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Model Selection for Sinusoids in Noise: Statistical

Analysis and a New Penalty Term
Boaz Nadler and Leonid (Aryeh) Kontorovich

Abstract—Detection of the number of sinusoids embedded in
noise is a fundamental problem in statistical signal processing.
Most parametric methods minimize the sum of a data fit
(likelihood) term and a complexity penalty term. The latter is
often derived via information theoretic criteria, such as minimum
description length (MDL), or via Bayesian approaches including
Bayesian information criterion (BIC) or maximum a-posteriori
(MAP). While the resulting estimators are asymptotically con-
sistent, empirically their finite sample performance is strongly
dependent on the specific penalty term chosen. In this paper we
elucidate the source of this behavior, by relating the detection
performance to the extreme value distribution of the maximum
of the periodogram and of related random fields. Based on this
relation, we propose a combined detection-estimation algorithm
with a new penalty term. Our proposed penalty term is sharp in
the sense that the resulting estimator achieves a nearly constant
false alarm rate. A series of simulations support our theoretical
analysis and show the superior detection performance of the
suggested estimator.

Index Terms—sinusoids in noise, maxima of random fields,
extreme value theory, periodogram, statistical hypothesis tests.

I. INTRODUCTION

DETECTION of the number of sinusoids, along with their

frequencies and amplitudes is a fundamental problem in

signal processing and time series analysis. Classical treatments

of this problem, suggesting (sequential) hypothesis tests and

typically restricted to the Fourier frequencies date back to

R.A. Fisher [15], see also [8], [29] and references therein.

Since the introduction of Akaike information criteria (AIC),

Schwarz’ BIC criteria and the minimum description length

(MDL) principle for model selection, many different detection

algorithms based on these principles have been proposed, see

[13], [16], [20], [22], [25], [37] and references therein.

In this paper we focus on parametric joint detection-

estimation methods, which determine the number of sinusoids

by minimizing

k̂ = argmin
k

− lnL(θ̂k,x) + k Cn

where x is the observed time series of length n, θ̂k are

parameter estimates in a model of order k, L(θ̂k,x) is the

corresponding likelihood term and Cn is a model-complexity

penalty term, typically of the form C lnn for some constant
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C > 0. Whereas the asymptotic consistency of such estimators

has been thoroughly studied, in simulations, their finite sample

performance has been observed to strongly depend on the

specific penalty term. On the theoretical front, this finite

sample detection performance, and in particular the probability

of over-fitting when using particular penalty terms, remain

unclear.

In this paper we present a detailed statistical study of the

problem of sinusoid detection in white noise. We show that the

detection performance is closely related to the extreme value

distribution of the maximum of the periodogram and of related

random fields. Based on this relation, we propose a combined

detection-estimation algorithm with a new penalty term, that

contains not only the familiar lnn term but also a ln lnn term

and an additive constant. We explain theoretically why these

additional terms are crucial both to prevent over-fitting and to

obtain sensible parameter estimates. We support our analysis

via a series of simulations, which show the superior detection

performance of the suggested estimator.

The paper is organized as follows. The problem formulation,

along with a review of previous work appears in Section II.

The motivation for our approach, and the resulting new penalty

term is described in Section III, whereas its performance is

analyzed in Section IV. Section V presents simulations sup-

porting the theoretical analysis. We conclude with a discussion

in Section VI.

II. DETECTION OF NUMBER OF SINUSOIDS IN NOISE AND

INFORMATION THEORETIC CRITERIA

A. Problem Formulation

The problem of detecting the number of sinusoids embedded

in noise is formulated as follows: Let x(t) denote a one-

dimensional real valued signal composed of an unknown num-

ber of sinusoids K, at unknown frequencies ωj , amplitudes aj ,

and phase shifts ϕj , and corrupted by additive noise

x(t) =

K
∑

j=1

aj sin(ωjt+ ϕj) + σξ(t). (1)

The signal is sampled at discrete times {tj = j}nj=1.

Given the n observations x = {xt}nt=1, the problem is

to estimate the unknown number of sinusoids K in Eq. (1).

For simplicity, we perform a detailed analysis on the simple

case whereby ξ(t) is white and Gaussian, and moreover that

the noise level σ is a-priori known. Later on we relax these

assumptions, and show that our resulting model selection

method performs well under a much broader class of non-

Gaussian white noise with unknown strength or distribution.
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In this paper we focus on parametric joint detection-

estimation methods, which also require estimates of the un-

known frequencies, amplitudes, and phase shifts. While in

this paper we consider only real valued 1-D signals, complex

exponentials embedded in complex valued noise, or 2-D

sinusoids in noise [23] can be treated in a similar way.

Under the assumption of white Gaussian noise, given an

estimate k for the number of sinusoids present, a common

method to estimate the corresponding 3k parameters is by

maximizing the likelihood L of the observed data,

L(θk,x) =
1

(2πσ2)n/2

n
∏

t=1

e−(xt−
∑k

j=1
aj sin(ωjt+φj))

2
/2σ2

(2)

where the vector θk = {aj , ωj , ϕj}kj=1 contains the 3k
parameters of the k sinusoids. Given the number of sinusoids

present, various clever and efficient methods for parameter

estimation have been suggested in the literature [7], [27], [30],

[33]. Note, however, that methods not directly maximizing

the likelihood function may yield substantially less accurate

parameter estimates. Since the maximum likelihood (ML) is a

strictly increasing function of model complexity, unregularized

ML cannot provide a consistent estimate for the true model

order. Hence, some sort of penalty term is needed in order to

estimate the unknown true number of terms in Eq. (1).

B. Previous and Related Work

Many different methods have been suggested in the litera-

ture for estimating the number of sinusoids. Some of the clas-

sical approaches considered the detection problem of a single

sinusoid with an unknown frequency embedded in noise, and

analyzed the maximum of the periodogram at the n Fourier

frequencies [15], [8]. However, as discussed in [8], when

the periodic components are not at Fourier frequencies, the

detection performance of these tests is substantially reduced. A

second family of estimators, which does not require estimation

of the unknown frequencies and amplitudes, was proposed

in [16], [32], as well as in the more recent works [6], [9],

[28]. By exploiting the fact that (noiseless) data arising from

a sum of trigonometric terms satisfy recursion relations with

respect to a time shift, these works proposed computationally

efficient (non-parametric) eigenvalue based estimators. Since

these methods are non-parametric they may require a higher

SNR to reliably detect the number of sinusoids present, as

compared to parametric methods (see also Sec. V).

A third family of estimators, most relevant to our work,

formulated the problem of estimating the number of sinusoids

as a model selection problem. This naturally lead to estima-

tors based on information theoretic criteria. For example, a

straightforward application of the BIC/MDL principle yields

k̂MDL = argmin
k

− lnL(θ̂k,x) +
3k

2
lnn (3)

where θ̂k denotes the vector of ML estimates of all parameters

in a model of order k, and the penalty factor of 3k is the num-

ber of unknown parameters in such a model, not counting the

(possibly unknown) noise variance σ2, a parameter common

to all models.

In [18], [22] Hannan and Kavalieris used MDL techniques

to derive a model order selection method under a very general

framework of sinusoids corrupted by colored and possibly non-

Gaussian noise. In the case of white noise, their approach gives

rise to the following penalty term

k̂MAP = argmin
k

− lnL(θ̂k,x) +
5k

2
lnn. (4)

The same penalty term was also independently derived by

Djuric [13]. By considering a Bayesian framework, Djuric

showed that not all parameters in a model with k sinusoids

should receive the same penalty (see also [30], section 3.6).

Eq. (4) follows by selecting the model order with maximum

a-posteriori probability (MAP), assuming a Bayesian prior.

Both (3) and (4) are specific examples of efficient detection

criteria (EDC) type estimators, with a general form

k̂EDC = argmin
k

− lnL(θ̂k,x) + kCn (5)

where Cn captures the dependency of the penalty on the

number of samples n.

All estimators of the form (5) can also be interpreted as

performing a generalized likelihood ratio test (GLRT), since a

necessary condition to detect at least k sinusoids is that

ln

( L(model order k)

L(model order k − 1)

)

> Cn.

The key question for model selection purposes is thus the

following: what should be the penalty term Cn? One poten-

tially desirable property of the resulting estimator is asymptotic

weak consistency, that is, convergence in probability to the

correct model order

Pr[k̂ = K] → 1 as n → ∞.

From the work of An et. al. [4] on the asymptotic maximum

of the periodogram (see also [29], [35], [36]), sufficient

conditions on the penalty Cn to yield a consistent estimator

are

lim
n→∞

Cn

n
= 0, lim

n→∞

Cn

lnn
> 1. (6)

A second desirable property is accurate detection performance

for finite values of n. In particular, it is desirable to have

control of the false alarm (over-detection rate),

Pr[k̂ > K] ≤ α

say, for all n > n0 and some α ≪ 1.

While both the MDL and MAP estimators satisfy the

conditions (6) and hence are asymptotically consistent, from a

theoretical perspective their finite sample over-detection prob-

ability is unclear. Moreover, as noted in the simulation study

by Kundu [24], for finite observation lengths n, estimators

with different penalty functions Cn have quite different detec-

tion performances and over-estimation probabilities. Based on

simulations, both [24] and Hwang and Chen [20] proposed

Cn = 2 lnn, though, as noted by Kundu, ‘no theoretical

justification can be given in favor of this’.

A similar behavior, namely the strong dependency of an

estimator’s performance on the specific form of Cn, was also

observed by Djuric [13], who showed via simulations that the
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MAP estimator (4) with a larger penalty term achieves better

detection performance than the standard MDL estimator (3),

for samples of length n = 64 or n = 128. The empirical

findings of [13] are rather surprising, given that according to

[29] and Eq. (6) above, any penalty function Cn = c lnn
with c > 1 yields an asymptotically consistent estimator.

Hence, one would expect that the MDL estimator (3) with

a coefficient c = 3/2 which is closer to the minimal value

of c = 1, would have better detection performance than the

MAP estimator with a larger penalty coefficient c = 5/2. Our

analysis thus highlights the fact that minimal requirements for

asymptotic consistency of an estimator may be misleading for

finite sample sizes. Similar behavior is exhibited, for example,

in the case of model selection for multivariate autoregression.

III. MAIN RESULTS

In this paper we present a detailed statistical analysis of

this problem, namely detection of the number of sinusoids

embedded in white noise. Our analysis provides a theoretical

explanation for various empirical findings of previous simula-

tion studies. In particular, it explains why the MAP estimator

enjoys a better detection performance than the MDL estimator

for short records lengths (say n < 1000). More importantly,

our analysis suggests a novel penalty term, which contains

not only the familiar lnn term, but also a ln(lnn) term and

an additive constant term that depends on a user chosen false

alarm rate. We show, both theoretically and empirically via

simulations, the importance of these two additional penalty

terms. These are verified in Section V via simulations, which

show that the resulting estimator gives state-of-the-art detec-

tion performance for a wide range of values of n.
Throughout the paper we use the following notation: For

two vectors u, v ∈ R
n we denote the standard inner product by

⟨u, v⟩ =∑j ujvj , and the induced L2 norm by ∥u∥2 = ⟨u, u⟩.
Let ωj , ϕj denote the frequencies and phase shifts of the K
sinusoids. We denote by sinω,φ = (sin(ω + ϕ), sin(2ω +
ϕ), . . . , sin(nω + ϕ)) the vector of length n containing the

values of a sinusoid with frequency ω and phase shift ϕ,

sampled at t = 1, . . . , n. We denote by VK ⊂ R
n the subspace

spanned by the K vectors {sinωj ,φj}Kj=1. Finally, we denote

by PK : Rn → R
n the projection operator onto VK and by

P⊥
K its orthogonal complementary projection (PK ⊕P⊥

K = I).

A. GLRT and the maxima of stochastic fields

The key observation underlying our analysis is that

detection of the number of sinusoids can be viewed as a

singular hypothesis testing problem. Namely, fitting observed

data sampled from a model of unknown order K with a model

of order K + 1 or higher, involves estimating non-existent

(nuisance) parameters, the parameters of the K + 1 sinusoid

in our case. Hence, the standard statistical theory regarding

the χ2 distribution of the likelihood ratio test does not hold.

Instead, we obtain the following asymptotic result:

Theorem 1: Let x = {xt}nt=1 be n noisy observations from

Eq. (1) with K sinusoids and with σ = 1. Denote by θ̂K and by

θ̂K+1 the ML estimates of the relevant parameters, assuming

K or K + 1 sinusoids, respectively. Denote the GLRT by

GK = ln

(

L(θ̂K+1,x)

L(θ̂K ,x)

)

.

Then this random variable is asymptotically distributed as the

maximum of a χ2 random field

GK ∼ sup
ω,φ∈(0,2π)

1

2
ηK(ω, ϕ)2 (7)

where

ηK(ω, ϕ) =
⟨ξ, P⊥

K sinω,φ⟩
∥P⊥

K sinω,φ∥
, (8)

and ξ is an n-dimensional Gaussian noise vector with zero

mean and identity covariance.

The proof of the theorem appears in the appendix. Here we

provide some intuition behind Eqs. (7) and (8). As n → ∞,

when fitting observed noisy data with the correct model

order, from asymptotic consistency, the maximum likelihood

estimates of the frequencies and phase shifts {ω̂j , ϕ̂j}
converge to the true ones {ωj , ϕj}. The log likelihood is then

proportional to the component of the noise that is orthogonal

to the actual sinusoids, namely P⊥
K ξ, since the component of

the noise in the span of the true sinusoids is indistinguishable

from the signal and is fitted by the ML estimates of the K
sinusoidal amplitudes {âj}. When fitting observed data of

order K with a model of order K + 1, it can be proven that

as n → ∞, K frequencies converge to the true ones, and the

remaining sinusoid is chosen to fit the remaining noise as best

as possible. Eq. (8) measures the fit of an additional sinusoid

having frequency ω and phase shift ϕ to the remaining noise.

The sinusoid chosen is the one that maximizes this (over-)fit

to noise, hence, the maximum in Eq. (7).

Example: We consider in detail the case K = 0, which

corresponds to pure noise with no sinusoids present. Given

the n observations {xt}nt=1, the model selection algorithm first

decides between the following two hypotheses,

H0 : no sinusoids present vs. H1 : one sinusoid present

We now compute the two likelihoods. Under H0, we have

lnL0 = − 1
2

∑

t

x2
t

whereas under H1,

lnL1 = − 1
2

∑

t

(xt − â sin(ω̂t+ ϕ̂))2. (9)

Since â is the ML estimate, it is given by

â =

∑

t xt sin(ω̂t+ ϕ̂)
∑

t sin(ω̂t+ ϕ̂)2
(10)

Substituting (10) into (9) the GLRT statistic is

G0 = ln

(L1

L0

)

=
1

2
S(ω̂, ϕ̂) (11)
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where S(ω, ϕ) is the random field corresponding to sinω,φ,

S(ω, ϕ) =

[
∑n

t=1 xt sin(ωt+ ϕ)
]2

∑n
t=1 sin(ωt+ ϕ)2

. (12)

As ω̂, ϕ̂ are the ML estimates of frequency and phase, respec-

tively, it follows that

G0 =
1

2
sup

ω∈(0,π)

φ∈[0,2π]

S(ω, ϕ). (13)

Note that under H0, for any fixed values of ω, ϕ, the random

variable S(ω, ϕ) is a periodogram-like random field that

follows a χ2 distribution with one degree of freedom. In the

case of no sinusoids (K = 0), the GLRT is distributed as the

maximum of this periodogram-like field. The χ2 random field

of Eq. (7) is its generalization to higher order models.

Remark: The GLRT approach considered in this paper

yields maximization over a 2-dimensional random field, Eq.

(12). Our approach is thus somewhat different from [12], [21]

who considered certain one dimensional random fields, as well

as from [35], who analyzed the classical periodogram

S0(ω) =
2

n

n
∑

j=1

|xte
−iωt|2. (14)

B. A new model selection criterion

Equation (13), or more generally Eq. (7) of Theorem 1 are

the key for our analysis of existing model selection procedures

as well as for the development of a new penalty term. In

particular, Theorem 1 underscores the intimate connection

between model selection and the distribution of the maxima of

random fields. In general, the maximum of random processes

and fields is a well studied challenging mathematical problem

with a rich history, see for example [2], [3] and references

therein. For our purposes, we shall use the following result

(see Theorem 2 and Lemma 1 below): For large n, as x → ∞

Pr

[

sup
(ω,φ)∈(0,π)×[0,2π]

S(ω, ϕ) > x

]

≤ n

√

πx

6
e−x/2(1+o(1))

(15)

We propose to use Eq. (15) as our point of departure for

deriving a new model selection criterion. Let α ≪ 1 be a user

specified false detection probability. In light of Eqs. (13) and

(15), our goal is to find a threshold x = x(n, α) for which

n

√

πx

6
e−x/2 = α.

Taking logarithms in the above equation the corresponding

threshold x(n, α) is the solution of

−x

2
+ lnn+

1

2
ln

πx

6
+O

(

1

n
√
x

)

= lnα (16)

As is common in extreme value theory, we look for an

asymptotic solution of Eq. (16) in the following form

x = A lnn

[

1 +B
ln lnn

lnn
+

C

lnn
(1 + o(1))

]

. (17)

Inserting (17) into Eq. (16) and equating terms of equal order

gives A = 2, B = 1
2 and C = − 1

2 ln(3α
2/π). To conclude,

Pr

[

sup
ω,φ

S(ω, ϕ) > 2 lnn+ ln lnn− ln(3α2/π)

]

. α. (18)

Note that even though our random field is slightly different,

this result is identical to Turkman and Walker ([35], Theorem

3.1), for the maximum of the classical periodogram.

Eq. (18) and its relation to the GLRT via Eq. (13) naturally

suggest the following penalty term

Cn = Cn(α) = lnn+
1

2
ln lnn− 1

2
ln

(

3α2

π

)

(19)

at least for testing K = 0 vs. K = 1. As discussed below,

this penalty term is suitable for general model orders K, as

long as K ≪ n. Thus, our suggested novel estimator for the

number of sinusoids is

k̂EV T = argmin
k

− lnL(θ̂k,x) + kCn(α) (20)

where α ≪ 1 is a confidence level chosen by the user. Since

this estimator is inspired by ideas from extreme value theory

and the maxima of stochastic fields, we denote it by k̂EV T . A

different interpretation of the estimator (20) is as performing

a nested sequence of hypothesis tests, each time testing the

statistical significance of fitting an additional sinusoid to the

given noisy signal. In our approach, in fact, we indeed stop the

first time the GLRT is smaller than the threshold (that is, we

do not seek the optimal penalized likelihood over all model

orders, which saves considerable un-necessary computations).

For a fixed α ≪ 1, the proposed estimator in Eq. (20), is

technically speaking not asymptotically weakly consistent, as

it has a positive false alarm probability α > 0 of detecting

a single sinusoid when none is present (K = 0). In order to

obtain a consistent estimator it suffices to consider a mono-

tonically decreasing sequence αn of false alarm probabilities,

with αn → 0. For a similar approach in a different detection

problem, see [31]. This analysis shows that the conditions of

Eq. (6), which are sufficient for consistency, are in fact not

necessary. In particular, choosing αn = 1/ lnn gives a weakly

consistent estimator whose penalty term Cn satisfies

lim
n→∞

Cn

lnn
= 1.

We note that a penalty term of the form (19) is implicit in

[30] chapter 3.6, based on the asymptotics of the maximum of

the periodogram as n → ∞. As described below, this penalty

term is in fact applicable also for finite n and α ≪ 1.

C. The Distribution of the GLRT for K > 0

The penalty term in Eq. (19) follows from analyzing the

model selection problem for the case K = 0 vs. K = 1. In

this section we present the theoretical justification for using the

same penalty term for higher order models, e.g. for comparing

a model of order K with a model of order K + 1.
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First, recall that according to Eq. (7), we have that for

sufficiently large n, (depending on the SNR of the sinusoids)

Pr[GK > x] ≈ Pr[ 12 sup
ω,φ

η2K(ω, ϕ) > x]

≤ Pr[sup ηK(ω, ϕ) >
√
2x]

+Pr[inf ηK(ω, ϕ) < −
√
2x]

≤ 2Pr
[

sup ηK(ω, ϕ) >
√
2x
]

(21)

Further, recall that by definition (8), ηK is a zero mean

and unit variance Gaussian random field. Hence, model order

overestimation is related to the distribution of the maxima of

Gaussian random fields. The key theoretical result we shall

use is the following general asymptotic result on the maxima

of Gaussian random fields, see [3]:

Theorem 2: Let η(z) be a zero mean and unit variance

Gaussian random field defined for z = (z1, z2) inside a 2-

D rectangle T ⊂ R
2. Let ρ(z, z′) = E[η(z)η(z′)] be the

covariance function of η. Then asymptotically in u

Pr[sup
z∈T

η(z) > u] ≃
∫

T

| detΛ(z)|1/2dz × ue−u2/2

(2π)3/2
(22)

where Λ(z) is given by

Λ(z) =





∂2ρ(z,z′)
∂z2

1

∂2ρ(z,z′)
∂z1∂z2

∂2ρ(z,z′)
∂z1∂z2

∂2ρ(z,z′)
∂z2

2





∣

∣

∣

∣

∣

z′=z

(23)

We remark that the theorem above is a specific case of a more

general theorem concerning the maximum of d-dimensional

Gaussian processes defined over general domains T ⊂ R
d.

In our case, z = (ω, ϕ) ∈ (0, π) × [0, 2π] = T , where due

to periodicity of the random field in the phase variable ϕ, the

domain T is a cylinder and not a rectangle. The theorem above

continues to hold in this case as well. Next, according to Eq.

(8), the Gaussian random field corresponding to our particular

problem has the following specific form

η(z) =
⟨f(z), ξ⟩
∥f(z)∥

where f(z) ∈ R
n and ξ is an n-dimensional vector whose

entries are i.i.d. N(0, 1) random variables. Therefore,

ρ(z, z′) = E[η(z)η(z′)] =
⟨f(z), f(z′)⟩

∥f(z)∥ · ∥f(z′)∥ .

Thus, to analyze the distribution of the maximum of this

random field, we study the behavior of detΛ(z). To this end,

we denote f1 = ∂f(z)/∂z1, f11 = ∂2f(z)/∂z21 , and similar

notations for derivatives w.r.t. the second variable z2. Then

∂ρ(z, z′)

∂z1
=

⟨f1(z), f(z′)⟩
∥f(z)∥ · ∥f(z′)∥ − ⟨f(z), f(z′)⟩

∥f(z′)∥ · ⟨f1(z), f(z)⟩∥f(z)∥3
whereas the expression for the second order derivative is

∂2ρ

∂z21
=

⟨f11(z), f(z′)⟩
∥f(z′)∥ · ∥f(z)∥ − ⟨f1(z), f(z′)⟩

∥f(z′)∥
⟨f1(z), f(z)⟩
∥f(z)∥3

− ⟨f(z), f(z′)⟩
∥f(z′)∥ · ∥f(z)∥3

[

⟨f2(z), f(z)⟩+ ∥f1(z)∥2
]

+3
⟨f(z), f(z′)⟩

∥f(z′)∥
⟨f1, f⟩2
∥f(z)∥5 . (24)

At z′ = z we obtain

∂2ρ(z, z′)

∂z21

∣

∣

∣

∣

z′=z

= −∥f1∥2
∥f∥2 +

⟨f1, f⟩2
∥f(z)∥4 . (25)

Similarly,

∂2ρ(z, z′)

∂z1∂z2

∣

∣

∣

∣

z′=z

= −⟨f1, f2⟩
∥f∥2 +

⟨f1, f⟩⟨f2, f⟩
∥f∥4 . (26)

For the case K = 0, we have the following:

Lemma 1: Let η0 be the random field corresponding to the

case of no sinusoids. Then, for all ω far away from 0, π (more

precisely, min(ω, π − ω) ≫ 1/n),

detΛ(ω, ϕ) =
1

12
n2(1 + o(1)).

Proof: By definition, f(ω, ϕ) = (sin(ω + ϕ), sin(2ω +
ϕ), . . . , sin(nω + ϕ)). Hence, for ω bounded away from 0
or π, we have that

∥f∥2 =
n
∑

t=1

f2
t =

1

n

n
∑

t=1

sin(ωt+ ϕ)2 =
n

2
(1 + o(1))

∥

∥

∥

∥

∂f

∂ω

∥

∥

∥

∥

2

=
n
∑

t=1

t2[cos(ωt+ ϕ)]2 =
1

6
n3(1 + o(1))

⟨∂f
∂ω

,
∂f

∂ϕ
⟩ =

∑

t

t cos(ωt+ ϕ)2 =
1

4
n2(1 + o(1))

In addition, ⟨∂f/∂ω, f⟩ and ⟨∂f/∂ϕ, f⟩ are both O(1). Hence,

inserting these expressions into Eqs. (25) and (26) gives

∂2ρ

∂ω2
= −1

3
n2(1 + o(1)),

∂2ρ

∂ϕ2
= −1(1 + o(1)).

and
∂2ρ

∂ω∂ϕ
=

1

2
n(1 + o(1)).

To conclude, for K = 0 and most values of (ω, ϕ) ∈ T ,

detΛ(ω, ϕ) =
∂2ρ

∂ω2

∂2ρ

∂ϕ2
−
(

∂2ρ

∂ω∂ϕ

)2

=
1

12
n2(1 + o(1)).

�

Similarly, it can be shown that detΛ(ω, ϕ) is well behaved

also as ω → 0 or ω → π. Lemma 1 then implies that
∫

T
detΛ(ω, ϕ)1/2dωdϕ = O(|T |n). Plugging this into Eq.

(22) gives that for large values of u

Pr

[

sup
(ω,φ)∈T

η(ω, ϕ) > u

]

= n

√

π

24
ue−u2/2(1 + o(1))

The change of variables u =
√
x, combined with Eqs. (11)

and (21) yields Eq. (15).

The reason why the suggested penalty term Cn of Eq.

(19) is suitable for testing higher order models is that

detΛ(ω, ϕ) = O(n2) also for K > 1 (as long as K ≪ n).
To illustrate this, consider a single sinusoid K = 1 with

frequency and phase shift (ω1, ϕ1). As above, let f(ω, ϕ) =
(sin(ω + ϕ), sin(2ω + ϕ), . . . , sin(nω + ϕ)), and let h =
f(ω1, ϕ1)/∥f(ω1, ϕ1)∥. According to Eq. (21), the random

field of interest is η1(ω, ϕ) = ⟨g(ω, ϕ), ξ⟩/∥g(ω, ϕ)∥, where

g(ω, ϕ) = f⊥(ω, ϕ) = f(ω, ϕ)− ⟨f(ω, ϕ), h⟩h
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First consider the case where ω, ϕ are far from ω1, ϕ1, (at

distance significantly larger than 1/n). Then,

⟨f, h⟩ =
∑n

t=1 sin(ωt+ ϕ) sin(ω1t+ ϕ1)
√
∑

t sin(ω1t+ ϕ1)2
= O

(

1√
n

)

and

⟨∂f
∂ω

, h⟩ =
∑n

t=1 t cos(ωt+ ϕ) sin(ω1t+ ϕ1)
√
∑

t sin(ω1t+ ϕ1)2
= O

(√
n
)

Therefore,
∥

∥

∥

∥

∂g

∂ω

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∂f

∂ω

∥

∥

∥

∥

2

−
⟨

∂f

∂ω
, h

⟩2

= O(n3).

Calculations analogous to those done above for K = 0, give

that detΛ(ω, ϕ) = O(n2) as long as ω, ϕ is far from ω1, ϕ1

(and also min(ω, π − ω) ≫ 1/n). Since the behavior of the

supremum of η1 depends on the integral
∫

T

√

detΛ(ω, ϕ),
we need to show that detΛ(ω, ϕ) is also well behaved (does

not explode) as (ω, ϕ) → (ω1, ϕ1). To this end, consider for

example (ω, ϕ) = (ω1, ϕ1) + (δω, 0). In this case

g = f⊥ = f(ω1 + δω, ϕ1)− ⟨f(ω1 + δω, ϕ1), h⟩h
A Taylor expansion gives

f(ω1+δω, ϕ1) = f(ω1, ϕ1)+δω
∂f

∂ω
+
1

2
(δω)2

∂2f

∂ω2
+O((δω)3).

Inserting this expression into the previous equation gives

g = δω

(

F1 +
1

2
δωF2 +O(δω)2

)

where

F1 =

(

∂f

∂ω

)⊥
=

∂f

∂ω
−
⟨

∂f

∂ω
, h

⟩

h

F2 =

(

∂2f

∂ω2

)⊥

=
∂2f

∂ω2
−
⟨

∂2f

∂ω2
, h

⟩

h

The random field relevant to this case is η1 = ⟨g, ξ⟩/∥g∥.

Hence one can omit in the calculations the multiplicative factor

of δω in the definition of g above. Tedious but straightforward

calculations similar to those done for K = 0 above give that

∥F1∥2 =
1

6
n3(1 + o(1))

∥F2∥2 =
1

10
n5(1 + o(1)) (27)

Further, note that

∥g∥2 = ∥F1∥2 +O(δω) and
∂g

∂ω
=

1

2
F2.

Hence,

∂2ρ

∂ω2
= −∥ ∂g

∂ω∥2
∥g∥2 +

⟨ ∂g
∂ω , g⟩
∥g∥4

= −1

4

∥F2∥2
∥F1∥2

+
1

4

⟨F2, F1⟩2
∥F1∥4

= − 3

10
n2(1 + o(1)). (28)

Similar calculations give that ∂2ρ/∂ϕ2 = −1(1 + o(1))
and ∂2ρ/∂ω∂ϕ = 6

16n
2(1 + o(1)). Overall, this gives

detΛ(ω, ϕ) = O(n2) also when (ω, ϕ) is near (ω1, ϕ1). In

a similar fashion it follows that detΛ(ω, ϕ) = O(n2) also

in the case of K > 1 sinusoids, provided ω, ϕ are far from

(ωj , ϕj) of each of the K sinusoids.

The following proposition shows that if detΛ = O(n2) then

our proposed penalty term yields a nearly constant false alarm

rate (CFAR) estimator for the number of sinusoids.

Proposition: Let ηK be defined as in Eq. (8), and have

a covariance function ρK , which may depend on the K
unknown parameters θK = {ωj , ϕj}Kj=1. Assume that for the

corresponding matrix ΛK(ω, ϕ) the following condition holds,
∫

T

√

detΛK(ω, ϕ)dωdϕ = nC(θK) (29)

with C(θK) = O(1) regardless of the unknown values θK .

Then, for n ≫ 1, the suggested penalty term

Cn = lnn+
1

2
ln lnn+

1

2
ln

π

3α2

leads to a model order overestimation probability which is

O(α) as α → 0.

Proof: Given a threshold x = Cn (or a penalty term k Cn),

model order overestimation occurs when GK > x. According

to Eq. (21), for sufficiently large n and x,

Pr[GK > x] ≤ 2Pr

[

sup
(ω,φ)∈T

ηK(ω, ϕ) >
√
2x

]

Next, by the definition (8), ηK is a zero mean unit variance

Gaussian random field. Applying Eq. (22) of the theorem,

Pr
[

sup ηK >
√
2x
]

≈
∫

T

√

detΛ(ω, ϕ)dωdϕ

√
2xe−x

(2π)3/2

Combining the last two equations with assumption (29), and

the expression for x = Cn gives

Pr[GK > Cn] ≤ 2nC(θK)
√
2 lnn

(2π)3/2

√

1 + 1
2
ln lnn
lnn + 1

2
lnπ/3α2

lnn

×e− lnn−1/2 ln lnn−1/2 lnπ/3α2

≤ A(θK)α(1 + o(1)) = O(α) (30)

since A(θK) = C(θK)
√
3/π2 = O(1). �

In simple words, the proposition above implies that for K ≪
n (the typical case of a few periodic components in a long time

series), and for α ≪ 1

Pr[GK > Cn(α)] ≈ Pr[G0 > Cn(α)] (31)

Fig. 1 confirms this claim empirically for n = 128. This

analysis justifies the use of the same penalty term regardless

of the number or parameters of the sinusoids present.

D. Unknown noise level σ

The analysis above assumed a known noise level. Next,

we consider a more realistic case, where noise is still i.i.d.

Gaussian but with an unknown standard deviation σ. For

unknown σ, the log-likelihood function is given by

Lk = −∥x− µ̂k∥2
2σ̂2

k

− n

2
ln
(

2πσ̂2
k

)

(32)
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where µ̂k denotes the sum of the k fitted sinusoids, and σ̂2
k is

the ML estimate of σ2, assuming k sinusoids.

Note that the estimation of the amplitudes, frequencies and

phase shifts of the k sinusoids is independent of that of the

noise estimation. Hence, the maximum likelihood estimate of

the noise variance is simply given by

σ̂2
k =

1

n
∥x− µ̂k∥2.

Therefore, we have that

lnLk = −n

2
(1 + ln(2π))− n

2
ln(∥x− µ̂k∥2).

We claim that the same penalty is suitable in this setting as

well, namely that model order selection via Eq. (20) would

still perform well, even for unknown noise level.

To explain this point, consider the case of no sinusoids,

where x is a vector of pure noise. Then, the GLRT for

detecting a single signal is

G0 = ln

(L1

L0

)

=
n

2
ln

(

1−
|⟨x, sinω̂,φ̂⟩|2

∥x∥2 · ∥sinω̂,φ̂∥2

)

As expected, this test statistic is invariant to scaling, since

the noise level is assumed to be unknown. Note that under

the null hypothesis of no signals, x is a Gaussian vector of

length n, and so ∥x∥2 = n + OP (
√
n). The ratio inside the

logarithm is O(lnn/n) and in particular it is significantly

smaller than 1. Hence, a first order Taylor expansion of the

logarithm gives that to leading order, the distribution of G0

is approximately that of a normalized version of the random

field S(ω, ϕ) in Eq. (13) for the case of known noise. The

normalization factor ∥x∥2/n is close to one for large n, and

therefore the maximum has a similar distribution. In fact, the

maximum of the normalized field is slightly more concentrated

around its mean, and so its right tail probabilities are smaller

in comparison to the un-normalized S(ω, ϕ). A detailed study

of this difference is beyond the scope of this paper. For

a treatment of this normalized field using Hotelling’s tube

formula see [21].

E. Non-Gaussian white noise

Finally, we examine the robustness of our penalty term to a

mismatch in the noise model. We thus consider the case where

the noise ξt is white (i.i.d.) zero mean, with variance σ2 and

finite fourth moment, but is not necessarily Gaussian.

Despite this possible non-Gaussianity, in our approach we

still assume the noise distribution to be Gaussian, and find the

parameters of the k sinusoids by a least squares fit. As n →
∞, when fitting data to the correct model order, the resulting

parameter estimates are still asymptotically consistent.

The main claim is again that our proposed penalty term

is suitable for this setting as well. To see this, note that for

any fixed ω, ϕ, from a weighted version of the central limit

theorem (a generalized Berry-Esseen theorem, see e.g. [14])

∑n
t=1 ξt sin(ωt+ ϕ)

∥sinω,φ∥
d−→ N (0, σ2)

Hence, even with non-Gaussian noise, as n → ∞, the

periodogram-like random field S(ω, ϕ) converges in distribu-

tion to a χ2 random field with one degree of freedom, and

thus its maxima follows a distribution similar to the case

of Gaussian noise. We verify this claim empirically in Sec.

V. A detailed study of this convergence, which depends on

the higher order moments of the noise distribution, is an

interesting research problem, beyond the scope of this paper.

Remark: We conclude this section with an important re-

mark regarding the un-suitability of our simple penalty term

for the case of strongly correlated noise. The reason is that in

the presence of colored noise, the maxima of the periodogram

can be significantly larger than in the white noise case, with

the difference depending on the noise correlation structure.

Deriving sharp model selection criteria under such settings is

an interesting problem for future research.

IV. THEORETICAL PERFORMANCE ANALYSIS

A. Penalty Term Comparisons for Finite n

Let us compare the penalty term of our approach (Eq.

(19)) to previously considered penalty terms. First, note that

for a reasonable range of record lengths, n ∈ [64, 2048],
the term 1

2 ln lnn is almost constant with a value bounded

in the interval [0.7, 1]. Similarly, for a significance level of

α = 0.5%, ln(π/3α2)/2 ≈ 5.3. Hence, in loose terms, for

these values of n, one may view our suggested penalty term

as having the approximate form

Cn = lnn+ const

where for a false alarm probability α = 0.5% the constant is

roughly 6.2.

We now explain why, for records of length n = 64, 128,
Djuric’s MAP estimator has better detection performance than

the MDL estimator, despite its higher penalty constant. The

reason is that for these specific values of n,

Cn(MAP) =
5

2
lnn ≈ lnn+ 6.5

whereas

Cn(MDL) =
3

2
lnn ≈ lnn+ 2.2

Hence, the MAP estimator has a sufficiently strong penalty

leading to a negligible probability to overestimate the number

of signals, whereas the MDL estimator, although asymptoti-

cally consistent, has too small a penalty term for these finite

values of n, which leads to a non-negligible probability to

overestimate the number of sinusoids.

Since the MDL estimator is asymptotically consistent, it is

interesting to analyze at which minimal sample size nα its

overestimation probability drops to below a value of α ≪ 1
and becomes negligible. According to our analysis, this will

occur roughly when

3
2 lnn = lnn+ 1

2 ln lnn+ ln π
3α2 .

In other words,

nα ≈ π2

(3α2)2
.
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For example, for the MDL estimator to have an overestimation

probability of α = 1% we need n & 108 samples! Simply put,

even though the MDL estimator is asymptotically consistent,

this behavior begins to manifest itself only at extremely large

sample sizes. We note that this finite sample size analysis is

relevant also for many other model selection penalty terms

that are asymptotically consistent.

B. Signal Detection Thresholds

Let us compare the signal detection performance of the

different methods. In particular we analyze the signal strength

required for detecting the presence of a single sinusoid with

unknown amplitude a, frequency ω, and phase shift ϕ. For

k = 0, we obtain

− lnL0 =
1

2

n
∑

t=1

(a sin(ωt+ ϕ) + ξt)
2

whereas for k = 1

− lnL1 =
1

2

n
∑

t=1

(a sin(ωt+ ϕ)− â sin(ω̂t+ ϕ̂) + ξt)
2

For n ≫ 1, ω̂, ϕ̂ are close to ω, ϕ, and thus â ≈ a +
⟨ξt, sin(ωt+ϕ)⟩/∥ sin(ωt+ϕ)∥. Therefore, upon opening the

brackets above, the noise term
∑

ξ2t in the GLRT cancels out,

and we obtain

ln

(L1

L0

)

≈ 1

2

[

â2
∑

t

sin(ωt+ ϕ)2

]

For ω satisfying the condition that min(ω, π − ω) ≫ 1/n we

have that
∑

t sin(ωt+ϕ)2 = n
2 (1+o(1)). Hence, the condition

for detection by the MAP estimator is that

a2
MAP

>
4

n

5 lnn

2
= 10

ln

n

In contrast, detection by the EVT estimator requires

a2
EVT

>
4

n

[

lnn+
1

2
ln lnn+ 1

2 ln
π

3α2

]

Assuming that a false alarm rate of α = 0.5% is acceptable,

the MAP and EVT have a similar detection performance

for n = 64, where their penalty terms are comparable.

However, for larger record lengths the penalty term of MAP

becomes increasingly larger than that of the EVT estimator,

thus affecting its detection performance. For example, for

n = 512 the EVT estimator can detect sinusoids weaker by a

factor of 10 log10(a
2
MAP

/a2
EVT

) = 1.5 dB. This is also confirmed

by simulations, see fig. 3.

V. SIMULATIONS

We compare the detection performance of our algorithm,

denoted EVT, to the MDL and AIC estimators in a series of

simulations, all with σ = 1. Our performance measure is the

probability of correct model order estimation,

Pr[k̂ = K].

We consider two settings similar to those of [13]. In the first

setting K = 2, n = 128 or n = 512, and the sinusoid

parameters are ω1 = 2π · 0.2, ω2 = ω1 + 2π/n, ϕ1 = 0,

ϕ2 = π/4. The amplitudes of the two sinusoids are equal

a1 = a2. We use the same notation as in [13], where the SNR

of a sinusoid with amplitude a is defined as a2/2σ2, or in dB

units, SNR = 10 log10(a
2/2σ2).

In our simulations we consider a wide range of ampli-

tude strengths and corresponding SNR values. For each SNR

value we performed 200 independent trials. In each trial,

a random noise-corrupted signal is generated. For model

orders k̂ = 0, 1, 2, 3 the relevant parameters are found by

approximately maximizing the likelihood function. This is

done iteratively, one frequency at a time, via a sequence of

alternating projections, similar to [38]. Initial parameters for

model order k+1 are those found previously for model order

k, with an additional 1-d search for the remaining frequency.

The resulting performance curves are shown in figure 3.

As predicted theoretically, for n = 128 the MAP and EVT

estimators have a similar performance, whereas for n = 512
the EVT estimator outperforms the MAP estimator by approx-

imately 1.5dB. For both record lengths, the MDL estimator

has a non-negligible overestimation probability, of the order

of 10% for n = 128 and 8% for n = 512. Finally, as shown in

the figure, there is only a negligible performance degradation

due to not knowing the noise level and having to estimate it.

Next, we investigate the accuracy of the frequency estimates

in conjunction to the detection problem. First, suppose an a-

priori knowledge that two sinusoids are present. Then at high

SNR, their frequency estimates are very accurate, whereas at

low SNR at least one of the estimated frequencies is far from

the true one. This is the well known breakdown phenomenon

of the Maximum-Likelihood estimator. In contrast, as shown

in Fig. 4, limiting the frequency estimation step only to those

realizations where two sinusoids are actually detected by our

method, gives estimated frequencies close to the true ones,

even at low SNR values. These results show the importance

of detection prior to estimation in certain parametric problems.

For a similar phenomena and a more detailed analysis in the

setting of direction of arrival estimation in array processing

applications, see [1], [5].

In the second setting, K = 3, n = 128, the values of

ω1, ω2, ϕ1, ϕ2 are as above, while ω3 = ω2+2π/n, ϕ3 = π/3.

Here the sinusoid amplitudes are of the form (a1, a2, a3) =
a0(1,

√

6.3246/20, 1), so the middle sinusoid is 5dB weaker

than the others. A similar behavior to the case K = 2 is

observed here as well (figure not shown), namely the MDL

estimator overestimates the number of signals, whereas the

EVT estimator has an improved detection performance, at the

price of a slightly larger overdetection probability. Our analysis

explains the simulation results of [13], which were performed

at relatively high SNR (e.g. at the right edge of our figures),

where the MAP estimator easily detects the present signals,

whereas MDL overfits their number.

A. Non-Gaussian Noise

Next we study the performance of our model selection

approach in the presence of noise mismatch. Fig. 5 shows

the detection performance results for n = 128 and k = 2 (the
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Fig. 1. Empirical density of the random variable GK/n for different values
of K. Note the very weak dependence on K, which justifies the use of our
suggested penalty term.
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Fig. 2. Comparison of different penalty terms vs. sample size n. The MDL
penalty (lower curve, blue squares) is clearly too small, and leads to a non-
negligible probability of overestimation. The top curve (red dots) is the MAP
penalty - which is well suited for n ≈ 100 but is too large for n > 500.

same setting as in the previous section), when the noise is i.i.d.

but with a Laplace distribution. As predicted theoretically, the

detection performance is essentially unchanged.

B. Comparison to SAMOS

Finally, we compare our model selection approach to

SAMOS [28], a recently suggested order selection method

based on shift invariance principles.

Similar to the example considered in [28], we generate

a signal composed of two sinusoids corrupted by Gaussian

white noise, xt = cos(2πν1t) + cos(2πν2t) + σξt, where

t = 0, . . . , n − 1, n = 65, ν1 = 0.2, σ = 0.4/
√
2, and ν2 is

such that the difference δν = (ν2−ν1) ∈ [1/300, 1/50]. Since

we are dealing with real-valued signals and noise, the SAMOS

procedure should output a model order of 4 (two real valued

sinusoids can be described as the sum of four complex valued

exponentials). Fig. 6 shows the success probability in model

selection as a function of 1/(ν2 − ν1). Since here we have

undamped exponentials, SAMOS performs slightly better than

Fig. 2 in [28]. However, our fully parametric (and significantly
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Fig. 3. Detection Performance of the MDL, MAP and EVT estimators as a
function of SNR for record length n = 128 (left) and n = 512 (right) for
the case of K = 2 sinusoids with closely spaced frequencies.
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Fig. 4. Breakdown phenomenon in frequency estimation. The blue curve
shows the log of the mean squared error as a function of SNR, averaged over
many noise realizations. Note the breakdown phenomenon at roughly −10dB,
where a sudden sharp increase in MSE is due to unreliable estimation of one
of the frequencies. The green curve shows the log of the MSE, but averaged
only over those realizations where two sinusoids were indeed detected by
our algorithm. Note that at very low SNR, our estimator for the number of
sinusoids can thus detect those realizations where reliable estimation is not
possible.
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Fig. 5. Detection Performance with Laplace Noise.
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Fig. 6. Success probability vs. inverse frequency separation. Comparison of
SAMOS with our EVT detector.

more computationally intensive) procedure is able to detect

the two closely spaced sinusoids at much smaller frequency

separation.

VI. SUMMARY AND DISCUSSION

In this paper we presented a statistical analysis of the prob-

lem of detection of sinusoidal signals embedded in additive

white noise. On the theoretical side, we showed that this model

selection problem is closely related to problems of hypothe-

sis testing when there are nuisance parameters not present

under the null hypothesis. This observation implies, in turn,

that parametric model selection is intimately related to the

distribution of the maxima of random fields. We remark that

these issues regarding model selection have been studied in

other fields, for example in econometrics [19], and in mixture

modes in statistics [11]. Our results are closely related to those

of [11], in particular their theorem 3.2. However, our method

of proof is different. We also note the potential relevance of

our results to the penalty term in sparse representations (some

of which also use a C lnn term) [17]. On the practical side, we

showed that for reasonable record lengths, the MDL estimator

has a non-negligible probability to overestimate the number

of sinusoids. Furthermore, our analysis highlighted the crucial

importance of including both a ln lnn term as well as an

additive constant in the penalty function for model selection.

Instead of relying on information theoretic considerations,

the penalty term we propose is based on testing the statistical

significance of each additional estimated sinusoid. Beyond its

good detection performance and its explicit control of the

over-detection probability, perhaps the most important reason

to detect signals only when the increase in the likelihood is

statistically significant is the so-called breakdown phenomenon

of the maximum likelihood estimator. Accepting the presence

of sinusoidal signals when the observed increase in likelihood

is smaller than our suggested penalty function (with an α ≪ 1)
is rather meaningless from an estimation point of view, since

the resulting estimates for the frequency are typically far from

the true values. Finally, the observations and analysis made in

this paper are not limited to the specific problem of detection

of sinusoids in noise. Rather, they are applicable to many other

parametric model selection problems in signal processing.

APPENDIX

A. Proof of Theorem 1

Before describing the technical details, let us first provide

an overview of the proof. Let θK be the true unknown vector

of frequencies and phase shifts. For each record length n
we consider maximum-likelihood estimates of the unknown

parameters restricted to only a finite set Θm of size m, such

that (ωj , ϕj) ∈ Θm. As n → ∞ we consider increasingly

finer sets Θm, with m = m(n) → ∞ which become dense

in [0, π] × [0, 2π]. This formulation is not too restrictive as

the size of the set is allowed to grow with sample size n,

allowing arbitrary precision in the limit, and has the advantage

of significantly simplifying the analysis.

Rather than proving Theorem 1 for the specific case of

sinusoids, we consider a more general framework as follows:

Let F = {fθ : R → R |θ ∈ Θm} be a parametric class of

continuous functions over a finite parameter space Θm, that

satisfy the following conditions:

(i) Consider a discrete sampling of a function fθ(t) ∈ F ,

at times tj = j, for j = 1, . . . , n. Then, for all θ ∈ Θm,

c1 ≤ 1

n

n
∑

j=1

(fθ(tj))
2 ≤ c2 (33)

for some constants 0 < c1 < c2 < ∞.

(ii) Let g(t) =
∑k

j=1 ajfθj (t), where θj ∈ Θm are

all distinct. Consider the n−dimensional vector g =
(g(t1), . . . , g(tn)). Then, for k < n

∥g∥2 ≥ ϵm,k · n ·
k
∑

j=1

a2j (34)

where ϵm,k > 0. Note that Eq. (34) implies, in particular,

that for any choice of k distinct values θj , the functions

fθj (t) evaluated at the n time points tj are linearly

independent vectors in R
n.

Let x(t) be a function of the following form

x(t) =

K
∑

j=1

Ajfθj (t) + ξ(t) (35)
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where θj ∈ Θm are all distinct and ξ(t) is a Gaussian white

noise process. The problem in this general framework is to

detect the number of components K given observed data x(tj),
j = 1, . . . , n. Note that the collection of sinusoid functions

F = {sin(ωt + ϕ) | (ω, ϕ) ∈ Θm} indeed satisfies conditions

(i) and (ii) above.

The proof outline is as follows: First, in lemma 2 we prove

that as n → ∞, when fitting a model of order K to the

data, all maximum likelihood estimates (MLE) of the various

parameters converge to the true ones. While in principle this

lemma follows trivially from the consistency of the MLE, we

prove it in detail as it is informative in the case of finite

parameter space, to understand theorem 1. Next, in lemma

3, we prove that when fitting data of order K with a model of

order K + 1, then as n → ∞, K of the estimated parameters

converge to their correct ones, and the last one is free to fit

the remaining noise as best as possible.

As we now show, combining Lemmas 2 and 3 yield the

theorem. Lemma 2 implies that

− lnL(θ̂K) → 1

2
∥ξ⊥∥2 =

1

2

n
∑

t=1

(ξ⊥t )2 (36)

where ξ⊥ is the part of the noise orthogonal to the span of

{fθj}Kj=1. From Lemma 3 it follows that

− lnL(θ̂K+1) → min
a,θ

1

2
∥ξ⊥ − af⊥

θ ∥2 (37)

where f⊥
θ is the part of fθ orthogonal to span of {fθj}Kj=1.

For any given θ, the amplitude that minimizes the norm above

is a = ⟨ξ⊥, f⊥
θ ⟩/∥f⊥

θ ∥. Hence,

GK = ln

(LK+1

LK

)

→ 1

2
sup
θ

⟨ξ⊥, f⊥
θ ⟩2

∥f⊥
θ ∥2

and Theorem 1 follows.

Lemma 2: Let {x(tj)}j be a time series of length n of the

form (35), with K < n/2 components. We further assume that

conditions (i) and (ii) above hold. Denote by θ̂K the MLE of

θK assuming a model of order K. Then, as n → ∞,

Pr[θ̂K = θK ] → 1.

Proof: The proof consists of showing that the likelihood of

the correct θK is asymptotically larger that the likelihood of

any other candidate. Indeed, the log likelihood at the correct

parameters, θ̂K = θK is given by

lnLK(θK , x) = −1

2
∥ξ⊥∥2 (38)

where ξ⊥ = P⊥
K ξ is the component of the noise orthogonal to

the subspace spanned by the K signal vectors fθi(tj).
Next, consider the log likelihood at some other parameter

value θ̂ = (θ̂1, . . . , θ̂K) ̸= θK . Here,

lnL(θ̂K , x) = −1

2
∥
∑

j

Ãjfθj −
∑

j

Âjfθ̂j + ξ⊥∥2 (39)

where the coefficients Ãj incorporate also the component

of the noise in the span of the signal vectors, such that

∑

j Ãjfθj =
∑

j Ajfθj + ξ − ξ⊥. For simplicity of notation,

we write

g =
K
∑

j=1

Ãjfθj −
K
∑

j=1

Âjfθ̂j (40)

We now examine the difference in the log-likelihoods,

lnL(θK , x)− lnL(θ̂K , x) =
1

2
∥g∥2 − ∥g∥⟨g, ξ

⊥⟩
∥g∥ (41)

According to condition (ii), ∥g∥2 ≥ ϵm,2K minj |Aj |2 · n.

On the other hand, for any function g, ⟨g, ξ⊥⟩/∥g∥ is a

N(0, 1) Gaussian random variable. For any choice of the

K parameters θ̂1, . . . , θ̂K , the dot product |⟨g, ξ⊥⟩|/∥g∥ is

the norm of the projection of noise onto a specific vector

in a linear subspace of dimension K. This quantity is thus

maximized by the norm of the noise in this subspace, which

is distributed as
√

χ2
K . Since the set Θm is finite, there are

at most |Θm|K possible choices for θ̂K . Applying the union

bound yields that the maximum value of the second term is of

the order of
√
nK3/2 logm. As n → ∞ the first term, which

is Ω(n) clearly dominates, as long as m = m(n) grows say

polynomially with n. �
Lemma 2: Let {x(tj)}j be a time series of length n of

the form (35), with K < n/2 components. Let θ̂K+1 be the

MLE assuming a model of order K +1. Then, as n → ∞, K
of the components in θ̂K+1 are equal to the true parameters

(θ1, . . . , θK).
Proof: We first consider the case, where w.l.g., the first K

parameters in θ̂K+1 are equal to the true values, θ̂K+1 =
(θ1, . . . , θK , θ̂K+1). The estimated signal is then

x̂(t) =

K
∑

j=1

Âjfθj (t) + ÂK+1f
⊥
θ̂K+1

(t)

where f⊥
θ̂K+1

is the part of the vector fθ̂K+1
orthogonal to the

span of the first K vectors. The log-likelihood is then

− lnLK+1 = 1
2

∥

∥

K
∑

j=1

(Ãj − Âj)fθj + ξ⊥ − ÂK+1f
⊥
θ̂K+1

∥

∥

2

= 1
2∥

K
∑

j=1

(Ãj − Âj)fθj
∥

∥

2

+ 1
2∥ξ⊥ − ÂK+1f

⊥
θ̂K+1

∥

∥

2

This sum is maximized by choosing Âj = Ãj for j =
1, . . . ,K, and θ̂K+1 such that it best fits the remaining

noise component. Now consider an estimate θ̂ (of dimension

K + 1), which does not coincide with θ on any subset of K
coordinates. The log-likelihood in this case is given by

lnLK+1 = −1

2

∥

∥

∥
g + ξ⊥

∥

∥

∥

2

(42)

where

g =
K
∑

j=1

Ãjfθj −
K+1
∑

j=1

Âjfθ̂j

The first likelihood is of course bounded below by simply

− 1
2∥ξ⊥∥2. From this point on, the proof is analogous to that

of the previous lemma. �.
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