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Abstract— A common belief is that Machine Learning Theory  (LOO), and theBootstrap (BTS. The KCV technique [9]
(MLT) is not very useful, in pratice, for performing effective  consists in splitting a dataset i independent subsets; in
SVM model selection. This fact is supported by experience, y, a|| put one are used to train a classifier, while the

because well-known hold—out methods like cross—validaig .. . d hold-out set t luat
leave—one—out, and the bootstrap usually achieve better salts remaining one IS used as a hold-out set to evaluate an average

than the ones derived from MLT. We show in this paper that, in ~ generalization error. The LOO technique [10] is analogous
a small sample setting, i.e. when the dimensionality of theadla to a KCV where the number of folds equals the number

is larger than the number of samples, a careful application 6  of available patterns: one sample is used as hold-out, while
the MLT can outperform other methods in selecting the optima the remaining ones are used for training a model. The BTS
hyperparameters of a SVM. . . . . ]
method [11], instead, is a pure resampling technique: a
. INTRODUCTION training set, with the same cardinality of the original oise,

The Support Vector MachindSVM [1] is one of the built by extracting the samplgs with replacement, while the
state-of-the-art techniques for classification taskdeksning unextractgd patterns (approximatélys% of the dataset, on
phase consists in finding a set of parameters by solvingaé(erage) is used as hold-out set.

Convex Constrained Quadratic Programming (CCQP) prob- Theoretical methodsinstead, provide deep insights on
lem, for which many effective techniques have been proposeggk classification algorithms and are based on rigorous ap-
[2]. However, the sgarch for the optimal parameters do_e_s n|9|toaches to give a prediction, in probability, of the gener-
complete the learning phase of the SVM: a set of additionglization ability of a classifier. The main advantage, respe
variables Qyperparametejsmust be tuned in order to find 5 poid-out methods, is the use of the whole set of avail-
the SVM characterized by optimal performance in class@yingple data for both training the model and estimating the
a particular set of data. This phase is usually cafieatlel generalization error (from which derives the nameirof
sele_ct|o_nand is strictly Imkeq_wnh the estimation of _the gen-samplemethods), and makes these approaches very appealing
eralization ab|I|ty_ of a classifier (i.e., the error rateaattble \yhen only few data are available. However, the underlying
on new and previously unobserved data), as the chosen moflghotheses, which must be fulfilled for the consistency of
is characterized by the smallest estimated generalizatighe estimation, are seldomly satisfied in practice and the
error. Unfortunately, the tuning of the hyperparameter®is generalization estimation can be very pessimistic [123],[1

a trivial task and represents an open research problem [ 4],

(4], [5], [6]-

As the true probability distribution originating the data When targeting classification problems, where a large
is unknown, the generalization error of a classifier cann@mount of data are available, practical techniques ousparf
be computed, but several techniques have been propogheoretical ones [3], [4]. On the other hand, there are cases
for obtaining a probabilistic estimate, which can be diddewhere the number of patterns is small compared to the
in two main categories [4], [7]: practical and theoreticadimensionality of the problem, like, for example, in the €as
methods. of microarray data, where often less than a hundred samples,

Practical methodgypically rely on well~known and re- composed by thousands of genes, are available. In this case,
liable statistical procedures, whose underlying hypahges the classification task belongs to tisenall samplesetting
however, cannot be always satisfied or are only asymptotind the practical approaches have several drawbacks, since
cally valid [8]. Practical methods usually split the avhil reducing the size of the training set usually decreases, by
set of data in two independent subsets: one is used farlarge amount, the reliability of the classifier [15], [16].
creating a modeltfaining se), while the other is used for For the small sample regime, in-sample methods should be
computing the generalization error estimatitwlfi-out st preferred but their application is usually unfeasible.

The most used practical techniques for model selection are:

the k-Fold Cross Validation(KCV), the Leave One Out We present in this paper a procedure for practically apply-

ing an in-sample approach, based on kha&ximal Discrep-
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[l. THE SUPPORTVECTORMACHINE This formulation is equivalent to (2), for some value of the
As we are working in the small sample regime, we focuByperparametef’, but, during the model selection phase, the

here on the linear SVM. The extension to the non-linear cas@yPerparametem,, x is tuned instead of. _

through the use of kernels, will be detailed in the Appendix. '"€ hyperparameteny 4x allows to control the size of
Let us consider a datasBy, composed by i.i.d. patterns the set# and to perfornStructural Risk Minimizatiofl]: in

Dy = {(z1,y1), o (T, 1)}, Wherez; € R, y; = +1, fact, increasing the value af,; 4 x corresponds to increase

and letF be a class of possible functions. The SVM is thdhe size of the set of functions.
function f € F [1l. THE MAXIMAL DISCREPANCY OF ACLASSIFIER

T
= b, 1 , .
J@)=w et @) Let us consider the datasél; and a general pred|ct|on
where the weightsv and the bias are found by solving the rule f € F. We can define thempirical error raté L;(f) =

following primal CCQP problem: %22:1 L(f(x),y) associated witlf, where£ is a suitable
. 1 ) . loss function.
ul?;ng §||’w|| +Ce ¢ (2) Let us split D; in two halves and compute the two

empirical errors:
yi(whe+b) >1-¢ Viell,...,[] L
&>0 Viell,...,l . 2
el Lipp(f) = 72 LU @).w) (10)
wheree; = 1 Vi, which is equivalent to maximizing the i=1
margin and penalizing the errors by thenge loss function

l
- 2
Le L = 73 U@y, @D
Le=[1-yif(xi)l; =&, ®3) i=}+1
where[-]; = max(0, -) [1]. then theMaximal DiscrepancyMD) is defined as
By introducing! Lagrange multiplierdas,...,qq), it is B 5 (1) = (2)
possible to write the above problem in ithial form, for MD = I}lea}( (Ll/2(f> B Ll/2(f)) ' (12)

which efficient solvers have been developed throughout tqﬁ practical cases, we want to avoid that a possible “unlticky

years [18]: shuffling results in an unreliable MD value, therefore, we
to 1 ! replicatem times the splitting procedure: at each iteration,
min lzzaa- ; -:ch-—Za- (4) thed D, i domly shuffled and, them, MD val
1L 5 2. 2 XYY % Ty — i the dataseD; is randomly shuffled and, them values
i=1 j=1 i=1 are averaged.
0<o; <C Viel(l,... ] If the loss functionl(-, -) is bounded (e.g£(-,-) € [0,1]),
yTa=0 an upper bound of the generalization erfqif) in terms of

MD can be found using the following theorem [14], [17]:
After solving the above problem, the Lagrange multipliers Theorem 1:Given a dataseD;, consisting inl patterns
can be used to define the SVM classifier in its dual form: x; € ", given a class of function& and a loss function
! L(-,-) € [0,1], the following procedure can be replicated
f@) =) yia! T +b. (5)  times: (a) randomly shuffle the samples/in to obtainD"’;
=1 (b) computeM DY) for each replicate. Then, with probability
The patterns characterized pyf (x;) < 1 are calledSupport 1 —9,
Vectors(SV3, because they are the only ones for whigh>
0.

The hyperparametef’ in problems (2) and (4) is tuned
during the model selection phase, in order to balance the
size of the margin with the amount of misclassification, and Furthermore, if the loss functioll < [0,1] is such
indirectly defines the size of the set of functioRsIn order that £(f(x;),y;) = 1 — L(f(=:),—v:), the MD values
to better control this effect, and to apply the MD theory, wean be computed by a conventional empirical minimization
propose to use an alternative SVM formulation, based on tgocedure.

—log (3)

2 (13)

L(f) < Lu(f) + % S MDY 43

Jj=1

concepts of lvanov regularization [12], where the geis Let us define a new data sé¥; = {(x},v1), ..... (z],y]) },
defined as the set of functions withw||?> < w?,,, and such that(z},y)) = (z;,—y;) if i < L and (z},y)) =
b € (—o0,4+00): (z;,y;) if > L, then it is easy to show that
. T
min e ¢ (6) Y
MD=1-2 L 14
o, o (). (14)
[wl]* < wiax (7)

"/ . - . . 12
”i (’wTiL‘i n b) S1—¢ Vie[l,....l] (8) where L;(f) is the empirical error obtained ab);.

&>0 Viell,. ..l (9) 1n this paper, we use the same notation of [14] and [19].



IV. THE APPLICATION OFMD TO THE SVM given a class of functiong:

When targeting classification tasks, we are interested in a 1 . |Sc 1 ¢
; : . o in= S %190 L i = 3 Sk (18)
hard loss function, which counts the number of misclassifi- Ve 9 =1 TR 9
cations: ' €S ' keSn

0 if wif(z)>0 5 where|S¢| is the cardinality of the sef¢.

cuti@rm={ ] W (15)

Lot gif (@) <0 In order to obtain the tightest bound, we should choose

Unfortunately, the use of a hard loss function makes théhe setSc with minimum cardinality, but this approach is
problem of finding the optimaf computationally hard. For obviously infeasible as it would require to examine all the
this reason, the conventional SVM algorithm makes use @iossible combinations of samples. A possible solution is to
the hinge loss of Eqg. (3), which is convex and Lipschitzconsider one sample at the time: at first, the SVM learning
continuous, so that the search for the optimal predictioproblem (6) is solved to identify the CSVs, then the CSV

rule is greatly simplified. This simplification, however,sha with the largest error or, in other words, the sample for Whic
a severe drawback, because the unboundness of the higgé(x,;) is minimum, is deleted from the training set and the
loss complicates the problem of predicting the generatinat learning is repeated with the remaining samples. At the final

ability of f [14], [17], and the conditions of Theorem 1 dostep, the classifier will be trained on the set consistindhef t
not hold anymore. remaining|Sy| patterns. The peeling procedure is obviously
We define here an alternatigoft loss function sub-optimal and could remove, at least in theory, a large
: number of CSVs, so making the bound on generalization
Ls (f(zi),ys) = { L (f(xi),yi) i yif(@:) <=1 gnor very loose. In practice, however, the number of CSVs is

Le (f(wi),yi) /2 iF yif (i) = _(]1.6) usually a tiny fraction of the training set (see also sectioh
for the analysis on a real-world dataset) and several ratekc

and its associated slack variable = 2Ls (f(xi),y:;) = . ) »
min(2, &), which can be used in the SVM formulation in are used in Eq. (13), in order to mitigate the effect of CSV_s.
Moreover, it is important to remark that our approach is

order to compute the bound of Eq. (13). . . . i
As in the case of the hard loss function, the resulting Opc_on5|stent In computing MD:
' Theorem 4:Let D; be a dataset of patterns. Let us

timization problem is not convex, which makes it intractabl 0 k h ] luesf h patt .
and solvable only in an approximate way [20], even fop-PROSE 10 KNOW {n€ SOTL 10SS valugsior each pattern in
. Then, given a class of functior5,

moderatd. However, we propose a practical method, whic

makes use of peelingtechnique, and allows to find an upper 1 . & 1
bound ofmin e+ L;(f) and a lower bound afiin rc » L/ (f) 7 in .Z 5 <3 (19)
so that the bound of Eq. (13) still holds. €Sy

Therefore, MD> 0 as expected.

A. The Peeling Technique B. Solving the SVM Problelit)

We are interested in finding the value ofinscr ", &,
therefore, after the peeling procedure ends, we use the
obtained minimum in order to estimate the generalization
error using the bound of Eq. (13). Then, when applying the
MD-based bound, we make use of the SVM formulation (6)
for two main reasons: (i) the minimization procedure gives
us exactly the error estimation we are looking for, and (ii)
the class of functiong can be defined more easily than in

It is easy to note that the values @f and ¢; coincide
for all the patternse; for which y; f(2;) > —1. In general,
however, some patterns will be characterizedyby(x;) <
—1: they are critical for computing the error, singg and
& do not coincide, therefore we call the@ritical Support
Vectors(CSV3.

Let S = {1,...,1} be the set of indexes of thepatterns
of the datasetSc the set of indexes of the CSVs atg, =
f\SC the set of.mdexeAs/ of the remaining patterns. Then, tiaﬁe conventional primal or dual formulations for SVM.
ower bound ofminge s Lj(f) or, in other words, an upper

bound of MD, can be found using the following theorem I;owe\r:er, tg the (;“’eSt %f gufr knovlvl_edgeir,] noss/(,jvl—hoc kl)alro-
(proofs are omitted here due to space constraints): cedure has been described for solving the probiem

Theorem 2:Let D; be a dataset of patterns and let us (6). Our proposal, based on the ideas of [21], makes use of

suppose to know the values for each pattern irD;. Then, conygntpnal L'”ef"“ (LP) anq Quadratic Erogrammlng (QP)
. , ! optimization algorithms and is presented in Algorithm 1eTh
given a class of functiong:

first step consists in solving the problem (6), which becomes
.1 i .1 k a LP problem when discarding the quadratic constraint (7).
- = > - . A
Fer Z 9 = Yer T Z 2 (47) After the optimization procedure ends, the value|@f|?
=5 keSn . X T o
is computed and two alternatives arise: if the constraint is
Similarly, we can upper bound the error on the trainingatisfied, we already have the optimal solution and themeuti
setminger Li(f): ends; else, the optimal solution corresponds|te| =
Theorem 3:Let D; be a dataset of patterns and let us wy;ax. In order to find the solution, we have to switch
suppose to know the values for each pattern irD;. Then, to the dual of the problem (6), which can be obtained by



defining! Lagrange multipliers3 for the constraint (8) and
one additional Lagrange multiplier for the constraint (7):

l l l
% DY BiByyselw; - B+ (20)
=1

min
B i=1 j=1
2
TWhrax
+ 2
0<B<1 Viell,... 1 (21)
v=>0 (22
y'B=0. (23)

whereg are such thatv = 1 25:1 Biy;x;. Please note that,
if the quadratic constraint z7) were satisfigdywould equal 0

We iteratively proceed in solving the dual of Eq. (24) and
updating the value ofy, until the termination condition is
met:

- ’Ygld‘ <,

7o (28)

wherer is a user-defined tolerance.

Algorithm 1: The algorithm for solving the SVM prob-
lem (6).
Input: A datasetD;, w?,,, a tolerancer
Output: w, b, &
{w, b, &£} = solve LP problem (6) removing the
constraint (7);

. . H 2 2
and the dual would not be solvable due to numerical issues:if [[w|| >_wMAX then

this is why, as a first step, we make use of the LP routines for
solving the problem (6) and we exploit the dual formulation

only if the constraint is not satisfied.

Our target is to solve the problem (20) using conventional
QP optimization routines for SVMs (e.g. SMO [2]), therefore
we use an iterative optimization technique. The first step

consists in fixing the value of to a valuey, > 0 and, then,

optimizing the cost function with reference to the otherldua

2
variablesg. It is easy to see that the terf-4x is now

constant and can be removed from the expression. The dual

becomes:
1 1 1 l
min 3 Z Z BiBiviyiel Tj — Yo Z B (24)
=1 j5=1 =1
ogﬁjgl Viell,... I
y'B=0,

Yo =1,
while |y, — 73" > 7 do
70ld = Yo;
{w, b, £} = solve QP problem (24);
_ \/22:1 S o1 BiBiyiy; TT T

o

end
end

WMAX

C. Searching for the Optimal Value afy; 4 x

The model selection using the conventional primal or
dual formulation of SVM consists in finding the optimal
value for the hyperparametér. Even though some practical
methods have been suggested for deriving them in a very
simple and efficient way [3], the most effective procedure
is to solve the related CCQP problem several times [22],

which is equivalent to the conventional SVM dual problenwith different C' values, and estimate the generalization

(4) and can be solved with well-known QP solvers [18].
The next step consists in updating the valueygf We
have to compute the Lagrangian of problem (20):

Lo !
A= S el Y b
TS = i=1
I I
+MTMX = i =Y wi(l - )
i=1 i=1

l
—b> iBi — pv, (25)
1=1

error at each step. Finally, the optimal hyperparametegs ar
chosen in correspondence to the minimum of the estimated
generalization error. Some proposals exist for choosieg th
admissible search space fér [23], but this choice is far
from obvious.

When performing the model selection, using the SVM
formulation based on Ivanov regularization (6), we have
to find the search space for the hyperparameigrax.
Differently from the previous case, it is possible to find
a simple relation between the value afy;4x and the
dimension of the margin: then, finding an upper and a lower
bound for the margin implies defining the search space for

where i, w, b and p are the Lagrange multipliers of the this hyperparameter.
constraints (21), (22) and (23). The following derivatiie o  Let us consider the SVM separating hyperplame: +b =

A is the only one of interest for our purposes:

o _
oy

l l
1 T WMAX
0= Toy ;;Biﬁjyiyjmi Tjt—g P (26)
Since, from the slackness conditions, we have fhat= 0

and since, in the cases of interegt> 0, it must bep =0
and we find the following updating rule foy,:

l l
B \/Zi:l o1 BiBiyiyiz] x;
-

WMAX

v ; (27)

0 for a set of datdD;, defined as in section Il. Let us consider
a patternz;: the distance between the patterp and the
separating hyperplané can be computed as

(29)

If x is such thatw - x; +b = +1, i.e. it lies on the margin
boundaryd = (||w||)~! and, then, the margin equals
2

lwll”

(30)



Let S, and S_ be the set of indexes of the patterns of = 20 to ! = 500, while the remaining 3074 — [ images are
D; which refer to the class-1 and—1, respectively. We can used as a test set. In order to build statistically releveslis

define and, at the same time, to show that the MD-based approach
) is almost insensitive with respect to the selection of saspl
duin = esies. 0(@;, x;) (G for the training and the model selection phases, we build
dyax = max _ 6(mi, ), (32) @a set of30 replicates using a random sampling technique
€Sy, JES- and a set oB0 replicates using the approach of [26], which

where §(-,-) represents the distance between two patternguarantees that almost-homogeneous subsets of the dataset
Then, the margin can assume values on|y in the range: are built. Note that the dimensionality of the datasetds,
which is much higher than the number of samples in each
dyuin S M <dyax (33)  of the training sets and, therefore, defines a typical small
or, in other words, the search space for the hyperparameB&mMPple setting. _

In Table I, we show the results obtained on the MNIST
replicates, created using a random sampling technique: the
first column represents the number of patterns used in the
experiments, while the remaining columns present the error
. ) ) rates obtained on the test set for the BTS, KCV, LOO, and

In the following experiments, three practical approachegp approaches, respectively. When only a restrained number
(KCV, LOO and BTS) are compared with the results obtaineds hatterns is used, the best overall performance corretspon

using _the MD-based technique. The experimental setup is )& he model selected with the MD-based approach: when
following: is small (in this case] < 200), the underlying hypotheses
» the data are normalized in the range1}; of the practical methods are not valid, then the generaliza-
« the model selection is performed, using the three pragon error estimation and, consequently, the model selecti
tical methods, by searching for the optimal value(df pecome unreliable. On the contrary, wheis large (e.g.,
in the interval[10~?,10°], which includes the cases of ; > 300 in the experiments), the practical methods tend
interest, among 30 values, equally spaced in a logaritfo outperform MD. This is mainly due to the fact that the
mic scale [22]. For the KCV techniqué,= 10 is used, MD-based technique privileges “underfitting” models (i.e.
while the bootstrap procedure is iteraté@D0 times;  SVMs characterized by large margin values) instead of the
« the MD-based model selection is performed by searchoverfitting” classifiers, chosen by the practical apprash
ing for the optimal value ofwarax, as described in this behaviour allows to improve the performance of the
section IV-C. In order to avoid unreliabl®/ D values, classifier when only few training patterns are availabld, bu
we setm = 100 in the bound of Eq. (13); results to be a conservative approachiascreases. This
« the error rates of the optimal models chosen by the KC¥s confirmed also by the results obtained on the replicates
LOO, BTS, and MD approaches are then computed oteated using the approach of [26] and shown in Tab. II:
a separate test set, where available, using the hard Igfsthese cases, the underlying hypotheses for the practical
function of Eq. (15); approaches hold (e.g. the training set is a “good sample” of

« when a separate test set is not available, the approagfe entire population) and the BTS method outperforms MD,
of [24] is used by generating different training/test pairgven for very low values of.

for the comparison.

WMAX is:

<wpax < (34)

dmax dymInN
V. EXPERIMENTAL RESULTS

TABLE |

A. The MNIST Dataset ERROR RATES ON THE TEST SET OF THMNIST DATASET, SAMPLED

The MD-based method is obviously targeted toward smalviTH A RANDOM TECHNIQUE, WITH 95% CONFIDENCE INTERVAL ALL
sample problems, where the use of a hold-out set for es- VALUES ARE IN PERCENTAGE
timating thg generalization ability of a cI_assmer is usyal ] BTS KoV Tole) VD
less effective [15], [16]. In order to_ fairly compare the 20 1192041 19203 24206 | 18xo04
performance of the MD-based technique versus the hold- 50 | 090402 | 13403 | 14402 | 08401
out ones, we select a real-world application, the MNIST 10| 06+02 | 08402 | 08+01 | 0.5+0.1

dataset [25], consisting of a large number of samples, and 500 | g4 +01 | 04401 | 05401 | 04401
use only a small amount of the available data as training 300! 03401 | 03+01 | 04+01 | 04+0.1
set. The remaining samples can be used as a test set for 509 | 02+01 | 02401 | 02401 | 0.34+0.1
the comparison, since they represent a reasonably good
estimation of the generalization erré( f).

The MNIST dataset consists of 62000 images, representingWe can also verify experimentally that the probability
the numbers from 0 to 9: in particular, we consider the 1307df finding a large number of CSVs is low. Fig. 1 shows
patterns containing 0's and 1’s, that allow us to deal with the experimental probability of finding at least- 1 CSVs
binary classification problem. We build the training set byin percentage, respect to the number of samples) as a
randomly sampling a small number of patterns, varying frorfunction of s: the probability of finding at least one CSV




TABLE Il
ERROR RATES ON THE TEST SET OF THMNIST DATASET, SAMPLED
USING THE TECHNIQUE PROPOSED IN26], WITH 95% CONFIDENCE
INTERVAL. ALL VALUES ARE IN PERCENTAGE

In this section, we use two biclass problems, taken from
the well-known GEMS datasets [27Prostate Tumorand
DLBCL. In addition to these two sets, we also make use
of a gene expression dataset foyeloma diagnosisaken

! BTS KCv LOO MD from [28], and a DNA microarray dataset collectedGasa
20 | 1.2+03 | 1.54+£03 | 21+£05 | 1.7£04 Sollievo della Sofferenza Hospitdtoggia - Italy, relative to
50 | 06+£01 ] 1.0£0.2 | 1.1£03 | 0.8+0.1 patients affected by colon cancer [29]. Table Il presenés t
100 | 0.44£0.1 | 0.7£0.2 | 0.7£0.2 | 0.5£0.1 main characteristics of the datasets.

200 | 0.3£0.1 | 0.5£0.1 | 0.5£0.1 | 0.4£0.1
300 | 0.3+0.1 | 0.3£0.1 | 0.4£0.1 | 0.3£0.1
500 | 0.24+0.1 | 0.2£0.1 | 0.2£0.1 | 0.3£0.1

TABLE Il
CHARACTERISTICS OF THE HUMAN GENE EXPRESSION DATASETS USED
IN OUR EXPERIMENTS

Dataset Reference| # of patterns| # of features
/=200 Prostate Tumor|  [27] 102 10509
70 g DLBCL [27] 77 5469
Myeloma [28] 105 28032
60 b Colon cancer [29] a7 22283

o
o
T
I

Tables IV and V show the total number of misclassifi-
cations, obtained using both the random and the stratified
data sampling. When a good sample is available (Table V),
the practical techniques tend to outperform the MD-based
technique, even in the case of small datasets, since the-unde
lying hypotheses are satisfied. When the data is not cayefull
10k , selected (Table 1V), MD still tends to choose underfitting
models, differently from the practical approaches: the et®d

. = ‘ selected by MD allow to obtain the best performance (on
§ (% of CSVs] average) on the test sets.

Pr(%CSVs > s)
ey
=
L

[
o
T
L

20r b

Fig. 1. The experimental probability of finding at leastt 1 CSVs as TABLE IV
a function of s. The figure refers to a case of the MNIST dataset with N,MBER OF MISCLASSIFICATIONS ON THE TEST SET OF THE HUMAN

1 = 200.
GENE EXPRESSION DATASETSCREATED USING A RANDOM SAMPLING

TECHNIQUE.
is approximately70%, but this value decreases to less than Dataset BTS | KCV | LOO | MD
0.2% for a number of CSVs greater than% of the training Prostate 6 | 16 | 18 | 22
patterns. DLBCL 3 3 4 2
Myeloma 8 10 8 0
B. Human Gene Expression Datasets Colon cancer| 9 8 8 6
In the experiments described in the previous section, we Total 36 37 38 | 30

extracted small sample sets in order to fairly compare the

theoretical and practical model selection techniques on a

large cardinality test set. In a real-world small samplérsgt TABLE V

a test set of such size is not available: then, we reproduceumser oF MISCLASSIFICATIONS ON THE TEST SET OF THE HUMAN

the methodology used by [24], which consists in generating gene ExPRESSION DATASETSCREATED USING THE APPROACH OF26].
different training/test pairs using a cross validationrapgh.

In particular, we sep = 5 for our experiments. If the number Dataset BTS | KCV | LOO | MD
of patterns of a dataset is not exactly a multipleppsome Prostate 9 10 10 1 10
patterns are left out of the training set: however, they are DLBCL 0 2 2 3
not neglected (as in many other applications) and they are Myeloma 0 0 S
simply added to every test set. Analogously to the analysis Colon cancer| 4 4 3 >
of the MNIST dataset, we create the training/test splitting Total 13 16 1 | 18

using two different techniques: a random sampling approach

and the stratified almost-homogeneous sampling method of

[26], in order to verify the generalization ability of the ohel VI. CONCLUSIONS

selection techniques, when both “bad” and “good” samples We have detailed a method to apply a well-known ap-
are available. proach of the MLT, based on the Maximal Discrepancy con-



cept, to the problem of SVM model selection. In particularfrom which the following Karush-Kuhn-Tucker (KKT) con-
we have focused on the small sample regime, where thiitions are obtained:
number of available samples is very low, if compared to  HA

their dimensionality, which is the typical setting of sealer 3_& =0 — fBi<1 (41)
bioinformatic classification problems. The disadvantafie o .
the MLT based approach lies in the pessimistic behavior of % -0 — Zyzﬂi - (42)
the Maximal Discrepancy method and on the computational ob im1

complexity, which is not lower than the methods based on re- oA 1 1

sampling techniques. However, the MD method outperforms — =0 — Zyjzqub(wj) =— Zyjﬁj¢(m.j).(43)
several resampling algorithms, which are widely used by 0 j=1 73

practicioners, and appears less sensitive to the avaijabilg, g hstituting the previous conditions in the Lagrangan

of a ‘good’ training set for the problem under investigation; “iq easy to see that the same formulation of problem (20)

APPENDIX is obtained.

In this appendix, we propose the non-linear kernel ex- ACKNOWLEDGMENTS
tension for the SVM problem (6), which allows to use We thank Casa Sollievo della Sofferenza Hospital, Foggia
the procedure presented in Algorithm 1. For our purposesjtaly, for providing the colon cancer dataset.
we use the same assumptions of [30] for the non-linear
reformulation.

Let ¢(x;) be a non-linear function which maps a pattesn [1] V. Vapnik, "An overview of statistical learning theorylEEE Transac-
from the input to the feature space. Let us define the weightg 1onS on Neural Networks/ol. 10, pp. 988-999, 1999,

8 ; A o C.J. Lin, “Asymptotic convergence of an SMO algorithmthigut any
w of the primal formulation (6) as a linear combination of = assumptions’|EEE Transactions on Neural Networksl. 13, pp. 248—
the input patterns, mapped througft):
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