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Abstract— We like to present a method to build ensemble
models based on an extended cross-validation approach. The
cross-validation puts several model classes in a tournament and
selects the best performing model with respect to the validation
set. This leads to a model selection strategy and an estimation
of the expected modelling error.

I. INTRODUCTION

If we average the output of several different models, we
call this an ensemble model. Building ensembles of models
is a common way to improve classification and regression
models in terms of stability and classification accuracy since
it was discovered, that a combination of several Neural
Networks can reduce the variance of the average regression
model [1], [2], [3]. The extension to classification problems
was straight forward after the formulation of a bias-variance
decomposition for zero-one loss functions [4], [5]. The key
feature of the ensemble approach is the introduction of model
diversity [6], [7], [8] that helps to reduce the variance of
the resulting ensemble model. One way to achieve diverse
models is the well known boostrap aggregating or ’bagging’
(see Breiman [9]) where the models are trained on different
subsets of the training data. A different way to introduce
diversity are heterogeneous ensembles, that consist of sev-
eral different model classes like Neural Networks, nearest-
neighbor models, decision trees, etc [10].
Let us consider a supervised learning problem with n training
examples of the form {(x1, y1), (x2, y2), . . . , (xn, yn)} from
an unknown function y = f(x). The x values are usually d-
dimensional vectors that are called ’input-features’ while the
y values are continuous in the case of regression and discrete
’class labels’ in the case of classification. If y ∈ {0, 1}
we call it a ’binary classification problem’. A ’classifier’
is a hypothesis about the unknown function y = f(x)
in the sense, that given some new values x

∗ it predicts
the corresponding class labels y∗. A classifier ensemble is
a set of single classifiers whose individual predictions are
combined in order to classify new data examples.
In the next sections we will present our ensemble approach,
the model selection scheme and the method we used to
estimate the performance of our classifier ensemble regarding
the five classification tasks of the ’Performance Prediction
Challenge’.
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II. ENSEMBLES

The average output of several different models fi(x) marks
the ensemble model

f̂(x) =

K
∑

i=1

ωifi(x), (1)

where we assume that the model weights ωi sum to one
∑K

i=1 ωi = 1. There are several suggestions concerning
the choice of the model weights (see Perrone et al. [3] or
Hashem et al. [11]). We decided to use uniform weights
with ωi = 1/K for the sake of simplicity and not to run
into over-fitting problems as reported by Krogh et al. [8].
The central feature of the ensemble approach is the gen-
eralization ability of the resulting model. In the case of
regression models (with continuous output values) it was
shown, that the generalization error of the ensemble is in
the average case lower than the mean of the generalization
error of the single ensemble members (see Krogh 1995 [6]).
This holds in general, independent of the model class, as
long as the models constituting the ensemble are diverse with
respect to the hypothesis of the unknown function. In the
case of (binary) classification models the situation was not
so clear because the classical bias-variance decomposition of
the squared error loss in regression problems (Geman et al.
[2]) had to be extended to the zero-one loss function. There
are several approaches dealing with this problem, see Kong
and Dietterich [12], Kohavi [4] or Domingos [5] to mention
a few.

III. CROSS VALIDATION

In order to select models for the final ensemble we use
cross validation (CV) for model training, model selection
and the estimation of the expected classification error. The
models are initialized with different model parameters and
cross validation helps us to find proper values for these
parameters and to select the best performing models for the
final ensemble.

A. Data Partitioning

First of all we isolate a ’test set’ that is hold out from
the training procedure and only used for the final evaluation
(usually 10% to 25% of the entire data set).
For a k-fold CV the data is divided k-times into a ’training
set’ and a ’validation set’ (see Figure 1), both sets containing
randomly drawn subsets of the data without replications.
There is no ’golden rule’ concerning the ratio

Rt/v =
# training samples

# validation samples (2)
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Fig. 1. For every partition of the cross-validation, the data is divided in a
training and a validation set. A separate test set is selected once and kept
back during the whole training procedure.

but values ranging from 80
20 up to 50

50 for Rt/v seem to
be reasonable for all practical purpose. If the data needs
to be balanced, then balancing is only introduced to the
training set, the validation and the test set should have the
same distribution as the original data, in order to use the
classification error on the validation set as an estimation of
the expected classification error (see Section VI).

B. Model Selection

After the data partitioning we have k CV-partitions with a
training and a validation set each. This leads to k training-
validation rounds and in every round we select only one
model to become a member of the final ensemble (namely
the best model with respect to the validation set). In every
round we train several different models classes with a variety
of model parameters (see Section IV for an overview of
the models and the related model parameters). This means,
that all models have to compete with each other in a fair
tournament because they are trained and validated on the
same data set. The models with the lowest classification
error in each CV-fold are taken out and added to the final
ensemble, receiving the weight ωi = 1

k (see Equation 1). All
other models in this CV-fold are deleted.

We applied this approach to several regression problems
related to time series prediction and we achieved convincing
results [10], [13], [14].

In the ’Performance Prediction Challenge’ we have refined
the strategy slightly. In a first CV training we look for
the dominating model classes and possible preprocessing
strategies like feature selection, scaling and balancing. In the
final CV training, we initialize the base models with a broad
variety of model parameter and perform an exhaustive search

of the parameter space.

C. Expected Classification Error

We estimate expected classification error Ê from the
classification errors on the k validation sets that we used
to select the models. If Ek

valid denotes the error on the
validation set of the best performing model in the k-th round
of the CV, then

Ê =
1

k

k
∑

n=1

Ek
valid (3)

is the expected classification error with the standard deviation
σ(Ê). We are aware of the fact, that this is a quite optimistic
guess, because we use only the errors of the best performing
models. For this reason we kept a test set out of the entire
training. The test set contains only unseen data points and
marks real ’out of training’ data. We start the CV training
with a ratio Rt/v = 80

20 and calculate the classification error
of the ensemble model on the test set Etest. If Etest lies
in the interval Ê ± ˆσ(E) then CV training is completed.
Otherwise we choose a smaller ratio Rt/v and start the whole
procedure from the beginning unless Rt/v = 50

50 . In this case
the training and the validation set have the same size and
a further shrinkage of the training set usually increases the
error on the validation set. During this process we assume,
that the test set and the k validation sets have the same
properties as the entire data set. We are aware of the fact,
that a strong bias in the test set would confuse the whole
procedure. Therefore we have to use this method with care.
If Etest is not located in the interval Ê± ˆσ(E) we could draw
a new and maybe larger test set. Hastie et al. [15] propose
a ratio of 50% for training, 25% for validation and 25% for
test as a rule of thumb1.

IV. CLASSIFICATION MODELS

In this section we give a short overview of the models
that we use for ensemble building and the model parameters
(hyperparameters) that are optimized in during the CV. All
models belong to the classical collection of machine learning
algorithms for classification and regression. Therefor we will
not go into greater detail that can be found in the references.
The implementation of these models in an open source
toolbox together with a more detailed description can be
found in [16].

A. Linear Discriminant Analysis

The Linear Discriminant Analysis (LDA) is a simple but
useful classifier. If we assume that the two classes k = {0, 1}
have a Gaussian distribution with mean µk and they share
the same covariance matrix Σ, then the ’linear discriminant
function’ δk(x), k = {0, 1} is given by

δk(x) = xT Σ−1µk −
1

2
µT

k Σ−1µk + log(πk),

1”It is difficult to give a general rule on how to choose the number of
observations in each of the three parts, as it depends on the signal-to-noise
ratio in the data and the training sample size. A typical split might be 50%

for training, and 25% each for validation testing.”, see Hastie et al. [15].



where πk denotes the frequency of occurrence of the class
labels. The predicted class labels are given by

f(x) = argmaxk=(0,1) {δk(x)} .

We also implemented two modifications: The Quadratic Dis-
criminant Analysis (QDA) and the Penalized Discriminant
Analysis (PDA) as described in detail in Hastie et. al [17].
The parameters of the letter two models are dealing with the
penalizing terms.

B. Linear Ridge Model

The linear ridge model is a simple multivariate linear
regression that takes the N features {xi}i=1,...,N as input
and the labels {yi}i=1,...,N as output variables while in-
troducing a penalty term λ to the regression coefficients
α = (α1, . . . , αd). The regression coefficients minimize a
penalized residual sum of squares

α = argminα







N
∑

i=1

(yi − α0 − 〈xi|α〉)
2

+ λ
d

∑

j=0

α2
j







,

where α0 denotes the constant term in the regression and
〈·|·〉 is the scalar product defined as

〈x|α〉 =

d
∑

k=1

xkαk .

The ’linear discriminant function’ is given by

f(x) = sign (α0 + 〈x|α〉) .

The free parameter of the model is the ridge factor λ.

C. Nearest Neighbor Classifier

A k-Nearest-Neighbor Classifier takes a weighted average
over the labels zi of those observations zi in the training set
that are closest to the query point x. This denotes as

f(x) =
1

∑

wi

∑

zi∈Nk(x)

wizi,

where Nk(x) denotes the k-element neighborhood of x,
defined in a given metric and wi is the related distance.
Common choices are the L1, L2 and the L∞ metrics. The
parameters of the model are the number of neighbors and
the choice of the metric.

D. Trees

Trees are conceptually simple but powerful tools for
classification and regression. For our purpose we use the
’classification and regression trees’ (CART) as described in
Breiman et al. [18]. The main feature of the CART algorithm
is the binary decision role that is introduced at each tree
node with respect to the information content of the split.
In this way the most discriminating binary splits are near
the tree root building an hierarchical decision scheme. It is
known, that trees have a high variance, so they benefit from
the ensemble approach [9]. The parameters of the tree models
are related to splitting the tree nodes (the impurity measure
and the split criterion, see [17] for a detailed description).

E. Neural Networks

We use a multilayer feed-forward Neural Network (MLP:
Multi Layer Perceptron) with the tanh(x) as activation func-
tion. The weights are initialized with Gaussian distributed
random numbers having zero mean and scaled variances,
following a suggestion of LeCun et al. [19]. The weights
are trained with a gradient descend based on the Rprop
Algorithm [20] with the improvements given in [21]. The
MLP works with a common weight decay with the penalty
term

P (~w) = λ

N
∑

i=1

w2
i

1 + w2
i

,

where ~w denotes the N -dimensional weight vector of the
MLP and a small regularization parameter λ. The number of
hidden layers, the number of neurons and the regularization
parameter are adjusted during the CV-training.

F. Support Vector Machines

Over the last decade Support Vector Machines (SVMs)
have become very powerful tools in machine learning. A
SVM creates a hyperplane in a ’feature space’ that separates
the data into two classes with the maximum-margin. The
’feature space’ can be a mapping of the original features
(x, x′) into a higher dimensional space using a positive semi-
definite function

(x, x′) 7→ k(x, x′).

The function k(·, ·) is called the kernel function and the so
called ’kernel trick’ uses Mercer’s condition, which states
that any positive semi-definite kernel k(x, x′) can be ex-
pressed as a dot product in a high-dimensional space (see
[22] for a detailed introduction). The theoretical foundations
of this approach were given by Vapnik’s Statistical Learning
Theory [23], [24] and later extended to the nonlinear case
[25]. We use an implementation of SVMs that is based on
the libsvm provided by Chih-Jen Lin [26] with the standart
kernels:

k(x, x′) = (x · x′) linear
= (x · x′ + 1)d polynomial
= exp

(

− ||x−x′||
σ2

)

rbf

The parameters of the model are with respect to the kernel-
type the polynomial degree d , the width of the rbf σ2 and
the value concerning the cost of constrain violation during
the SVM training.

G. Boosting

The idea in the early days of boosting was to combine
the output of many ’weak’ classifier to achieve a ’strong
committee’ with respect to the classification error (see Freud
et al. [27] for an overview). But in principle, boosting
can also be used to improve the performance of almost
any classification algorithm. In our approach we used the
Adaboost.M1 boosting scheme as described by Friedman et
al. [28] (see Hastie et al. [17] for a detailed overview and



description) and applied it to the ridge model in Section IV-
B. So the base model of the ensemble is a boosted linear
ridge model.

V. DATA PREPROCESSING

In some cases it is usefull to apply a kind of data pre-
processing in order to select the most discriminant features
and reduce the dimensionality of the leaning problem, in
particular if we have more features than training examples.

A. Normalizing

If we substract the mean from the features and divide them
with their variance, we call this normalizing the data.

B. Balancing

If the distribution of the two classes differ in the sense,
that one class is only represented with a small number of
examples then we can balance the data in the training set.
This can improve the the convergence of several training
algorithms and has also an impact on the classification error
[29]. We apply balancing in the way that we reduce the
number of samples in the one class until we have an balanced
ratio of the class labels. This will reduce the number of
training samples in each CV-fold, hence we have to enlarge
the number of CV-folds in order to make use of all available
samples. This could be forced by drawing CV-folds with a
small overlap.

C. PCA

The principal component analysis (PCA) is a linear trans-
formation of the feature space that chooses a new coordinate
system for feature data in a way, that the greatest variance by
any projection of the features lies on the first new coordinate
axis (the first principal component), the second greatest
variance on the second principal component, and so on. The
principal components forming a new orthonormal basis of
the feature space, which can be use to reduce dimensionality
while retaining only those characteristics of the features
that contribute most to its variance by eliminating the later
principal components. In this way, the PCA helps a lot to
get a fist impression about the ’real’ dimensionality of the
problem.

D. Feature Selection with SVMs

There are a lot of known methods to select the relevant
features in a given data set (see [30] for an overview). Some
are based on simple correlation analysis of the feature values
and the class labels, others are simple brute force attacks
that enlarge the features iteratively by selection only those
that improve the classifier performance. The feature selection
algorithm proposed by Guyon et al. [31] is based on the idea
to use the weights of a classifier to achieve a ranking of
the feature importance. For a detailed description see [31]
and the references therein. We found this one of the best
performing feature selection algorithms when applied to the
data sets in the challenge.
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Class −1Class 1
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Fig. 2. The confusion matrix for a binary classification problem. The
notation: tp = ’true positive’; tn = ’true negative’; fp = ’false positive’; fn
= ’false negative’.

VI. ERROR MEASURES

If we talk about proper classification models, we talk
about models with respect to the costs of missclassification.
In Figure 2 we show the confusion matrix for a binary
classification task. In general the accuracy

accuracy =
tp + tn

tp + tn + fp + fn

seems to be the ’natural choice’ of an error measure for
most of the classification problems if the data set is balanced.
Another choice is the balanced error rate (BER), defined as

BER = 0.5 ∗

(

fp

tn + fp
+

fn

fn + tp

)

. (4)

But in several applications these are not the values of interest.
If we consider the case, where we have to classify if a
person has a particular disease or not, given the features
from a medical investigation (a test of the patients blood,
for instance), then we want to find all the patients that have
this disease with a high probability, paying the price to get
some healthy people that have to be tested again with more
expansive methods than a simple test of the patients blood.
In this case the recall (or ’true positive rate’) is the error
measure that matters. Some of the models listed in Section IV
can handle the problem of different missclassification costs
(like the CART model), others cannot. With our approach we
are able to select models, that perform well on a given error
measure and build classification models for several demands.

VII. APPLICATION TO THE PERFORMANCE PREDICTION
CHALLENGE

The Performance Prediction Challenge [32] provides five
data sets from different sources divided in a training set, a
validation set and a test set each. The aim of the challenge
is to estimate how accurately a given predictive model will
perform on test data with respect to the BER defined in
Equation 4. In this section we will report, which preprocess-
ing, parameter settings and base models were used to build
classifier ensembles for the 5 data sets (ADA, GINA, HIVA,
NOVA and SYLVA, see Table VII). In all cases we used the
validation set, that was provided on the challenge web-site
as our ’hold out test set’ (see Section III). This ’test set’ was
10% of the size of the training set in all cases. The results
of our best challange entry are reported in Table II. In the
overall ranking of the Performance Prediction Challenge we



TABLE I
FEATURE SELECTION, PREPROCESSING AND BASE MODELS.

Data set ADA GINA HIVA NOVA SYLVA
Features 48 970 1617 16969 216

Examples 4147 3153 3845 1754 13086
Positive 1029 1550 135 499 805
Negative 3118 1603 3710 1255 12281

Normalizing yes yes yes – –
Balancing yes – yes – yes

Feat. select. – svm – – –
CV-folds 21 5 11 9 41

Rt/v 1/1 4/1 3/1 3/1 1/1
Base Boosted SVM Boosted Boosted CART

models ridge (RBF) ridge ridge

are on the 10th position with respect to the test score and
we gained an average ranking of 16.6 as computed by the
organizers.

A. ADA

The ADA data consist of 1029 positive and 3118 negative
samples with 48 features each. We balanced and normalized
the data and trained our ensemble with a fraction Rt/v = 1/1
(see Equ. 2) and k = 21 CV-folds. The finale ensemble con-
sisits of boosted ridge models with different ridge parameters
λ which where determined during the training.

B. GINA

The GINA data consist of 1550 positive and 1603 negative
samples with 970 features each. We normalized the data and
performed a featere selection based on the method described
in Guyon et al. [31] with 450 features remaining in the
training set. During the CV-training the SVM with rbf-
kernels showed superior performance. We build an SVM
classifier ensemble with k = 5 CV-folds where the model
parameters were adjusted during the training.

C. HIVA

The HIVA data consist of 135 positive and 3710 negative
samples with 1617 features each. We normalized and bal-
anced the data and build and ensemble model with k = 11
CV-folds consiting of boosted ridge models with several
ridge parameters and a ratio Rt/v = 3/1. We didn’t find
a way to apply feature selection and to introduce a more
sophisticated model instead of the simple ridge. It should be
stated, that the penalizing term in the ridge model shrinks the
’useless’ coefficients to zero, hence operating as an intrinsic
feature selection.

D. NOVA

The NOVA data consist of 499 positive and 1754 negative
samples with 16969 features each. We finally run a 9-fold
boosted ridge model with an ratio Rt/v = 3/1 and the ridge
parameters adjusted during the training.

TABLE II
RESULTS OF OUR BEST CHALLENGE ENTRY.

Test Test BER Guess Test
Dataset AUC BER guess error score
ADA 0.8614 0.1801 0.1636 0.0165 0.1965
GINA 0.9866 0.0523 0.05 0.0023 0.0543
HIVA 0.7172 0.3057 0.338 0.0323 0.3377
NOVA 0.9459 0.0611 0.08 0.0189 0.08
SYLVA 0.9956 0.0267 0.007 0.0197 0.0464
Overall 0.9013 0.1252 0.1277 0.0179 0.143

E. SYLVA

The SYLVA data consist of 805 positive and 12281 negative
samples with 216 features each. We balanced the data and
tested several model classes, at least the CART models were
the winners. We trained a ensemble with k = 41 CV-folds
and and fraction Rt/v = 1/1 using only trees with no pruning
to achieve a high model variance. It is known, that ensembles
of trees benefit from a high number of ensemble members,
so we decided to choose 41 CV-folds which leads to 41 trees
in the final ensemble.

VIII. CONCLUSIONS

We showed that the ensemble approach described above
works a method to select classification models and to esti-
mate the expected classification error. The fair competition
of models - trained and validated on the same data sets
- doesn’t prefer any model by preliminary choice. Only
the performance on the validation set is the criterion to be
selected as an ensemble member.

After taking a look at the over all ranking and after
analyzing our earlier submissions we have to admit, that
we focused to much on the 10% test set during the model
selection. We introduced a bias in our appraoch that we
couldn’t handle. This seems to be the classical overfitting
trap.

The Performance Prediction Challenge showed in our
eyes, that there is no perfect black box model that works
in any case right ’from the shelf’. Every modelling or
classification task has its own challenge and needs a careful
parameter adjustment, a feature selection strategy and at least
a fundamental knowledge about the underlining algorithms.
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