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Model Selection in Linear Mixed Models
Samuel Müller, J. L. Scealy and A. H. Welsh

Abstract. Linear mixed effects models are highly flexible in handling a
broad range of data types and are therefore widely used in applications.
A key part in the analysis of data is model selection, which often aims to
choose a parsimonious model with other desirable properties from a possibly
very large set of candidate statistical models. Over the last 5–10 years the
literature on model selection in linear mixed models has grown extremely
rapidly. The problem is much more complicated than in linear regression
because selection on the covariance structure is not straightforward due to
computational issues and boundary problems arising from positive semidef-
inite constraints on covariance matrices. To obtain a better understanding of
the available methods, their properties and the relationships between them,
we review a large body of literature on linear mixed model selection. We ar-
range, implement, discuss and compare model selection methods based on
four major approaches: information criteria such as AIC or BIC, shrinkage
methods based on penalized loss functions such as LASSO, the Fence proce-
dure and Bayesian techniques.

Key words and phrases: AIC, Bayes factor, BIC, Cholesky decomposition,
fence, information criteria, LASSO, linear mixed model, model selection,
shrinkage methods.

1. INTRODUCTION

The class of linear mixed models (Henderson, 1950)
provides a flexible framework for modeling a wide
range of data types, including clustered, longitudinal
and spatial data. This framework is increasingly widely
used in Applied Statistics. It is interesting and im-
portant both in its own right and as a starting point
for the development of more complicated classes of
models such as generalized linear mixed models or
GLMMs (e.g., McCulloch, 2003), nonlinear mixed
models (e.g., Pinheiro and Bates, 2000), and various
semi-parametric and nonparametric models (e.g., Rup-
pert, Wand and Carroll, 2003). In practical applications
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of statistical models (including linear mixed models),
a key aspect of the analysis is often model selection,
the choice of a particular model within a class of can-
didate models; see Claeskens and Hjort (2008) for a
general review. With the increasing use of linear mixed
models in practice, the need to do model selection has
resulted in the implementation of a number of differ-
ent methods for model selection in software packages
(such as R or SAS). There are, however, other, recent
methods which have not yet been implemented in stan-
dard software and there is no consensus in the statisti-
cal community on how to approach model selection for
linear mixed models. This makes it very difficult for
an analyst to answer the basic question: Which meth-
ods should I use and when should I use them? In this
paper, as a step toward addressing these issues, we re-
view, classify and compare a number of methods for
selecting linear mixed models so that we can better un-
derstand their properties and the relationships between
them.

There is a substantial literature on model selection
for linear mixed models which has grown extremely
rapidly in the last 5–10 years. As a consequence of
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this rapid growth, researchers working in parallel in the
area have not had access to the developments of other
researchers. The inevitable result is a lack of cross-
referencing between papers using different methods for
model selection, between papers using similar meth-
ods for model selection and even between papers using
similar methods written by the same author. The main
consequences are a limited acknowledgement of other
relevant work, a limited exploration of the relationships
between different methods and limited comparisons
between different methods of model selection, either
theoretically or through simulation. In addition, papers
treating the same model use different notation and ter-
minology; papers proposing different approaches do so
for different models (including special cases of general
models obtained either by imposing special structure or
by treating some parameters as known) or treat differ-
ent types of selection problems (such as only selecting
the regression parameters), making it difficult to access
and evaluate the key methods. Finally, only a few pa-
pers discuss and solve computational issues. We do not
give specific examples here because our intention is not
to single out any particular contributions but rather to
describe the state of the literature as a whole.

Linear mixed models can be viewed as extensions of
linear regression models, so many of the methods pro-
posed for selecting mixed models can be seen as exten-
sions of methods developed for linear regression mod-
els. However, this does not mean that model selection
for linear mixed models can be subsumed within model
selection for linear regression models. It is useful to ex-
ploit the similarities between the models but there are
also important differences between linear mixed mod-
els and linear regression models which need to be taken
into account. In linear regression models, the responses
are independent, whereas, in linear mixed models, they
are typically dependent. This dependence impacts on
model selection by reducing the effective sample size,
a quantity that affects the theoretical properties of pro-
cedures and is used explicitly in some model selection
procedures such as the Bayesian Information Criteria
(BIC; Schwarz, 1978) described in Section 3. The de-
pendence also means that linear mixed models have
both regression parameters (which describe the mean
structure) and variance parameters (which describe the
sources of variability and the dependence structure).
If, as is often the case, these parameters have a dif-
ferent relative importance in the analysis, this should
be reflected in model selection. For example, if we
are evaluating a model for its predictive ability, it may

be less important to get the dependence structure ex-
actly correct than it is to get the regression structure
correct. Even if we do not explicitly assign different
relative importance to the parameters, it is already im-
plicit in the model—it underlies the familiar difficulty
of assigning degrees of freedom or measuring model
complexity in linear mixed models. It is also often
the case that regression parameters are unconstrained,
whereas variance parameters are always constrained by
the requirement that variance matrices must be posi-
tive semi-definite. In many problems, many of the pa-
rameters are required to be nonnegative so there are
boundaries of the parameter space at zero. An impor-
tant part of model selection is setting a parameter to
zero which, unfortunately, means putting some of the
variance parameters on the boundary. Consequently,
there are boundary issues in model selection with vari-
ance parameters, either computational issues from fit-
ting models with redundant variance parameters (as
software tends not to handle this well) or statistical is-
sues related to testing null hypotheses on the boundary
of the parameter space (because selection is closely re-
lated to hypothesis testing; Claeskens and Hjort, 2008),
that do not arise when selecting regression parameters.
Thus, model selection for linear mixed models is differ-
ent from model selection for linear regression models
and it is important to acknowledge and take into ac-
count the differences between the two classes of mod-
els.

For the linear regression model there is a large and
growing literature on variable selection in the high-
dimensional setting (e.g., Fan and Lv, 2010; Bühlmann
and van de Geer, 2011). This is very different from
the fixed (finite) dimensional case because many of
the fixed dimensional model selection procedures ei-
ther do not work at all or, for their implementation,
require some theoretical or computational adjustment.
Additional assumptions such as sparsity in the true
model are also needed in the high-dimensional setting
in order to obtain consistent model selection. Nonethe-
less, sometimes similar methods can be used in both
the high and fixed-dimensional cases, for example,
shrinkage methods based on the LASSO (Tibshirani,
1996) are used extensively in both contexts. To date,
most of the literature on model selection for the lin-
ear mixed model is for the fixed-dimensional parame-
ter case and it is only very recently that authors have
started to consider high-dimensional settings (Schell-
dorfer, Bühlmann and van de Geer, 2011; Fan and Li,
2012). Part of the reason for this lack of coverage is be-
cause asymptotic studies in the high-dimensional linear
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mixed model case are more difficult than in the lin-
ear regression case since both the number of regres-
sion parameters and/or variance parameters can poten-
tially grow with the sample size and at possibly differ-
ent rates. There are also more complex computational
and estimation issues to consider due to the presence
of large, sparse covariance matrices.

In this paper we review model selection for linear
mixed models focusing mostly on the fixed-
dimensional parameter case. We define these models
formally, distinguish different model selection prob-
lems for the models and introduce the basic notation
in Section 2. We classify the different methods into
four broad approaches and describe each approach in
its own section. The first approach is based on choos-
ing models to minimize information criteria such as
the widely used Akaike Information Criteria (AIC;
Akaike, 1973) and the Bayesian Information Crite-
ria (BIC; Schwarz, 1978). These criteria are described
in Section 3. We describe shrinkage methods like the
LASSO (Tibshirani, 1996) in Section 4 and the Fence
method (Jiang et al., 2008) in Section 5. We briefly
discuss some Bayesian methods in Section 6. Finally,
we review some published simulation results in Sec-
tion 7 and conclude with discussion and conclusions in
Section 8.

Although model selection can be formulated and in-
terpreted in terms of testing, we do not review testing
per se in this paper. There is a huge literature on test-
ing, a substantial part of which could be construed to
have at least some relevance to model selection, and
we simply have to draw a line somewhere. We there-
fore focus on methods which may be motivated by and
derived from tests but ultimately do not explicitly focus
on tests. Second, our focus is on the ideas behind and
the relationships between methods, rather than the de-
tails of the implementation of any particular method.
We do identify areas of difficulty where more work
is needed, including numerical and implementation is-
sues, but these are not our main focus, and resolving
them in this paper is even further from our main fo-
cus. In particular, any discussion of Bayesian methods
leads quickly toward computation, but we do not re-
view Bayesian computation.

2. THE MODEL SELECTION PROBLEM

Consider the linear mixed model

y = Xβ + Z�u + �e,(1)

where y is a n-vector of observed responses, X is a
known n × p matrix of covariates, Z is a known n × s

matrix, u and e are unobserved independent s and n-
vectors of independent random variables with mean
zero and variance the identity matrix, β is a p-vector
of unknown regression parameters, � is an s × s matrix
which contains qγ distinct unknown parameters and
� is an n × n matrix which contains qδ distinct un-
known parameters. Writing the model this way is mo-
tivated by Chen and Dunson (2003), Field, Pang and
Welsh (2010), Bondell, Krishna and Ghosh (2010) and
Ibrahim et al. (2011). Let � = ��T and � = ��T so
we can write

E(y) = Xβ and Var(y) = V = Z�ZT + �.

The notation is general enough to allow the matrix
square roots � and � to be the symmetric matrices
produced by taking the square roots of the eigenval-
ues in the spectral decomposition of � or �, the lower
triangular matrices produced by the Cholesky decom-
position of � or �, or, if � is block diagonal, the block
diagonal matrix of the lower triangular matrices from
the Cholesky decompositions of each block. It is sim-
pler to specify and interpret the model in terms of �
and �, but it is simpler to fit and select models with
� and �. Let γ denote the qγ distinct unknown pa-
rameters in � and δ the qδ distinct unknown parame-
ters in �. It is sometimes convenient to group the pa-
rameters into the vector of regression parameters β ,
the vector of variance parameters τ = (γ T , δT )T of
length q = qγ + qδ and the vector of all parameters
θ = (βT ,τT )T of length p + q .

There are other useful parametrizations for (1) which
are used in the literature. One of these involves writing
� as

� = D�†,(2)

where �† is lower triangular with ones on the diag-
onal and D is a diagonal matrix (Chen and Dunson,
2003). When � = σ 2In with In the n × n identity ma-
trix, it is sometimes convenient to write � = σD†�†,
where D† = D/σ (Bondell, Krishna and Ghosh, 2010;
Saville, Herring and Kaufman, 2011). To be consistent
with the terminology of Pourahmadi (2011), we will
refer to these as alternative Cholesky factors. The main
advantage of the alternative Cholesky parametrization
is that it separates and therefore encourages different
treatment of the diagonal and the off-diagonal elements
of �. In particular, a zero diagonal element makes
the whole row zero, whereas a zero off-diagonal el-
ement affects only itself. However, it is important to
keep in mind that the diagonal elements of � include
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off-diagonal elements of � so the order of rows and
columns in � can affect model selection.

An alternative to the linear mixed model (1), which is
widely used in the econometric literature, can be writ-
ten as

y = Xβ + V1/2ε,(3)

where ε is an n-vector of independent random vari-
ables with mean zero and variance one. Models (1)
and (3) have the same mean and variance. If all the
random variables (u, e, ε) have Gaussian distributions,
the responses y in models (1) and (3) have the same
distribution. However, the two models are not neces-
sarily identical because they can have different param-
eter spaces; the parameter space for (1) requires � to
be positive definite, whereas that for (3) only requires
V to be positive definite. Thus, the parameter space
for (3) can be larger than and contain that for (1). If
any of the random variables have non-Gaussian distri-
butions, then the responses in the two models have the
same first two moments but can have different higher
order moments and different distributions (Field and
Welsh, 2007), as well as different parameter spaces.
We call (3) the transformation model to be consistent
with Field and Welsh (2007); it is sometimes called the
marginal model (e.g., Jiang, 2007). The difference be-
tween the two models is not widely appreciated, but it
is important to be clear about which model each pro-
cedure is working with. Most model selection proce-
dures have been derived for the linear mixed model (1),
but some of them also apply to the transformation
model (3).

It is useful to identify some special cases of the
model because these give insight into the range of
forms of the model and because we will refer to them
specifically in what follows. We express these as spe-
cial cases of the linear mixed model (1); they can also
be expressed as special cases of the transformation
model (3).

Variance component model (Henderson, 1950): � =
block diag(γ 2

1 Ir1, . . . , γ
2
qγ

Irqγ
), where s = ∑qγ

k=1 rk .

Write Z = (Z(1), . . . ,Z(qγ )), where Z(k) is n × rk , and
u = (uT

1 , . . . ,uT
qγ

)T , where uk is a rk-vector, so that

y = Xβ + γ1Z(1)u1 + · · · + γqγ Z(qγ )uqγ + �e.(4)

Often, � is known up to an unknown constant; in this
case qδ = 1 and we can write � = R0 + δ2R1, with
R0 and R1 known. It is most common to have R0 = 0
and R1 = In, the n × n identity matrix, but other pos-
sibilities do occur. The parameters γ 2

1 , . . . , γ 2
qγ

, δ2 are
known as variance components.

Independent cluster model: � = block diag(�1, . . . ,

�m), where �i is si × si and s =∑m
i=1 si , and � =

block diag(�1, . . . ,�m), where �i is ni × ni and n =∑m
i=1 ni . Write y = (yT

1 , . . . ,yT
m)T , where yi is an ni -

vector, X = (XT
1 , . . . ,XT

m)T , where Xi is an ni × p

matrix, Z = block diag(Z1, . . . ,Zm), where Zi is an
ni × si matrix, and u = (uT

1 , . . . ,uT
m)T , where ui is an

si-vector, and e = (eT
1 , . . . , eT

m)T , where ei is an ni -
vector. Then, if � and � are block diagonal square
roots of � and � with �i and �i on the diagonal, re-
spectively, we can write (1) as

yi = Xiβ + Zi�iui + �iei , i = 1, . . . ,m.(5)

The observations y1, . . . ,ym from distinct clusters are
independent random vectors.

The independent cluster model is also called the
Laird–Ware model, though perhaps this should be re-
stricted to the case with constant si (Laird and Ware,
1982). The assumption of independence between clus-
ters makes the model easier to work with than spa-
tial and other models with more complete dependence
structures. For this reason, much of the work on lin-
ear mixed models and model selection for linear mixed
models has been carried out for the independent cluster
model.

Clustered variance component model: A combina-
tion of the variance component model and the indepen-
dent cluster model obtained as a special case of the in-
dependent cluster model with � i = block diag(γ 2

1 Iri1,

. . . , γ 2
qγ

Iriqγ
), where si =∑qγ

k=1 rik . Write Zi = (Z(1)
i ,

. . . ,Z
(qγ )

i ), where Z(k)
i is ni × rik , and ui = (uT

i1, . . . ,

uT
iqγ

)T , where uik is a rik-vector. Then we can write (1)
as

yi = Xiβ + γ1Z(1)
i ui1 + · · ·

(6)
+ γqγ Z

(qγ )

i uiqγ + �iei , i = 1, . . . ,m.

Random intercept and slope regression model:
A special case of the clustered variance component
model where the first column of Xi is 1ni

= (1, . . . ,1)T

and the Z(k)
i are equal to the columns of Xi . It has

s = mp and qγ = p. We also include the model in

which the Z(k)
i include the column of ones and a

(nonempty) subset of the columns of Xi . We call the
model with Zi = Z(1)

i = 1ni
the random intercept re-

gression model; it is also sometimes called the nested
error regression model. It has s = m and qγ = 1. In the
multilevel model literature (e.g., Snijders and Bosker,
1999), it is common to allow the random intercept and
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slopes to be correlated, but they are usually treated as
independent in the general literature.

Fay–Herriot model (Fay and Herriot, 1979): A spe-
cial case of the random intercept regression model with
ni = 1, Z = In, � = γ 2In and � = diag(r1, . . . , rn) is
known, so q = qγ = 1. Here s = n and the matrix � is
assumed known because it is not identifiable.

Longitudinal autoregression model: A special case
of the independent cluster model with si = ni , Zi = Ini

and � i = (ψijk) is the ni × ni matrix where

ψijk =
{

σ 2, j = k,

σ 2φ|j−k|, j �= k,

with −1 < φ < 1, 1 ≤ j, k ≤ ni . Thus, γ = (σ,φ) and
qγ = 2, qδ = 1.

Linear regression model: A special case of all the
above models but a trivial linear mixed model, the lin-
ear regression model has � = 0 and � = σ 2In.

We consider the selection of linear mixed mod-
els M ∈ M, where M = {Ml : l > 1} is a countable
set of distinct models which we call candidate mod-
els. Unlike in regression models, we cannot uniquely
identify a model M by its nonzero parameter vector
θM = (βT

M,τT
M)T , because setting one element of τM

equal to zero may allow other (redundant) elements
to take arbitrary values. For example, in the longitu-
dinal autoregression model, if σ 2 = 0, then the param-
eter φ is arbitrary, although any choice of φ gives the
same model. We adopt the convention of setting redun-
dant parameters equal to a convenient, problem specific
value (such as zero if it is part of the parameter space)
so we can still distinguish models by their nonzero pa-
rameters. Some parameters are naturally grouped to-
gether (such as the coefficients for different levels of
a factor) and it is useful in model selection to treat
them as a group rather than as separate parameters.
Also, some of the parameters such as the intercept,
coefficients of particular variables, the error variance
σ 2 when � = σ 2In or specific covariance parameters
can be retained in all models M ∈ M. An extreme
version of this occurs when the variance structure can
be regarded as known from the way the data are col-
lected (e.g., from the structure of the experiment), so
is held fixed in M. (It is generally less meaningful
to select across the variance structure while retaining
all the regression parameters in the model.) We will
take it as understood that, depending on the context,
the definition of M encompasses a range of possibili-
ties. When a data generating model Mt exists we call it
the true model and any model Ml that is more com-
plex than the true model and satisfies Mt ⊆ Ml (or

θMt ⊆ θMl
) is called a correct model. We denote the set

of correct models Mc. We assume that the complexity
(sometimes called the dimensionality or cardinality) of
a model, dM , can be calculated and satisfies dM1 < dM2

if M1 ⊂ M2. We will show later (see Section 3.2) that
model complexity depends on the data, the model and
sometimes on the estimation or model selection tech-
nique. It can be useful to identify a fixed (or full) model
Mf , which has maximal model complexity and can be
used as the initial model in stepwise model selection
algorithms or to calculate initial parameter estimates,
for example, for the Adaptive LASSO (Section 4).

We have described the model selection problem in
terms of the set M or in terms of the parameters of
the models in M. The problem can also be described
in terms of variables and, while these are similar, it
turns out that they are not necessarily the same. When
we describe the problem in terms of selecting variables
rather than parameters, we focus on selecting columns
or groups of columns in X and/or Z. Selecting columns
of X is the same as selecting nonzero parameters in
β , but selecting columns of Z is the same as select-
ing whole rows of � (and hence rows and columns
of �) rather than selecting individual nonzero param-
eters in �. This is shown neatly by our writing the rel-
evant term in the model as Z�u and highlights one of
the important differences between the regression and
the variance parameters (which makes model selec-
tion in linear mixed or transformation models differ-
ent from model selection in linear regression models).
In terms of the alternative Cholesky factors, selecting
columns of Z is equivalent to selecting the diagonal
elements of D or D† while treating the terms in �†

as nuisance parameters. Selection on β or X is some-
times called selecting fixed effects, while selection on
Z is sometimes called selecting random effects. This
is slightly misleading terminology because we are not
directly selecting components of the random effects
u and it is not really applicable to the transformation
model (3) which does not include random effects. We
will consider the more general problem of selecting on
the parameters θ and refer to selecting regression pa-
rameters β and variance parameters τ rather than to
selecting fixed or random effects.

Model selection is often carried out by choosing
models in M that minimize a specific criterion. This
usually involves a trade-off between the closeness of
the fit to the data and the complexity of the model. As
a practical matter, since the ultimate use of a selected
model may be different from that for which it is se-
lected, it may be useful to consider several criteria (as
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was done explicitly for the linear regression model in
Müller and Welsh, 2010) and in fact include other con-
siderations such as the performance in diagnostic plots.

The important problem of specifying the distribu-
tions of the random variables in a model is not usu-
ally regarded as part of model selection. Insofar as
model selection is both a selection of the model and the
method of estimation being used to fit the model, it can
implicitly also involve a choice of underlying distribu-
tions, although it would be better if this choice were
taken seriously and made more explicit, as it should
also affect the choice of model selection method. Most
of the papers on model selection of linear mixed mod-
els assume that all the distributions are Gaussian, al-
though some do explore the effect of non-Gaussian dis-
tributions in simulations (e.g., Dimova, Markatou and
Talal, 2011; Kubokawa, 2011). One exception is Ahn,
Zhang and Lu (2012) who propose a model selection
method based on moment estimation which does not
require any distributional assumptions.

In addition to thinking about how we want to select
a model, we also need to think about how we evalu-
ate model selection methods. If we use the criterion
which defines one of the model selection methods, then
we bias the evaluation in favor of that method. This is
noted by Müller and Welsh (2005, 2009) in the con-
text of robust model selection. For this reason, we sug-
gest using criteria which are not directly related to the
definition of any specific method. These include the
probability of selecting the true model, the probability
of selecting a model from a subset of correct models
in the neighborhood of the true model, the probabil-
ity of selecting a correct model (Jiang, Nguyen and
Rao, 2008, 2009) or the mean squared error of the
difference between the predictions from the selected
model and the predictions from the true model fitted
by maximum likelihood estimation (Bondell, Krishna
and Ghosh, 2010; Ibrahim et al., 2011). The perfor-
mance of the model selection methods usually depends
on the class of candidate models M, the true model and
the data. As with linear regression models, no single
method for model selection will always perform best.

For the linear mixed model (1), the log density of y
given u viewed as a function of the parameters is some-
times called the conditional log-likelihood. If e has a
Gaussian distribution, the conditional log-likelihood is

�(θ |u) = −1
2

{
log |�| + (y − Xβ − Z�u)T

(7)
· �−1(y − Xβ − Z�u)

}
and, for simplicity, we omit here and below the con-
stant −n

2 log 2π term. Let 〈u〉 denote the density of u.

If u has a Gaussian distribution, the log-likelihood
(sometimes called the marginal log-likelihood) is

�(θ) = log
[∫

exp
{
�(θ |u)

}〈u〉du
]

(8)

= −1

2

{
log |V| + (y − Xβ)T V−1(y − Xβ)

}
.

This is also the log-likelihood of the Gaussian transfor-
mation model (3). For fixed τ , the log-likelihood �(θ)

is maximized over β by the generalized least squares
estimator

β̂(τ ) = (XT V−1X
)−1XT V−1y.(9)

Modifying the profile log-likelihood �(β̂(τ ),τ ) by in-
cluding a bias adjustment yields the useful restricted
maximum likelihood (REML) criterion function

�R(τ ) = −1
2

{
log |V| + log |XT V−1X| + yT P−1y

}
,

where P = V−1 − V−1X(XT V−1X)−1XT V−1

(Patterson and Thompson, 1971). Let β̂ and τ̂ be max-
imum likelihood estimators of β and τ , respectively,
and let τ̂R be a REML estimator of τ . Put β̂R = β̂(τ̂R).

Many of the desirable properties of maximum like-
lihood and REML estimators are asymptotic proper-
ties and some model selection methods use these with
asymptotic expansions and approximations for their
derivation or justification. There are various ways to
think about asymptotics in this problem. The simplest
is to let n → ∞ in such a way that various matri-
ces (such as n−1XT V−1X) converge to positive defi-
nite limits. For independent cluster models, the stan-
dard methods are to allow the number of indepen-
dent groups or clusters m → ∞ with either max(ni)

bounded or min(ni) → ∞. In this model, the case of m

fixed and min(ni) → ∞ is only useful if � is known
because otherwise � cannot be estimated consistently.
Most methods also impose further restrictions on the
dimensions of the model. The usual fixed parameter
case has p+q � n, although some estimation methods
even require p + q + s � n.

3. INFORMATION CRITERIA

Information criteria are widely used to compare and
select models. In practice, they are applied by finding
the model that minimizes an estimate of a criterion that
is generally of the form QM(̂θM) + αn(dM), where
QM is a loss function which, for candidate models
M1 and M2 satisfying M1 ⊂ M2, satisfies QM2 (̂θM2) ≤
QM1 (̂θM1) (it is often minus twice the log-likelihood or
a closely related function) and the penalty function αn
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is a function of the model complexity dM . There are a
number of approaches to obtaining information crite-
ria such as the Akaike approach, Schwarz’s Bayesian
approach, etc. and within these there can be multi-
ple possible criteria. For example, for the linear mixed
model (1) to define the loss function we can use the log-
likelihood, the conditional log-likelihood or the REML
criterion and for the transformation model (3) we can
use the log-likelihood or the REML criterion. For the
linear regression model, αn is often just a function of
the number of parameters in the model (which in the
present context is p + q; see Müller and Welsh, 2010,
for a review) but for linear mixed models can be more
complicated.

The Akaike Information (Akaike, 1973) is a mea-
sure of the ability of a model fitted using a particu-
lar estimator to predict an independent copy of the ob-
served data. The particular measure used is the expec-
tation over both the data and the independent copy of
the data, of minus twice the logarithm of a density-
like function representing the model which is eval-
uated at the independent copy of the data and the
estimator of the unknown parameters based on the
data. This definition is of necessity vague because we
can define different versions of the Akaike Informa-
tion using different log density-like functions and we
can consider various estimators of θ in these func-
tions. In particular, if we let θ̂(y) be an estimator of
θ based on the data y, X and Z, and let y∗ be an
independent copy of y, then the marginal Akaike In-
formation for a class of distributions with density-like
function g(y; θ) is −2 Ey Ey∗ log[g{y∗; θ̂(y)}] and the
conditional Akaike Information for a class of distri-
butions with conditional (i.e., y|u) density-like func-
tion f (y; θ ,u) is −2 Ey,u Ey∗|u log[f {y∗; θ̂(y), û(y)}],
where û(y) is a predictor of u. The expectations in the
marginal case are taken with respect to either the linear
mixed model (1) or the transformation model (3) and
in the conditional case they are taken with respect to
the linear mixed model (1). The marginal Akaike In-
formation (based on the log-likelihood or the REML
criterion) is meaningful when the independent copy of
the data y∗ is independent of y; the conditional crite-
rion (based on the conditional log-likelihood) is mean-
ingful for the linear mixed model (1) when y∗ and y are
conditionally independent given u so the same random
effects are common to y and y∗.

The model chosen from the specified class is a model
that minimizes an estimator called the Akaike Infor-
mation Criterion (AIC) of the Akaike Information. De-
pending on how we define the Akaike Information, it

is natural to consider estimating it using minus twice
the corresponding log-likelihood, REML criterion or
conditional log-likelihood. These functions are biased
estimators of the Akaike Information because they use
the same observed data y both to compute the param-
eter estimator and to evaluate the function itself. We
can evaluate the bias and try to make an approximate
adjustment for it: The penalty αn(dM) in an AIC can
be interpreted as an adjustment to reduce bias. Much
of the focus in the literature is on adjusting the bias to
obtain a good estimator of the Akaike Information, al-
though this is not the real problem in model selection.

Model selection methods like AIC which make use
of the log-likelihood are closely related to likelihood
ratio tests in which the models correspond to different
hypotheses, a relationship which implies that hypothe-
sis tests can be used to suggest new criteria. The impor-
tant Bayesian Information Criterion or BIC (Schwarz,
1978) can be derived as an approximation to the Bayes
factor for testing two hypotheses M0 and M1 or from
asymptotic arguments to construct criteria which lead
to consistent model selection.

There are a number of other information criteria in
the literature. They are derived for various reasons
from various considerations. Some of them are sim-
ply general criteria which could be applied in the lin-
ear mixed model, others have been applied to or de-
veloped for the linear mixed model. It is noteworthy
that these are mainly marginal criteria (i.e., based on
the log-likelihood) and that there are not many propos-
als outside the AIC framework for conditional criteria
(i.e., based on the conditional log-likelihood). We dis-
cuss AIC, BIC and some of the other criteria in the
subsections that follow.

3.1 Marginal AIC

The most widely used AIC criterion is what Vaida
and Blanchard (2005) call the marginal AIC criterion,
namely,

mAIC = −2�(̂θ) + 2an(p + q),(10)

where an = 1 or an = n/(n − p − q − 1) in the fi-
nite sample form (Sugiura, 1978). For the independent
cluster model, mAIC is asymptotically equivalent to
leave-one-cluster-out cross-validation using a marginal
generalized least squares criterion (Fang, 2011); see
Section 3.4. The R function lme() uses mAIC with
an = 1 and SAS Proc Mixed uses both the asymp-
totic and the finite sample forms.

The marginal AIC represents the application of a
general theory to the linear mixed model (1) or the
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transformation model (3) without taking into account
the specific nature of these models. For the linear
mixed model (1) with � = γ 2AT A, A known and
� = σ 2In so q = 2, Greven and Kneib (2010) show
that mAIC is positively biased for the marginal Akaike
Information, where the bias depends on the unknown
variance parameter γ 2 and does not vanish asymptot-
ically if γ 2 = 0. This means that there is no simple
bias correction to make mAIC exactly unbiased and
the fact that the variance parameters are constrained by
the boundary of the parameter space ought to be built
into the penalty. A further issue with mAIC is that the
model complexity term in the penalty p + q gives the
same weight to the parameters in β and the parameters
in τ . There is no obvious reason why this should be the
case; in the variance component model, each parameter
γk in τ represents the variance of rk random effects so
is absorbing rk other estimates and arguably should be
given a greater weight to reflect this. The precise form
of a penalty giving different weight to the parameters in
β and τ is not clear. However, it is possible that using
a different criterion to minus twice the log-likelihood
may have the effect of rescaling the parameters so that
it then makes sense to give them equal weight in the
penalty.

Shang and Cavanaugh (2008) propose using the
bootstrap to estimate the appropriate bias-adjustment
or penalty for marginal AIC. Let {y∗

b :b = 1, . . . ,B}
be a set of B bootstrap samples of y, let {�∗

b(θ) :b =
1, . . . ,B} denote the log-likelihoods for each of the B

bootstrap samples [i.e., �∗
b(θ) is the log-likelihood for θ

computed using y∗
b] and let {̂θ∗

b :b = 1, . . . ,B} denote
the maximum likelihood estimates for each bootstrap
sample. Then Shang and Cavanaugh propose the boot-
strap AIC criteria

mAICB1 = −2�(̂θ) − 2

B

B∑
b=1

{
�
(̂
θ

∗
b

)− �∗
b

(̂
θ

∗
b

)}
and

mAICB2 = −2�(̂θ) − 4

B

B∑
b=1

{
�
(̂
θ

∗
b

)− �(̂θ)
}

= 2�(̂θ) − 4

B

B∑
b=1

�
(̂
θ∗

b

)
.

In their simulations, Shang and Cavanaugh use the
parametric bootstrap but other types of bootstrap could
be used.

Rather than applying general results to the specific
context, Srivastava and Kubokawa (2010) obtain a dif-
ferent criterion by working directly within the linear

mixed model (1) with � = σ 2In. Treating �/σ 2 as
known (so there are p + 1 unknown parameters β and
σ 2), they obtain the criterion

mAICSK = −2�(̂θ) + 2n(p + 1)

n − p − 2
.(11)

(They do not assume that X is of full rank so their ex-
pression has rank (X) in place of p.) When �/σ 2 is
unknown, they replace it by an estimator without any
further adjustment for estimating these additional pa-
rameters. There seems little reason to expect the crite-
rion to perform well in this case, unless the number of
additional variance parameters qγ is small.

The REML criterion function �R(τ ) is a modified
profile likelihood for τ so is not a function of β . This
seems to imply that �R(τ ) may not be useful for select-
ing regression parameters. It is, however, an implicit
function of β in the sense that we need to specify an
X when we do the profiling and different choices of
X correspond to different choices of β which change
the value of �R(τ ). This means that we can in fact
consider using a version of marginal AIC based on
the REML criterion function for model selection. SAS
Proc Mixed uses

mAICR = −2�R(τ̂ ) + 2a∗
nq,(12)

with a∗
n = (n − p)/(n − p − q − 1). The form of a∗

n is
related to the second order adjustment an of Sugiura
(1978) after adjusting the sample size for implicitly
having estimated β . There is no other penalty for im-
plicitly having estimated β; this is the antithesis of the
Srivastava–Kubokawa criterion (11) which does not
adjust the complexity in the penalty p + 1 for estimat-
ing �/σ 2, because it does not adjust the complexity q

for estimating β and it is unclear how well this criterion
performs.

Kubokawa (2011) considers using marginal AIC
with minus twice the log-likelihood evaluated at the
generalized least squares estimator β(τ ) =
(XT V−1X)−1XT V−1y of β and a general consistent
estimator τ̂ of τ which admits an expansion of the form

τ̂ − τ = t1(τ ) + t2(τ ) + Op

(
n−3/2),(13)

where E{t1(τ )} = E{(t11(τ ), . . . , t1q(τ ))T } = 0,
t1(τ ) = Op(n−1/2) and t2(τ ) = (t21(τ ), . . . ,

t2q(τ ))T = Op(n−1). He suggests replacing the penal-
ty in (10) by 2{p + hm(τ̂ )}, where

hm(τ ) = 1

2

q∑
k=1

E
[
trace

{
∂V
∂τi

∂2t1i (τ )

∂y ∂yT

}]
.
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This shows the effect of using different estimators and
confirms that the AIC approach depends both on the
model and the estimator used to fit it. When maximum
likelihood or REML are used to estimate τ , the penalty
reduces back to 2(p + q) and we obtain mAIC defined
in (10).

3.2 Conditional AIC

The conditional Akaike Information is defined only
for the linear mixed model (1) and not for the transfor-
mation model (3). We need to predict u or, equivalently
and more conveniently, v = �u as well as estimate the
parameters θ so there are p + q + s unknown quanti-
ties to estimate. When the variance parameters τ are
known, v is often predicted using the best linear unbi-
ased predictor (BLUP)

v̂(τ ) = �ZT V−1{y − Xβ̂(τ )
}
,(14)

where β̂(τ ) is the generalized least squares estimator
defined in (9). When τ is unknown, we use an esti-
mated BLUP or EBLUP v̂ = v̂(τ̂ ). Since we are work-
ing with v rather than u in this section, it is convenient
to treat the conditional log-likelihood (7) as a function
of v rather than u.

The generalized least squares estimator β̂(τ ) and the
BLUP v̂(τ ) of v can be obtained as the solution of Hen-
derson’s (1950) mixed model equations(

XT �−1X XT �−1Z
ZT �−1X ZT �−1Z + �−1

)(
β̂(τ )

v̂(τ )

)
=
(

XT

ZT

)
�−1y.

These equations enable us to write Xβ̂(τ ) + Zv̂(τ ) =
H1(τ )y, where

H1(τ ) = (X,Z)

(
XT �−1X XT �−1Z
ZT �−1X ZT �−1Z + �−1

)−1

·
(

XT �−1

ZT �−1

)
,

and then to treat H1(τ ) as a “hat” matrix. In particular,
when τ is known,

ρ(τ ) = trace
{
H1(τ )

}
= trace

[(
XT V−1X

)−1XT V−1�V−1X
]+ n(15)

− trace
(
�V−1)

is the effective degrees of freedom used in estimat-
ing β and v (Hodges and Sargent, 2001). The effec-
tive degrees of freedom satisfies p ≤ ρ(τ ) ≤ p + s so
lies between the degrees of freedom of the regression

model without v and the regression model treating v as
fixed effects (Vaida and Blanchard, 2005). Computing
H1(τ ) requires both �−1 and �−1 but (15) shows that
computing ρ(τ ) only requires V−1, which should be
more stable.

We have defined the effective degrees of freedom
for the general model (1). It is worth noting that most
of the literature on conditional AIC actually assumes
that � = σ 2In so δ consists of just the scalar parame-
ter σ . In this case, it is convenient to let �∗ = �/σ 2

and V∗ = Z�∗ZT + In. It follows that V = σ 2V∗ and
hence that β̂(τ ), v̂(τ ) and ρ(τ ) are functions of the pa-
rameters in �∗. Some conditional AIC are derived by
treating �∗ as known and subsequently replacing it by
an estimator. This case is subsumed within the general
notation so we handle it by drawing specific attention
to it when necessary rather than by introducing addi-
tional notation.

Conditional AIC criteria are constructed using minus
twice the conditional log-likelihood as the loss func-
tion plus a penalty. All the proposed criteria are of the
form

cAICαn = −2�(̂θ |̂v) + αn(̂θ)(16)

with different estimators θ̂ , predictors v̂ and different
penalties αn(̂θ). A summary of the proposed penalties
αn(̂θ) is given in Table 1; we discuss each of these
choices in turn.

Burnham and White (2002) and Burnham and An-
derson (2002) propose using the function

αn,BW (̂θ) = 2
{
ρ(τ̂ ) + q

}
.

Here ρ(τ̂ ) measures the effect of estimating β and v; q

is included to try to accommodate the effect of estimat-
ing τ . For the case that � = σ 2In, Vaida and Blanchard
(2005) instead suggest using

αn,VB(̂θ)
(17)

= 2n

n − p − 2

{
ρ(τ̂ ) + 1 − ρ(τ̂ ) − p

n − p

}
.

The function αn,VB(̂θ) is asymptotic to 2{ρ(τ̂ ) + 1},
as n → ∞ with p, q fixed, which is the effective de-
grees of freedom for estimating β and v plus one de-
gree of freedom for estimating σ 2. Vaida and Blan-
chard derive this penalty assuming that �∗ is known
and point out that, in this case, their criterion is the
same as the DIC of Spiegelhalter et al. (2002); see
Section 6. For the independent cluster model, cAIC is
asymptotically equivalent to leave-one-observation-out
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TABLE 1
Penalties αn(̂θ) for conditional AIC. The entries in the table are αn(̂θ)/2 so the actual penalty is obtained by multiplying each entry by 2.
All the criteria other than the two asterisked criteria (Burnham and White, Kubokawa) assume � = σ 2In. The references are given in an

abbreviated form using the first letters of the authors’ names and the last two digits of the publication date

Notation αn(̂θ)/2 Reference

Maximum likelihood (16)
cAICBW ρ(τ̂ ) + q BW02∗
cAICVB ρ(τ̂ ) + 1 VB05

n
n−p−2 {ρ(τ̂ ) + 1 − ρ(τ̂ )−p

n−p } VB05

cAICLWZ trace(∂ ŷ/∂y) LWZ08

+σ̂ 2(̂y − y)T ∂σ̂−2

∂y + 1
2 σ̂ 4 trace( ∂2σ̂−2

∂y∂yT ) (Tech. rep.)

cAICGK ν̂(σ̂ 2) + 1 GK10

REML (18)
cAICR,VB ρ(τ̂R) + 1 VB05

n−p−1
n−p−2 {ρ(τ̂R) + 1 − p+1

n−p−1 } VB05

cAICR,GK ν̂R(σ̂ 2
R) + 1 GK10

Specific σ̃ 2
0 (19)

cAICSK
n[trace{(X,Z)C(τ̂ )}+1]

n−rank{(X,Z)}−2 SK10

General τ̂

cAICK ρ(τ̂ ) + ĥc(τ̂ ) K11∗

cross-validation with a conditional least squares crite-
rion (Fang, 2011); see Section 3.4. When �∗ is un-
known, Vaida and Blanchard suggest simply using the
estimated version (17), that is, without adjustment for
estimating �∗. Their argument is that �(θ |v) does not
depend on �∗. This is plausible with v = �u absorbing
� into u but β̂(τ ) and v̂(τ ) are functions of �∗.

In a technical report accompanying their paper,
Liang, Wu and Zou (2008) propose a different penalty
to take the estimation of �∗ into account. When � =
σ 2In, they propose using

αn,LWZ (̂θ) = 2
{

trace
(

∂ ŷ
∂y

)
+ σ̂ 2(̂y − y)T

∂σ̂−2

∂y

+ 1

2
σ̂ 4 trace

(
∂2σ̂−2

∂y ∂yT

)}
,

where ŷ = Xβ̂ + Zv̂. When σ 2 is known, the penalty
reduces to just the first term trace(∂ ŷ/∂y), which is the
generalized degrees of freedom of Ye (1998). Greven
and Kneib (2010) derive analytic representations for
these penalties. Let ν̂(σ 2) denote the analytic repre-
sentation of the generalized degrees of freedom when
σ 2 is known. On the basis of simulations, Greven and
Kneib suggest using ν̂(σ̂ 2) + 1 when σ 2 is unknown.
Their penalty in the general case is therefore

αn,GK (̂θ) = 2
{̂
ν
(
σ̂ 2)+ 1

}
.

The expression for ν̂(σ 2) is quite complicated because
it explicitly allows for the variance parameters to lie on
the boundary of the parameter space. The penalty has
been implemented in R and code is available from the
online Supplementary Material for the paper.

Vaida and Blanchard (2005) and Greven and Kneib
(2010) also consider fitting the linear mixed model
with � = σ 2In using the REML estimator τ̂R and then
β̂R = β̂(τ̂R) and v̂R = v̂(τ̂R) with β̂(τ ) and v̂(τ ) de-
fined in (9) and (14), respectively. Note that they use
the same conditional likelihood as in the definition of
cAIC (16) evaluated at the β̂R and v̂R but with a differ-
ent penalty. Thus, the criteria are of the form

cAICR,VB(̂θR) = −2�(̂θR |̂vR) + αn(̂θR).(18)

Vaida and Blanchard (2005) propose the penalty

αn,R,VB(̂θR)

= 2(n − p − 1)

n − p − 2

{
ρ(τ̂R) + 1 + p + 1

n − p − 1

}
.

This penalty is asymptotic to 2{ρ(τ̂R)+ 1}, as n → ∞
with p, q fixed, which is like their penalty for the max-
imum likelihood estimator. Greven and Kneib (2010)
also derive an analytic representation ν̂R(σ 2) for the
Liang, Wu and Zou (2008) penalty for the REML esti-
mator. It turns out that ν̂R(σ 2) is different from ν̂(σ 2)
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for the maximum likelihood estimator. The penalty in
this case is therefore αn,R,GK (̂θR) = 2{̂νR(σ 2) + 1}.

Srivastava and Kubokawa (2010) derive other condi-
tional criteria by changing the estimators of the pa-
rameters at which minus twice the conditional log-
likelihood is evaluated and then adjusting the penalty
appropriately. For the model with � = σ 2In and �∗
known, Srivastava and Kubokawa propose replac-
ing the maximum likelihood estimator σ̂ 2 = (y −
Xβ̂)T V̂−1∗ (y − Xβ̂)/n of σ 2 by the estimator

σ̃ 2
0 = {y − (X,Z)̃ξ

}T {y − (X,Z)̃ξ
}
/n,

where ξ̃ = {(X,Z)T (X,Z)}+(X,Z)T y and A+ is the
Moore–Penrose inverse of A. This change in the vari-
ance estimator involves treating u as an unknown, fixed
parameter which is to be estimated, here by ordinary
least squares. The idea of treating u in this way is used
by Jiang and Rao (2003) (Section 3.4). The use of σ̃ 2

0
changes the form of the penalty. For any estimators β̂C

and v̂C satisfying (β̂T
C, v̂T

C)T = C(τ )y, they obtain the
modified conditional criterion

cAICSK = −2�
(
β̂C, σ̃ 2

0 |̂vC

)
(19)

+ 2n[trace{(X,Z)C(τ̂ )} + 1]
n − rank{(X,Z)} − 2

.

Note that here the parameters γ are absorbed into v̂C

so do not appear separately in the conditional log-
likelihood. When β̂C is either the maximum likeli-
hood or the least squares estimator and v̂C is the
BLUP v̂, trace{(X,Z)C(τ )} = ρ(τ ); when β̂C and
v̂C are the least squares estimators extracted from
ξ̃ , trace{(X,Z)C(τ )} = rank(X,Z). In the first case,
the penalty is the asymptotic version of the Vaida–
Blanchard penalty (17) with p replaced by the larger
number rank{(X,Z)} so the Srivastava–Kubokawa
penalty is larger than the asymptotic Vaida–Blanchard
penalty. When �∗ is unknown, for other estimators
which use �∗, Srivastava and Kubokawa (2010) pro-
pose replacing it by an estimator �̂∗. For compu-
tational reasons, they consider using the truncated
method of moments estimators for the special cases,
but any consistent estimator can be used.

For the linear mixed model with a general �,
Kubokawa (2011) considers estimators τ̂ of τ which
satisfy the second order expansion (13). Let d{f (τ )} =
(∂f (τ )/∂yj ) denote the n-vector of derivatives of f

with respect to y and D{f (τ )} = (∂2f (τ )/∂yj ∂yk) de-
note the n × n matrix of second derivatives of f with
respect to y. Then, under the condition that the three
terms E(trace[D{t2i (τ )}]), E(trace[D{t1i (τ )}t1j (τ )])

and E(trace[d{t1i (τ )}d{t1j (τ )}T ]) are all O(n−1),
Kubokawa (2011) derives the penalty

αn,K (̂θ) = 2
{
ρ(τ̂ ) + ĥc(τ̂ )

}
,

where ĥc(τ ) is an estimator of

hc(τ ) = −1

2

q∑
i=1

trace
{(

∂�

∂τi

− 2�V−1 ∂V
∂τi

)

· E
[
D
{
t1i (τ )

}]}

−
q∑

i=1

trace
{
∂�

∂τi

(
�−1 − V−1)}E

{
t2i (τ )

}

−
q∑

i=1

q∑
j=1

trace
{

1

2

∂2�

∂τi ∂τj

(
�−1 − V−1)

+ ∂�

∂τi

(
∂�−1

∂τj

− ∂V−1

∂τj

)}
· E
{
t1i (τ )t1j (τ )

}
,

which is obtained by replacing all the unknown quan-
tities by estimators. It is a considerable task to derive
the second order expansion (13) and then to derive the
expressions which are needed to compute hc(τ ), but
Kubokawa (2011) provides results for the maximum
likelihood and REML estimators. These are still quite
complicated for general use so Kubokawa (2011) spe-
cializes the expressions further to three particular mod-
els, namely, the variance component model (4), the ran-
dom intercept regression model and the Fay–Herriot
model.

3.3 BIC and Schwarz Criteria

The simplest and most widely used BIC for the lin-
ear mixed model (1) or the transformation model (3) is
obtained by taking the marginal AIC (10) and replacing
the constant 2 in the penalty by log(n) to obtain

BIC = −2�(̂θ) + log(n)(p + q).

This is the definition used by lme() in R and by
SAS Proc Mixed. This definition ensures that BIC
bears the same relationship to mAIC for model (1)
as BIC bears to AIC in regression and so should in-
herit some of its properties. Specifically, the increased
weight in the penalty should encourage BIC to select
smaller models than mAIC. Obviously, other mAIC can
be converted to BIC in the same way by multiplying the
mAIC penalty by log(n)/2.

A more sophisticated approach is possible if we re-
examine the relationship between BIC and the Bayes
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factor. After reordering if necessary, partition θ =
(θT

0 , θT
1 )T into θ0 ∈ Rr0 , θ1 ∈ Rr1 , p + q = r0 + r1,

and consider comparing the model M0 : θ0 = θ00 with
M1 : θ0 �= θ00. Let h0 be the prior density for θ1 un-
der M0 and let h1 be the prior density for θ under M1.
Then the Bayes factor for comparing M0 to M1 is the
ratio of the posterior odds to the prior odds for a model

Pr(M0|y)/Pr(M1|y)

Pr(M0)/Pr(M1)
(20)

=
∫

g(y|θ00, θ1)h0(θ1) dθ1∫
g(y|θ0, θ1)h1(θ0, θ1) dθ0 dθ1

,

where g(y|θ) = exp{�(θ)} is the marginal likelihood
of the model. If we hold M0 constant at say the sim-
plest model under consideration, this leads to choos-
ing the model that minimizes −2 log{∫ g(y|θ0, θ1) ·
h1(θ0, θ1) dθ0 dθ1}. BIC can be obtained using
Laplace’s method to approximate the integral in this
expression.

Pauler (1998) uses this approach to derive a Schwarz
criterion to select the regression parameter β in the
independent cluster model. Partition β = (βT

0 ,βT
1 )T

into β0 ∈ Rp0 , β1 ∈ Rp1 , p = p0 + p1, and con-
sider testing the null hypothesis M0 :β0 = β00 against
M1 :β0 �= β00. Pauler required β0 to be null orthog-
onal to (βT

1 ,τT )T and, if the prior density for M0
is h0(β1,τ ), the prior for M1 to be of the form
h1(β,τ ) = h0(β1,τ )h(β0|β1,τ ). She notes that if u
and e are Gaussianly distributed, β and τ are orthogo-
nal (the information matrix is block diagonal) and that
β1 can be made null orthogonal to β0 by transform-
ing β1 → β1 + (XT

1 V−1X1)
−1X1V−1X0β0, where

X = (X0,X1) is partitioned conformably with β . Then,
using Laplace’s method, she approximates the Bayes
factor for comparing M0 to M1 by

S = �
{
θ̂(β00)

}− �(̂θ) − 1
2p0 log(2π)

(21)
+ 1

2 log
∣∣XT

0 V̂−1X0
∣∣− log

{
h(β̂0|β̂1, τ̂ )

}
,

where θ̂ is the maximum likelihood estimator of θ and
θ̂(β00) maximizes the log-likelihood under M0. The
Schwarz criterion can be made to look more familiar
by dividing the p0 × p0 matrix XT

0 V̂−1X0 by n so that
after taking the determinant we obtain the additional
term 1

2p0 log(n), and then writing p0 = p − p1.
The Schwarz criterion (21) depends on the prior so,

for cases when informative priors are not available,
it is useful to consider using reference priors. Pauler
presents Schwarz criteria using unit-information Gaus-
sian and Cauchy reference priors. These criteria de-
pend on what she calls the effective sample size. Write

β0 = (β01, . . . , β0p0)
T and Xi0β0 = X(1)

i β01 + · · · +
X(p0)

i β0p0 . Then a fixed effect parameter β0k has an as-

sociated random effect if its covariate vector X(k)
i is

proportional to a column of Zi for i = 1, . . . , p0. The
effective sample size for β0k is Ek = m if β0k has an as-
sociated random effect and Ek = n otherwise. For the
Gaussian prior

SG = �
{
θ̂(β00)

}− �(̂θ) + 1

2

p0∑
k=1

log(Ek),

and for the Cauchy prior

SC = SG + log
(
π1/2/

[
2p0/2�

{
(p0 + 1)/2

}])
.

The effective sample size concept seems reasonable but
it is important to keep in mind that it is a result of the
choice of prior which is arbitrary and is not intrinsic
to the problem. For example, for the Gaussian prior,
the variance is taken to be �1/2(XT

0 V̂−1X0)
−1�1/2,

where � = diag(E1, . . . ,Ep0). The log determinant of
the variance is −(1/2) log |�| + (1/2) log |XT

0 V̂−1X0|
so, with this prior variance, the log determinant term
in (21) is replaced by (1/2) log |�| = (1/2) ·∑p0

k=1 log(Ek). Other choices of � would therefore
lead to other criteria.

To explore the effective sample size concept fur-
ther, consider the random intercept model. Then Z =
block diag(1n1, . . . ,1nm) so any fixed effect that is con-
stant within clusters (i.e., a cluster level covariate) has
an associated random effect and any fixed effect that
varies within clusters does not. Suppose we have a

cluster level covariates. Then
∑p0

k=1 log(Ek) = (p0 −
a) log(n)+a log(m) = p0 log(n)+a log(m/n) and this
reduces to p0 log(n) if we have no cluster level co-
variate. Thus, if there is no cluster level covariate, the
Gaussian version of the Schwarz criterion is the differ-
ence divided by −2 of two familiar terms of the form

BICG = −2�(̂θ) + log(n)p.

The advantage of using SG rather than BICG is that it
can be applied to more general cluster models, but it
has the disadvantage of requiring us to compare pairs
of explicit hypotheses. When using the Schwarz cri-
teria, it is a good idea to hold one of the hypotheses
fixed to simplify comparison (and computation); in the
example given in her paper, Pauler compares different
models of interest to the null model with only an inter-
cept.

Jones (2011) proposes using BIC with an alternative
measure of the effective sample size. In the linear re-
gression model, the coefficient of the intercept in the
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normal equations for the least squares estimator is n;
in the linear mixed model, the coefficient is 1T

n V−11n.
Jones suggests that this coefficient be used as a mea-
sure of sample size but, since it depends on the units of
measurement, V−1 be replaced by the correlation ma-
trix. If U is the diagonal matrix with diagonal equal to
the square root of the terms on the diagonal of the V,
the correlation matrix U−1VU−1 is invariant to linear
transformations of y. Jones’ measure of effective sam-
ple size is then 1T

n UV−1U1n. Jones gives expressions
for some particular cases, noting that when V = σ 2I,
the effective sample size reduces to n, for the random
intercept regression model

∑m
i=1 ni(γ

2 + σ 2)/(niγ
2 +

σ 2), where γ 2 = Var(ui), and the longitudinal autore-
gressive model

∑m
i=1{1 + (ni − 1)(1 − φ)/(1 + φ)}.

Both measures lie between m and n, attaining these
bounding values as γ 2/(γ 2 + σ 2) → 1 or φ → 1 (per-
fect correlation) and when γ 2 = 0 or φ = 0 (zero corre-
lation), respectively. In general, estimating the param-
eters in U and V leads to the criterion

BICJ = −2�(̂θ) + log
{
1T
n ÛV̂−1Û1n

}
(p + q).

We can compute a Bayes factor for comparing mod-
els with different variance parameters but it is then dif-
ficult to obtain simple approximations (like those given
by Pauler, 1998) to the Bayes factor. In particular, it is
difficult to make subsets of the parameters in τ null
orthogonal and the boundary issues need to be taken
into account. Pauler, Wakefield and Kass (1999) and
Saville, Herring and Kaufman (2011) ignore null or-
thogonality but do acknowledge and try to deal with
the boundary issues.

Pauler, Wakefield and Kass (1999) approach the
boundary issues in the variance component model by
assuming that the parameter space  can be expanded
to an open set o containing  so that the boundary
of  is interior to o, applying the Laplace approxi-
mation on o and then restricting it to . For select-
ing the variance parameters τ , partition τ = (τT

0 ,τT
1 )T

into τ 0 ∈ Rq0 , τ 1 ∈ Rq1 , q = q0 +q1, and consider test-
ing the null hypothesis M0 :τ 0 = 0 against M1 :τ 0 �= 0.
Using Laplace’s method, Pauler, Wakefield and Kass
(1999) propose the approximation

S = �
{
θ̂o(0)

}− �
(̂
θo)− 1

2q0 log(2π)

+ 1
2 log
∣∣Kτ0|τ 1

(̂
θo)∣∣− log

{
h(τ̂ 0|β̂, τ̂ 1)

}
+ log

{
Co

0/Co
1
}
,

where θ̂o(0) maximizes the likelihood on o under
M0, θ̂o maximizes the likelihood on o, θ̂ is the max-
imum likelihood estimate (i.e., maximizes the like-
lihood on ), Kτ 0|τ 1(θ) = Kτ 0τ 0(θ) − Kτ0τ1(θ) ·

Kτ 1τ 1(θ)−1Kτ1τ0(θ) is computed from the appropri-
ate submatrices of the inverse of the observed infor-
mation matrix K(θ) = −�′′(θ)−1, h(τ 0|β,τ 1) is the
conditional prior density under M1 for τ 0 given β and
τ 1, Co

0 = Pr[N {τ̂ o
1,K0τ 1τ 1 (̂θ

o)} ∈ ] with K0τ 1τ 1 the
submatrix of the inverse observed information matrix
under M0 for τ 1, and Co

1 = Pr[N {τ̂ o,Kττ (̂θ
o
)} ∈ ]

with Kττ the submatrix of K for τ . The quantities Co
0

and Co
1 are of the same form as normalizing constants

for truncated multivariate Gaussian densities. Pauler,
Wakefield and Kass (1999) propose using a truncated
Gaussian reference prior which leads to

STG = �
{
θ̂o(0)

}− �
(̂
θo)+ 1

2q0 log(n)

+ log
{
Co

TGCo
0/Co

1
}
,

where Co
TG = Pr[N {0, nKτ0|τ 1 (̂θ

o)−1} ∈ ] is the nor-
malizing constant for the prior density. Aside from the
final boundary correction term, this is similar to the
usual Schwarz criterion. Under regularity conditions,
the boundary correction term is of smaller order than
log(n) so, as Pauler, Wakefield and Kass (1999) note,
the usual criterion can be used to select variance pa-
rameters. In contrast to Pauler (1998), Pauler, Wake-
field and Kass (1999) do not attempt to make an ad-
justment for effective sample size.

Saville, Herring and Kaufman (2011), following on
from Saville and Herring (2009), take a different ap-
proach to the boundary issue. They parametrize the
linear mixed model (1) using the alternative Cholesky
factorization (2) so � = σ��†, where �† is a lower
triangular matrix with ones on the diagonal and � =
diag{exp(φ1), . . . , exp(φs)}. The matrix � is D† from
(2) on the logarithmic scale. Let φ = (φ1, . . . , φs)

T and
let γ † be the vector of free parameters in γ †. They as-
sume that σ−2 has a gamma distribution and then in-
tegrate both u and σ 2 from the density of y given β ,
φ, γ †, u and σ 2 to obtain the density of y given β ,
φ and γ † which is a multivariate t density. They then
recommend adopting weakly informative priors for the
parameters and use Laplace approximations to approx-
imate the Bayes factor for comparing M0 to M1. They
argue that the parameters in the multivariate t density
do not have boundary constraints, but in fact the bound-
ary has been moved from zero to negative infinity and
this is not necessarily more convenient for computa-
tion.

3.4 Other Criteria

There are a number of criteria of a more or less ar-
bitrary nature which have been proposed for model se-
lection. We describe some of these in this section.
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For the linear mixed model (1) or the transformation
model (3), Pu and Niu (2006) suggest a Generalized
Information Criterion of the form

GICκn = −2�(̂θ) + κn(p + q).

This criterion combines both marginal AIC (κn = 2)
and BIC (κn = log(n)) and allows greater flexibil-
ity in the choice of κn. For example, it includes the
Hannan–Quinn (1979) penalty κn = 2 log log(n) and
the Bozdogan (1987) penalty κn = log(n) + 1, both of
which are available in SAS Proc Mixed. Pu and Niu
also apply GIC with κn = n1/2. For any choice of κn,
Pu and Niu suggest implementing GIC in two stages
(first fix τ and select the model for β and then fix β

and select the model for τ ), but it is also possible to
implement it directly. Pu and Niu explore the asymp-
totic properties of the procedure for selecting regres-
sion terms but not for selecting variance parameters.

The idea of treating β and τ separately and differ-
ently is taken up by Jiang and Rao (2003). For any
vector a, let ‖a‖2 = aT a. Then Jiang and Rao propose
selecting the regression parameter β using∥∥{In − X

(
XT X

)−XT }y∥∥2 + anp,

where an is a real, positive sequence satisfying some
asymptotic conditions and A− is a generalized inverse
of A. Other than through the conditions on an, this cri-
terion does not depend on τ so this selection can be car-
ried out separately. For the variance component model,
partition the set of matrices {Z(1), . . . ,Z(qγ )} into sets
Lk of matrices which (together with X) span the same
linear space so that the matrices in L1 have higher rank
than those in L2 and so on. Jiang and Rao give the ex-
ample of a 3-factor crossed design where L1 contains
the 3-way interaction, L2 the 2-way interaction and L3
the main effects. Jiang and Rao suggest selecting the
variance parameters τ sequentially, starting in L1 and
progressing through the remaining sets of matrices. Let
B = (X,Z) and B−j be B omitting Z(j), j ∈ L1. Then
they select from L1, the set of indices j for which, for
any 1 < b < 2,

n − rank(B)

rank(B) − rank(B−j )

· ‖{B(BT B)−B − B−j (BT−j B−j )
−B−j }y‖2

‖{In − B(BT B)−B}y‖2

> 1 + {n − rank(B)
}(b/2)−1

+ {rank(B) − rank(B−j )
}(b/2)−1

.

For the second group L2, let l2 denote a subset
of indices in L2. Let B1(l2) = (X,Z(j), j ∈ l2 ∪
L3,∪L4, . . .) be the matrix comprised of X and the
Z(j), for j from l2,L3,L4, . . . . Then choose l2 ∈ L2 to
minimize∥∥[In − B1(l2)

{
B1(l2)

T B1(l2)
}−B1(l2)

]
y
∥∥2 + a1n#(l2),

where a1n is a real, positive sequence satisfying some
asymptotic conditions and #(l2) is the number of pa-
rameters in l2. Jiang and Rao consider the penal-
ties a1n ∈ {2, log(n), n/ log(n)}. The procedure ex-
tends naturally to the remaining groups L3,L4, . . . .

Jiang and Rao give conditions under which the proce-
dure is consistent.

Takeuchi (1976) proposes using as a measure of
model complexity trace{K(θ)L(θ)−1}, where K(θ) =
Var{∂�(θ)/∂θ} is the variance of the score function and
L(θ) = −E{∂2�(θ)/∂θ ∂θT } is the expected informa-
tion. As Burnham and Anderson [(2002), page 367]
note, this complexity measure can be expressed as
trace{L(θ)L(θ)−1K(θ)L(θ)−1}, which is the trace of
the inverse of the asymptotic variance of θ̂ when the
model holds multiplied by the (sandwich) variance of
θ̂ when the model does not hold. If the model is cor-
rect, the measure reduces to p + q and the Takeuchi
Information Criterion

TIC = −2�(̂θ) + 2 trace
{
K(θ)L(θ)−1}

is the same as mAIC. The Neural Information Crite-
rion (NIC) of Murata, Yoshizawa and Amari (1994)
measures complexity in a similar way but uses the reg-
ularized log-likelihood �(θ) + log{h(θ)} in place of
�(θ). Let Kh(θ) = Var(∂[�(θ) + log{h(θ)}]/∂θ) and
Lh(θ) = −E(∂2[�(θ) + log{h(θ)}]/∂θ∂θT ). Then the
complexity measure in NIC, called the effective num-
ber of parameters by Moody (1992), is trace{Kh(θ) ·
Lh(θ)−1}. Ripley [(1996), page 140] points out that the
estimation of this measure is generally not straightfor-
ward.

The minimum description length approach (MDL)
developed by Rissanen in the 1980s (see Rissanen,
2007) chooses the model that achieves maximum data
compression by minimizing the code length of the data
and the model. There are different coding schemes
which lead to different MDL criteria. The most relevant
for the linear mixed model is the two-stage code which
leads to a penalized likelihood and is equivalent to BIC,
the mixture scheme which produces a criterion that is
related to a Bayes factor and the normalized maximum
likelihood scheme. For a geostatistical model [the lin-
ear mixed model with � = 0 and � = σ 2R(δ), where
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the parameters δ describe the spatial correlation be-
tween observations, so τ = (δT , σ 2)T and q = qδ + 1],
Hoeting et al. (2006) use the two-stage code and pro-
pose the minimum description length criterion BIC/2.
Liski and Liski (2008) consider spline smoothing by
fitting the random effect model with one variance com-
ponent (qγ = 1) and � = σ 2In. They use the normal-
ized maximum likelihood coding scheme to produce
the conditional criterion

MDL = −�(̂θ |̂u) + log
[∫

f
{
q|̂u(q); θ̂(q)

}
dq
]
,

where f (y|u; θ) = exp{�(θ |u)} is the conditional den-
sity of y|u. The penalty term, called the parametric
complexity of the model, is difficult to compute be-
cause the conditional density is evaluated at the esti-
mators before being integrated.

Kubokawa (2011) introduces some prediction crite-
ria which are variants on Mallows Cp . Let τ̃ be an
estimator of τ from the full model which satisfies a
second order expansion like (13) τ̃ − τ = t̃1(τ ) +
t̃2(τ ) + Op(n−3/2), where E{̃t1(τ )} = E{(̃t11(τ ), . . . ,

t̃1q(τ ))T } = 0, t̃1(τ ) = Op(n−1/2) and t̃2(τ ) = (̃t21(τ ),

. . . , t̃2q(τ ))T = Op(n−1). (He also considers estimat-
ing τ from the current candidate model but found
that it performs poorly.) Then let β̂(τ ) be the gen-
eralized least squares estimator of β defined in (9),
û(τ ) = �−1v̂(τ ) be the BLUP of u with v̂(τ ) defined
in (14), and let �̃ , �̃ and Ṽ be estimators of � , � and
V constructed using τ̃ . Kubokawa defines

mPEC = {y − Xβ̂(τ̃ )
}T Ṽ−1{y − Xβ̂(τ̃ )

}
+ 2
{
p + qm(τ̃ )

}
,

cPEC = {y − Xβ̂(τ̃ ) − Z�̃
1/2û(τ̃ )

}T
· �̃−1{y − Xβ̂(τ̃ ) − Z�̃

1/2û(τ̃ )
}

+ 2
{
ρ(τ̃ ) + qc(τ̃ )

}
,

where

qm(τ )

= 1

2

q∑
i=1

trace
[
∂V
∂τi

E
{
∂2 t̃1i (τ )

∂y ∂yT

}]

+ 1

2

q∑
i=1

trace
(

∂V
∂τi

V−1
)

E
{̃
t2i (τ )

}

− 1

4

q∑
i=1

q∑
j=1

trace
(

∂2V−1

∂τi ∂τj

V
)

E
{̃
t1i (τ )̃t1j (τ )

}
,

qc(τ )

= −1

2

q∑
i=1

trace
[
V

∂(V−1�V−1)

∂τi

V E
{
∂2 t̃1i (τ )

∂y ∂yT

}]

+ 1

2

q∑
i=1

trace
[
∂�

∂τi

V−1
]

E
{̃
t2i (τ )

}

−
q∑

i=1

q∑
j=1

trace
{

1

4
�−1 ∂2�

∂τi ∂τj

�V−1

− ∂�

∂τi

�−1 ∂(�V−1)

∂τj

}
· E
{̃
t1i (τ )̃t1j (τ )

}
,

and ρ(τ ) is the effective degrees of freedom. The com-
putations are quite formidable.

Finally, Wu and Zhang (2002) and Fang (2011) con-
sider using cross-validation to select linear mixed mod-
els. For the independent cluster model with � = σ 2In,
the leave-one-cluster-out criterion is

m−1
m∑

i=1

n−1
i

(
yi − Xi β̂

[i])T (Zi�̂
[i]
∗ ZT

i + Ini

)−1

· (yi − Xi β̂
[i]),

where β̂[i] and �̂
[i]∗ are the maximum likelihood esti-

mators of β and �∗ = �/σ 2 using the data without
cluster i; the leave-one-observation-out criterion is

n−1
m∑

i=1

ni∑
j=1

(
yij − xT

ij β̂
[ij ] − zT

ij v̂i
[ij ])2,

where xT
ij is the j th row of Xi , zT

ij is the j th row of Zi ,

and β̂[ij ] and v̂[ij ]
i are the maximum likelihood estima-

tors and predictors of β and vi , respectively, using the
data without observation j in cluster i. The leave-one-
cluster-out criterion is a marginal criterion, whereas
the leave-one-observation-out criterion is a conditional
criterion. Fang (2011) shows that for m → ∞ with
ni = n1 fixed (or n̄ → n1) and �∗ known, (i) leave-
one-cluster-out cross-validation and mAIC of Vaida
and Blanchard (2005) are asymptotically equivalent,
and (ii) leave-one-observation-out cross-validation and
cAIC of Vaida and Blanchard (2005) are asymptoti-
cally equivalent. This extends the relationship between
cross-validation and AIC in the linear regression model
established by Stone (1977) to the linear mixed model.
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4. SHRINKAGE METHODS

One issue with the direct application of the infor-
mation criteria defined in Section 3 is that they gener-
ally involve comparing 2p+q different models, which
is not computationally feasible when p and/or q is
large. Even when p + q � n is fixed, it is still pos-
sible for p + q to be large. Shrinkage methods such
as the LASSO (Tibshirani, 1996) are popular for se-
lecting models in the linear regression setting when
p is of medium or large size due to its computational
feasibility and statistical accuracy (e.g., Bühlmann and
van de Geer, 2011, page 20). In this section we review
the shrinkage approach to model selection in the linear
mixed model case. We begin by discussing the linear
regression case (� = σ 2In and � = 0), since many of
the ideas in the mixed model case are motivated by this
simpler case.

For the linear regression model, Tibshirani (1996)
proposes the LASSO (least absolute shrinkage and se-
lection operator) method for simultaneous model esti-
mation and selection. It is usual to standardize the co-
variates X and sometimes also to center y. The selected
model minimizes

1

2
‖y − Xβ‖2 + n

p∑
j=1

φλj

(|βj |),(22)

with respect to β = (β1, β2, . . . , βp)T , where

φλj

(|β|)= λj |β|
2n

and λj = λ,

(23)
j = 1,2, . . . , p.

When the tuning parameter λ > 0 is large enough some
of the parameters in β are shrunk to exactly zero and,
hence, minimizing this criterion does model selection
automatically. The minimization problem (22) with the
LASSO penalty function (24) is a convex problem and
there are efficient algorithms available to compute the
solution. For example, the LARS algorithm in Efron
et al. (2004) or the coordinate decent algorithms de-
fined in Friedman et al. (2007) and Meier, van de Geer
and Bühlmann (2008) can be applied.

There have been various further advances in pe-
nalized least squares approaches for model selection
since Tibshirani’s original paper (e.g., see Fan and Lv,
2010, pages 107–117, and Tibshirani, 2011, for brief
reviews). One problem with the LASSO is that it tends
to shrink large β coefficients too much, leading to bias
issues (Fan and Li, 2001). As an alternative to (24), Fan

and Li (2001) suggest the SCAD (smoothly clipped ab-
solute deviation) penalty function defined by its deriva-
tive

φ′
λj

(|β|)= λj

{
I
(|β| ≤ λj

)
+ (aλj − |β|)+

(a − 1)λj

I
(|β| > λj

)}
and

λj = λ, j = 1,2, . . . , p,

with a = 3.7. They propose an algorithm based on lo-
cal quadratic approximations and, more recently, Zou
and Li (2008) propose a local linear approximation,
since the SCAD penalized loss function is difficult
to minimize directly due to the singularities in the
penalty function. Zou (2006) introduces the ALASSO
(Adaptive LASSO) which also helps overcome the bias
problems associated with the LASSO. The ALASSO
penalty function is

φλj

(|β|)= λj |β|
2n

and λj = λ

|β̂j |ι ,
(24)

j = 1,2, . . . , p,

where ι > 0 is an additional parameter often taken to
be equal to 1 and β̂ is a n1/2-consistent estimator of β .
Zou (2006) shows that the LARS algorithm can also be
used to solve the ALASSO minimization problem.

We now consider the linear mixed model case and
assume � has a general form. Bondell, Krishna and
Ghosh (2010), Ibrahim et al. (2011) and Peng and Lu
(2012) are to date the only authors to consider truly
joint selection of both β and τ using a shrinkage ap-
proach in the fixed parameter dimension setting. Other
authors apply shrinkage methods to select on β only,
assuming that the variance structure is not subject to
selection (e.g., Foster, Verbyla and Pitchford, 2007; Ni,
Zhang and Zhang, 2010; Wang, Eskridge and Crossa,
2011). We therefore focus on the methodology in Bon-
dell, Krishna and Ghosh (2010), Ibrahim et al. (2011)
and Peng and Lu (2012). All three consider model se-
lection for the independent cluster model (5) assum-
ing � = σ 2In and both si = s1 and �i = �1 are
the same across clusters. Both Bondell, Krishna and
Ghosh (2010) and Ibrahim et al. (2011) use Cholesky
parametrizations and we will assume that �i is the
Cholesky factor of � i for the rest of this section. Note
that Ibrahim et al. (2011) consider the more general
mixed effects model setting where yi given ui and Xi

belong to the exponential family, but for comparative
purposes we will restrict the discussion to the Gaussian
case only.
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Ibrahim et al. (2011) propose maximizing a penal-
ized marginal log-likelihood

�(θ) − m

p∑
j=1

φλj

(|βj |)− m

s1∑
k=1

φλp+k

(‖γ k‖
)
,(25)

with respect to θ , where γ k contains the nonzero ele-
ments in the kth row of �i and �(θ) is defined in (8). Ei-
ther the SCAD or ALASSO penalty functions are used
in (25) and there are two tuning constants which are
defined by

λj = λ(1), j = 1,2, . . . , p and λp+k = λ(2)
√

k,

k = 1,2, . . . , s1.

The ALASSO penalty functions differ slightly from
(25) and are defined as

φλj

(|β|)= λj

|β|
|β̂j | , j = 1,2, . . . , p and

φλp+k

(‖γ k‖
)= λp+k

‖γ k‖
‖γ̂ k‖

, k = 1,2, . . . , s1,

where β̂ and γ̂ k are the unpenalized maximum likeli-
hood estimators. Notice that the parameters γ are se-
lected in a grouped manner similar to the LASSO for
grouped variables (Yuan and Lin, 2006), and this helps
preserve the positive definite constraint in � .

Bondell, Krishna and Ghosh (2010) use the alter-
native Cholesky factor parametrization �i = σD†

i �
†
i ,

where D†
i = diag(d1, d2, . . . , ds1)

T is a diagonal ma-

trix and �
†
i , whose (l, r)th element is γ

†
lr , is a s1 × s1

lower triangular matrix with ones on the diagonal. Set-
ting dl = 0 is equivalent to setting all the elements
in the lth column and lth row to zero and, hence, a
single parameter controls the inclusion/exclusion of a
group of random effects. Let d = (d1, d2, . . . , ds1)

T , let
γ † be the vector of free parameters in �†

i and define
θ† = (βT ,dT ,γ †T )T . Note that σ 2 is not included in
θ†. Bondell, Krishna and Ghosh (2010) propose maxi-
mizing an ALASSO penalized log-likelihood

�
(
θ†)− λ(3)

( p∑
j=1

|βj |
|β̂j | +

s1∑
k=1

|dk|
|d̂k|
)

with respect to θ†, where λ(3) is a single tuning con-
stant. Here β̂j are the unpenalized generalized least
squares estimates and the d̂k is obtained from decom-
posing the unpenalized restricted maximum likelihood
estimate of �i .

The Cholesky decompositions prove to be very help-
ful in estimation. The conditional expectations of y
given u can be rearranged to give

Xβ + Z�u = (X (
uT ⊗ Z

)
Jms1

)(β

γ

)
,(26)

where Vec(�) = Jms1γ [the matrix Jms1 transforms γ
to Vec(�)], or

Xβ + Z�u
(27)

= (X Z diag
(
�†(σu)

)
(1m ⊗ Is1)

)(β

d

)
.

The conditional expectations can therefore be written
in a form which is linear in the parameters that are sub-
ject to selection. Bondell, Krishna and Ghosh (2010)
and Ibrahim et al. (2011) both adapt the EM algorithm
to estimate the parameters. They treat u as unobserved
in the E-step and the M-step involves maximizing a pe-
nalized objective function. To incorporate grouped pe-
nalization, Ibrahim et al. (2011) use a modification of
the local linear approximation algorithm proposed by
Zou and Li (2008). Bondell, Krishna and Ghosh (2010)
in their M-Step apply a standard quadratic program-
ming technique. The EM penalized maximum likeli-
hood estimators above are obtained first by assuming
u is known, then � is estimated and then u estimated.
This process differs subtly from the information crite-
ria approaches in Section 3, where a different order is
used when deriving the criteria there: first it is assumed
that � is known, then u is estimated and then � is esti-
mated.

Although the approaches of Bondell, Krishna and
Ghosh (2010) and Ibrahim et al. (2011) share some
elements in common, there are some differences be-
tween them which are important to highlight. Bondell,
Krishna and Ghosh (2010) incorporate a single tuning
constant which is the same for penalizing both β and
τ , whereas Ibrahim et al. (2011) have a more flexible
approach with two different tuning constants. Bondell,
Krishna and Ghosh (2010) use d rather than γ in model
selection and they effectively treat γ † like nuisance pa-
rameters since they do not appear in the penalty. Nei-
ther Bondell, Krishna and Ghosh (2010) nor Ibrahim
et al. (2011) incorporate û into the penalized likelihood
criterion and their methods are therefore more in line
with the marginal information criteria of Section 3.1,
rather than the conditional approach of Section 3.2.

One open issue with both Bondell, Krishna and
Ghosh (2010) and Ibrahim et al. (2011) is that the
Cholesky decompositions are dependent on the order
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in which the random effects appear and are not permu-
tation invariant (Pourahmadi, 2011). This means in the
finite sample case that different model selections result
from using different orders in the columns of Zi . We
confirmed this by running the first simulation example
in Bondell, Krishna and Ghosh (2010) with different
orders in the columns of Zi . Note also that setting dk

and γ k to zero is not equivalent to setting the kth diag-
onal element in �i to zero, which for the independent
cluster model (5) is the more natural selection prob-
lem. Another issue is that both Bondell, Krishna and
Ghosh (2010) and Ibrahim et al. (2011) use the un-
penalized maximum likelihood or restricted maximum
likelihood estimates as the weights in the ALASSO
penalty, but in practice unpenalized maximum likeli-
hood algorithms often fail to converge when the under-
lying τ is sparse and/or p is large (e.g., Nguyen and
Jiang, 2012, page 310; Jiang, Luan and Wang, 2007,
page 2252). Also, some of the maximum likelihood es-
timates of variance parameters could be exactly on the
zero boundary, implying that the ALASSO weight is
infinity. Note that boundary problems do not occur in
the regression case since only β is penalized.

Peng and Lu (2012) also apply a shrinkage method,
although their approach is quite different from Bondell,
Krishna and Ghosh (2010) and Ibrahim et al. (2011).
Instead of doing selection on �1 directly, Peng and Lu
(2012) select the random effects by penalizing v = �u.
Write �1 = σ 2�†

1 and then, motivated by an asymp-

totic expansion, estimate �
†
1 by

�̂
†
1 =
∑m

i=1 vivT
i

mσ̂ 2 −
∑m

i=1(Z
T
i Zi )

−1

m
.(28)

To estimate and select the model, Peng and Lu (2012)
define the following simple iterative procedure which
penalizes both β and v:

(1) For each i update vi given β by minimizing with
respect to vi the penalized least squares criterion

(yi − Xiβ − Zivi )
T (yi − Xiβ − Zivi )

+ 2n

s1∑
k=1

φλ(4)

(√∣∣ψ̂†
kk

∣∣),
where ψ̂

†
kk is the kth diagonal element of �̂

†
1. Then

update �†
1 using (28).

(2) Update β given �
†
1 by minimizing with respect

to β the penalized least squares criterion

(y − Xβ)T
(
In + Z�†ZT )−1

(y − Xβ)

+ 2n

p∑
k=1

φλ(5)

(|βk|),

where �† = blockdiag(�†
1,�

†
1, . . . ,�

†
1) has m identi-

cal blocks on the diagonal.

In both cases the SCAD penalty function is used with
tuning constants λ(4) and λ(5).

One advantage of the Peng and Lu (2012) selection
method is that the random effects v are unconstrained
and are treated like unknown regression coefficients,
which make the selection and computations easy to
handle. In comparison, the optimization procedures in
both Bondell, Krishna and Ghosh (2010) and Ibrahim
et al. (2011) are slow and complex and can sometimes
fail to converge, especially when the underlying covari-
ance matrices are sparse and the tuning constants are
small. Another advantage of the Peng and Lu (2012)
approach is that it is permutation invariant and does not
depend on the order in which the random effects ap-
pear. However, the estimate of �

†
1 is not always guar-

anteed to be positive semidefinite and further adjust-
ments may be needed (Peng and Lu, 2012, page 114).

Some further insight is obtained by comparing the
asymptotic results in Bondell, Krishna and Ghosh
(2010), Ibrahim et al. (2011) and Peng and Lu (2012).
In the linear regression setting Zou (2006) proves
that the ALASSO estimators possess oracle properties
asymptotically. That is, as n → ∞ with p < ∞ fixed
they (a) identify the true model and (b) achieve the
optimal estimation rate (i.e., the estimator performs as
well as if the true model were known in advance). Sim-
ilarly, Bondell, Krishna and Ghosh (2010) show that
their penalized maximum likelihood estimators pos-
sess the oracle property under some regularity condi-
tions and

m → ∞, λ(3) → ∞ and
λ(3)

√
m

→ 0

with finite cluster sizes 1 ≤ ni ≤ K , for some K < ∞
and i = 1,2, . . . ,m. Ibrahim et al. (2011) also prove
that their procedure has the oracle property under some
regularity conditions. Let β t and γ k,t be the true values
of β and γ k , k = 1,2, . . . , s1, respectively. Define

bm = min
[

min
j=1,...,p

{λj :β t = 0},

min
k=1,...,s1

{
λp+k :‖γ k,t‖ = 0

}]
and

cm = max
[

max
j=1,...,p

{λj :β t �= 0},

max
k=1,...,s1

{
λp+k :‖γ k,t‖ �= 0

}]
.
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The limit conditions are

m → ∞,
√

mbm → ∞ and cm → 0.

Peng and Lu (2012) show that their method is a con-
sistent variable selection procedure with some oracle
properties, but the extra condition s1 < m−1∑m

i=1 ni

is needed. As noted by Peng and Lu (2012), when the
cluster sizes are small their method does not perform
as well (and is not as efficient) as methods based on
the marginal distribution. Note that both Bondell, Kr-
ishna and Ghosh (2010) and Ibrahim et al. (2011) use
the marginal distribution when deriving their shrinkage
estimators, which is an advantage in this case.

The shrinkage methods discussed above produce es-
timates of the model parameters and select a model
conditional on the tuning constants being known. By
varying the values of the tuning constants from large
to small, a path through the model space is defined
where more parameters get selected as λ(1), λ(2), λ(3),
λ(4) and λ(5) each approach zero. Model selection on
the path is reduced to selecting the values of the tun-
ing constants. This is one of the major advantages of
shrinkage methods over direct application of informa-
tion criteria: shrinkage methods do not need to consider
all possible models (which is often not computationally
feasible when p and s1 are large), but only the models
identified on the path. Once the path is identified, infor-
mation criteria, cross-validation or other methods can
then be used to select the model from the path (see Sec-
tion 3 for further details). The Fence method described
in Section 5 also uses a similar concept where models
within a “fence” are first identified, and then the second
step chooses the least complex model.

The choice of tuning constant is important because
this ultimately controls which model gets selected.
Bondell, Krishna and Ghosh (2010) choose the tuning
constant to minimize the BIC type criterion

−2�
(̂
θ†)+ log(n)#

(̂
θ†),(29)

over a grid of λ(3) values, where #(̂θ†) is the num-
ber of nonzero elements in θ̂†. Ibrahim et al. (2011)
consider the broader class of generalized linear mixed
models where often the marginal likelihood is not di-
rectly available. However, in the case of the linear
mixed model, the marginal likelihood is available and
Ibrahim et al. (2011) would apply the BIC criterion

−2�(̂θ) + log(m)#(̂θ)(30)

directly. There are clearly differences between (29)
and (30). The θ† in Bondell, Krishna and Ghosh (2010)

does not include σ 2, whereas Ibrahim et al. (2011) do
include σ 2 and so #(̂θ†) and #(̂θ) are slightly different.
In the linear mixed model, the definition of the effec-
tive sample size is not obvious and has long been an
issue for debate. Bondell, Krishna and Ghosh (2010)
use the total sample size n in (29), but (30) uses the
total number of clusters m. Another alternative is to es-
timate the effective sample size by incorporating an es-
timate of the correlation matrix as suggested by Jones
(2011) (see BICJ in Section 3.3), which leads to an es-
timate of the effective sample size between m and n.
A referee pointed out that using information criteria to
choose the tuning constants here has not been rigor-
ously justified and is somewhat ad-hoc. The issue is
that the number of nonzero estimated parameters cor-
responding to a given tuning constant is not the same
as the fixed number of independent parameters under
an assumed model.

An alternative way of choosing the tuning constant is
to treat it like an additional variance component in the
model to be estimated directly along with τ . A similar
approach is often used in the semiparametric regres-
sion literature when estimating tuning constants asso-
ciated with penalized splines (Ruppert, Wand and Car-
roll, 2003, page 108). Tibshirani (1996) notes that |βj |
is proportional to (minus) the log density of the double
exponential distribution. Foster, Verbyla and Pitchford
(2007) incorporate a LASSO penalty for β into a linear
mixed model and for estimation of the tuning constant
each βk is assumed to have a double exponential distri-
bution with variance 2/λ2, where λ is the tuning con-
stant (so λ is effectively treated like a hyperparameter
in a hierarchical model). Estimation of λ is then car-
ried out by maximizing an approximate marginal log-
likelihood. Ibrahim et al. (2011) also use a similar idea
for estimating their two tuning constants λ(1) and λ(2),
however, they note that the estimates produced from
this method lead to significant overfitting.

5. FENCE METHODS

Alternative model selection methods to information
criteria or shrinkage methods are rare and typically
ad-hoc. A notable exception is the Fence method for
selecting predictors for complex models, which was
recently proposed by Jiang et al. (2008). The Fence
method is computationally very demanding, particu-
larly because it involves the estimation of the standard
deviation of the difference of lack-of-fit measures, for
example, the negative log-likelihood as in Section 3,



154 S. MÜLLER, J. L. SCEALY AND A. H. WELSH

the residual sum of squares or any appropriate esti-
mated loss, denoted by QM = QM(θM), M ∈ M, sat-
isfying QM2 ≤ QM1 if M1 ⊂ M2. For example, QM =
[y − EM(y)]T [y − EM(y)]. The Fence procedure in
Jiang et al. (2008) requires the calculation of

σ̂M,M̃ =
√

V̂ar
[
QM(θM) − QM̃(θM̃)

]
for all models M ∈ M, where M̃ has the smallest loss
among all considered models. Jiang, Nguyen and Rao
(2009) reduce to some extent the computational burden
of the Fence method in their Simplified Adaptive Fence
procedure, which can be very competitive in lower-
dimensional problems and where convergence of es-
timation procedures is not of a concern, such as when
using the least squares estimator in linear regression
with XT X of full rank.

The key idea behind the Fence method is to estimate
the loss for any correct model Ml by QMl

(̂θMl
), which

satisfies a range of regularity conditions and is used to
construct a fence. In practice, Ml can be the full or any
other sufficiently large model. The first step is to iden-
tify models M ∈ M inside the fence, that is, models
satisfying

QM ≤ QMl
+ bnσ̂M,Ml

,(31)

where bn is a sequence of tuning constants.
The second step of Fence is to identify the least com-

plex model within the fence. If there is more than one
such candidate, the model with the smallest lack-of-fit
measure is selected. Conceptually, Fence shares a ma-
jor advantage with shrinkage methods (see Section 4);
they both consider only a small proportion of models in
M, although they choose the subset differently and se-
lect from the subset differently. For Fence, only a small
number of models satisfy (31) when bn is small and
these models can be identified economically through
backward or forward search algorithms. The calcula-
tion of QM(̂θM) is often straightforward, particularly
when QM is the negative log-likelihood or residual
sum of squares. Using the residual sum of squares can
be promising when focus is on the selection of regres-
sion parameters that relate to the whole population, but
it could be more natural to use the conditional log-
likelihood when the selection focuses mainly on pa-
rameters describing clusters.

The Simplified Adaptive Fence procedure, a com-
putationally simpler version to Adaptive Fence intro-
duced in Jiang et al. (2008), absorbs the difficult quan-
tity σ̂M,Ml

and the tuning constant bn into a single con-
stant,

QM ≤ QMl
+ cn.(32)

Thus, the model selection problem turns into optimally
choosing the tuning constant cn. Jiang, Nguyen and
Rao (2009) suggest calculating for each M ∈ M the
bootstrapped probability p∗(M; cn) = P∗(M0(cn) =
M), where M0(cn) is the optimal model satisfy-
ing (32). Jiang, Nguyen and Rao (2009) calculate
p∗(M; cn) with a parametric bootstrap under Ma , a
large correct model with at least one redundant com-
ponent. Ma can be the full or any large model which
is known to be correct but not optimal. On the other
hand, if the full model might be the optimal model,
X can be extended to (X,xa). In our own simulations
we used xia = ( 1

p

∑
xj )li , where (l1, . . . , ln) is a ran-

dom permutation of {1, . . . , n}. Adding this additional
explanatory variable worked well in our simulations,
but there are many other possibilities. Jiang, Nguyen
and Rao (2008, 2009) give an elaborate explanation of
why such an adjustment is required. Essentially, it en-
sures that the function p∗(cn) = maxM p∗(M; cn) has
desirable theoretical features. In particular, the model
that corresponds to the first significant peak at ĉn, that
is, M̂(ĉn) = arg maxM p∗(M; ĉn), is a consistent esti-
mate of a correct model Ml satisfying Ma ⊃ Ml ⊇ Mt ,
provided the true model Mt exists and the true model
is not the model used for the generation of the para-
metric bootstrap samples, that is, Mt �= Ma . Jiang,
Nguyen and Rao (2009) state a theorem, which (un-
der some technical regularity conditions) establishes
the existence of a c̃ (depending on n), which is at least
a local maximum and an approximate global maxi-
mum of p∗(c̃), such that the corresponding M̂(c̃) is
consistent—in the sense that for any κ1, κ2 > 0, there
exist nmin and Bmin such that

P
(
p∗(c̃) ≥ 1 − κ1

)∧ P
(
M̂(c̃) = Mt

)≥ 1 − κ2
(33)

if n ≥ nmin and B ≥ Bmin.

Jiang, Nguyen and Rao (2009) refer for the proof of
(33) to the proof of Theorem 3 in Jiang et al. (2008).
For specific choices of QM and M it could require
some care to show that all the regularity conditions
hold. Empirically, we confirmed that the first signifi-
cant peak, which occurs at ĉn, satisfies p∗(M̂; ĉn) ≈ 1
for M̂ �= Ma , where ĉn is the smallest possible choice
of the tuning constant when the peak is a plateau. For
small to moderate n and for larger true models the
peaks relating to the true model tend to be smaller than
one, whereas for small true models we often observed
p∗(Mt ; cn) = 1 for cl < cn < cu. In our own simula-
tions we found that the following rule establishes a sur-
prisingly successful and “simple” estimator of the true
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FIG. 1. A plot of p∗ based on the first simulated data set under the simple linear mixed model yij = β0 + β1xi1 + β2xi1 + γ ui + σεij ,

i = 1, . . . ,10 = m, j = 1, . . . ,5, γ = σ = 1 and ui, εij ∼ independent N (0,1).

model: Consider only c values with p∗(cn) attained by
some M̂ ⊂ Ma ; choose the first ĉn, which is either a
peak larger than some arbitrary value τ in (0.5,1) or
the smallest cn value having maximal p∗(cn) value. In
our own implementations we used τ = 0.6, which was
chosen before running any simulations, by a visual in-
spection of all published results in the series of Fence
papers. (Jiang, Nguyen and Rao, 2009, suggest another
adjustment, based on lower bounds of large sample
95% confidence intervals, which depend on the boot-
strap sample size and p∗.)

Figure 1 shows a plot of p∗ over an appropriate range
of the tuning constant cn. The data generating model is
a m = 10 independent cluster model with group sam-
ple sizes ni ≡ 5. The full model has four covariates
and an intercept, and the true model has parameter
vector β t = (1,1,2,0,0)T . Responses were generated
by yij = xT

i β + γ ui + σεij , i = 1, . . . ,10 = m, j =
1, . . . ,5, γ = σ = 1 and ui, εij ∼ independent N (0,1)

with xi1 = 1 and the remaining explanatory variables
generated independently from U (−2,2). We used the
lme() function of the nlme R-library to fit a total of
24 + 1 = 17 linear mixed models as described above
having the same variance parameters. The Simplified
Adaptive Fence procedure with Q(θ) = −2�(θ) cor-
rectly estimates the true model and the corresponding
peak occurs at ĉn = 9.06. Three additional models have
peaks: the too large model used for the generation of
the bootstrap samples at c = 0, the correct model hav-
ing only β4 = 0 at c = 1.21 (which is a local maxi-
mum difficult to detect by visual inspection) and the
incorrect model with β = (β0,0, β2,0,0)T with a peak
p∗(24.77) = 0.450.

A major attraction of the Simplified Adaptive Fence
is its generality. On the other hand, since the Simpli-
fied Adaptive Fence is heavily based on bootstrapping
from a too large correct model, it highlights any com-
putational limitations in the available estimation pro-
cedures. In our simulations we noticed that fitting lin-
ear mixed models with redundant random effects can
be problematic. For example, we repeatedly gener-
ated data from the same data generating model as in
Bondell, Krishna and Ghosh (2010), Example 1. Us-
ing lme() and maximum likelihood, we found that
in seven out of the first ten simulation runs the esti-
mates failed to converge. The function lmer() from
the R-package lme4 never failed in the first thou-
sand simulation runs but produced seven warnings of
the type In mer_finalize(ans): singular
convergence (7) and, more severely, calculating
an auxiliary quantity such as �̂

−1 failed in five out
of the first ten simulation runs returning the warning
Error in solve.default(VarCorr(M)$
grp): system is computationally sin-
gular: reciprocal condition number.
This is in fact a problem for most methods, including
information criteria and shrinkage methods.

We conclude that using the Simplified Adaptive
Fence can be attractive when convergence is not a con-
cern. However, it is potentially tedious to implement
the Simplified Adaptive Fence in simulation studies
that automatically loop through many runs of fitting
mixed models with redundant random terms. This is a
possible explanation for why Jiang, Nguyen and Rao
(2008, 2009) focused in their simulations on the se-
lection of β only, and demonstrated that the Simpli-
fied Adaptive Fence can successfully deal with linear
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mixed models as long as interest focuses on selecting
the regression parameters.

Recent work on the Invisible Fence (Jiang, Nguyen
and Rao, 2011) and the Restricted Fence (Nguyen and
Jiang, 2012) explores some ways to reduce the com-
putational burden. Just like the Fence and Simplified
Adaptive Fence, the Invisible Fence is based on the
principle of selecting the model within the fence that
has minimum dimension and minimum QM among
other models within the fence of the same dimension.
Jiang, Nguyen and Rao (2011) showed that the model
selected by the Simplified Adaptive Fence is one of
the models that minimizes QM at each model dimen-
sion. This means that if we can find this small set of
models (one for each model dimension), the model se-
lection problem is considerably simplified. The Invis-
ible Fence uses the bootstrap to find the reduced set
of models. Specifically, for the bth bootstrap sample,
for each model dimension j , find the model M∗

bj of
dimension j that minimizes Q∗

Mb, the loss QM com-
puted for the bth bootstrap sample. Then, for each fixed
model dimension j , find the most frequently selected
model across bootstrap samples M∗

j and its bootstrap
selection frequency p∗

j . The Invisible Fence selects the
model M∗

j with the highest bootstrap selection fre-
quency p∗

j . Jiang, Nguyen and Rao (2011) apply the
procedure to a genetic problem (which is not a linear
mixed model problem) with what they call a subtrac-
tive loss QM and show that, in this case, the Invisible
Fence is very fast. However, in general, including for
linear mixed models, it is still computationally burden-
some to find the reduced set of models.

The idea of applying the Fence principle to subsets
of the model space rather than to the entire space to
reduce the computation is developed further in the Re-
stricted Fence (Nguyen and Jiang, 2012). The basic
idea is to partition the model space M into not nec-
essarily disjoint subsets M1, . . . , MJ and apply the
Simplified Adaptive Fence to each subset Mj . The
final model is then selected by applying the Simpli-
fied Adaptive Fence again to select one of the J al-
ready selected models. In particular applications, the
choice of subsets of the model space may be based
on substantive considerations, but it will often involve
some arbitrary choices. So just as the order of rows
and columns affects the Cholesky decomposition of
� (see Section 2) and hence can affect model selec-
tion in shrinkage methods, the choice of subsets can,
in small samples, affect model selection with the Re-
stricted Fence. The Restricted Fence was introduced

for selecting independent cluster models when inter-
est centers on the selection of the regression parame-
ters only and, in this case, the subsets Mj correspond
to subsets of the columns of X. It is then attractive to
multiply both sides of the model (1) by a matrix that is
orthogonal to the columns of X not in the current sub-
set of interest so that these variables are removed from
the model. Two further simplifications are introduced.
First, instead of the generalized least squares estimator
(9) of the regression parameters β , Nguyen and Jiang
(2012) use the least squares estimator so that they do
not have to estimate the marginal variance matrix V.
This involves a loss of efficiency but reduces the con-
vergence issues. Second, Nguyen and Jiang (2012) use
a version of the wild bootstrap in which they bootstrap
from linear regression models rather than linear mixed
models. Both of these simplifications are tied to select-
ing regression parameters, but they suggest useful ana-
logues for other problems and may be useful for model
selection methods beyond the Restricted Fence. Gen-
eralizing and modifying the Restricted Fence to more
general situations is promising and deserves further at-
tention.

6. OTHER BAYESIAN METHODS

Bayesian model selection (also called model choice)
requires us to assign a prior distribution over M and
compute the posterior probabilities of each Ml ∈ M.
These computations can be difficult so are usually
carried out by applying sophisticated Markov Chain
Monte Carlo (MCMC) algorithms. We can actually
avoid explicit model selection by working directly with
the posterior distribution. If we need a single model, we
can average over M or we can select the model with
highest posterior probability. A useful way of interpret-
ing this kind of selection (which links it conceptually
to shrinkage and Fence methods) is that the MCMC al-
gorithm reduces M to a small subset of models with
posterior probability above a threshold and we then se-
lect one of these.

For linear mixed models, this kind of approach has
been explored in a number of papers starting with Chen
and Dunson (2003). They consider the problem of se-
lecting the variance parameters τ in the independent
cluster model with si = s1 and � = σ 2In. They intro-
duce the alternative Cholesky decomposition and de-
fine θ† = (βT ,dT ,γ †T , σ 2)T , where d contains the di-
agonal elements of D and γ † contains the distinct el-
ements of �†. Chen and Dunson assume that the ele-
ments of d are independently distributed with a point
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mass at zero mixed with a Gaussian distribution trun-
cated at zero. The assumption that the elements of d
are independent allows each one to be treated indepen-
dently and the zero-inflated truncated-Gaussian priors
allow them to be exactly zero with positive probabil-
ity. Selection is based on running a Gibbs sampler and
computing the posterior probabilities of all possible
models (of which there are at most 2qγ ) by dividing
the number of occurrences of each model by the num-
ber of iterations. Saville and Herring (2009) point out
that these kinds of MCMC methods are generally time
consuming to implement, require special software and
depend on subjective choice of the hyperparameters in
the priors.

As discussed in Section 3.3, the problem can also
be formulated as a testing problem and the test carried
out by computing Bayes factors (20). The two issues
with using Bayes factors are the choice of prior, which,
depending on the formulation, might need to include
point mass at zero and should not be either too concen-
trated or too dispersed, and the computation. Han and
Carlin (2001) compare a number of methods for com-
puting Bayes factors for comparing two linear mixed
models. They find that the reversible jump (Green,
1995) and marginal likelihood methods (Chib, 1995)
are able to produce estimates of the Bayes factor and
that the marginal likelihood methods are easier to use.
The marginal likelihood here refers not to exp{�(θ)}
but, in the notation used to define the Bayes factor (20),
to
∫

g(y|θ)h(θ) dθ , where g(y|θ) = exp{�(θ)} and h is
the prior for θ . Chib (1995) and Han and Carlin (2001)
comment that all the methods require substantial hu-
man intervention and computer effort for a modest pay-
off. These kinds of conclusions help motivate the use
of approximations like BIC (Section 3.3) to the Bayes
factor and also more ad hoc alternative approaches to
model selection such as those of Spiegelhalter et al.
(2002) and Aitkin, Liu and Chadwick (2009).

Spiegelhalter et al. (2002) propose a general
Bayesian deviance criterion for model selection of the
form

DIC = E
{−2�(θ)|y}+ 2 log

{
f (y)

}+ 2pD,

where pD = E{−�(θ)|y} + �(θ̄), θ̄ = E(θ |y) is the
posterior mean of the parameters and f (·) is a “fully
specified standardizing term that is a function of the
data alone.” The choice of f is vague, but a natural
choice is f (y) = exp{�(̂θ)} for some estimator θ̂ of θ .
If the estimate θ̂ is fixed for all comparisons, then we
can omit the standardizing term. This is the same as
just setting f (y) ≡ 1. For selecting regression terms in

the mixed model when the variance parameters τ are
known, Spiegelhalter et al. (2002) point out that pD re-
duces to the effective degrees of freedom ρ(τ ) defined
in (15) so, as noted by Vaida and Blanchard (2005),
DIC in this case is equivalent to marginal AIC with
the asymptotic form of the Vaida–Blanchard penalty
for conditional AIC.

Aitkin, Liu and Chadwick (2009) propose a different
way of using deviances to select models from Spiegel-
halter et al. (2002). They suggest comparing models
M0 and M1 by computing the posterior distributions
of the parameters θM0 and θM1 , generating B real-
izations θM0b and θM1b from the respective posterior
distributions and computing the empirical probabil-
ity Pr{−2�(θM0b) + 2�(θM1b) < −4.4|y}. The value
−4.4 = −2 log(9) corresponds to a likelihood ratio
of 9 so the event {−2�(θM0b) + 2�(θM1b) < −4.4}
represents strong evidence for M0 over M1. They ar-
gue that if the empirical probability of the event is
0.9 or greater, there is a high posterior probability of
strong evidence in favor of M0 over M1. This approach
has attracted criticism from some Bayesians (Gelman,
Robert and Rousseau, 2010).

7. SIMULATION

Various authors have carried out simulations to com-
pare different methods of model selection, usually with
one or more similar methods and usually in problems
with a small number of parameters. We review some
of these simulations in this section to see what we can
learn from putting the results together. Each simulation
is limited but, together, they are quite informative, par-
ticularly in identifying individual problems in which
particular methods work well. We think of this as like
a meta-analysis which extracts more information by
combining existing studies without having to repeat
studies or run new studies. A summary of the settings
considered is given in Table 2, which is followed by a
concise overview of the most important findings. More
detailed information and further comments on the sim-
ulations can be found in the online supplementary ma-
terial (see Appendix following the bibliography).

It is clear from Table 2 that only a limited set of
models and limited settings have been considered. All
except Srivastava and Kubokawa (2010) and Jiang,
Nguyen and Rao (2009) considered the easier case
with constant cluster size. The numbers of parame-
ters and random effects are very small in both the
true and the full models; the exceptions are Bondell,
Krishna and Ghosh (2010) and Ibrahim et al. (2011)
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TABLE 2
Table summarizing the settings used in selected simulations. “Reference” shows the first letters of the surnames of the authors and the last
two digits of the year of publication, “Model” describes the model considered, m the number of clusters and ni the size of the clusters. The
quantities p, si and q are the dimension of β , the number of random effects per cluster and the dimension of τ in the true model; pf , sf i

and qf are the analogous quantities under the full model. The next three measures describe the difficulty of selecting the true model: |Mβ |
and |Mτ | are the number of candidate models considered for β and τ , respectively, min |βk |/σ measures the difficulty of selecting the
smallest nonzero regression parameter when there are no random effects in the model and min{ev(�/σ 2)}, the smallest eigenvalue of
�/σ 2, measures the difficulty of selecting the smallest nonzero variance parameter. Finally, u and e describe the distributions used for

these random variables and “Method” denotes the main model selection methods considered in the simulation

Reference Model m/ni p/pf si/sf i q/qf

CD03 int + slope 200/8 4/4 3/4 7/11

DMT11 int + slope 10/{6,26,51} 2/6 2/2 4/7
PN06 int + slope 10/20 3/5 2/3 3/7
SC08 int {15,20,30,50}/3 7/12 1/1 2/2
SC08 int {15,20,30,50}/3 4/5 1/1 2/2
GK10 int {10,20,40,80}/{3,6,9,12} 2/2 1/1 2/2

DMT11 int + slope {10,20,50}/4 2/6 2/3 4/7
DMT11 int + slope {10,20,50}/4 3/6 1/3 4/7
SK10 cluster 20/{1 + B(8,1/2)} {2,4,6}/7 {1,2,3}/{1,2,3} 2/2
K11 Fay–Herriot {5,10,30}/1 4/7 1/1 1/1
K11 int {5,10,30}/4 {2,4,6}/{5,7} 1/1 2/2
JR03 var comp 8000/3 2/5 {20,40}/140 {2,3}/8

BKG10 cluster {30,60}/{5,10} 2/9 3/{4,10} 7/{11,56}
IZGG11 cluster {50,100,200}/12 3/8 3/8 7/37
PL12 cluster {10,20}/{10,20} 3/5 2/4 3/10

JRGN08 Fay–Herriot 30/1 1–5/5 1/1 1/1
JRGN08 int 100/5 {2,4,5}/5 1/1 2/2
JNR09 int {10,15}/P(3) {3,6}/6 1/1 2/2
NJ12 int {50,100,150}/3 7/30 1/1 2/2

Reference |Mβ |/|Mτ | min |βk|/σ min{ev(�/σ 2)} u/e Method

CD03 1/16 1 0.45 N Post prob.

DMT11 14/3 0.35 0.01 N IC
PN06 31/7 0.2 0.5 N GIC
SC08 12/2 1 2 N mAIC
SC08 31/2 1 2 N mAIC
GK10 1/2 1 {0.1–0.8} N cAIC

DMT11 14/3 1.83 0.17 N /{N ,mixtures} IC
DMT11 14/3 1.83 0.11 N /{N ,mixtures} IC
SK10 7/1 2 {0.01,0.5,1} N AIC
K11 7/1 2 1 {N ,mixture(N , C)} AIC
K11 7/2 2 {0.1,1} {N , t3} AIC
JR03 31/NA 1.63 0.67 N own

BKG10 512/16 1 0.45 N shrinkage
IZGG11 256/256 {1.5,0.5} {0.41,0.05} N shrinkage
PL12 16/16 1 0.32 N shrinkage

JRGN08 32/1 1 1 N Fence
JRGN08 32/1 1 1 N AFence
JNR09 64/1 1 1 N SAFence
NJ12 768/1 0.001 1 N RFence
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who consider slightly larger numbers of variance pa-
rameters in the full model (qf ) and Jiang and Rao
(2003) who consider large numbers of random effects
in the full model. The sets of candidate models are rel-
atively small, the largest occurring in Bondell, Krishna
and Ghosh (2010) and Ibrahim et al. (2011). Small val-
ues of min |βk|/σ and min{ev(�/σ 2)} indicate that it
is difficult to select the true model for β and τ , re-
spectively. The table shows that, with the exception
of Nguyen and Jiang (2012), the settings make it rel-
atively easy to select the true β and, surprisingly, often
much easier than to select the true τ . This helps ex-
plain the general conclusion that selecting β is easier
than τ . Most authors choose the true regression param-
eters according to their favored procedure, that is, for
AIC-like criteria p is close to pf and for BIC-like cri-
teria and shrinkage methods p is small compared to
pf . Also, some authors apply their own variants of in-
formation criteria without any justification or explana-
tion, and possibly with unintended effects.

For the marginal information criteria, as in linear re-
gression models, larger penalties tend to select smaller
models, while smaller penalties tend to select larger
models. The bootstrap penalty is plausible (mAICB2
worked better than mAICB1) but has not been thor-
oughly explored. For the conditional AIC criteria, the
Greven–Kneib penalty and the Srivastava–Kubokawa
penalty produced promising results but need a more
thorough investigation. The philosophical differences
between using marginal and conditional criteria were
explained by Vaida and Blanchard (2005), but the prac-
tical differences are much less clear. Dimova, Marka-
tou and Talal (2011) found in their simulation that the
conditional criteria performed worst at selecting the
correct model, tending to prefer larger models. They
recommended GIC with an = n1/2 but noted that it
does not always get the random effects right, particu-
larly when they have small variance. On the other hand,
a version of REML-based mAICR , which ignores the
estimation of � , worked well when � is close to zero.
Bondell, Krishna and Ghosh (2010) and Ibrahim et al.
(2011) obtained promising results for their shrinkage
methods. The methods of Ibrahim et al. (2011) have the
advantage of having two tuning parameters, although
this makes the computations more burdensome. They
found that the SCAD penalty performed best for re-
gression parameters and ALASSO for variance param-
eters. The Fence methods can be difficult to implement
with redundant variance parameters and have not yet
been investigated in the full model selection problem.

Chen and Dunson (2003) found that their approach se-
lected the true model with high probability and the per-
formance was robust to the choice of hyperparameters
for the point mass at zero mixed with a zero-truncated
Gaussian distribution prior for each dk .

Finally, most of the studies used Gaussian distribu-
tions and those that did not found that their methods
performed more poorly under the longer-tailed distri-
butions they used.

8. DISCUSSION AND CONCLUSIONS

In this paper we have arranged, structured and re-
viewed a substantial body of literature on different
model selection procedures for linear mixed models.
A key step in achieving this is our use of a unified
notation for the linear mixed model (1), which we
use in particular to (i) bring together special cases of
the linear mixed model such as the variance compo-
nent model, the independent cluster model, the clus-
tered variance component model, the random intercept
and slope model, the Fay–Herriot model or the lon-
gitudinal autoregression model; (ii) avoid ambiguity
in identifying what components are subject to selec-
tion: regression parameters β , variance parameters γ ,
δ or τ = (γ T , δT )T or both simultaneously, that is,
θ = (βT ,τT )T ; and (iii) make different model selec-
tion procedures suggested by different authors easier
to compare.

The performance of model selection procedures de-
pends on how performance is measured. Much of the
theoretical work on information criteria gives the right
answer to a good question, such as how to estimate the
Akaike Information unbiasedly (AIC) or how to ap-
proximate the Bayes factor accurately (BIC), but these
criteria are not directly related to model selection. Di-
rect performance measures, such as how often the data
generating model or other correct models are detected,
are more useful. Parsimony (choosing models with few
parameters) is an important consideration when p + q

is large. It can be achieved by the choice of combina-
tions of the measure of model complexity, the penalty
function or the tuning constants and should be built into
the performance measures. Procedures that are optimal
under one performance measure need not be optimal
under a different measure, so it may be worthwhile to
consider several measures.

One of the key issues in model selection is that the
set M of candidate linear mixed models can be very
large; depending on the model, M can contain all 2p+q

possible models and, in such cases, is very large when
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p + q is large. Large candidate sets M are computa-
tionally too demanding for methods like the informa-
tion criteria (Section 3) which try to compare all the
models in M. A natural alternative approach is to try to
reduce M efficiently to a smaller subset of models and
then select models from within this subset. Shrinkage
methods (Section 4), Fence methods (Section 5) and
implicitly some Bayesian methods (Section 6) which
try to do this are better able to handle large M. There
are many open questions about how to reduce M in
appropriate ways and we anticipate an explosion of re-
sults similar to that currently occurring in n � p prob-
lems in linear regression.

The theoretical treatment of mixed model selectors
is difficult and technical so the results that have been
obtained are impressive. Generally, these results re-
quire either strong assumptions or restrictions to spe-
cific mixed models only, such as those having a single
variance parameter, and more theoretical insight would
be very useful.

The difficulty of developing theoretical results means
that we have to rely on simulations to compare differ-
ent methods. In reviewing the various simulations, we
found that only a limited set of models and limited set-
tings have been considered. In particular, the shrinkage
and Fence methods have only been applied to the inde-
pendent cluster model to date. As with the theory, more
general and more challenging scenarios should be in-
vestigated in the future. Interesting avenues for future
studies are to consider more general � than σ 2In, let-
ting n, p, q and s grow in different ways in asymptotic
studies, and exploring true joint selection of β and τ .

With currently available software (e.g., lmer in R
or Proc Mixed in SAS), it is easy to initiate a re-
quest for and, provided the problem is not too large or
too sparse, to obtain a point estimate for θ . Nonethe-
less, there are computational issues, particularly when
one or more variance parameters is zero (see Sections
4 and 5). This has implications for computer intensive
selection procedures, which can fail when estimation
in any one of the iterations fails. We expect that opti-
mization routines will develop and include better meth-
ods for dealing with problems where the underlying
model parameters are at or near the boundary. Similar
and possibly more serious computational difficulties
arise with Bayesian methods. Han and Carlin (2001)
remarked that all the Bayesian methods they consid-
ered required substantial time and effort (both human
and computer). They pointed out that both the bound-
ary issues and the choice of priors have to be treated
with care.

There are interesting relationships between the
method of estimation, the method of selection and the
definition of the possible model set M. With clus-
tered data, it is important to distinguish (Vaida and
Blanchard, 2005) or to be conscious of the distinction
(Greven and Kneib, 2010) between marginal questions
regarding the underlying population from which clus-
ters are observed and conditional questions regarding
the particular clusters in the data when using informa-
tion criteria (Section 3). This distinction has implica-
tions for shrinkage and Fence methods. Specifically, in
order to select models to treat conditional questions,
it is worthwhile developing shrinkage methods based
on the conditional log-likelihood �(θ |̂u) and measur-
ing model complexity in Fence using one of the condi-
tional AIC penalties in Table 1.

APPENDIX: SIMULATION SETTINGS

Vaida and Blanchard (2005) used as the full model
the simple random intercept and slope model

yij = β1 + xjβ2 + zT
ij�iui + σeij ,

j = 1, . . . , ni ∈ {6,26,51}, i = 1, . . . ,10,

with ui = (u1i , u2i)
T , �i a 2 × 2 matrix of parameters

and zT
ij = (1, xj ). The values of xj were equally spaced

in units of 5 from 0 to 25 (ni = 6), 0 to 125 (ni =
26) or 0 to 250 (ni = 51). The true models had β =
(−2.78,−0.186)T ,

�i�
T
i = �i =

(
0.0367 −0.00126

−0.00126 0.00279

)
and σ 2 ∈ {0.0705,0.141,0.282}.

Chen and Dunson (2003) reported results from a
simulation using the random intercept and slope regres-
sion model. In the part of the simulation where they
considered selecting θ , the full model was

yij = β1 + x2ij β2 + x3ij β3 + x4ij β4 + zT
ij Di�

†
i ui

+ σeij , j = 1, . . . ,8, i = 1, . . . ,200,

with ui = (u1i , u2i , u3i , u4i)
T , Di a 4×4 diagonal ma-

trix, �
†
i a 4 × 4 matrix and zT

ij = (1, x2ij , x3ij , x4ij ).
The explanatory variables were generated indepen-
dently from the U (−2,2) distribution. The true model
had β = 14, Di = diag(3,1.2,0.8,0),

�
†
i =

⎛⎜⎜⎜⎝
1 0 0 0

1.33 1 0 0
0.25 0.71 1 0

0 0 0 0

⎞⎟⎟⎟⎠
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and σ 2 = 1. The set M of candidate models consisted
of all 24 = 16 possible subsets of {d1, . . . , d4}. Chen
and Dunson (2003) used a N4(04,1000I4) prior for β ,
a Gamma G(0.05,0.05) prior for σ−2, a π0 mixture of
a point mass at zero and a N (0,30) distribution trun-
cated at zero for each dk with π0 ∈ {0.2,0.5,0.8}, and
independent N (0,0.5) distributions for the elements of
�

†
i , given that they are nonzero.
Pu and Niu (2006) carried out a simulation for the

random intercept and slope model

yij = β1 + x2ij β2 + x3ij β3 + x4ij β4

+ x5ij β5 + zT
ij�iui

+ σeij , j = 1, . . . ,20, i = 1, . . . ,10,

with ui = (u1i , u2i , u3i)
T , �i a 3×3 matrix of parame-

ters and zT
ij = (1, x2ij , x3ij ). The explanatory variables

were generated as independent N4(0,AAT ) random
vectors with

A =

⎛⎜⎜⎜⎝
2.00 0.66 0.90 0.02
0.66 2.00 0.68 0.32
0.90 0.68 2.00 0.94
0.02 0.32 0.94 2.00

⎞⎟⎟⎟⎠ .

The true models had β = (β1,1.2,0,2.0,0)T with
β1 ∈ {0.5,1.5,0.2}, one of the variance matrices

�i�
T
i = �i =

⎛⎝ 1 0.5 0
0.5 1 0
0 0 0

⎞⎠ ,

⎛⎝ 1 0 0.5
0 0 0

0.5 0 1

⎞⎠
or ⎛⎝0 0 0

0 1 0.5
0 0.5 1

⎞⎠ ,

and σ 2 = 1. Following their suggested approach, Pu
and Niu (2006) included all three random effects in
the model and computed GIC with an = log(n) and
an = n1/2 for all 31 candidate regression models. Then,
using the selected regression model, they computed the
criteria over 7 candidate variance models. They then it-
erated the process until the selected models no longer
changed.

Shang and Cavanaugh (2008) reported a simula-
tion using the random intercept regression model with
m ∈ {15,20,30,50} and ni = 3 to compare the boot-
strap AIC with mAIC. The full model included 12 co-
variates (they do not explain how these were gener-
ated). The true model had p = 7 with β = 17, γ 2 =
Var(ui) = 2 and σ 2 = 1. The penalties were computed

from B = 500 parametric bootstrap samples. Shang
and Cavanaugh considered selecting the models with
the first covariate, the first two covariates, etc., and with
or without ui . In a second simulation, they reduced the
full model to 5 covariates and for the true model set
p = 4 with β = 14 and considered all possible subsets
of the 5 variables and with or without ui .

Greven and Kneib (2010) carried out a simulation for
penalized spline smoothing and for the simple random
intercept regression model

yij = β1 + xiβ2 + γ ui + σeij ,

j = 1, . . . , ni ∈ {3,6,9,12},
i = 1, . . . ,m ∈ {10,20,40,80}.

The clusters were taken to be of equal size in each
run. The covariate x was chosen equally spaced in
the interval [0,1]. The true models had β = (0,1)T ,
γ 2 ∈ {0,0.1,0.2,0.4,0.6,0.8} and σ 2 = 1. The sim-
ulation compared the ability of mAIC, cAIC with the
asymptotic version of the Vaida–Blanchard penalty,
the Liang–Wu–Zhou (LWZ) penalty and the Greven–
Kneib penalty to choose between the simple linear re-
gression model and the nonlinear or mixed model. The
nonlinearity in penalized spline smoothing is repre-
sented by the random vector u, but there are only two
variance parameters in τ , so both the two models con-
sidered represent cases with a small number of vari-
ance parameters.

In their simulation study, Dimova, Markatou and Ta-
lal (2011) compared a number of different versions
of marginal AIC (mAIC with both finite sample and
asymptotic penalties, mAIC treating � as known, the
REML version mAICR , mAICR treating � as known),
conditional AIC (cAIC with both finite sample and
asymptotic penalties and cAIC using the REML esti-
mates with both finite sample and asymptotic penal-
ties), BIC [which is GIC with an = log(n)] and GIC
with an = n1/2. The full model was the random inter-
cept and slope model

yij = β1 + x2iβ2 + x3iβ3 + x4iβ4 + x5ij β5

+ x2
5ij β6 + zT

ij�iui

+ σeij , j = 1, . . . ,4,

i = 1, . . . ,m ∈ {10,20,50},
with ui = (u1i , u2i , u3i)

T , �i a 3×3 matrix of parame-
ters and zT

ij = (1, x5ij , x
2
5ij ). The explanatory variables

x2i ∼ independent N (0,1), x3i and x4i were generated
from the N (3,4) distribution, and x5i1 = 0, x5i2 = 6,
x5i3 = 12 and x5i4 = 24 so x5i = (0,6,12,24)T . The
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u1i ’s were generated from Gaussian distributions, the
eij were generated from Gaussian or Gaussian mix-
ture distributions ζ N (0,1.2) + (1 − ζ )N (8,16) with
ζ ∈ {0.9,0.8,0.6}. The two true models considered had
(a) β = (3,2,0,0,0,0)T , the (1,1) entry ψ of � i =
�i�

T
i satisfying ψ = Var(u1i ) ∈ {0.2,0.5,1.5,4} with

all other entries zero, and σ 2 = 1.2, and (b) β =
(10,5,0,0,2,0),

�i�
T
i = �i =

⎛⎝ 4 0.5 0
0.5 ψ 0
0 0 0

⎞⎠ ,

with ψ ∈ {0.2,0.5,1.5,4}, and σ 2 = 1.2. Dimova et
al. fitted 42 candidate models to the data. These in-
cluded 6 models with u1i , with u1i and x4ij , with
u1i and (x4ij , x

2
4ij ), with (u1i , u2j ) and x4ij , with

(u1i , u2j ) and (x4ij , x
2
4ij ), and with (u1i , u2i , u3i)

and (x4ij , x
2
4ij ), crossed with models for the regres-

sion structure made up of the 23 − 1 = 7 subsets of
(x1i , x2i , x3i).

Srivastava and Kubokawa (2010) carried out a sim-
ulation study using the independent cluster model (5)
with m = 20 clusters of size ni ∼ 1 + B(8,1/2), where
B denotes the binomial distribution. The full model
had 7 explanatory variables with si ≡ s1 ∈ {1,2,3}
random effects in each cluster. The ni rows of Xi

were generated independently from the N7(07,0.7I7 +
0.3J7) and the ni rows of Zi were generated indepen-
dently from Ns1(0s1,0.7Is1 + 0.3Js1). The true models
had p ∈ {2,4,6} explanatory variables and the same
random effects as the full model, as only selection
on the regression parameters was considered. Srivas-
tava and Kubokawa set βk = 2(−1)k+1{1 + U (0,1)},
for k = 1, . . . , p, � = γ 2Is with γ 2 ∈ {0.01,0.5,1}
and σ 2 = 1. The 7 candidate models had the cor-
rect variance structure and the first, first two, first
three explanatory variables, etc. The simulation con-
sisted of 10 generated values of X and Z with 30
sets of y for each, making 300 replications. They re-
ported the frequency of selecting the correct model for
(p = 2,ψ = 0.01, s1 = 1), (p = 4,ψ = 0.5, s1 = 2)

and (p = 6,ψ = 1, s1 = 3) for both known and un-
known γ 2. The Srivastava–Kubokawa conditional AIC
method (19) using the different estimators of β and v
performed similarly and outperformed mAIC and cAIC
which were also very similar. A second simulation car-
ried out with � = diag(ψ1, . . . ,ψs1) produced similar
results.

Kubokawa (2011) carried out simulations under the
Fay–Herriot model and the random intercept regres-
sion model, essentially comparing marginal and condi-

tional AIC criteria with his Mallows type criteria. The
Fay–Herriot model can be viewed as a special case of
the random intercept regression model in which ni = 1
so n = m and Var(e) = σ 2 is known; in the simula-
tion, the random intercept regression model had clus-
ters of size ni = 4 so n = 4m. The full models had pf ∈
{5,7} explanatory variables; the ni rows of Xi were
generated independently from the Npf

(0pf
,0.7Ipf

+
0.3Jpf

) distribution. The components of u and e were
generated independently from various distributions.
The true models had p ∈ {2,4,6} explanatory vari-
ables with the nonzero coefficients βk = 2(−1)k+1{1+

U (0,1)}, k = 1, . . . , p and various values of γ 2 and σ 2.
A full list of settings is given in Table 3. The simula-
tion was carried out by generating 20 values of X and
50 sets of y for each value of X, making 1000 replica-
tions. In settings I and II, the 7 candidate models had
the correct variance structure so only selection on the
regression parameter including the first, first two, first
three regressors, etc. was considered. In setting III, the
models were also considered with and without the vari-
ance structure. The criteria all performed similarly in
the first two settings (although, as noted in Section 3.4,
the Mallows criteria estimating τ from the candidate
model performed very poorly) and cAIC was supe-
rior for the Fay–Herriot model but slightly inferior for
the random intercept regression model. For selection
on all the parameters, mAIC and cAIC worked well,
but mPEC was poor and cPEC tended to select mod-
els without random effects. Kubokawa concluded that
these criteria are only useful for selecting regression
parameters.

Jiang and Rao (2003) reported results from a sim-
ulation using a crossed three factor regression model.
In the part of the simulation where they considered se-
lecting θ , the full model with mj = 20, ni = 3 (so the
sample size n = 3 × 203 = 24,000) was

y = Xβ +
7∑

j=1

γj Z(j)uj + σe,

with X a n × 5 matrix, β a 5-vector, Z(j) the n × 20
matrices defined in Table 4 and uj independent ran-
dom 20-vectors. The explanatory variables were gen-
erated as standard Gaussian random variables. They do
not explain how the uj ’s and e were generated, but
they are most likely standard Gaussian. The two true
models considered both had β = (2,0,0,4,0)T and ei-
ther γ = (1,0T

6 )T or γ = (1,0,1.5,0T
4 )T . In both cases

σ 2 = 1.5. Jiang and Rao did not specify the set of can-
didate models; implicitly it is the set of 25 − 1 = 31
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TABLE 3
Simulation settings for the simulation reported by Kubokawa (2011). The first two cases are from the Fay–Herriot model in which ni = 1 so
n = m; the last eight are from the random intercept regression model with ni = 4 so n = 4m. In I-1 and I-2, σ 2 is treated as known. II-1 and
II-2 use the same settings, but in II-1 the variance parameters are treated as known. Also, pf is the dimension of the regression parameter β

in the largest candidate model and p is the dimension of the regression parameter in the true model. In the mixture models, C denotes the
Cauchy distribution

Code pf p m γ 2 σ 2 u e

I-1 7 4 10 0.25 0.25 N (0,1) N (0,1)

I-2 7 4 50 0.25 0.25 0.9N (0,1) + 0.1C 0.9N (0,1) + 0.1C

II-1 7 4 10 0.1 1 N (0,1) N (0,1)

II-2 7 4 10 0.1 1 N (0,1) N (0,1)

II-3 7 6 5 1 1 t3 t3
II-4 7 2 30 1 1 t3 N (0,1)

III-1 5 2 5 0 1 – N (0,1)

III-2 5 4 30 0 1 – t3
III-3 5 2 5 1 1 N (0,1) N (0,1)

III-4 5 4 30 1 1 t3 t3

all possible regression models multiplied by the num-
ber of choices in each of L1, L2 and L3. However, L2
and L1 contain the two-way and three-way interactions
of the terms in L3, so it would be more usual to select
from L1 and, only if the model in L1 is not selected,
select from L2, allowing the results of this selection to
determine what we consider for selection in L3. Jiang
and Rao found that the penalty an = ajn = n/ log(n)

worked well.
Bondell, Krishna and Ghosh (2010) undertook a

simulation study to examine the properties of their
LASSO procedure in finite sample size settings. The
full model was the independent cluster model

yi = Xiβ + Zi�iui + σei , j = 1, . . . , ni ∈ {5,10},
i = 1, . . . ,m ∈ {30,60},

with equal size clusters in each run, Xi a ni × 9
matrix of independent U (−2,2) random variables,
Zi either a ni × 4 matrix independent of X with
first column 1ni

and the remaining 3 columns gener-
ated from the U (−2,−2) distribution [when (ni,m) ∈

{(5,30), (10,60)}] or Zi = (1ni
,Xi) a ni × 10 ma-

trix [when (ni,m) = (5,60)], �i either a 4 × 4 or
a 10 × 10 matrix, ui either a 4- or a 10-vector, σ a
scalar and ei an ni -vector. For the true model, for the
first two scenarios (ni,m) ∈ {(5,30), (10,60)}, they
set β = (1,1,0T

7 )T and for the third (ni,m) = (5,60),
they set β = (1,0,1,0T

6 )T . In all three scenarios,

�i�
T
i = �i =

⎛⎝ 9 4.8 0.6
4.8 4 1
0.6 1 1

⎞⎠
and σ = 1. Bondell, Krishna and Ghosh (2010) com-
pared their model selection procedure with the earlier
approach suggested in the literature which first selects
either the regression or variance structure using AIC
and/or BIC while fixing the other at the full model
(e.g., Pu and Niu, 2006). As a further comparison they
also applied the ALASSO, LASSO and a stepwise pro-
cedure for selecting β given τ after first selecting τ
by fixing β at the full model. The new procedure was
shown to be closest to “oracle” and to correctly identify
the true model most often.

TABLE 4
The n × 20 matrices Z(j) used by Jiang and Rao (2003) in their simulation. Here Im is the m × m identity matrix, 1m is the m-vector of

ones and ⊗ is the Kronecker product

L3 L2 L1

Z(1) = I20 ⊗ 120 ⊗ 120 ⊗ 13 Z(4) = I20 ⊗ I20 ⊗ 120 ⊗ 13 Z(7) = I20 ⊗ I20 ⊗ I20 ⊗ 13
Z(2) = 120 ⊗ I20 ⊗ 120 ⊗ 13 Z(5) = I20 ⊗ 120 ⊗ I20 ⊗ 13
Z(3) = 120 ⊗ 120 ⊗ I20 ⊗ 13 Z(6) = 120 ⊗ I20 ⊗ I20 ⊗ 13
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Ibrahim et al. (2011) also undertook a simulation
study and considered six different scenarios for the in-
dependent cluster model. They considered the model

yi = Xiβ + Zi�iui + σei , j = 1, . . . ,12,

i = 1, . . . ,m ∈ {50,100,200},
where Xi is a 12 × 8 matrix with independent rows xT

ij

and xij ∼ N8(08,�X), �X = (0.5|r−s|), Zi = Xi , �i

is a 8 × 8 matrix, ui is a 8-vector, σ is a nonnegative
scalar and ei a 12-vector. For the true model they set
β = (3,2,1.5,05)

T ,

�i�
T
i = �i =

(
�∗

i 03×5

05×3 05×5

)

with �∗
i =
⎛⎝ 1 0.5 0.25

0.5 1 0.5
0.25 0.5 1

⎞⎠ ,

and σ ∈ {1,3}. The full model contains 5 unnecessary
sets of random effects in each cluster. The simulation
study concluded that for selecting the regression pa-
rameters, the SCAD penalty performed best in terms
of estimation error and minimizing overfit. For the vari-
ance parameters, the ALASSO penalty performed best.
In all cases the penalized maximum likelihood esti-
mates performed better than the maximum likelihood
estimates from the full model.

Peng and Lu (2012) carried out a simulation using
the same setting as Bondell, Krishna and Ghosh (2010)
and then their own setting to examine the properties of
their shrinkage method in finite sample size settings.
The full model was the independent cluster model

yi = Xiβ + Zi�iui + σei , j = 1, . . . , ni ∈ {10,20},
i = 1, . . . ,m ∈ {10,20},

with equal size clusters in each run, Xi a ni × 5 matrix
of independent standard Gaussian random variables,
Zi a ni × 4 matrix with columns equal to the first 4
columns of Xi , �i a 4 × 4 matrix, ui a 4-vector, σ a
scalar and ei an ni-vector. For the true model, they set
β = (1,0,1.5,1,0)T ,

�i�
T
i = �i =

⎛⎜⎜⎜⎝
0 0 0 0
0 0.5 0 0.354
0 0 0 0
0 0.354 0 1

⎞⎟⎟⎟⎠
and σ = 1. In their first simulation using the same set-
ting as Bondell, Krishna and Ghosh (2010), Peng and
Lu (2012) compared the effect of using different meth-
ods to select the tuning parameters in their method.

Their conclusion is that BIC is the best method of
selecting their tuning parameters. This conclusion is
based on the average percentage of coefficients that are
incorrectly estimated to be nonzero, the average per-
centage of coefficients that are incorrectly estimated
to be zero, the average size of the selected model and
the probability of identifying the correct model. The
first 3 measures are all marginal measures which are
less stringent criteria than the probability of identify-
ing the correct model. They use the simulation proba-
bility of identifying the correct model to compare their
results with the reported results of Bondell, Krishna
and Ghosh (2010), that is, without recalculating these
estimates for their data. Their method performs very
poorly for the smaller sample sizes but well for the
larger sample sizes. They used the second simulation
setting to compare their parameter estimates in the se-
lected model with the maximum likelihood estimators
for the true model and showed that their performance
is comparable.

Jiang et al. (2008) illustrated the use of the Adaptive
Fence method in two scenarios. The first is the Fay–
Herriot model and they showed that if the data gener-
ating model is

yi = xT
i β + γ ui + ei, i = 1, . . . ,30,

where ui , ei ∼ independent N (0,1), then, for Mc ⊂
Mf , the quantity σMc,Mf

is completely known. They
considered only selection on β and did not com-
pare their results with other selection procedures. The
true models had βT = (1,0,0,0,0), (1,2,0,0,0),
(1,2,3,0,0), (1,2,3,2,0), (1,2,3,2,3) and γ = 1.
Jiang et al. (2008) reported simulation results based on
100 runs for a range of choices of the tuning parameter
bn in equation (31). The second scenario is the random
intercept regression model

yij = xT
ijβ + γ ui + σeij , j = 1, . . . ,5,

i = 1, . . . ,100,

where β is a 5-vector and γ and σ are scalar. They
generated ui ∼ independent N (0,1), ei = (ei1, . . . ,

ei5)
T ∼ independent N (05, (1 − ζ )I5 + ζJ5),

ζ ∈ {0,0.2,0.5,0.8} and xij2, . . . , xij5 ∼
independent N (0,1) so xT

ij = (1, xij2, . . . , xij5). The

true models had βT = (2,0,0,4,0), (2,9,0,4,8),
(1,2,3,2,3) and γ = σ = 1. As a lack-of-fit measure
they choose the residual sum of squares and showed
that the Adaptive Fence chooses the true model in all
100 simulation runs. In comparison, the performance
of two GIC type criteria as introduced in Jiang and
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Rao (2003) is less impressive, particularly when the
true model is the full model and ζ is large.

Jiang, Nguyen and Rao (2009) reported limited sim-
ulation results using the Simplified Adaptive Fence
for a different random intercept regression model, but
again selection only focused on the regression parame-
ters βT = (β1, . . . , β6). The model was

yij = xT
ijβ + γ ui + σeij , j = 1, . . . , ni ∼ P(3),

i = 1, . . . ,m ∈ {10,15},
where γ and σ are scalar, ui, eij , xij1, xij2 ∼
independent N (0,1) and xT

ij = (1, xij1, xij2, x
2
ij1, x

2
ij2,

xij1xij2). A total of 100 simulation runs were run with
two true models with βT = (1,1,1,0,0,0) and β = 16
(i.e., the full model) and γ = σ = 1. As a performance
measure the number of times the true model was se-
lected was used and the reported results only showed
the selection probabilities, which seem to be good,
without comparing them to other selection criteria.

Nguyen and Jiang (2012) evaluated the Restricted
Fence method in a simulation based on data from a
bone turnover study. The setting is the random inter-
cept regression model

yij = xT
ijβ + γ ui + σeij ,

j = 1, . . . ,3, i = 1, . . . ,m = {50,100,150},
where β is a 30-vector and γ and σ are scalar. They
generated ui ∼ independent N (0,1), ei = (ei1, . . . ,

ei3)
T ∼ independent N (03, I3), one explanatory vari-

able corresponding to dietary group as binary and the
remaining explanatory variables as independent Gaus-
sian variables with means and variances the same as
those for the variables in the bone turnover study. The
true models had 7 variables in the mean and γ = σ = 1.
For the Restricted Fence, the variables were divided
into 4 subsets of 7 or 8 variables using biological con-
siderations and 100 bootstrap samples used in each se-
lection. Nguyen and Jiang (2012) compared the Re-
stricted Fence with particular backward and forward
search implementations of information criteria. They
showed that the Restricted Fence underfits when the
sample size is small but performs well when the sam-
ple size increases. They found that the information cri-
teria tend to overfit and that BIC performed best of the
information criteria.
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