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Abstract— A common belief is that Machine Learning Theory
(MLT) is not very useful, in pratice, for performing effecti ve
SVM model selection. This fact is supported by experience,
because well–known hold–out methods like cross–validation,
leave–one–out, and the bootstrap usually achieve better results
than the ones derived from MLT. We show in this paper that, in
a small sample setting, i.e. when the dimensionality of the data
is larger than the number of samples, a careful application of
the MLT can outperform other methods in selecting the optimal
hyperparameters of a SVM.

I. I NTRODUCTION

The Support Vector Machine(SVM) [1] is one of the
state-of-the-art techniques for classification tasks. Itslearning
phase consists in finding a set of parameters by solving a
Convex Constrained Quadratic Programming (CCQP) prob-
lem, for which many effective techniques have been proposed
[2]. However, the search for the optimal parameters does not
complete the learning phase of the SVM: a set of additional
variables (hyperparameters) must be tuned in order to find
the SVM characterized by optimal performance in classifying
a particular set of data. This phase is usually calledmodel
selectionand is strictly linked with the estimation of the gen-
eralization ability of a classifier (i.e., the error rate attainable
on new and previously unobserved data), as the chosen model
is characterized by the smallest estimated generalization
error. Unfortunately, the tuning of the hyperparameters isnot
a trivial task and represents an open research problem [3],
[4], [5], [6].

As the true probability distribution originating the data
is unknown, the generalization error of a classifier cannot
be computed, but several techniques have been proposed
for obtaining a probabilistic estimate, which can be divided
in two main categories [4], [7]: practical and theoretical
methods.

Practical methodstypically rely on well–known and re-
liable statistical procedures, whose underlying hypotheses,
however, cannot be always satisfied or are only asymptoti-
cally valid [8]. Practical methods usually split the available
set of data in two independent subsets: one is used for
creating a model (training set), while the other is used for
computing the generalization error estimation (hold-out set).
The most used practical techniques for model selection are:
the k–Fold Cross Validation(KCV), the Leave One Out
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(LOO), and theBootstrap (BTS). The KCV technique [9]
consists in splitting a dataset ink independent subsets; in
turn, all but one are used to train a classifier, while the
remaining one is used as a hold-out set to evaluate an average
generalization error. The LOO technique [10] is analogous
to a KCV where the number of folds equals the number
of available patterns: one sample is used as hold-out, while
the remaining ones are used for training a model. The BTS
method [11], instead, is a pure resampling technique: a
training set, with the same cardinality of the original one,is
built by extracting the samples with replacement, while the
unextracted patterns (approximately36.8% of the dataset, on
average) is used as hold-out set.

Theoretical methods, instead, provide deep insights on
the classification algorithms and are based on rigorous ap-
proaches to give a prediction, in probability, of the gener-
alization ability of a classifier. The main advantage, respect
to hold-out methods, is the use of the whole set of avail-
able data for both training the model and estimating the
generalization error (from which derives the name ofin-
samplemethods), and makes these approaches very appealing
when only few data are available. However, the underlying
hypotheses, which must be fulfilled for the consistency of
the estimation, are seldomly satisfied in practice and the
generalization estimation can be very pessimistic [12], [13],
[14].

When targeting classification problems, where a large
amount of data are available, practical techniques outperform
theoretical ones [3], [4]. On the other hand, there are cases
where the number of patterns is small compared to the
dimensionality of the problem, like, for example, in the case
of microarray data, where often less than a hundred samples,
composed by thousands of genes, are available. In this case,
the classification task belongs to thesmall samplesetting
and the practical approaches have several drawbacks, since
reducing the size of the training set usually decreases, by
a large amount, the reliability of the classifier [15], [16].
For the small sample regime, in-sample methods should be
preferred but their application is usually unfeasible.

We present in this paper a procedure for practically apply-
ing an in-sample approach, based on theMaximal Discrep-
ancy(MD) theory, to the SVM model selection. In addition,
we show that, using this approach, the hyperparameter space
of the SVM can be searched more effectively and better
results, respect to hold–out methods are obtained.



II. T HE SUPPORTVECTORMACHINE

As we are working in the small sample regime, we focus
here on the linear SVM. The extension to the non-linear case,
through the use of kernels, will be detailed in the Appendix.

Let us consider a datasetDl, composed byl i.i.d. patterns
Dl = {(x1, y1), ...., (xl, yl)}, wherexi ∈ <n, yi = ±1,
and letF be a class of possible functions. The SVM is the
function f ∈ F

f(x) = wTx+ b, (1)

where the weightsw and the biasb are found by solving the
following primal CCQP problem:

min
w,b,ξ

1

2
‖w‖2 + CeT ξ (2)

yi

(

wTx+ b
)

≥ 1 − ξi ∀i ∈ [1, . . . , l]

ξi ≥ 0 ∀i ∈ [1, . . . , l]

where ei = 1 ∀i, which is equivalent to maximizing the
margin and penalizing the errors by thehinge loss function
Lξ

Lξ = [1 − yif(xi)]+ = ξi, (3)

where[·]+ = max(0, ·) [1].
By introducing l Lagrange multipliers(α1, . . . , αl), it is

possible to write the above problem in itsdual form, for
which efficient solvers have been developed throughout the
years [18]:

min
α

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjx
T
i xj −

l
∑

i=1

αi (4)

0 ≤ αi ≤ C ∀i ∈ [1, . . . , l]

yTα = 0.

After solving the above problem, the Lagrange multipliers
can be used to define the SVM classifier in its dual form:

f(x) =

l
∑

i=1

yiαix
T
i x+ b. (5)

The patterns characterized byyif(xi) ≤ 1 are calledSupport
Vectors(SVs), because they are the only ones for whichαi >
0.

The hyperparameterC in problems (2) and (4) is tuned
during the model selection phase, in order to balance the
size of the margin with the amount of misclassification, and
indirectly defines the size of the set of functionsF . In order
to better control this effect, and to apply the MD theory, we
propose to use an alternative SVM formulation, based on the
concepts of Ivanov regularization [12], where the setF is
defined as the set of functions with‖w‖2 ≤ w2

MAX and
b ∈ (−∞,+∞):

min
w,b,ξ

eT ξ (6)

‖w‖2 ≤ w2
MAX (7)

yi

(

wTxi + b
)

≥ 1 − ξi ∀i ∈ [1, . . . , l] (8)

ξi ≥ 0 ∀i ∈ [1, . . . , l] (9)

This formulation is equivalent to (2), for some value of the
hyperparameterC, but, during the model selection phase, the
hyperparameterwMAX is tuned instead ofC.

The hyperparameterwMAX allows to control the size of
the setF and to performStructural Risk Minimization[1]: in
fact, increasing the value ofwMAX corresponds to increase
the size of the set of functions.

III. T HE MAXIMAL DISCREPANCY OF ACLASSIFIER

Let us consider the datasetDl and a general prediction
rule f ∈ F . We can define theempiricalerror rate1 L̂l(f) =
1
l

∑l
i=1 L(f(x), y) associated withf , whereL is a suitable

loss function.
Let us split Dl in two halves and compute the two

empirical errors:

L̂
(1)
l/2(f) =

2

l

l
2

∑

i=1

L (f(xi), yi) (10)

L̂
(2)
l/2(f) =

2

l

l
∑

i= l
2
+1

L (f(xi), yi) , (11)

then theMaximal Discrepancy(MD) is defined as

MD = max
f∈F

(

L̂
(1)
l/2(f) − L̂

(2)
l/2(f)

)

. (12)

In practical cases, we want to avoid that a possible “unlucky”
shuffling results in an unreliable MD value, therefore, we
replicatem times the splitting procedure: at each iteration,
the datasetDl is randomly shuffled and, then,m MD values
are averaged.

If the loss functionL(·, ·) is bounded (e.g.,L(·, ·) ∈ [0, 1]),
an upper bound of the generalization errorL(f) in terms of
MD can be found using the following theorem [14], [17]:

Theorem 1:Given a datasetDl, consisting inl patterns
xi ∈ <n, given a class of functionsF and a loss function
L(·, ·) ∈ [0, 1], the following procedure can be replicatedm
times: (a) randomly shuffle the samples inDl to obtainD(j)

l ;
(b) computeMD(j) for each replicate. Then, with probability
1 − δ,

L(f) ≤ L̂l(f) +
1

m

m
∑

j=1

MD(j) + 3

√

− log
(

δ
2

)

2l
. (13)

Furthermore, if the loss functionL ∈ [0, 1] is such
that L(f(xi), yi) = 1 − L(f(xi),−yi), the MD values
can be computed by a conventional empirical minimization
procedure.

Let us define a new data set,D′
l = {(x′

1, y
′
1), ...., (x

′
l, y

′
l)},

such that(x′
i, y

′
i) = (xi,−yi) if i ≤ l

2 and (x′
i, y

′
i) =

(xi, yi) if i > l
2 , then it is easy to show that

MD = 1 − 2

(

min
f∈F

L̂′
l(f)

)

, (14)

whereL̂′
l(f) is the empirical error obtained onD′

l.

1In this paper, we use the same notation of [14] and [19].



IV. T HE APPLICATION OFMD TO THE SVM

When targeting classification tasks, we are interested in a
hard loss function, which counts the number of misclassifi-
cations:

LH (f(xi), yi) =

{

0 if yif (xi) > 0
1 if yif (xi) ≤ 0.

(15)

Unfortunately, the use of a hard loss function makes the
problem of finding the optimalf computationally hard. For
this reason, the conventional SVM algorithm makes use of
the hinge loss of Eq. (3), which is convex and Lipschitz
continuous, so that the search for the optimal prediction
rule is greatly simplified. This simplification, however, has
a severe drawback, because the unboundness of the hinge
loss complicates the problem of predicting the generalization
ability of f [14], [17], and the conditions of Theorem 1 do
not hold anymore.

We define here an alternativesoft loss function

LS (f(xi), yi) =

{

LH (f(xi), yi) if yif(xi) ≤ −1
Lξ (f(xi), yi) /2 if yif(xi) ≥ −1

(16)
and its associated slack variableηi = 2LS (f(xi), yi) =
min(2, ξi), which can be used in the SVM formulation in
order to compute the bound of Eq. (13).

As in the case of the hard loss function, the resulting op-
timization problem is not convex, which makes it intractable
and solvable only in an approximate way [20], even for
moderatel. However, we propose a practical method, which
makes use of apeelingtechnique, and allows to find an upper
bound ofminf∈F L̂l(f) and a lower bound ofminf∈F L̂

′
l(f)

so that the bound of Eq. (13) still holds.

A. The Peeling Technique

It is easy to note that the values ofηi and ξi coincide
for all the patternsxi for which yif(xi) ≥ −1. In general,
however, some patterns will be characterized byyif(xi) <
−1: they are critical for computing the error, sinceηi and
ξi do not coincide, therefore we call themCritical Support
Vectors(CSVs).

Let S = {1, ..., l} be the set of indexes of thel patterns
of the dataset,SC the set of indexes of the CSVs andSN =
S \ SC the set of indexes of the remaining patterns. Then, a
lower bound ofminf∈F L̂

′
l(f) or, in other words, an upper

bound of MD, can be found using the following theorem
(proofs are omitted here due to space constraints):

Theorem 2:Let Dl be a dataset ofl patterns and let us
suppose to know the valuesηi for each pattern inDl. Then,
given a class of functionsF :

min
f∈F

1

l

∑

i∈S

ηi

2
≥ min

f∈F

1

l

∑

k∈SN

ξk
2
. (17)

Similarly, we can upper bound the error on the training
setminf∈F L̂l(f):

Theorem 3:Let Dl be a dataset ofl patterns and let us
suppose to know the valuesηi for each pattern inDl. Then,

given a class of functionsF :

min
f∈F

1

l

∑

i∈S

ηi

2
≤

|SC |

l
+ min

f∈F

1

l

∑

k∈SN

ξk
2
, (18)

where|SC | is the cardinality of the setSC .

In order to obtain the tightest bound, we should choose
the setSC with minimum cardinality, but this approach is
obviously infeasible as it would require to examine all the
possible combinations of samples. A possible solution is to
consider one sample at the time: at first, the SVM learning
problem (6) is solved to identify the CSVs, then the CSV
with the largest error or, in other words, the sample for which
yif(xi) is minimum, is deleted from the training set and the
learning is repeated with the remaining samples. At the final
step, the classifier will be trained on the set consisting of the
remaining|SN | patterns. The peeling procedure is obviously
sub-optimal and could remove, at least in theory, a large
number of CSVs, so making the bound on generalization
error very loose. In practice, however, the number of CSVs is
usually a tiny fraction of the training set (see also sectionV-A
for the analysis on a real-world dataset) and several replicates
are used in Eq. (13), in order to mitigate the effect of CSVs.
Moreover, it is important to remark that our approach is
consistent in computing MD:

Theorem 4:Let Dl be a dataset ofl patterns. Let us
suppose to know the soft loss valuesηi for each pattern in
Dl. Then, given a class of functionsF ,

1

l
min
f∈F

∑

i∈SN

ξi
2

≤
1

2
. (19)

Therefore, MD≥ 0 as expected.

B. Solving the SVM Problem(6)

We are interested in finding the value ofminf∈F

∑

i ξi,
therefore, after the peeling procedure ends, we use the
obtained minimum in order to estimate the generalization
error using the bound of Eq. (13). Then, when applying the
MD-based bound, we make use of the SVM formulation (6)
for two main reasons: (i) the minimization procedure gives
us exactly the error estimation we are looking for, and (ii)
the class of functionsF can be defined more easily than in
the conventional primal or dual formulations for SVM.

However, to the best of our knowledge, no ad–hoc pro-
cedure has been described for solving the SVM problem
(6). Our proposal, based on the ideas of [21], makes use of
conventional Linear (LP) and Quadratic Programming (QP)
optimization algorithms and is presented in Algorithm 1. The
first step consists in solving the problem (6), which becomes
a LP problem when discarding the quadratic constraint (7).
After the optimization procedure ends, the value of‖w‖2

is computed and two alternatives arise: if the constraint is
satisfied, we already have the optimal solution and the routine
ends; else, the optimal solution corresponds to‖w‖ =
wMAX . In order to find the solution, we have to switch
to the dual of the problem (6), which can be obtained by



defining l Lagrange multipliersβ for the constraint (8) and
one additional Lagrange multiplierγ for the constraint (7):

min
β,γ

1

2γ

l
∑

i=1

l
∑

j=1

βiβjyiyjx
T
i xj −

l
∑

i=1

βi + (20)

+
γw2

MAX

2
0 ≤ βi ≤ 1 ∀i ∈ [1, . . . , l] (21)

γ ≥ 0 (22)

yTβ = 0. (23)

whereβ are such thatw = 1
γ

∑l
i=1 βiyixi. Please note that,

if the quadratic constraint (7) were satisfied,γ would equal 0
and the dual would not be solvable due to numerical issues:
this is why, as a first step, we make use of the LP routines for
solving the problem (6) and we exploit the dual formulation
only if the constraint is not satisfied.

Our target is to solve the problem (20) using conventional
QP optimization routines for SVMs (e.g. SMO [2]), therefore
we use an iterative optimization technique. The first step
consists in fixing the value ofγ to a valueγo > 0 and, then,
optimizing the cost function with reference to the other dual
variablesβ. It is easy to see that the termγw2

MAX

2 is now
constant and can be removed from the expression. The dual
becomes:

min
β

1

2

l
∑

i=1

l
∑

j=1

βiβjyiyjx
T
i xj − γo

l
∑

i=1

βi (24)

0 ≤ βi ≤ 1 ∀i ∈ [1, . . . , l]

yTβ = 0,

which is equivalent to the conventional SVM dual problem
(4) and can be solved with well–known QP solvers [18].

The next step consists in updating the value ofγo. We
have to compute the Lagrangian of problem (20):

Λ =
1

2γ

l
∑

i=1

l
∑

j=1

βiβjyiyjx
T
i xj −

l
∑

i=1

βi

+
γw2

MAX

2
−

l
∑

i=1

µiβi −

l
∑

i=1

ωi(1 − βi)

−b

l
∑

i=1

yiβi − ργ, (25)

whereµ, ω, b and ρ are the Lagrange multipliers of the
constraints (21), (22) and (23). The following derivative of
Λ is the only one of interest for our purposes:

∂Λ

∂γ
= 0 = −

1

2γ2

l
∑

i=1

l
∑

j=1

βiβjyiyjx
T
i xj+

wMAX

2
−ρ (26)

Since, from the slackness conditions, we have thatργ = 0
and since, in the cases of interest,γ > 0, it must beρ = 0
and we find the following updating rule forγo:

γo =

√

∑l
i=1

∑l
j=1 βiβjyiyjx

T
i xj

wMAX
, (27)

We iteratively proceed in solving the dual of Eq. (24) and
updating the value ofγo until the termination condition is
met:

∣

∣γo − γold
o

∣

∣ ≤ τ, (28)

whereτ is a user-defined tolerance.

Algorithm 1 : The algorithm for solving the SVM prob-
lem (6).

Input : A datasetDl, w2
MAX , a toleranceτ

Output : w, b, ξ
{w, b, ξ} = solve LP problem (6) removing the
constraint (7);
if ‖w‖2 > w2

MAX then
γo = 1;
while

∣

∣γo − γold
o

∣

∣ > τ do
γold

o = γo;
{w, b, ξ} = solve QP problem (24);

γo =

√

∑

l
i=1

∑

l
j=1

βiβjyiyjxT
i xj

wMAX
;

end
end

C. Searching for the Optimal Value ofwMAX

The model selection using the conventional primal or
dual formulation of SVM consists in finding the optimal
value for the hyperparameterC. Even though some practical
methods have been suggested for deriving them in a very
simple and efficient way [3], the most effective procedure
is to solve the related CCQP problem several times [22],
with different C values, and estimate the generalization
error at each step. Finally, the optimal hyperparameters are
chosen in correspondence to the minimum of the estimated
generalization error. Some proposals exist for choosing the
admissible search space forC [23], but this choice is far
from obvious.

When performing the model selection, using the SVM
formulation based on Ivanov regularization (6), we have
to find the search space for the hyperparameterwMAX .
Differently from the previous case, it is possible to find
a simple relation between the value ofwMAX and the
dimension of the margin: then, finding an upper and a lower
bound for the margin implies defining the search space for
this hyperparameter.

Let us consider the SVM separating hyperplanew·x+b =
0 for a set of dataDl, defined as in section II. Let us consider
a patternxk: the distance between the patternxk and the
separating hyperplaned can be computed as

d =
|w · xk + b|

‖w‖
. (29)

If xk is such thatw ·xk + b = +1, i.e. it lies on the margin
boundary,d = (‖w‖)−1 and, then, the marginM equals

M =
2

‖w‖
. (30)



Let S+ and S− be the set of indexes of the patterns of
Dl which refer to the class+1 and−1, respectively. We can
define

dMIN = min
i∈S+, j∈S

−

δ(xi,xj) (31)

dMAX = max
i∈S+, j∈S

−

δ(xi,xj), (32)

where δ(·, ·) represents the distance between two patterns.
Then, the margin can assume values only in the range:

dMIN ≤ M ≤ dMAX (33)

or, in other words, the search space for the hyperparameter
wMAX is:

2

dMAX
≤ wMAX ≤

2

dMIN
. (34)

V. EXPERIMENTAL RESULTS

In the following experiments, three practical approaches
(KCV, LOO and BTS) are compared with the results obtained
using the MD-based technique. The experimental setup is the
following:

• the data are normalized in the range[0, 1];
• the model selection is performed, using the three prac-

tical methods, by searching for the optimal value ofC
in the interval[10−5, 103], which includes the cases of
interest, among 30 values, equally spaced in a logarith-
mic scale [22]. For the KCV technique,k = 10 is used,
while the bootstrap procedure is iterated1000 times;

• the MD-based model selection is performed by search-
ing for the optimal value ofwMAX , as described in
section IV-C. In order to avoid unreliableMD values,
we setm = 100 in the bound of Eq. (13);

• the error rates of the optimal models chosen by the KCV,
LOO, BTS, and MD approaches are then computed on
a separate test set, where available, using the hard loss
function of Eq. (15);

• when a separate test set is not available, the approach
of [24] is used by generating different training/test pairs
for the comparison.

A. The MNIST Dataset

The MD-based method is obviously targeted toward small
sample problems, where the use of a hold-out set for es-
timating the generalization ability of a classifier is usually
less effective [15], [16]. In order to fairly compare the
performance of the MD-based technique versus the hold-
out ones, we select a real-world application, the MNIST
dataset [25], consisting of a large number of samples, and
use only a small amount of the available data as training
set. The remaining samples can be used as a test set for
the comparison, since they represent a reasonably good
estimation of the generalization errorL(f).

The MNIST dataset consists of 62000 images, representing
the numbers from 0 to 9: in particular, we consider the 13074
patterns containing 0’s and 1’s, that allow us to deal with a
binary classification problem. We build the training set by
randomly sampling a small number of patterns, varying from

l = 20 to l = 500, while the remaining13074− l images are
used as a test set. In order to build statistically relevant results
and, at the same time, to show that the MD-based approach
is almost insensitive with respect to the selection of samples
for the training and the model selection phases, we build
a set of30 replicates using a random sampling technique
and a set of30 replicates using the approach of [26], which
guarantees that almost-homogeneous subsets of the dataset
are built. Note that the dimensionality of the dataset is784,
which is much higher than the number of samples in each
of the training sets and, therefore, defines a typical small
sample setting.

In Table I, we show the results obtained on the MNIST
replicates, created using a random sampling technique: the
first column represents the number of patterns used in the
experiments, while the remaining columns present the error
rates obtained on the test set for the BTS, KCV, LOO, and
MD approaches, respectively. When only a restrained number
of patterns is used, the best overall performance corresponds
to the model selected with the MD-based approach: whenl
is small (in this case,l ≤ 200), the underlying hypotheses
of the practical methods are not valid, then the generaliza-
tion error estimation and, consequently, the model selection
become unreliable. On the contrary, whenl is large (e.g.,
l ≥ 300 in the experiments), the practical methods tend
to outperform MD. This is mainly due to the fact that the
MD-based technique privileges “underfitting” models (i.e.,
SVMs characterized by large margin values) instead of the
“overfitting” classifiers, chosen by the practical approaches:
this behaviour allows to improve the performance of the
classifier when only few training patterns are available, but
results to be a conservative approach asl increases. This
is confirmed also by the results obtained on the replicates
created using the approach of [26] and shown in Tab. II:
in these cases, the underlying hypotheses for the practical
approaches hold (e.g. the training set is a “good sample” of
the entire population) and the BTS method outperforms MD,
even for very low values ofl.

TABLE I

ERROR RATES ON THE TEST SET OF THEMNIST DATASET, SAMPLED

WITH A RANDOM TECHNIQUE, WITH 95%CONFIDENCE INTERVAL. ALL

VALUES ARE IN PERCENTAGE.

l BTS KCV LOO MD

20 1.9 ± 0.4 1.9 ± 0.3 2.4 ± 0.6 1.8 ± 0.4

50 0.9 ± 0.2 1.3 ± 0.3 1.4 ± 0.2 0.8 ± 0.1

100 0.6 ± 0.2 0.8 ± 0.2 0.8 ± 0.1 0.5 ± 0.1

200 0.4 ± 0.1 0.4 ± 0.1 0.5 ± 0.1 0.4 ± 0.1

300 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.4 ± 0.1

500 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.1

We can also verify experimentally that the probability
of finding a large number of CSVs is low. Fig. 1 shows
the experimental probability of finding at leasts + 1 CSVs
(in percentage, respect to the number of samples) as a
function of s: the probability of finding at least one CSV



TABLE II

ERROR RATES ON THE TEST SET OF THEMNIST DATASET, SAMPLED

USING THE TECHNIQUE PROPOSED IN[26], WITH 95%CONFIDENCE

INTERVAL . ALL VALUES ARE IN PERCENTAGE.

l BTS KCV LOO MD

20 1.2 ± 0.3 1.5 ± 0.3 2.1 ± 0.5 1.7 ± 0.4

50 0.6 ± 0.1 1.0 ± 0.2 1.1 ± 0.3 0.8 ± 0.1

100 0.4 ± 0.1 0.7 ± 0.2 0.7 ± 0.2 0.5 ± 0.1

200 0.3 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.1

300 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.3 ± 0.1

500 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.1

Fig. 1. The experimental probability of finding at leasts + 1 CSVs as
a function of s. The figure refers to a case of the MNIST dataset with
l = 200.

is approximately70%, but this value decreases to less than
0.2% for a number of CSVs greater than10% of the training
patterns.

B. Human Gene Expression Datasets

In the experiments described in the previous section, we
extracted small sample sets in order to fairly compare the
theoretical and practical model selection techniques on a
large cardinality test set. In a real-world small sample setting,
a test set of such size is not available: then, we reproduce
the methodology used by [24], which consists in generatingp
different training/test pairs using a cross validation approach.
In particular, we setp = 5 for our experiments. If the number
of patterns of a dataset is not exactly a multiple ofp, some
patterns are left out of the training set: however, they are
not neglected (as in many other applications) and they are
simply added to every test set. Analogously to the analysis
of the MNIST dataset, we create the training/test splitting
using two different techniques: a random sampling approach
and the stratified almost-homogeneous sampling method of
[26], in order to verify the generalization ability of the model
selection techniques, when both “bad” and “good” samples
are available.

In this section, we use two biclass problems, taken from
the well-known GEMS datasets [27]:Prostate Tumorand
DLBCL. In addition to these two sets, we also make use
of a gene expression dataset formyeloma diagnosistaken
from [28], and a DNA microarray dataset collected inCasa
Sollievo della Sofferenza Hospital, Foggia - Italy, relative to
patients affected by colon cancer [29]. Table III presents the
main characteristics of the datasets.

TABLE III

CHARACTERISTICS OF THE HUMAN GENE EXPRESSION DATASETS USED

IN OUR EXPERIMENTS.

Dataset Reference # of patterns # of features

Prostate Tumor [27] 102 10509

DLBCL [27] 77 5469

Myeloma [28] 105 28032

Colon cancer [29] 47 22283

Tables IV and V show the total number of misclassifi-
cations, obtained using both the random and the stratified
data sampling. When a good sample is available (Table V),
the practical techniques tend to outperform the MD-based
technique, even in the case of small datasets, since the under-
lying hypotheses are satisfied. When the data is not carefully
selected (Table IV), MD still tends to choose underfitting
models, differently from the practical approaches: the models
selected by MD allow to obtain the best performance (on
average) on the test sets.

TABLE IV

NUMBER OF MISCLASSIFICATIONS ON THE TEST SET OF THE HUMAN

GENE EXPRESSION DATASETS, CREATED USING A RANDOM SAMPLING

TECHNIQUE.

Dataset BTS KCV LOO MD

Prostate 16 16 18 22

DLBCL 3 3 4 2

Myeloma 8 10 8 0

Colon cancer 9 8 8 6

Total 36 37 38 30

TABLE V

NUMBER OF MISCLASSIFICATIONS ON THE TEST SET OF THE HUMAN

GENE EXPRESSION DATASETS, CREATED USING THE APPROACH OF[26].

Dataset BTS KCV LOO MD

Prostate 9 10 10 10

DLBCL 0 2 2 3

Myeloma 0 0 0 0

Colon cancer 4 4 3 5

Total 13 16 16 18

VI. CONCLUSIONS

We have detailed a method to apply a well–known ap-
proach of the MLT, based on the Maximal Discrepancy con-



cept, to the problem of SVM model selection. In particular,
we have focused on the small sample regime, where the
number of available samples is very low, if compared to
their dimensionality, which is the typical setting of several
bioinformatic classification problems. The disadvantage of
the MLT based approach lies in the pessimistic behavior of
the Maximal Discrepancy method and on the computational
complexity, which is not lower than the methods based on re-
sampling techniques. However, the MD method outperforms
several resampling algorithms, which are widely used by
practicioners, and appears less sensitive to the availability
of a ‘good’ training set for the problem under investigation.

APPENDIX

In this appendix, we propose the non-linear kernel ex-
tension for the SVM problem (6), which allows to use
the procedure presented in Algorithm 1. For our purposes,
we use the same assumptions of [30] for the non-linear
reformulation.

Letφ(xi) be a non-linear function which maps a patternxi

from the input to the feature space. Let us define the weights
w of the primal formulation (6) as a linear combination of
the input patterns, mapped throughφ(·):

w =
l

∑

i=1

yiψiφ(xi). (35)

whereψi ∈ <. Then, we can write the following primal
formulation:

min
ψ,b,ξ

eT ξ (36)

l
∑

i=1

l
∑

j=1

yiyjψiψjKij ≤ w2
MAX (37)

yi





l
∑

j=1

yjψjKij + b



 ≥ 1 − ξi ∀i (38)

ξi ≥ 0 ∀i (39)

whereKij = K(xi,xj) = φ(xi) · φ(xj). As discussed in
section IV-B, we can remove the quadratic constraint (37),
solve the problem (36) and verify if the solution satisfy the
constraint (37): if the latter is not satisfied, we have to switch
to the dual formulation.

Then, we derive the dual formulation and verify that it
can be efficiently solved with conventional QP solvers, by
computing the LagrangianΛ:

Λ =

l
∑

i=1

ξi −
γ

2



w2
MAX −

l
∑

i=1

l
∑

j=1

yiyjψiψjKij





−

l
∑

i=1

βi



yi





l
∑

j=1

yjψjKij + b



 − 1 + ξi





−

l
∑

i=1

ζiξi (40)

from which the following Karush-Kuhn-Tucker (KKT) con-
ditions are obtained:

∂Λ

∂ξi
= 0 → βi ≤ 1 (41)

∂Λ

∂b
= 0 →

l
∑

i=1

yiβi = 0 (42)

∂Λ

∂ψi
= 0 →

l
∑

j=1

yjψjφ(xj) =
1

γ

l
∑

j=1

yjβjφ(xj).(43)

By substituting the previous conditions in the LagrangianΛ,
it is easy to see that the same formulation of problem (20)
is obtained.
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