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Abstract

This paper addresses the problem of tuning hyperpa-
rameters in support vector machine modeling. A Direct
Simplex Search (DSS) method, which seeks to evolve
hyperparameter values using an empirical error estimate
as steering criterion, is proposed and experimentally
evaluated on real-world datasets. DSS is a robust hill
climbing scheme, a popular derivative-free optimiza-
tion method, suitable for low-dimensional optimization
problems for which the computation of the derivatives
is impossible or difficult. Our experiments show that
DSS attains performance levels equivalent to that of GS
while dividing computational cost by a minimum factor
of 4.

Introduction

Support vector machines (SVM) are a powerful machine
learning method for classification problems. However, to
obtain good generalization performance, a necessary condi-
tion is to choose sufficiently good model hyperparameters
(i.e regularization parameter (C) and kernel parameters) de-
pending on the data. The choice of SVM model parameters
can have a profound effect on the resulting model’s gener-
alization performance. Most approaches use trial and er-
ror procedures to tune SVM hyperparameters while trying
to minimize the training and test errors. Such an approach
may not really obtain the best performance while consum-
ing an enormous amount of time. A more systematic and
reliable approach which is very common is to decide on pa-
rameter ranges, and to then do an exhaustive grid search
over the parameter space to find the best setting. Unfor-
tunately, even moderately high resolution searches can re-
sult in a large number of evaluations and unacceptably long
run times. Recently others approaches to parameters tuning
have been proposed (Chapelle et al. 2002; Keerthi 2003;
Chung et al. 2003). These methods use a gradient de-
scent search to optimize a validation error, a leave-one-out
(LOO) error or an upper bound on the generalization er-
ror (Duan, Keerthi, & Poo 2001). However, gradient de-
scent oriented methods may require restrictive assumptions
regarding, e.g., continuity or differentability. Typically the
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criteria, such as LOO error, are not differentiable, so that ap-
proaches based on gradient descent via cross-validation are
generally not applicable. For such non differentiable crite-
ria other approaches based on Evolutionary Algorithms have
been investigated (Cohen, Hilario, & Geissbuhler 2004;
Friedrichs & Igel 2004; Runarsson & Sigurdsson 2004).

In the present work we propose a Direct Simplex Search
methodology to tune SVM hyperparameters and illustrate its
effectiveness in classification tasks. The main advantages of
a DSS strategy lie in the suitability for problems for which
it is impossible or difficult to obtain information about the
derivatives. The paper is organized as follows. In the first
Section the Direct Simplex Search algorithm is described.
In the second Section DSS for SVM model selection in clas-
sification tasks are described. Experiments conducted to as-
sess this approach as well as results are described in the third
Section. Finally, the last Section draws a general conclusion.

Direct Simplex Search Algorithm

Direct search methods belong to a class of optimization
methods that do not compute derivatives. The direct search
method we used is the Nelder-Mead (NM) Simplex method
(J.A.Nelder & R.Mead 1965). The NM method is the most
popular direct search method, used in solving a lot of prob-
lems, especially in chemistry, chemical engineering, and
medicine. Although there are no theoretical results on the
convergence of the algorithm, it works very well on a range
of practical problems. The Nelder-Mead method is concep-
tually simple. It performs a search in n dimensional space
using heuristic ideas. Its main strength are that it requires no
derivatives to be computed and that it doesn’t require the ob-
jective function to be smooth. The NM method attempts to
minimize a scalar-valued nonlinear function of n real vari-
ables using only function values, without any derivative in-
formation (explicit or implicit). Many of the best known
direct search methods, including the NM method, maintain
at each step a nondegenerate simplex, a geometric figure de-
fined by n+1 vertices (real n-vectors). (For example, a sim-
plex in two dimensions is a triangle and a tetrahedron forms
a simplex in three dimensions.) Suppose that we are mini-
mizing the function f(x), where x denotes a real n-vector.

The NM method includes four possible operations on the
current simplex, each associated with a coefficient: reflec-
tion (ρ), expansion (ξ), contraction (γ), and shrinkage (σ).
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Figure 1: Nelder-Mead simplices after (a) reflection, (b) ex-
pansion, (c) outside contraction, (d) inside contraction and
(e) shrinkage. The original simplex is drawn with a dashed
line.

The result of each NM iteration is either: (1) a single new
vertex, the accepted point which replaces the current worst
vertex (the vertex with the largest function value) in the set
of vertices for the next iteration; or (2) if a shrink is per-
formed, a set of n new points that, together with the previous
best vertex, form the simplex at the next iteration.

A single iteration of the NM method is defined according
to the following steps.

1. Order : Order the n + 1 vertices to satisfy f(x1) ≤
f(x2) ≤ · · · ≤ f(xn+1) using a consistent tie-breaking
rule.

2. Reflect : Compute the reflexion point xr from xr = x̂ +
ρ(x̂−xn+1) where x̂ =

∑n
i=1

xi/n is the centroid of the
n best points. Evaluate fr = f(xr). If f1 ≤ fr < fn,
accept the reflected point xr and terminate the iteration.

3. Expand : if fr < f1 calculate the expansion point xe :
xe = x̂ + ρξ(x̂ − xn+1) and evaluate fe = f(xe). If
fe < fr accept xe and stop the iteration; otherwise accept
xr and stop the iteration.

4. Contract: If fr ≥ fn, perform a contraction between x̂

and the better of xn+1 and xr.

(a) Outside If fn ≤ fr < fn+1 perform an outside con-
traction: calculate xc = x̂−γρ(x̂−xn+1) and evaluate
fc = f(xc). If fc ≤ fr, accept xc and terminate the
iteration; otherwise go to last step (perform a schrink).

(b) Inside If fr ≥ fn+1 perform an inside contraction:
calculate xcc = x̂ − γ(x̂ − xn+1) and evaluate fcc =
f(xcc). If fcc < fn+1, accept xcc and terminate the
iteration; otherwise go to next step (perform a schrink).

5. Perform a shrink step Evaluate f at the n points vi =
x1 + σ(xi − x1), i = 2, . . . , n + 1. The vertices of the
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Figure 2: Structure of the Direct Simplex Search method of
Nelder-Mead.

simplex at the next iteration consist of x1,v2, . . . ,vn+1

Common choices for setting the coefficients values are
ρ = 1, ξ = 2, γ = 1/2 and σ = 1/2. Figure 1 depicts
the effect of the different operations, using this setting.

Figure 2 illustrates the structure of the DSS method. One
can see that if one of the first three operations is success-
ful, then a single new point replaces the worst vertex. In
this case, an iteration requires one or two function evalua-
tions depending on the operation performed (one for reflec-
tion or two expansion or contraction). Otherwise a shrink
operation is done which requires n+2 function evaluations.
After computing one or more trial points and evaluating the
objective function at these points, each iteration generates
a different simplex for the next iteration. The procedure is
iterated until a stopping criterion is satisfied. Usually two
stopping criteria are used: either the length of the edges of
the current simplex becomes less than a prescribed positive
number (the simplex becomes too small) or the function val-
ues at the vertices are too close.

Since the Direct Search method cannot be guaranteed to
converge to the global optimum, standard approaches to al-
lievate this problem are to apply the Nelder-Mead algorithm
with multiple starting points generated randomly.

SVM Model Selection via DSS

To apply DSS to SVM classification one need to define the
model and model quality function to be optimized (model
selection criteria).

Support vector machines (Vapnik 1998; Cortes & Vapnik
1995) (SVM) are state of the art learning machines based
on the Structural Risk Minimization principle (SRM) from
statistical learning theory. The SRM principle seeks to min-
imize an upper bound of the generalization error rather than
minimizing the training error (Empirical Risk Minimization



(ERM)). This approach results in better generalization than
conventionnal techniques generally based on the ERM prin-
ciple.
For a separable classification task, the idea is to map each
data point of the training set into a high dimensional space
by some function φ, and search for a canonical separating
hyperplane (w, b), with w the weight vector and b the bias,
in this space which maximises the margin or distance be-
tween the hyperplane and the closest data points belonging
to the different classes. When nonlinear decision boundaries
are not needed φ is an identity function, otherwise φ is per-
formed by a non linear function k(., .) , also called a ker-
nel, which defines a dot product in the feature space. We
can then substitute the dot product 〈φ(x), φ(xi)〉 in feature
space with the kernel k(x,xi). Conditions for a function to
be a kernel are expressed in a theorem by Mercer (Cristian-
ini & J.S. 2000). The optimal separating hyperplane can be
represented based on a kernel function:

f(x) = sign

(

n
∑

i

αik(x,xi) + b

)

(1)

For a separable classification task, such an optimal hyper-
plane exists but very often, the data points will be almost
linearly separable in the sense that only a few of the mem-
bers of the data points cause it to be non linearly separable.
Such data points can be accommodated into the theory with
the introduction of slack variables that allow particular vec-
tors to be misclassified. The hyperplane margin is then re-
laxed by penalising the training points misclassified by the
system. Formally the optimal hyperplane is defined to be
the hyperplane which maximizes the margin and minimizes
some functional θ(ξ) =

∑n
i=1

ξσ
i , where σ is some small

positive constant. Usually the value σ = 1 is used since it is
a quadratic programming problem (QP) and the correspond-
ing dual does not involve ξ and therefore offers a simple op-
timization problem. The optimal separating hyperplane with
σ = 1 is given by the solution to the following minimization
problem:

LP (w, ξ, b) =
1

2
‖w‖2 + C

n
∑

i=1

ξi (2)

subject to yi(〈w, φ(xi)〉 + b) ≥ 1 − ξi, ∀i

ξi ≥ 0, ∀i

where b/‖w‖ is the distance between origin and hyperplane,
ξi is a positive slack variable that measures the degree of
violation of the constraint. The penalty C is a regularisation
parameter that controls the trade-off between maximizing
the margin and minimizing the training error. This is
a QP, solved by the Karush-Kuhn-Tucker theorem. Let
ααα = (α1, α2, . . . , αn)T be the n non negative Lagrange
multipliers associated with the constraints, the solution to
the problem is equivalent to determining the solution of the
Wolfe dual (Fletcher 1987) problem.

LD(α) = eeeTααα −
1

2
αααT Qααα. (3)

subject to αααy
T = 0 and 0 ≤ αi ≤ C i = 1, . . . , n

where eee is a vector of all ones and Q is a n × n matrix
with Qij = yiyjk(xi,xj). The KKT conditions imply that
non-zero slack variables can only occur for αi = C. For
the corresponding points the distance from the hyperplane is
less than 1/‖w‖ as can be seen from the first constraint in
(2).

Table 1: Some valid Kernel functions
Kernel type Expression Hyperpar.

Linear k(x, z) = 〈x, z〉 C
Polynomial k(x, z) = (〈x, z〉 + 1)p C, p

Gaussian RBF k(x, z) = e−γ‖x−z‖2

C, γ

Model Selection Criteria To obtain a good performance,
some parameters in SVMs have to be selected carefully.
These parameters include

1. the regularization parameters C, which determine the
tradeoff between minimizing model complexity and the
training error and

2. parameter of the kernel function, encoded into a vector
θθθ = (θ1, . . . , θn), that implicitly defines the non linear
mapping to some high-dimensional feature space.

These “higher level” parameters are usually referred as
metaparameters or hyperparameters. Some valid kernel
functions are listed in Table 1 with corresponding hyperpa-
rameters.

The model selection problem is to select from a candidate
set of models the best one so the generalization error

e(fθ) =

∫

X×Y

ℓ(f(x, y))dP (x, y) (4)

is minimized over all possible examples drawn from an un-
known distribution P(x, y). As the data distributions P in
real problems are not known in advance, generalization er-
ror is not computable and one needs some reliable estimates
of the generalization performance.

There has been some work on efficient methods for es-
timating generalization performance such as LOO, the ξα
bound (Joachims 2000), the radius margin bound and span
bound (Chapelle et al. 2002) in SVM classification. A re-
view and a comparative analysis of all these techniques, cov-
ering both empirical and theoritical methods, can be found
in (Duan, Keerthi, & Poo 2001).

To estimate the quality of the model, we use the popular
cross-validation (CV) technique. In k- fold cross-validation
the original training set S is randomly partitioned into k non-
overlapping subsets Sj of approximately equal size. The
learning machine is trained on the union of (k − 1) subsets;
the remaining k-th subset is used as a test set and measures
the associated classification performance. This procedure is
cycled over all possible k test sets, and the average test error
gives an estimate of the expected generalization error. The
CV error on a training set S = {(x, y)}n

i=1 is defined as

ekCV (S) =
1

k

k
∑

j=1





|Sj |
∑

i=1

ℓ(f
S
\Sj (xi), yi)



 (5)



where S\Sj denotes the dataset obtained by removing the
subset Sj from the set S, f

S
\Sj the corresponding classifier

and |Sj | the cardinality of subset Sj .

Results

The experimental goal was to assess a DSS optimization
method for tuning SVM hyperparameters. For this, a stan-
dard grid search method was used as a baseline for compar-
ing the quality of the final result and the computational cost
of obtaining that result. To train our SVM classifiers we use
an RBF kernel. Thus the corresponding hyperparameter set
to tune is θθθ : (γ,C). Since γ and C have to be positive, we
transform them to remove these constraints. We thus mini-
mize with respect to C = log2(C) and γ = log2(γ).

We use five different real-world datasets known as ba-
nana, image, splice, waveform and tree. Detailed infor-
mation concerning the first four datasets can be found in
(Ratsch 1999).The last dataset (Bailey et al. 1993) was
formed from geological remote sensing data; one class con-
sists of patterns of trees, and the second class of non-tree
patterns. Table 2 lists their basic characteristics.

For both approaches we used 5-fold cross-validation to
evaluate our model. Grid search was done by varying with
a fixed step-size a range of values taken in C ∈ {2i|i =
−5, . . . , 15} and γ ∈ {2i|i = −16, . . . , 3}; performance
was assessed using cross-validated accuracy. The step-size
corresponds to twenty points per parameter with uniform
resolution in the region spanned by (C, γ). We applied DSS
with three randomly generated starting points and kept the
best results; such probabilistic restarts allow us to achieve a
certain degree of global coverage.

Table 3 shows the comparative results between our search
method (DSS) and an exhaustive grid-based search (GS)
for each dataset. As one can see optimal parameter set-
tings found by the different approaches may differ widely,
as on the waveform dataset. Final results were compared us-
ing McNemar’s test (Salzberg 1997; 1999) which revealed
no significant difference between the two approaches at
the 95% confidence level. However, the DSS method uti-
lized about 100 function evaluations1 to find the best pair
(C, γ) (i.e., which yielded the lowest cross-validation error),
whereas GS required four times that number of evaluations.
Table 4 shows the significant advantage of using the DSS
method in terms of number of evaluations. Furthermore,
the computational time incurred for individual function eval-
uation is typically lower for DSS than for GS. The com-
putational cost of function evaluation is hyperparameter-
dependent; for instance training time for large values of the
C parameter is necessarily higher than for small values. GS
systematically explores large values of C which are on the
grid whereas DS explores such large values only if they lead
to a solution. Figure 3 shows a surface plot of performance
measures for the banana dataset. It can be seen clearly that
there are local minima which can trap or deviate local (i.e.
gradient-based) methods. For example, for log2 C = 12 and
log2γ = −14 accuracy is 65% whereas the true peak is at

1One function evaluation corresponds to building 5 SVM mod-
els.

log2 C = 11.25 et log2γ = −1.5 where accuracy is 94.5%.
The plot also shows extremely flat regions corresponding to
very weak performance. In such regions, gradient-based al-
gorithms are particularly vulnerable to noise or to slight in-
accuracies in gradient estimation.

Table 2: Dataset main characteristics

Dataset #att. #training #test #class

banana 2 400 4900 2

image 18 1300 1010 2

splice 60 1000 2175 2

waveform 21 400 4600 2

tree 18 700 11692 2

Table 3: Performance of SVMs for optimum parameter set-
tings using an RBF Gaussian kernel (γ,C) found via DSS
and GS methods. Columns γ and C represent log2γ and
log2C respectively.

Data
DSS GS

C γ acc. C γ acc.

banana 3.5 3.5 88.7 8.7 3 88.23
image 3.19 2.62 98.22 7.63 2 98.11
splice 7.06 -2.75 90.43 3.42 -3.9 90.11

waveform 4.74 1.13 89.09 -0.79 -1.2 88.8
tree 3.85 0.71 87.86 10.79 -1 89.09

Table 4: Comparative computational load for both ap-
proaches (number of evaluations)

banana image splice waveform tree

DSS 79 95 105 101 110

GS 400 400 400 400 400
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Figure 3: Performance plot for the banana dataset. Accuracy
(the vertical axis) is plotted against different values of hyper-
parameters C (log2 C ∈ [−5, 15]) and γ (log2γ ∈ [−15, 5]).

Conclusion
We presented an algorithm based on a DSS method that can
reliably find very good hyperparameter settings for SVMs



with RBF kernels in a fully automated way. We selected
the DSS method because of its robustness, simplicity and
ease of implementation. Our experiments have shown that
DSS and GS attain equivalent generalization performance,
but that DSS is at the very least four times faster than GS.
To improve our method we plan to merge DSS with Genetic
Algorithms by first performing a coarse search for the global
minimum by means of a genetic algorithm and then refining
the solution by a DSS approach. We plan to extend this work
to other kernels as well as to a larger set of hyperparameters
such as γ,C+ and C− in asymmetrical-margin RBF SVMs.
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