recently to analyze high dimensional data. In (1), X1,..., Xp are main

effects, and order-2 terms XjXk (1 ≤ j ≤ k ≤ p) include quadratic main effects (j = k) and

two-way interaction effects (j 6= k). A key feature of model (1) is its hierarchical structure,

as order-2 terms are derived from the main effects. To reflect their relationship, we call XjXk

the child of Xj and Xk, and Xj and Xk the parents of XjXk.

Standard techniques such as ordinary least squares can be applied to solve (1) for a small

or moderate p. When p is large and variable selection becomes necessary, it is suggested that

the selected model should keep the hierarchical structure. That is, interaction terms can be

selected into the model only if their parents are in the model. This is referred to the marginal-

ity principle (Nelder, 1977). In general, a direct application of variable selection techniques

to (1) can not automatically ensure the hierarchical structure in the final model. Recently,

several regularization methods (Zhao et al., 2009; Yuan et al., 2009; Choi et al., 2010; Bien

et al., 2013) have been proposed to conduct variable selection for (1) under the marginal-

ity principle by designing special forms of penalty functions. These methods are feasible

when p is a few hundreds or less, and the resulting estimators have oracle properties when

p = o(n) (Choi et al., 2010). However, when p is much larger, these methods are not feasible

since their implementation requires storing and manipulating the entire O(p2) × n design

matrix and solving complex constrained optimization problems. The memory and compu-

tational cost can be extremely high and prohibitive. Very recently, interaction screening for

high-dimensional settings has drawn much attention, and a variety of interaction screening

approaches have been proposed for regression and classification problems, including Hao &

Zhang (2014a), Fan et al. (2015), and Kong et al. (2016). By contrast, the purpose of this
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work is to develop scalable interaction selection approaches under a penalized framework for

high dimensional data analysis.

In this paper, we study regularization methods on model selection and estimation for

QR and generalized quadratic regression (GQR) models under the marginality principle.

The main focus is the case p � n, which is a bottleneck for the existing regularization

methods. We study theoretical properties of a two-stage regularization method based on

the LASSO and propose a new efficient algorithm, RAMP, which produces a hierarchy-

preserving solution path. In contrast to existing regularization methods, these procedures

avoid storing O(p2)×n design matrix and sidestep complex constraints and penalties, making

them feasible to analyze data with many variables. In particular, our R package RAMP runs

well on a desktop for data with n = 400 and p = 104 and it takes less than 30 seconds (with

CPU 3.4 GHz Intel Core i7 and 32GB memory) to fit the QR model and get the whole solution

path. The main contribution of this paper is threefold. First, we establish a variable selection

consistency result of the two-stage LASSO procedure for QR and offer new insights on stage-

wise selection methods. To our best knowledge, this is the first selection consistency result for

high dimensional QR. Second, the proposed algorithms are computationally efficient and will

make a valuable contribution to interaction selection tools in practice. Third, our methods

are extended to interaction selection in GQR models, which are rarely studied in literature.

We define notations used in the paper. Let X = (x1, ...,xn)> be the n× p design matrix

of main effects and y = (y1, ..., yn)> be the n-dimensional response vector. The linear term

index set is M = {1, 2, ..., p}, and the order-2 index set is I = {(j, k) : 1 ≤ j ≤ k ≤ p}.
The regression coefficient vector β = (β0,β

>
M,β

>
I )>, where βM = (β1, ..., βp)

> and βI =

(β1,1, β1,2, ..., βp,p)
>. For a subset A ⊂M, use βA for the subvector of βM indexed in A, and

XA for the submatrix of X whose columns are indexed in A. In particular, Xj is the jth

column of X. We treat the subscripts (j, k) and (k, j) as identical, i.e., βj,k = βk,j. Let c1, c2,

... and C1, C2, ... be positive constants which are independent of the sample size n. They are

locally defined and their values may vary in different context. For a vector v = (v1, ..., vp)
>,

‖v‖ =
√∑p

j=1 v
2
j and ‖v‖1 =

∑p
j=1 |vj|. For a matrix A, define ‖A‖∞ = maxi

∑
j |Aij| and

‖A‖2 = sup‖v‖2=1 ‖Av‖2 as the standard operator norm, i.e., the square root of the largest

eigenvalue of A>A.
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The rest of the paper is organized as follows. Section 2 considers two-stage regulariza-

tion methods for model selection in QR and studies theoretical properties of the two-stage

LASSO. Section 3 proposes RAMP to compute the entire hierarchy-preserving solution path

efficiently. Section 4 extends the proposed methods to generalized QR models. Section 5

presents numerical studies, followed by a discussion. Technical proofs are in the Appendix.

2 Two-stage Regularization Method

Variable selection and estimation via penalization is popular in high dimensional analy-

sis. Examples include the LASSO (Tibshirani, 1996), SCAD (Fan & Li, 2001), elastic net

(Zou & Hastie, 2005), minimax concave penalty (MCP) (Zhang, 2010), among many others.

Properties such as model selection consistency and oracle properties have been verified (Zhao

& Yu, 2006; Wainwright, 2009; Fan & Lv, 2011). A general penalized estimator for linear

models is defined as

(β̂0, β̂M) = argmin
(β0,βM)

1

2n
‖y − 1β0 −XβM‖2 +

p∑
j=1

Jλ(βj), (2)

where y is the response vector, X is the design matrix, Jλ(·) is a penalty function, and λ ≥ 0

is a regularization parameter. The penalty J(·) and λ may depend on index j. For easy

presentation, we use same penalty function and parameter for all j unless stated otherwise.

We consider the problem of variable selection for QR model (1). Define X◦2 = X ◦X as

an n× p(p+1)
2

matrix consisting of all pairwise column products. That is, for X = (X1, ...,Xp),

X◦2 = X◦X = (X1 ?X1,X1 ?X2, ...,Xp ?Xp), where ? denotes the entry-wise product of two

column vectors. For an index setA ⊂M, defineA◦2 = A◦A = {(j, k) : j ≤ k; j, k ∈ A} ⊂ I,

and A ◦M = {(j, k) : j ≤ k; j or k ∈ A} ⊂ I. We use X◦2A as a short notation for (XA)◦2,

a matrix whose columns are indexed by A◦2.

Two-stage regularization methods for interaction selection have been considered in Efron

et al. (2004); Wu et al. (2009), among others. However, their theoretical properties are not

clearly understood. In the following, we first illustrate the general two-stage procedure for

interaction selection.
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Two-stage Regularization Method:

Stage 1: Solve (2). Denote the selected model by Â = {j : β̂j 6= 0, j = 1, . . . , p}.

Stage 2: Solve

β̂ = argmin
β

1

2n
‖y − 1β0 −XÂβÂ −X◦2ÂβÂ◦2‖

2 +
∑
α∈Â◦2

Jλ(βα),

At Stage 1, only main effects are considered for selection, with all the order-2 terms being

left out of the model. Denote the selected set by Â. At Stage 2, we expand Â by including

all the two-way interactions of those main effects within Â and fit the new model. To keep

the hierarchical structure, we do not penalize main effects at Stage 2, i.e., set Jλ(·) = 0 for

j ∈ Â. In order to keep the hierarchy, it is also possible to use other methods (Zhao et al.,

2009; Yuan et al., 2009; Choi et al., 2010; Bien et al., 2013) at Stage 2.

One main advantage of this two-stage regularization procedure is its simple implementa-

tion. Existing R packages lars and glmnet can be directly used to carry out the procedure.

Stage 1 serves as a dimension reduction step prior to Stage 2, so the two-stage method avoids

estimating O(p2) parameters altogether, making the procedure feasible for very large p.

In spite of its computational advantages, theoretical properties of two-stage regulariza-

tion methods are seldom studied in literature. A commonly raised concern is whether the

important main effects can be consistently identified at Stage 1, when all order-2 terms are

left out of the model on purpose. Next, we focus on the two-stage LASSO method and inves-

tigate its selection behavior at Stage 1. In particular, we establish the main-effect selection

consistency result of the two-stage LASSO for QR under some regularity conditions.

The LASSO is a special case of (2) by using the `1 penalty

(β̂0L, β̂L) = argmin
(β0,βM)

1

2n
‖y − 1β0 −XβM‖2 +

p∑
j=1

λ|βj|.

In the following, we show that the LASSO solution β̂L is sign consistent at Stage 1, i.e.,

sign(β̂L) = sign(βM) with an overwhelming probability for a properly chosen tuning param-

eter. This result provides critical theoretical insight about the two-stage LASSO estimator.
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Consider a sparse quadratic model with a Gaussian design. Assume that xi, 1 ≤ i ≤ n,

are independent and identically distributed (i.i.d.) from N (0,Σ), and

yi = β0 + x>i βM + (x>i )◦2βI + εi, (3)

where ε = (ε1, ..., εn)> ∼ N (0, σ2I) is independent of {xi}ni=1. Without loss of generality, we

further center yi and (x>i )◦2 and write

yi = x>i βM + u>i βI + εi, (4)

where yi is the centered response and u>i = (x>i )◦2 − E(x>i )◦2 is a p × (p + 1)/2 row vector

with all centered order-2 terms. Let yMi = x>i βM and yIi = u>i βI . yM = (yM1,, ..., yMn)>,

yI = (yI1,, ..., yIn)>, U = (u1, ...,un)>. Set τ 2 = Var(yIi). Define ωi = u>i βI + εi and

ω = (ω1, ..., ωn)>, which is treated as noise at Stage 1. Denote by ΣAB the submatrix of Σ

with row index A and column index B. As illustrated in Hao & Zhang (2014b), the support

and sign of the coefficient vector βM for a QR model depend on its parametrization because

a coding transformation can change the support of βM. Therefore, we follow Hao & Zhang

(2014b) and define the index set of important main effects by S = {j : β2
j +

∑p
k=1 β

2
j,k > 0}.

Let s = |S| and T = {(k, `) : βk,` 6= 0}. It follows this definition that T ⊂ S◦2. Moreover, in

order to make sign(βM) well-defined, we require that main effects are centered in (3). We

refer to Hao & Zhang (2014b) for further explanations on the well-definedness of sign and

support of the coefficient vector βM for a QR model.

Define ΣSc|S = ΣScSc−ΣScS(ΣSS)−1ΣSSc where Sc =M−S. Let Λmin(A) be the smallest

eigenvalue of A and ρu(A) = maxiAii. Assume the following technical conditions:

(C1) (Irrepresentable Condition) ‖ΣScS(ΣSS)−1‖∞ ≤ 1− γ, γ ∈ (0, 1].

(C2) (Eigenvalue Condition) Λmin(ΣSS) ≥ Cmin > 0.

Theorem 1 Consider the quadratic model with a random Gaussian design (4). Suppose

that (C1)-(C2) hold. Consider the family of regularization parameters

λn(φp) =

√
φpρu(ΣSc|S)

γ2
4(σ2 + τ 2) log(p)

n
(5)
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for some φp ≥ 2. If for some fixed δ > 0, the sequence (n, p, s) and regularization sequence

{λn} satisfy

n

2s log(p− s)
> (1 + δ)

ρu(ΣSc|S)

Cminγ2
(1 +

2(σ2 + τ 2)Cmin

λ2ns
), (6)

then the following holds with probability greater than 1− c1 exp(−c2 min{s, log(p− s), n 1
2}).

1. The LASSO has a unique solution β̂L with support contained within S.

2. Define the gap

g(λn) = c3λn

∥∥∥Σ
− 1

2
SS

∥∥∥2
∞

+ 20

√
σ2s

Cminn
+

9‖βI‖2
√
s

Cminn
1
3

. (7)

Then if βmin = minj∈S |βj| > g(λn), then sign(β̂L) = sign(βM).

Furthermore, given (5), an alternative condition to (6) making the above results hold is

n

2s log(p− s)
>

1 + δ′

1− 1
φp

ρu(ΣSc|S)

Cminγ2
(8)

for some δ′ > 0.

Remark 1. Conditions (C1)-(C2) are commonly used to show the model selection consis-

tency of the LASSO estimator in the literature. Conditions (6) and (7) are key requirements

on dimensionality and minimal signal strength βmin, respectively. The normality assumption

is used here to facilitate the proof and comparisons to existing results in linear regression. In

the supplementary material, we establish Theorem 2, which extends the consistency result

to non-Gaussian designs. Other extensions of theoretical results are discussed in Section 6.

Remark 2. The result in Theorem 1 generalizes Theorem 3 in Wainwright (2009) that is

established in the context of linear regression. Theorem 1 implies that the two-stage LASSO

can identify important main effects at Stage 1. The validity of the two-stage LASSO is

then guaranteed, as the index set of important interactions T ⊂ S◦2. That is, all important

interaction effects can be included at Stage 2. Given Theorem 1, the interaction selection

consistency result at Stage 2 can be obtained under some mild conditions on the matrix X◦2S ,

since the data dimensionality has been greatly reduced. One can also apply existing methods,

e.g., Choi et al. (2010) at Stage 2, for which selection consistency has been established.
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3 Regularization Path Algorithm under Marginality

Principle (RAMP)

For linear regression models, regularization solution-path algorithms provide state-of-the-

art computational tools to implement variable selection with high dimensional data. Popular

algorithms include least angle regression (LARS) (Efron et al., 2004), its extensions (Park

& Hastie, 2007; Wu, 2011; Zhou & Wu, 2014), and coordinate decent algorithm (CDA)

(Friedman et al., 2007; Wu & Lange, 2008; Friedman et al., 2010; Yu & Feng, 2014). These

computational tools can be used to implement two-stage methods for fitting QR. However,

by the nature of two-stage approach, the whole solution-path highly depends on the selection

result at Stage 1, which is obtained under considerably high noise level if interaction effects

are strong. Therefore, it is desirable to develop a seamless path algorithm which can select

main and interaction effects simultaneously subject to hierarchy. To achieve this, we propose

a Regularization Algorithm under Marginality Principle (RAMP) via the coordinate descent

to compute the solution path while preserving the model hierarchy along the path.

We first review the coordinate decent algorithm for the standard LASSO. Consider

min
1

2n

n∑
i=1

(yi − β0 − x>i βM)2 + λ‖βM‖1.

There exists a penalty parameter λmax such that the minimizer β̂L = 0 if λ ≥ λmax. As λ

decreases from λmax to 0, the LASSO solution β̂L = β̂λ changes from 0 to the least squares

estimator (if it exists). Usually, a sequence of values {λk}Kk=1 between λmax and ζλmax is set,

with 0 < ζ < 1, and a solution path β̂λk is calculated for each λk. For a fixed k, using β̂λk−1

as the initial value, the CDA solves the optimization problem by cyclically minimizing each

coordinate βj until convergence. Define Mk = supp{β̂λk}, i.e., the active set for each λk.

In the following, we propose a coordinate descent algorithm to fit the quadratic model

under regularization which obeys the marginality principle. Given a tuning parameter λ, the

algorithm computes the `1 regression coefficients of main effects and interactions subject to

the heredity condition. At step k− 1, denote the current active main effect set asMk−1 and

the interaction effect set as Ik−1. Define Hk−1 as the parent set of Ik−1, i.e., it contains the

8



main effect which has at least one interaction effect (child) in Ik−1. Set Hc
k−1 =M−Hk−1.

Regularization Algorithm under Marginality Principle (RAMP):

Initialization: Set λmax = n−1 max |X>y| and λmin = ζλmax with some small ζ > 0.

Generate an exponentially decaying sequence λmax = λ1 > λ2 > · · · > λK = λmin. Initialize

the main effect set M0 = ∅ and the interaction effect set I0 = ∅.

Path-building: Repeat the following steps for k = 1, · · · , K. Given Mk−1, Ik−1,Hk−1,

add the possible interactions among main effects in Mk−1 to the current model. Then with

respect to (β0,β
>
M,β

>
M◦2k−1

)>, we minimize

1

2n

n∑
i=1

(
yi − β0 − x>i βM − (x>i )◦2Mk−1

βM◦2k−1

)2
+ λk‖βHck−1

‖1 + λk‖βM◦2k−1
‖1, (9)

where the penalty is imposed on the candidate interaction effects and Hc
k−1, which contains

the main effects not enforced by the strong heredity constraint. Record Mk, Ik and Hk

according to the solution. Add the corresponding main effects from Ik into Mk to enforce

the heredity constraint, and calculate the OLS based on the current model.

Different from two-stage approaches, RAMP allows at each step the interaction effects

M◦2
k−1 to enter the model for selection. Following the same strategy, we propose a weak hier-

archy version of RAMP, denoted by RAMP-w, as a flexible relaxation. The main difference

is that we use the setMk−1 ◦M instead ofM◦2
k−1 in (9) and solve the optimization problem

with respect to (β0,β
>
M,β

>
Mk−1◦M)>. In this way, an interaction term can enter the model

for selection immediately after one of its parents has been selected at a previous step. There-

fore, RAMP-w is particularly useful in the scenario when only one parent of an important

effect is strong. Both RAMP and RAMP-w are implemented in our R package RAMP, which

is available on the CRAN website for researchers to use. Moreover, other penalty options

such as SCAD and MCP also included in the RAMP package.

Figure 1 illustrates two hierarchy-preserving solution paths obtained by the RAMP under

strong and weak heredity constraints, respectively. In this toy example, n = 500, p = 100,

and Xij
i.i.d.∼ N (0, 1), and Y = X1 + 3X6 + 4X1X3 + 5X1X6 + ε, where ε ∼ N (0, 1). Without
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the marginality principle, X1X6 would be the most significant predictor as it has the highest

marginal correlation with Y . On the other hand, RAMP with the strong heredity selects X1

and X6 before picking up X1X6 on the solution path. Note that RAMP does not select X1X3

until at a very late stage on the solution path due to the strong heredity assumption. Under

the weak heredity, RAMP-w is able to select in sequence X6, X1X6, X1, and X1X3. The

reason is that after X6 is selected, X1X6 is immediately added into the candidate interaction

set and then successfully selected, even before X1 is selected. Similarly, X1X3 is picked up

by the algorithm after one of its parents X1 has been selected.
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Figure 1: Two hierarchy-preserving solution paths for a toy example produced by the RAMP

and RAMP-w, respectively. Left Panel: strong hierarchy. Right Panel: weak hierarchy.

4 Extension to Generalized QR Models

4.1 Generalized Quadratic Regression

A standard generalized linear model (GLM) assumes that the conditional distribution of

y given X belongs to the canonical exponential family with density

fn(y,X,β) =
n∏
i=1

f0(yi; θi) =
n∏
i=1

{
c(yi) exp

[
yiθi − b(θi)

φ

]}
,
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where φ > 0 is a dispersion parameter, β = (β1, ..., βp)
> are the regression coefficients, and

θ = (θ1, ..., θn)> = Xβ. (10)

The function b(θ) is twice continuously differentiable with a positive second-order derivative.

In sparse high dimensional modeling, β is a long vector with a small number of nonzero

entries. In the context of QR, the design matrix is (X,X◦2). A natural generalization of

GLM is to modify (10) as

θ = (θ1, ..., θn)> = XβM + X◦2βI . (11)

In the literature, there are very few computational tools available to fit high dimensional

GQR models. Next, we illustrate how the aforementioned algorithms can be used for GQR.

4.2 Two-stage Regularization Methods

For high dimensional data, the penalized likelihood method is commonly used to fit GLM.

Given the systematic component (10), the penalized likelihood estimator is defined as

argmin
β

Qn(β) = argmin
β
−`n(β) +

p∑
j=1

Jλ(|βj|),

where `n(β) = log fn(y; X,β) = 1
n

(
y>Xβ − 1>b(Xβ)

)
is the log-likelihood up to a scalar,

Jλ(·) is a penalty function and λ ≥ 0 is the regularization parameter.

For GQR with systematic component (11), we propose the two-stage approach as follows.

At Stage 1, only main effects are selected by the penalization method with order-2 terms

being left out. Denote the selected main-effect set by Â. At Stage 2, we expand Â by adding

all the two-way interactions (children) of those main effects (parents) within Â and solve

argmin
β

Qn(β, Â) = argmin
β
−`n(β, Â) +

∑
α∈Â◦2

Jλ(βα),

where

`n(β, Â) =
1

n

[
yT (XÂβÂ + X◦2ÂβÂ◦2)− 1>b(XÂβÂ + X◦2ÂβÂ◦2)

]
.
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At Stage 2, we intentionally do not impose penalty on main effects in Â, so that all the

selected main effects at Stage 1 will stay in the final model. This will assure the hierarchical

structure of main effects and interactions in the final model.

4.3 New Path Algorithm for Generalized QR

The RAMP proposed in Section 3 can be easily extended to fit the GQR. The major

difference is to replace the penalized least squares by the penalized likelihood function at each

step. The CDA algorithm is used to minimize the penalized likelihood function iteratively.

RAMP Algorithm for GQR:

Initialization: Set λmax = n−1 max |X>y| and λmin = ζλmax with 1 > ζ > 0. Generate

an exponentially decaying sequence λmax = λ1 > λ2 > · · · > λK = λmin. Initialize the main

effect set M0 = ∅ and the interaction effect set I0 = ∅.

Path-building: Repeat the following steps for k = 1, · · · , K. Given Mk−1, Ik−1,Hk−1,

add the possible interactions among main effects in Mk−1 to the current model. Then with

respect to (β0,β
>,β>M◦2k−1

)>, we maximize

`n(β,Mk−1)− λk‖βHck−1
‖1 − λk‖βM◦2k−1

‖1,

where

`n(β,Mk−1) =
1

n

[
yT (XMk−1

βMk−1
+ X◦2Mk−1

βM◦2k−1
)

−1>b(XMk−1
βMk−1

+ X◦2Mk−1
βM◦2k−1

)
]
.

Calculate Mk, Ik and Hk according to the solution. Add the main effects from Ik into Mk

to enforce the heredity constraint, and calculate the MLE based on the current model.
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5 Numerical Studies

5.1 Simulation Examples

We consider data generating processes with varying signal-to-noise ratios, different co-

variate structures, error distributions, and heredity structures. In particular, Example 1 is a

QR model under a p� n settings with strong heredity considered in Hao & Zhang (2014a).

Example 2 is a high-dimensional logistic regression model with interaction effects. Examples

3 and 4 consider QR models with the weak and strong heredity structures respectively, where

we consider a relatively small p to make the comparison possible with the hierarchical lasso

(Bien et al., 2013). Example 5 considers a QR model with a heavy tail error distribution to

demonstrate the robustness of our methods.

For comparison, we consider RAMP and two two-stage methods, i.e., two-stage LASSO

(2-LASSO) and two-stage SCAD (2-SCAD). We also include existing methods iFORT and

iFORM (Hao & Zhang, 2014a), the hierarchical lasso (Bien et al., 2013), and the benchmark

method ORACLE for which the true sparse model is known.

When computing the solution paths of two-stage methods and RAMP, we choose the

tuning parameter by EBIC with γ = 1 (Chen & Chen, 2008). We also implemented other

parameter tuning criteria including AIC, BIC, and GIC (Fan & Tang, 2013), and observed

that the EBIC tends to work the best among most of the simulation settings that we con-

sidered. For easy presentation, we report only the results for EBIC.

Let S = {j : βj 6= 0} and T = {(j, k) : βj,k 6= 0} with cardinality s = |S| and t = |T |.
For each example, we run M = 100 Monte-Carlo simulations for each method and make

a comparison. For the m-th simulation, denote the estimated subsets as Ŝ(m) and T̂ (m),

the estimated coefficient vector as β̂(m), the main effects and interaction effects as β̂
(m)
j

and β̂
(m)
j,k . We evaluate variable selection and model estimation performance based on the

following criteria.

• Main effects coverage percentage (main.cov): M−1∑M
m=1 I(S ⊂ Ŝ(m)).

• Interaction effects coverage percentage (inter.cov): M−1∑M
m=1 I(T ⊂ T̂ (m)).
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• Main effects exact selection percentage (main.exact): M−1∑M
m=1 I(S = Ŝ(m)).

• Interaction effects exact selection percentage (inter.exact): M−1∑M
m=1 I(T = T̂ (m)).

• Model size (size): M−1∑M
m=1(|Ŝ(m)|+ |T̂ (m)|).

• Root mean squared error (RMSE): {M−1∑M
m=1[

∑p
j=0(β̂

(m)
j −βj)2 +

∑p
j=1

∑p
k=j(β̂

(m)
j,k −

βj,k)
2]}1/2.

Example 1 Set (n, p, s, t) = (400, 5000, 10, 10). Generate the covariates {xi}ni=1
i.i.d.∼ N (0,Σ)

with Σjk = 0.5|j−k| and generate the response y by model (1). S = {1, 2, · · · , 10} with the

true regression coefficients βS = (3, 3, 3, 3, 3, 2, 2, 2, 2, 2)>. The set of important interac-

tion effects is T = {(1, 2), (1, 3), (2, 3), (2, 5), (3, 4), (6, 8), (6, 10), (7, 8), (7, 9), (9, 10)} with

the corresponding coefficients (2, 2, 2, 2, 2, 1, 1, 1, 1, 1).

To have different signal-to-noise ratio situations, we consider σ ∈ {2, 3, 4}. The results

are summarized in Table 1. With regard to model selection, the proposed RAMP has a high

coverage percentage in selecting both main effects and interaction effects. The 2-LASSO

tends to miss some important main effects while picking up some noise variables, ending up

with the largest model size on average. On the other hand, the 2-SCAD has a high exact

selection percentage with a low coverage percentage. Compared to RAMP, the iFORM

tends to have a lower coverage on interaction effects. The iFORT is the worst in terms both

variable selection and model estimation. With regard to parameter estimation, RAMP has

the smallest root mean square error (RMSE) when σ = 3 and 4.

Example 2 We consider a logistic regression model with

log
P (Y = 1|X)

P (Y = 0|X)
= β1X1 + 3X6 + 3X10 + 3X1X6 + 3X6X10,

where (n, p, s, t) = (400, 2000, 3, 2) and X
i.i.d.∼ N (0, Ip). For different signal-to-noise ratios,

we vary the coefficient β1 ∈ {1, 2, 3}.

The results are summarized in Table 2, which lead to the following observations. When

the signal is strong (β1 = 2, 3), RAMP, 2-LASSO and 2-SCAD perform similarly in selecting
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Table 1: Selection and estimation results for Example 1.

main effects interaction effects

σ coverage exact coverage exact size RMSE

RAMP

2 1.00 0.96 1.00 0.35 20.98 0.87

3 0.99 0.91 0.83 0.17 21.25 1.29

4 0.92 0.77 0.47 0.11 20.83 1.96

2-LASSO

2 0.78 0.60 0.78 0.01 24.77 1.56

3 0.75 0.56 0.75 0.01 24.64 1.85

4 0.72 0.51 0.69 0.01 24.40 2.20

2-SCAD

2 0.70 0.58 0.70 0.53 19.92 1.81

3 0.69 0.55 0.62 0.26 20.31 2.06

4 0.65 0.52 0.43 0.14 20.56 2.42

iFORT

2 0.00 0.00 0.00 0.00 14.54 6.64

3 0.00 0.00 0.00 0.00 13.74 7.02

4 0.00 0.00 0.00 0.00 12.72 7.52

iFORM

2 1.00 0.98 0.98 0.40 20.71 0.59

3 1.00 0.97 0.34 0.17 19.94 1.40

4 0.97 0.97 0.02 0.01 18.71 2.16

ORACLE

2 1.00 1.00 1.00 1.00 20.00 0.55

3 1.00 1.00 1.00 1.00 20.00 0.83

4 1.00 1.00 1.00 1.00 20.00 1.11

main effects; while RAMP and 2-SCAD is much better in selecting interactions than 2-

LASSO. When the signal is weak (β1 = 1), 2-LASSO and 2-SCAD fail to identify the correct

main effects most of time, which in turn leads to low coverage of important interaction

effects. On the other hand, RAMP performs reasonably well in terms of selecting both main

effects and interaction effects. With regard to RMSE, RAMP outperforms 2-LASSO and

2-SCAD in all scenarios. Note that the iFORT and iFORM are omitted in this example, as

they do not handle binary responses.

In the next two examples, we compare RAMP and hierNet algorithms for both strong
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Table 2: Selection and estimation results for Example 2.

main effects interaction effects

β1 coverage exact coverage exact size RMSE

RAMP

1 0.92 0.78 0.92 0.91 4.98 1.80

2 1.00 0.93 1.00 1.00 5.08 1.16

3 1.00 0.92 0.99 0.99 5.13 1.36

2-LASSO

1 0.45 0.41 0.45 0.14 4.05 3.97

2 1.00 0.93 1.00 0.29 6.58 1.41

3 1.00 0.80 1.00 0.42 6.31 1.66

2-SCAD

1 0.49 0.43 0.49 0.49 3.58 3.76

2 1.00 0.81 1.00 0.94 5.28 1.03

3 1.00 0.74 1.00 0.86 5.52 1.22

ORACLE

1 1.00 1.00 1.00 1.00 5.00 0.84

2 1.00 1.00 1.00 1.00 5.00 0.78

3 1.00 1.00 1.00 1.00 5.00 0.83

and weak hierarchy scenarios.

Example 3 Set (n, p, s, t) = (400, 100, 10, 10). Generate the covariates {xi}ni=1
i.i.d.∼ N (0,Σ)

with Σjk = 0.5|j−k| and generate the response y by model (1). S = {1, 2, · · · , 10} with the

true regression coefficients βS = (3, 3, 3, 3, 3, 2, 2, 2, 2, 2)>. The set of important interaction

effects is T = {(1, 2), (1, 13), (2, 3), (2, 15), (3, 4), (6, 10), (6, 18), (7, 9), (7, 18), (10, 19)} with

the corresponding coefficients (2, 2, 2, 2, 2, 1, 1, 1, 1, 1).

In this example, the strong heredity does not hold while the weak heredity is satisfied. Note

that we take p to be relatively small due to the heavy computational cost of hierNet (Bien

et al., 2013). Here, we compare RAMP and RAMP-w (RAMP with the weak heredity

constraint) with hierNet-s and hierNet-w, and the results are summarized in Table 3. As

expected, when applying RAMP with strong heredity (RAMP), it always misses some im-

portant interaction effects. However, the RAMP with weak heredity (RAMP-w) successfully
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Table 3: Selection and estimation results as well as average computing time (in seconds) per

replicate for Example 3.

main effects interaction effects

σ coverage exact coverage exact size RMSE Time

RAMP

2 1.00 0.71 0.00 0.00 19.45 3.54 37.49

3 1.00 0.83 0.00 0.00 16.86 3.71 34.74

4 0.98 0.89 0.00 0.00 15.28 3.87 34.88

RAMP-w

2 1.00 1.00 0.99 0.25 21.33 0.79 47.02

3 1.00 0.99 0.63 0.12 21.16 1.31 46.51

4 1.00 0.98 0.16 0.00 20.07 1.98 46.10

hierNet-s

2 1.00 0.00 1.00 0.00 133.45 5.69 3143.30

3 1.00 0.00 0.96 0.00 119.62 5.33 3232.62

4 1.00 0.00 0.74 0.00 95.06 5.01 3507.85

hierNet-w

2 1.00 0.00 1.00 0.00 126.83 6.60 295.88

3 1.00 0.01 0.98 0.00 96.59 6.17 346.83

4 1.00 0.04 0.75 0.00 65.31 5.73 444.99

recovers the important interaction effects with a high proportion, especially when the error

variance is small. Comparing with the hierNet, the RAMP-w in general selects a much

smaller model with a smaller RMSE. In particular, the computation time of hierNet is much

longer than RAMP for both the strong and weak versions.

Example 4 Set (n, p, s, t) = (400, 200, 10, 10). The rest setup is same as Example 1.

In this example, we consider the case where the strong heredity holds and compare RAMP

and RAMP-w with hierNet-s and hierNet-w. From Table 4, it is clear that RAMP outper-

forms RAMP-w in terms of both the coverage percentage and the exact selection percentage

for interaction effect. This is not surprising as the RAMP-w searches for additional interac-

tion effects compared with RAMP. In addition, the RMSE of RAMP is the smallest among

the four methods throughout all noise levels. Both hierNet-s and hierNet-w have very good

17



Table 4: Selection and estimation results as well as average computing time (in seconds) per

replicate for Example 4.

main effects interaction effects

σ coverage exact coverage exact size RMSE Time

RAMP

2 1.00 1.00 1.00 0.35 20.97 0.86 34.58

3 1.00 0.98 0.93 0.23 21.31 1.18 32.95

4 0.97 0.92 0.64 0.10 21.35 1.72 32.28

RAMP-w

2 1.00 1.00 0.99 0.25 21.25 0.87 56.01

3 1.00 1.00 0.78 0.18 21.14 1.25 54.58

4 1.00 1.00 0.30 0.06 20.02 1.92 53.71

hierNet-s

2 1.00 0.00 1.00 0.00 120.99 5.53 15847.28

3 1.00 0.00 0.99 0.00 115.69 5.15 16552.18

4 1.00 0.00 0.92 0.00 90.55 4.79 16864.49

hierNet-w

2 1.00 0.01 1.00 0.00 97.62 5.79 1467.46

3 1.00 0.02 0.98 0.00 61.04 5.41 1798.27

4 1.00 0.01 0.90 0.00 53.31 5.24 2156.99

coverage percentage but with almost zero exact selection percentage for both main effects

and interaction effects. As a result, they select a large number of noise variables in the final

model. Note that the computation time for hierNet-s is over 4 hours for a single replicate.

As a result, we omit the comparison with hierNet for the other higher dimensional examples.

Example 5 We use the same setting as in Example 1 except for the error distribution,

which is changed to a t distribution with degrees of freedom 3.

This example is designed to examine the robustness of proposed methods under heavy tail

error distributions. For brevity, we report only the performance of the vanilla RAMP with

strong heredity enforced. It is clear from Table 5 that under the heavy tail error distribution,

RAMP has a similar performance as in Example 1.
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Table 5: Selection and estimation results for Example 5.

main effects interaction effects

σ coverage exact coverage exact size RMSE

RAMP

2 1.00 0.94 0.98 0.29 21.59 1.02

3 0.97 0.92 0.84 0.18 21.37 1.52

4 0.90 0.76 0.49 0.08 21.00 2.33

5.2 Real Data Example: Supermarket Data

We consider the supermarket dataset analyzed in Wang (2009) and Hao & Zhang (2014a).

The data set contains the daily sale information of a major supermarket located in northern

China, with n = 464 and p = 6, 398. The total number of interaction effects is about

2.0×107. The response Y is the number of customers on a particular day with the predictor

X measuring sale volumes of a selection of products. The supermarket manager would like

to find out which products are most informative in predicting the response, which would be

useful to design promotions around those products.

Here, we randomly split the data into a training set (n1 = 400) and a test set (n2 = 64) to

evaluate the prediction performance of different methods. We also compare the performance

of RAMP with the regular LASSO without taking interaction effects into account. Because of

the issue of tuning parameter selection, we report the results using different tuning methods

including AIC, BIC, EBIC (Chen & Chen, 2008), and GIC (Fan & Tang, 2013) for both

RAMP and the LASSO.

For each random split, we calculate the number of selected variables, the number of se-

lected interaction effects, and the out-of-sample R2 on the test set. The average performance

over 100 random splits is presented in Table 6. When we use BIC, EBIC and GIC, RAMP

selects a model with higher out-of-sample R2 values than the LASSO. When using more

stringent tuning parameter criteria like the EBIC and GIC, it is observed that the RAMP

performs significantly better than the LASSO. For example, when GIC is used, RAMP selects

30 variables on average with around 3 of them being interaction effects, and has an aver-

age out-of-sample R2 value of 90.08, which is much higher than the corresponding LASSO
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Table 6: Mean selection and prediction results on the supermarket data set over 100 random

splits. The standard errors are in parentheses.

RAMP LASSO

size size.inter R2 size size.inter R2

AIC 229.12(1.68) 94.53(1.06) 90.48(0.23) 264.28(0.91) 0.00(0.00) 92.04(0.18)

BIC 101.17(3.25) 34.36(1.65) 91.18(0.20) 63.47(0.77) 0.00(0.00) 90.76(0.20)

EBIC 29.27(1.01) 3.07(0.29) 89.67(0.31) 15.62(0.46) 0.00(0.00) 72.09(0.53)

GIC 30.71(0.92) 3.20(0.30) 90.08(0.28) 19.19(0.74) 0.00(0.00) 75.05(0.58)

results. It is clear that by using RAMP with the inclusion of possible interaction effects,

we can obtain a more interpretable model with a reasonably good prediction performance.

Moreover, from Table 8 in Hao & Zhang (2014a), the out-of-sample R2 values with the asso-

ciated standard error for iFORT and iFORM are 88.91 (0.17) and 88.66 (0.18), respectively,

both of which are outperformed by RAMP with any tuning parameter selection method.

6 Discussion

We study regularization methods for interaction selection subject to the marginality

principle for QR and GQR models. One main advantage of these algorithms is their compu-

tational efficiency and feasibility for high and ultra-high dimensional data. In particular, a

key feature of RAMP is that it can select main and interaction effects simultaneously while

still keeping the hierarchy structure. The strategy of RAMP can be used to extend other

algorithms, e.g., LARS, to build the entire solution path when fitting the regularized QR

models. All algorithms considered in this paper utilize the hierarchy structures. Such struc-

tures are natural for quadratic models (Nelder, 1977; Hao & Zhang, 2014b). Nevertheless, in

certain applications, some main effects may not be strong enough to be selected first without

incorporating the interaction effects. Other approaches (Zhao et al., 2009; Yuan et al., 2009;

Choi et al., 2010; Bien et al., 2013) can be applied in this scenario, as these methods keep

the hierarchy in different ways. However, a drawback is that most of these algorithms are
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relatively slow when p is large. Recently, there have been studies on interaction selection

which do not rely on the strong or weak hierarchy. Based on the idea of sure independence

screening (Fan & Lv, 2008; Fan et al., 2011; Cheng et al., 2014), Jiang & Liu (2014) proposed

Sliced Inverse Regression for Interaction Detection (SIRI) for screening interaction variables;

Fan et al. (2016) introduced a new approach called interaction pursuit for interaction iden-

tification using screening and variable selection. It would be interesting to incorporate these

screening based methods into our path algorithm to handle general scenarios.

We demonstrate theoretical properties of the two-stage LASSO method for QR. As a ref-

eree pointed out, selection consistency results on the LASSO often rely on the irrepresentable

condition, which is not realistic in applications. In order to extend current results, it is de-

sirable to investigate a broad range of penalty functions for GQR, e.g., under frameworks

similar to Fan & Lv (2011) and Fan & Lv (2013).

An R package RAMP has been developed and is available from the CRAN website.

7 Appendix

The main results are shown in Appendix A, and a related lemma is put in Appendix B.

7.1 Appendix A

Proof of Theorem 1. We will apply the primal-dual witness (PDW) method and use

(W1), (W2), etc. to denote the formula (1), (2),... in Wainwright (2009). Recall in our

paper, the n-vector ω is the imaginary noise at Stage 1, which is the sum of the Gaussian

noise ε and the interaction effects (u>1 βI , ...,u
>
nβI)

>, and hence it is not independent of the

design matrix X.

Part I: Verifying strict dual feasibility.

The goal is to show that, with overwhelming probability, under condition (6), inequality

|Zj| < 1 holds for each j ∈ Sc, where Zj is defined in (W10). For every j ∈ Sc, conditional
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on XS , (W37) gives a decomposition Zj = Aj +Bj where

Aj = E>j

{
XS(X>SXS)−1žS + ΠX⊥S

(
ω

λnn

)}
Bj = ΣjS(ΣSS)−1žS ,

where E>j = X>j − ΣjS(ΣSS)−1X>S ∈ Rn with Eij ∼ N (0, [ΣSc|S ]jj).

Condition (C1) implies

max
j∈Sc
|Bj| ≤ 1− γ.

Conditioned on XS and ω, Aj is Gaussian with mean zero and variance Var(Aj) ≤
ρu(ΣSc|S)Mn where

Mn =
1

n
ž>S

(
X>SXS
n

)−1
žS +

∥∥∥∥ΠX⊥S

(
ω

λnn

)∥∥∥∥2
2

.

The following lemma, proved in appendix B, generalizes Lemma 4 in Wainwright (2009).

Lemma 1 For any ε ∈ (0, 1
2
), define the event T (ε) = {Mn > Mn(ε)}, where

Mn(ε) =

(
1 + max

{
ε,

8

Cmin

√
s

n

})(
s

Cminn
+

2(σ2 + τ 2)

λ2nn

)
.

Then P(T (ε)) ≤ C1 exp(−C2 min{
√
nε2, s}) for some C1, C2 > 0.

By Lemma 1,

P

(
max
j∈Sc
|Zj| ≥ 1

)
≤ P

(
max
j∈Sc
|Aj| ≥ γ

)
≤ P

(
max
j∈Sc
|Aj| ≥ γ | T c(ε))

)
+ C1 exp(−C2 min{

√
nε2, s}). (12)

Note that the goal is to show the probability in (12) is exponentially decayed. Conditional

on T c(ε), Var(Aj) ≤ ρu(ΣSc|S)Mn(ε), so

P

(
max
j∈Sc
|Aj| ≥ γ | T c(ε))

)
≤ 2(p− s) exp

(
− γ2

2ρu(ΣSc|S)Mn(ε)

)
.
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The assumptions of Theorem 1 imply s
n

= o(1) and 1
λ2nn

= o(1), so Mn(ε) = o(1).

Therefore, it suffices to show that the decaying rate of the exponential term dominates p−s.
It is easy to check that (6) can guarantee that maxj∈Sc |Zj| < 1 holds with probability at

least 1− c1 exp(−c2 min{s, log(p− s), n 1
2}).

Now we show the sufficiency of the alternative condition (8). In particular,we show (5)

and (8) imply (6), which is equivalent to

n

1 + δ
> 2s log(p− s)

ρu(ΣSc|S)

Cminγ2
(1 +

2(σ2 + τ 2)Cmin

λ2ns
).

Plugging in (5), we have

n

1 + δ
> 2s log(p− s)

ρu(ΣSc|S)

Cminγ2
+ 2s log(p− s)

ρu(ΣSc|S)

Cminγ2
2(σ2 + τ 2)Cmin

λ2ns

= 2s log(p− s)
ρu(ΣSc|S)

Cminγ2
+

n

φp

log(p− s)
log p

. (13)

Following the same argument after (W40) in Wainwright (2009), (13) is implied by (8) for

φp ≥ 2.

Part II: Sign consistency.

In order to show sign consistency, we need to show that (W13) holds. That is

sign(βj + ∆j) = sign(βj), for all j ∈ S, (14)

where

∆j = e>j

(
X>SXS
n

)−1 [
1

n
X>Sω − λnsign(βS)

]
.

From definition, we have

max
j∈S
|∆j| ≤ F1 + F2 ≤ F1 + (F2,1 + F2,2),
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where

F1 = λn

∥∥∥∥∥
(

X>SXS
n

)−1
sign(βS)

∥∥∥∥∥
∞

F2 =

∥∥∥∥∥
(

X>SXS
n

)−1
1

n
X>Sω

∥∥∥∥∥
∞

F2,1 =

∥∥∥∥∥
(

X>SXS
n

)−1
1

n
X>S ε

∥∥∥∥∥
∞

F2,2 =

∥∥∥∥∥
(

X>SXS
n

)−1
1

n
X>SyI

∥∥∥∥∥
∞

(W41) and a correction version of (W42) give upper bounds of tail probability of F1 and

F2,1, respectively. That is

P

(
F1 > c3λn

∥∥∥Σ
− 1

2
SS

∥∥∥2
∞

)
≤ 4 exp(−c2 min{s, log(p− s)}), (15)

P

(
F2,1 ≥ 20

√
σ2s

Cminn

)
≤ 4 exp(−c1s). (16)

Now we work on the addition term F2,2. By (W60),

P

(∥∥∥∥∥
(

1

n
X>SXS

)−1∥∥∥∥∥
2

≥ 9

Cmin

)
≤ 2 exp(−n/2).

∥∥∥∥ 1

n
X>SyI

∥∥∥∥
2

≤ ‖βI‖2 max
j∈S;(k,`)∈T

{∣∣∣∣ 1nX>j (Xk ?X`)

∣∣∣∣} .
1
n
X>j (Xk ?X`) is a sample third moment, so by Lemma B.5 in Hao & Zhang (2014a),

P

(∣∣∣∣ 1nX>j (Xk ?X`)

∣∣∣∣ > ε

)
≤ c4 exp(−c5n

2
3 ε2).

Therefore, we have

P

(∥∥∥∥ 1

n
X>SyI

∥∥∥∥
2

≥ ‖βI‖2ε
)
≤ s3c4 exp(−c5n

2
3 ε2).
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Overall,

P

(
F2,2 ≥

9

Cmin

‖βI‖2ε
)
≤ s3c6 exp(−c7n

2
3 ε2).

Setting ε = s
1
2

n
1
3

, we have

P

(
F2,2 ≥

9‖βI‖2
√
s

Cminn
1
3

)
≤ c8 exp(−c9s). (17)

Combining (15), (16) and (17), we have that with probability greater than 1− c′1 exp(−c′2
min{s, log(p− s)}),

max
j∈S
|∆j| ≤ c3λn

∥∥∥Σ
− 1

2
SS

∥∥∥2
∞

+ 20

√
σ2s

Cminn
+

9‖βI‖2
√
s

Cminn
1
3

= g(λn).

Therefore (14) holds when βmin > g(λn). �

7.2 Appendix B

Proof of Lemma 1. The first summand of Mn can be controlled exactly the same way

as in Wainwright (2009), i.e.,

1

n
ž>S

(
X>SXS
n

)−1
žS ≤

(
1 +

8

Cmin

√
s

n

)
s

nCmin

with probability at least 1− 2 exp(−s/2).

Turning to the second summand, we observe that ΠX⊥S
is an orthogonal projection matrix

and ω = ε+ yI , so ∥∥∥∥ΠX⊥S

(
ω

λnn

)∥∥∥∥2
2

≤ ‖ω‖
2
2

λ2nn
2
≤ 2

λ2nn

‖ε‖22 + ‖yI‖22
n

.

Note that ‖ε‖22/σ2 ∼ χ2
n, by (W54a),

P

(
‖ε‖22
n
≤ (1 + ε)σ2

)
≤ exp

(
−3nε2

16

)
. (18)

Moreover,

‖yI‖22 − nτ 2 =
n∑
i=1

(u>i βI)
2 − τ 2,
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is a sum of mean zero independent random variables. Define B = (Bjk) is the coefficient

matrix with Bjk = βj,k/2, (j 6= k) and Bjj = βj,j.

For each i, we can write

u>i βI = x>i Bxi − E(x>i Bxi) = e>i Aei − tr(A),

where ei ∼ N (0, I), A = (Σ)
1
2 B(Σ)

1
2 .

The moment generating function M(t) of the quadratic form e>i Aei is

M(t) = Eete
>
i Aei = det(I− 2tA)−

1
2 =

s∏
j=1

(1− 2tλj)
− 1

2 , (19)

where {λj}sj=1 are eigenvalues of A with ascending order. From (19), we have

E(e>i Aei) = tr(A), Var(e>i Aei) = 2tr(A2) = τ 2,

and

Var
(
(e>i Aei − tr(A))2

)
= 48tr(A4) + 8tr2(A2).

Define Wi =
(e>i Aei−tr(A))2

τ2
, then E(Wi) = 1, Var(Wi) = 12 tr(A4)

tr2(A2)
+ 2 ≤ 14. Moreover,

Eet|Wi|
1
2 = Eet

|e>i Aei−tr(A)|
τ

≤ Eet
e>i Aei−tr(A)

τ + Ee−t
e>i Aei−tr(A)

τ

= e−t
tr(A)
τ M(

t

τ
) + et

tr(A)
τ M(

−t
τ

)

=

(
s∏
j=1

e−
√
2taj

1−
√

2taj

) 1
2

+

(
s∏
j=1

e
√
2taj

1 +
√

2taj

) 1
2

where aj = λj/
√∑s

j=1 λ
2
j , so

∑s
j=1 a

2
j = 1. It is easy to see e−x

1−x ≤ 1 + x2 for x ∈ [−1
2
, 1
2
].

For 0 ≤ t ≤
√
2
4

, |
√

2taj| ≤ 1
2
, so both summand in the last formula can be controlled by(

s∏
j=1

(1 + 2t2a2j)

) 1
2

≤

(
s∏
j=1

(1 + a2j/4)

) 1
2

≤

(
s∏
j=1

ea
2
j/4

) 1
2

= e
1
2

∑s
j=1

a2j
4 = e

1
8 .

Therefore, Eet|Wi|
1
2 ≤ 2e

1
8 for 0 ≤ t ≤

√
2
4

. And Eet|Wi−1|
1
2 ≤ Eet(|Wi|+1)

1
2 ≤ Eet+t|Wi|

1
2 ≤

2e
√
2
4
+ 1

8 .
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By Lemma B.4 in Hao & Zhang (2014a),

P

(∣∣∣∣∣
n∑
i=1

(Wi − 1)

∣∣∣∣∣ > nε

)
≤ c1 exp(−c2n

1
2 ε2),

for some positive constants c1, c2. That is

P
(∣∣‖yI‖22 − nτ 2∣∣ ≥ τ 2nε

)
≤ c1 exp(−c2n

1
2 ε2),

which implies

P

(
‖yI‖22
n
≤ (1 + ε)τ 2

)
≤ c1 exp

(
−c2n

1
2 ε2
)
. (20)

(18) and (20) imply

P

(∥∥∥∥ΠX⊥S

(
ω

λnn

)∥∥∥∥2
2

≥ (1 + ε)
2(σ2 + τ 2)

λ2nn

)
≤ c3 exp

(
−c4n

1
2 ε2
)
.

And the conclusion of Lemma 1 follows. �
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