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RESEARCH ARTICLE Open Access

Model SNP development for complex genomes
based on hexaploid oat using high-throughput
454 sequencing technology
Rebekah E Oliver1, Gerard R Lazo2, Joseph D Lutz3, Marc J Rubenfield4,13, Nicholas A Tinker5, Joseph M Anderson6,
Nicole H Wisniewski Morehead1, Dinesh Adhikary7, Eric N Jellen7, P Jeffrey Maughan7, Gina L Brown Guedira8,
Shiaoman Chao9, Aaron D Beattie10, Martin L Carson11, Howard W Rines12, Donald E Obert1,
J Michael Bonman1, Eric W Jackson1*

Abstract

Background: Genetic markers are pivotal to modern genomics research; however, discovery and genotyping of
molecular markers in oat has been hindered by the size and complexity of the genome, and by a scarcity of
sequence data. The purpose of this study was to generate oat expressed sequence tag (EST) information, develop
a bioinformatics pipeline for SNP discovery, and establish a method for rapid, cost-effective, and straightforward
genotyping of SNP markers in complex polyploid genomes such as oat.

Results: Based on cDNA libraries of four cultivated oat genotypes, approximately 127,000 contigs were assembled
from approximately one million Roche 454 sequence reads. Contigs were filtered through a novel bioinformatics
pipeline to eliminate ambiguous polymorphism caused by subgenome homology, and 96 in silico SNPs were
selected from 9,448 candidate loci for validation using high-resolution melting (HRM) analysis. Of these, 52 (54%)
were polymorphic between parents of the Ogle1040 × TAM O-301 (OT) mapping population, with 48 segregating
as single Mendelian loci, and 44 being placed on the existing OT linkage map. Ogle and TAM amplicons from 12
primers were sequenced for SNP validation, revealing complex polymorphism in seven amplicons but general
sequence conservation within SNP loci. Whole-amplicon interrogation with HRM revealed insertions, deletions, and
heterozygotes in secondary oat germplasm pools, generating multiple alleles at some primer targets. To validate
marker utility, 36 SNP assays were used to evaluate the genetic diversity of 34 diverse oat genotypes. Dendrogram
clusters corresponded generally to known genome composition and genetic ancestry.

Conclusions: The high-throughput SNP discovery pipeline presented here is a rapid and effective method for
identification of polymorphic SNP alleles in the oat genome. The current-generation HRM system is a simple and
highly-informative platform for SNP genotyping. These techniques provide a model for SNP discovery and
genotyping in other species with complex and poorly-characterized genomes.

Background
Genetic markers accurately distributed throughout a
genome are pivotal to the success of association map-
ping, marker-assisted breeding (MAB), map-based clon-
ing, and studies relating to genome structure and
function. Single nucleotide polymorphisms (SNPs) are

the most abundant type of DNA variation currently
used as genetic markers [1]. SNP assays directly interro-
gate the sequence variation, reducing genotyping errors
compared to assays based on size discrimination or
hybridization. SNP assays are also amenable to high-
throughput technologies, making them an excellent tool
for use in modern genomics research.
Advances in sequencing technology have enhanced gen-

ome-wide SNP discovery, and SNP platforms have been
developed for a number of diploid species. These
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resources have enabled comprehensive genetic analyses in
barley [2,3], rice [4], maize [5], and soybean [6,7], includ-
ing studies on diversity and population structure, com-
parative genomics, and QTL identification [3,5,8-11].
As with SNP discovery methods, SNP genotyping

technologies have proliferated in recent years, with avail-
able platforms utilizing mass spectroscopy [12], direct
sequencing, fluorescence detection, and microchip
hybridization [13]. Each technology has advantages and
limitations. For example, the widely utilized TaqMan®

assay has a high sample success rate, with excellent
repeatability and cluster separation [14] but requires
fluorescence-labeled probes, making the assay cost pro-
hibitive for large numbers of assays. The Illumina Gold-
enGate assay [15,16] is also widely used, but limited to
allele differentiation, and is cost-effective only for a
large number of SNPs run in a single parallel assay.
A practical and more flexible alternative may be avail-
able using amplicon melting analysis in conjunction
with real-time PCR [17]. This method uses unlabeled
primers and interrogates the entire amplicon, providing
an efficient SNP genotyping system in terms of reagent
cost, throughput, and data production.
Although direct detection of sequence variation is

robust and accurate, the requirement of sequence infor-
mation for SNP discovery has been an obstacle in com-
plex uncharacterized genomes with limited funding,
including cultivated oat (Avena sativa L.). Current-
generation Roche 454 pyrosequencing now allows
cost-effective de novo sequencing and assembly with
excellent depth and coverage, low error rates, and rapid
output [18,19]. Novaes et al. [20] sequenced transcrip-
tomes from six tissue types of seven Eucalyptus grandis
(2n = 2x = 22) families using 454 technology. The
sequencing effort generated 148 Mbp of expressed
sequence that assembled into 2,392 contigs. Comparison
of individual reads with a consensus assembly detected
23,742 putative SNPs. These results demonstrate that
current-generation transcriptome sequencing can over-
come obstacles in crops with sparse sequencing
resources; however, additional work is needed to apply
these high-throughput SNP-discovery approaches to
polyploid plant genomes.
Utilization of next-generation sequencing for SNP dis-

covery requires significant data management and analysis
of sequence information. A system for handling data com-
plexity has been developed for pine [21], and could serve
as a model for SNP mining in other species. The method
runs on a Unix/Linux platform written in Perl, using
Phred for base calling, and Phrap and ProbconsRNA for
sequence alignment. Individual alignments are converted
to FASTA files and aligned to an overall consensus. SNPs
are called using a customized WEKA classifier package

and validated manually with Phrap. The hybrid program
increased the speed and accuracy of SNP calls.
Effective SNP discovery in complex genomes would

require additional analysis to consider duplicate loci and
to identify and eliminate pseudo-SNPs produced by mis-
assembly of paralogous and homoeologous sequences
inherent to polyploid genomes. For example, cultivated
wheat, including common wheat (Triticum aestivum,
2n = 6x = 42) and durum wheat (T. turgidum, 2n = 4x
= 28), has been the subject of intense genetic investiga-
tion, but SNP discovery and assay development have not
kept pace with other species of similar importance (e.g.,
rice). A recent report by Akhunov et al. [22] demon-
strated the feasibility of using the Illumina GoldenGate
assay for SNP development in both tetraploid and hexa-
ploid wheat genomes, but also underlined the complica-
tions presented by multiple targets in polyploid
genomes. Although gene duplication is frequent even in
diploid genomes [23,24], redundant loci are far more
prevalent within polyploid genomes, complicating the
discrimination of haplotypes and allele ratios [25,26].
Complications may also arise if polymorphisms are dis-
covered through transcriptome analysis, since the tran-
scriptome only represents copies of expressed alleles.
For example, Adams et al. [27] showed that homoeolo-
gous genes in cotton produced various levels of gene
silencing, with expression biased in different genes and
tissues. If not accounted for, these homoeologous gene
sets could distort and prevent marker development in
regions with subgenome homologies.
Genome assembly will be especially complicated in

cultivated oat, where partial homoeology, numerous
chromosomal rearrangements, and cis- and trans-
sequence duplication exist within the genome. Oat
research is also handicapped by a lack of DNA sequence
information. GenBank holds only a few thousand ESTs,
most of which are from a limited number of genotypes
and tissues [28].
Several attempts have been made to develop good mar-

ker resources in oat. Microsatellite technology has pro-
duced several hundred oat markers [29-34]; however, the
number of robust markers available for routine labora-
tory use is limited [35]. Recently, a high-throughput mar-
ker array based on DArT technology was developed for
cultivated oat [36]. These markers have quickly become
the marker of choice for the oat community; however,
efficient and repeatable use of this technology has thus
far been limited to a single service provider, and the mar-
ker produces a dominant polymorphism which does not
allow discrimination of both alleles at a locus. The lack of
numerous, easily assayed, and co-dominant markers
remains a major barrier in oat genetics research. Whole-
genome SNP discovery is, therefore, a high priority to
advance genetics research in this complex genome.
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Here, we report a method for high-throughput SNP
discovery in cultivated oat, a species with a large, com-
plex, and uncharacterized genome. Specific objectives
were 1) to develop genotype-specific transcriptome
libraries from four cultivars, 2) to mine SNPs by com-
parative alignment of transcriptome data, 3) to validate
SNPs with new-generation melt curve analysis, 4) to
determine putative SNP positions on the current OT
linkage map, and 5) to utilize the SNP loci to study
genetic diversity in a panel of oat germplasm.

Results
RNA extraction
Mean quantities of RNA included 66 μg from shoot tissue,
39 μg from roots, 84 μg from pistillate structures, and
122 μg from mature embryos (Table 1). Individual tissue
samples were pooled within a genotype, yielding, on aver-
age, 311 μg RNA from each of the four oat genotypes.

Roche 454 GS-FLX sequencing and contig assembly
Read depth and coverage were greatest for TAM O-301,
followed by Ogle1040, HiFi, and Gem. Sequencing runs
generated between 180,447 and 381,397 reads per geno-
type (Table 2). Approximately 80% of reads assembled
into contigs, with a mean of 31,777 contigs per genotype
and total contig length ranging from 14.2 to 24.7 Mb.
Individual contig size ranged from 40 to 4416 bp, with
an overall mean of 577 bp and mean SD of 220. Average
transcript coverage for the four genotypes ranged from
3.1× to 4.1×, with a mean of 3.7×.
Of the contigs formed from the four germplasm acces-

sions, matches < e-10 to the UniProt database by
BLASTX numbered 9814, 11374, 12525, and 16333 for
cvs. Gem, HiFi, Ogle, and TAM, respectively (approxi-
mately 40% match across cultivars). Contigs were cate-
gorized by GO molecular, biological, and cellular terms
and the gene classes in common to all cultivars ranged
from 80 to 88% (Figure 1).

in silico SNP detection and assay development
Contig assemblies from TAM sequence reads were most
numerous (42,147 contigs), and were therefore used as
the reference assembly (RA) for in silico SNP detection.

Comparison of genotype-specific reads with the RA indi-
cated that 61% (25,908), 40% (17,101), and 50% (21,089)
of the RA were covered by contigs from Ogle, Gem, and
HiFi, respectively. The SNP screening pipeline was based
on re-assembly of reads from each genotype against the
RA using Roche GS Reference Mapper software, identifi-
cation of all SNP-containing contigs, and elimination of
those not meeting a set of criteria. The first step was the
elimination of polymorphisms identified within the TAM
re-assembly. Although these could be sequencing errors,
they would interfere with clear identification of other
SNPs. Of the 42,147 reference contigs, 2,179 (5%) were
eliminated due to insertion-deletion (indel) polymorph-
ism and 10,514 (25%) contigs were removed because of
ambiguous base calls (N). When comparing the remain-
ing 51,405 reads to the RA, 7,041 (14%) were removed
based on indels, and 6,874 (13%) were removed based on
insufficient read depth (≤ 4). The greatest attrition in
candidate SNPs, however, was based on SNP conserva-
tion between reads of a single germplasm (selecting 100%
consistency within genotypes). In this case, 28,042 (55%)
in silico SNPs were rejected. This conservative in silico
SNP selection method produced 9,448 candidate SNP
loci (18%) for assay development, of which 8,408 (16%)
interrogated SNP variation between a single genotype
and the RA, and 953 (1.8%) and 87 (0.2%) interrogated
variation between the RA and two or three genotypes,
respectively.
In this study, the class containing SNP variations

between all three genotypes and the RA (87) was chosen
to mine SNPs for assay development. This subset was
chosen to maximize mapping efficency in the OT popu-
lation and to identify a small representative cross section
of loci. Of these, 16 contigs were eliminated because
they contained multiple SNP targets within a 100 bp
region, which could be problematic for successful assay
development. Sequences from the remaining 71 contigs
were imported into the BatchPrimer3 v1.0 software [37].
A total of 301 candidate SNP assays were designed, of
which 96 SNPS representing 71 unique RA contigs were
selected for validation.

Table 1 RNA used for cDNA library construction

Genotype RNA (μg) Total RNA (μg) Ratio

Shoot Root Pistillate structures Mature embryo

Ogle1040 68.00 50.77 26.62 173.14 318.53 1:0.75:0.39:2.55

TAM O-301 73.28 19.33 93.28 43.31 229.20 1:0.26:1.27:0.59

Gem 52.10 66.70 62.28 164.17 345.25 1:1.28:1.20:3.15

HiFi 70.80 20.67 155.02 105.87 352.36 1:0.29:2.19:1.50

Mean 66.05 39.37 84.30 121.62 311.34 1:0.60:1.28:1.84

Total 264.18 157.47 337.20 486.49 1245.34
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SNP assay validation
The 96 assays selected to interrogate previously
described SNP loci were validated in Ogle and TAM
and the 136 recombinant inbred lines of the Ogle ×
TAM (OT) population [38]. Sixty-seven primers (69.8%)
generated a robust reaction between the parents, with
52 primers producing clear reactions across the OT pro-
geny. Of these, four revealed a high proportion (approxi-
mately 50%) of heterozygous genotype calls. These were
not considered markers because the heterozygous class
could indicate a mixture of alleles at two different loci.
The remaining 48 primers yielded bi-allelic reactions
with minimal segregation distortion (Figure 2) and were
added to the OT linkage map. Forty-four markers
mapped to 17 linkage groups and one fragment group,
with four markers remaining unlinked (Table 3). In gen-
eral, SNP map positions correlated with previous marker
density, with more SNP markers mapping to larger or
more densely-mapped linkage groups.

Diversity analysis
The 36 SNP markers used for diversity analysis pro-
duced 140 alleles, an average of 3.89 alleles per marker,
suggesting a high frequency of allelic variation. This var-
iation was categorized as 73 alternate SNP alleles, and
67 non-SNP alleles, including 51 insertions or deletions,
6 probable heterozygotes, and 10 null alleles. Although
all markers except RA c14852_2 were multi-allelic, sup-
plementary alleles were confined primarily to non-sativa
species (Additional file 1). Frequent allele variants were
also observed in cultivars Kangaroo and CI4706-2, geno-
types that represent unique origins, and likely unique
genetic backgrounds, within this study (Additional files
1, 2). Indels and heterozygous genotypes were less com-
mon in other accessions.
Cluster analysis separated genotypes primarily accord-

ing to genome constitution, geographic origin, and
genetic ancestry (Figure 3, Table 4). Diploid species
were genetically distinct: A. eriantha (genome CpCp)
diverged at the first node and the A. strigosa accessions
(genome AsAs) were disjoined from the cladogram. The
remaining 33 genotypes separated into two major clades,
with much of the cluster separation correlating with
ancestry. For example, cultivars Ajay and Maverick,

which share a clade, are derived from the same breeding
program, and pedigrees of both genotypes include
Otana, represented on a different branch within the
clade. Terminal clades of cultivars Ogle and Gem, and
Sun II and Assiniboia, are similarly explained: in both
pairs, one genotype is prominent in the pedigree of the
other (Additional file 2, pedigree links). Likewise, Ba 13-
13 is a genetic derivative of #169 [39]. Other relation-
ships appear to be influenced more by geographic
origin. The two A. sterilis genotypes diverged; however,
the accession from Morocco clustered with the two
Moroccan accessions of A. magna. Genotypes represent-
ing a unique geographic origin, such as cultivars Asen-
cao and Kangaroo, tended to branch independently.

SNP sequence validation
Of the twelve primers with sequenced amplicons, seven
yielded additional variations beyond what was expected
from the in silico data: more than one base was poly-
morphic in one of the two cultivars (Figure 4). Since the
additional variations were rare and not consistent across
all reads, problems might have been due to sequencing
or PCR aberrations rather than actual sequence poly-
morphism. An alternate explanation is that the 454
sequencing technology, which was used to discover new
oat ESTs, has been associated with homopolymer errors.
Our filtering methods, which excluded most in-del poly-
morphisms, may have excluded these instances when in
fact they were real variants.

Discussion
High-throughput SNP discovery, a touchstone of mod-
ern genomics, has traditionally relied on substantial
sequence data and until recently has been considered
impractical for uncharacterized species, especially those
with large or complex genomes. Complexities in the oat
genome include paralogous and orthologous gene dupli-
cation, chromosomal rearrangements, and polyploidy.
To address these difficulties, we developed a strategy
integrating current-generation Roche 454 cDNA sequen-
cing and contig assembly with novel bioinformatics,
allele-calling techniques, and HRM validation (Figure 5).
Yields of RNA varied by tissue type and genotype,

with variation introduced by tissue morphology and

Table 2 454 Sequencing data from cDNA libraries of four oat genotypes

Genotype Total
reads

Assembled
reads

#
contigs

Total contig
length (Mb)

Mean contig
length (bp)

length
SD (bp)

Minimum
contig size (bp)

Maximum
contig size (bp)

Average
coverage (x)

Ogle1040 283,478 231,057 32,245 18.09 561 205 41 2217 4.1

TAM O-301 381,397 307,751 42,147 24.70 586 217 40 4303 4.0

Gem 180,447 137,743 23,681 14.20 598 238 43 4229 3.1

HiFi 235,589 188,015 29,036 16.40 564 220 42 4416 3.6

Total 1,080,911 864,566 127,109
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partitioning of shoot/root tissue mass in developing
seedlings. Thus, mature embryo-derived RNA is repre-
sented at a three-fold level compared to root-derived
RNA, with intermediate levels obtained from shoots and
pistillate structures. Although tissue representation in
these samples is not identical, the RNA ratios could
allow backward extrapolation for research applications
where tissue origin is a factor.
Variation in total RNA quantities did not appear to

affect sequencing yields. TAM had the least amount of
RNA, but the largest number of sequencing reads and
greatest total contig length. However, TAM was the first
library to be sequenced, and was used to calibrate opti-
mal read numbers for the remaining genotype libraries.
The increased read depth and coverage of TAM quali-
fied this library as a reference genotype for sequence
alignment and SNP discovery.
The use of non-normalized cDNA libraries resulted in

substantial cost savings, allowing resources to be direc-
ted toward greater read depth and largely compensating
for the tendency toward abundant transcripts. Addition-
ally, the use of non-normalized libraries retained data
that would be required for transcript quantification.
This information, coupled with knowledge of RNA
ratios derived from each tissue type, could be useful in
gene expression studies, making the sequence informa-
tion from these libraries valuable for a wide array of
downstream research.
Contigs assembled from TAM reads were used as the

reference assembly. Since TAM was one of the mapping
parents used for validation, we were able to design SNP
assays effectively with a high probability of success.
Without using a reference assembly, many more candi-
dates could have been incorporated erroneously into the
initial design, including those categorized as ambigu-
ously polymorphic. Furthermore, the use of a composite
reference assembly could introduce additional ambigu-
ities, since homologous loci from different cultivars
would occasionally assemble into separate contigs. Alter-
natively, the other cultivars could be used incrementally
as reference assemblies to interrogate additional loci
that are absent in the first reference assembly, but this
would require subsequent removal of duplicate loci. Dif-
ferentiation between paralogous sequences is mainly
accounted for by the parameters of the assembly, which
were apparently relaxed enough to exclude non-allelic
sequences from individual contigs. Screening low- and
high-stringency assemblies for single-copy genes can
help gauge the ability to successfully assemble known
gene sets.
Proportions of SNP candidates removed during

in silico SNP selection provided insights into specific
phases of the SNP selection pipeline. Within the RA, 5%
of contigs were removed due to indel polymorphism,

A)

B)

C)

Figure 1 Gene Ontology (GO) comparisons. Comparison of
biological (A), cellular(B), and molecular (C) GO terms associated
with germplasm accessions Ogle1040, TAM O-301, Gem, and HiFi.
Term overlaps are shown with a four-way Venn diagram
constructed using VENNY. The shared areas for all germplasm were
83% (3221), 88% (749), and 80% (1668) for the different GO terms
assigned to the biological, cellular, and molecular GO term
classifications, respectively. The numbers of GO terms matched to
assembled sequences were 12260 (Ogle), 16040 (TAM), 9605 (Gem),
and 11156 (HiFi).
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suggesting a low rate of misassembly. Sequence quality
was of greater significance: 25% of contigs were removed
from the RA on account of base call ambiguity. When
comparing alternate reads to the RA, 14% of contigs
were removed due to indels; however, since indels were
not relevant to this study, conservation within or
between genotypes was not compared and thus the pro-
portion based on misassembly is unknown. Insufficient
read depth eliminated 13% of contigs, indicating ade-
quate depth of coverage in 87% of reads and highlight-
ing the suitability of this technology for characterization
of large and complex genomes. The greatest attrition,
accounting for 55% of all in silico SNPs, was caused by

lack of SNP conservation between sequence reads of a
single genotype. These ambiguities were collectively due
to misassembly, which is likely to be minor based on
the rate within the RA, and to sequence redundancy
caused by gene duplication and subgenome homologies.
Systematic differentiation of duplicate and homoeolo-

gous loci is beyond the scope of this paper and would
require sequence-based analysis or comparison of
expression differences within genes. However, the sub-
stantial number of SNPs that were eliminated due to
within-genotype variation does underscore the complex-
ity intrinsic to polyploid genomes, and the necessity to
account for this complexity in SNP development

A) SNP validation

B) SNP diversity analysis

Ogle

Gem

MN 84

Maverick

TAM-O-301

Sun II

PI 411817

PI 657407

Ogle

Ogle

TAM-O-301

TAM-O-301

Figure 2 High-resolution melt analysis. Examples of SNP validation (A) and SNP diversity analysis (B) using primer oat EST SNP c22314_1. In
example (B), the melting curves of primary alleles are shown red and green, those of heterozygous genotypes in blue, and those of genotypes
found to contain a deletion within the amplicons in purple.
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Table 3 SNP allele, map position, and segregation ratio of markers polymorphic in the Ogle1040 × TAM O-301 (OT)
mapping population

SNP Allele OT LGa SRb

Ogle1040 TAM O-301

C51_1 T C OT_4 0.90

C51_2 C T OT_4 0.81

C104_1 G A OT_30 0.49

C250_1 A G OT_20_29 2.00

c318_1 G C OT_34 1.61

c540_1 A G Frag_14 1.08

c841_2 T G OT_32_33 0.71

c841_3 T G OT_32_33 0.68

c876_1a T G OT_16 0.89

c876_1b A T OT_10 1.32

c1196_1 A T OT_6 1.30

c1361_1 C A OT_32_33 0.91

c1579_1 G C OT_20_29 1.08

c2043_1 C G OT_31 0.91

c2106_2 - - OT_32_33 0.96

c2391_1 C T OT_32_33 0.68

c2391_2 C T OT_30 0.82

c2391_4 C G OT_34 1.01

c2391_5 G T OT_34 1.09

c2539_1 - - Unlinked 1.60

c2680_1 T C OT_24 0.94

c3212_1 A G OT_24 1.48

c3768_1 G A OT_24 1.03

c4096_1 - - OT_13 0.86

c5153_1 G A OT_27 0.79

c5252_1 G A OT_11 0.94

c5469_1 A G OT_1 1.05

c7461_1 G A OT_2 1.08

c10486_1 T G Unlinked 0.92

c11164_1 A G OT_11 1.16

c11164_2 C T OT_6 1.21

c12344_1 C G Unlinked 0.79

c12516_1 T A OT_27 0.82

c12516_2 G A OT_34 1.08

c14852_2 C A OT_2 0.78

c15098_1 C T OT_34 1.00

c16908_1 C A OT_10 0.73

c22314_1 G T OT_11 0.94

c23257_1 A C OT_13 0.96

lrc14030_1 T A OT_27 0.79

lrc16053_1 A G OT_8 1.13

lrc16053_2 C T OT_32_33 0.67

lrc16053_3 T C OT_32_33 0.89

lrc27472_2 A C OT_32_33 0.68

lrc34490_1 C A OT_15 0.92

lrc38531_1 C A OT_34 0.94

lrc38531_2 - - OT_8 0.75

lrc40347_1 G C Unlinked 0.81
aLinkage group assignment is based on appending new SSR loci to the existing OT linkage map [Ref. [35]] using Map Manager QTX.
bSR = Segregation ratio, calculated as the quotient of O/T allele frequencies within the population.
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protocols. Previous efforts in oat marker development
have always led to large proportions of ambiguous mar-
kers and/or low success rates [29-31,35]. Thus, the
necessity to be selective in this work is not a surprise,
but rather, an important opportunity in quality control.
The recognition of subgenome homology and duplicate

loci represents a fundamental challenge to in silico
sequence analysis, but one which could facilitate effi-
cient development of robust markers and establishment
of tools for accurate subgenome dissection in species
with large and complex genomes.
The large proportion of robust assays produced in this

study, coupled with the clean placements of loci on the
OT map and logical cluster resolution of the diversity
panel, provide compelling evidence that the pipeline
presented here is a useful method for global SNP dis-
covery. However, the SNP assay validation and direct
sequencing suggested that sequence polymorphism
across genotypes did not consistently reflect the exact
SNP identified by in silico methods. All SNPS were
expected to follow a pattern where Ogle, Gem and HiFi
contained identical alleles that differed from TAM. In
Additional File 1, it is evident that almost half of the
SNPS used in diversity analysis did not follow this exact
pattern. This probably results from a variety of reasons:
there could be variation in the genotypes used for the
assay, the HRM assay may occasionally identify a non-

Figure 3 Cluster analysis. Diversity analysis of oat genotypes was based on the UPGMA method and EST-derived oat SNP markers. PI 291990
and PI 573585 are A-genome diploids (A. strigosa); Cc 7278 is a C-genome diploid (A. eriantha); #169 and Ba 13-13 are CD-genome tetraploids
(A. magna); and BYU 210 is a AC-genome tetraploid (A. insularis). Remaining genotypes are hexaploid.

Table 4 Additional Avena genotypes used for SNP
diversity analysis

Taxon Identifier Country of origin Ploidy Genomes

A. strigosa PI 573585 Spain Diploid AsAs

A. strigosa PI 291990 Israel Diploid AsAs

A. eriantha Cc 7278/19 Morocco Diploid CpCp

A. magnaa #169 (M26) Morocco Tetraploid CCDD

A. magna Ba 13-13b Morocco/Israel Tetraploid CCDD

A. insularis BYU 210 Italy Tetraploid AACC

A. sterilis PI 657407 Morocco Hexaploid AACCDD

A. sterilis PI 411817 Iran Hexaploid AACCDD
aSyn. A. maroccana.
bDomesticated A. magna [Ref. [39]].
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target polymorphism, and the original sequence data
may contain errors. Errors may also have been intro-
duced during sequencing of the PCR amplicons, or
through the preparatory process of cloning and purifica-
tion [40].
Application of high-resolution melt analysis facilitated

confirmation of informative polymorphism (Figure 2).
Amplicons not corresponding to expected genotypes
were easily discriminated based on the visual interface, a
feature that provided ancillary information such as
amplification of more than one fragment per genotype,
rate and intensity of amplification, and presence of
insertions and deletions within the amplicon. In the pre-
sent study, this information was used to study sequence
conservation across Avena genotypes. Using HRM, we
have seen conservation within expressed genic regions
of cultivated oat germplasm, and occurrence of indels in
related Avena species. These results suggest that HRM
is the technology of choice to study the evolutionary
ancestry of SNP loci.
Although the primer regions were frequently con-

served even across ‘wild’ Avena species, considerable
diversity in amplicon sizes occurred due to insertions
and deletions within the amplified fragment. These addi-
tional alleles allowed dissection of the diversity panel,
with cluster separation indicated primarily by genetic
ancestry and genome similarities. Unlike wheat, diploid
predecessors of tetraploid and hexaploid oat have not
been identified, and plasticity within genomes makes it
unlikely that diploid ancestors will ever be recognized
unequivocally, since extant diploids have likely diverged
since oat polyploidization. However, the relationships of

non-sativa genotypes within this study provide insight
on the structure of genomes present in these species.
The diploid species, A. strigosa (AsAs) and A. eriantha
(CpCp) diverged from both tetraploid and hexaploid gen-
otypes. Avena eriantha clustered with a major clade,
although on an independent branch; however, both
A. strigosa genotypes were disjoined from the dendro-
gram, suggesting dissimilarity of this genome with the
A genome in tetraploid and hexaploid oat species. This
result corroborates previous studies, which showed
more frequent chromosomal rearrangements in the
A genome, and less A-genome homology between oat
species of different ploidy levels [41-43]. The tetraploid
A. magna species (genomes CCDD) were clustered inde-
pendently, between two major clades, while A. insularis
(genomes AACC) clustered within a clade comprised of
hexaploid genotypes (AACCDD), suggesting greater
similarity of these genomes with the corresponding gen-
omes of cultivated oat. Although the two A. sterilis
(AACCDD) accessions were separated, both clustered
with other hexaploid genotypes, likewise indicating simi-
larity of the genomes.
Morphological and cytogenetic studies have suggested

that A. insularis, rather than A. magna, is a probable
tetraploid ancestor to cultivated oat, largely due to
C-genome variations [39,44,45]. Recent studies in
A. magna have provided further evidence for a divergent
C genome, using patterns of minor allele clustering to
define genome origin of individual linkage groups and
to establish genome relationships within Avena species
[unpublished data, Oliver et al.]. Given the divergence of
the C genome, the sequence similarity and reassortment

A) Simple polymorphism

B) Complex polymorphism

Figure 4 Sequence validation. Sequencing of real-time PCR amplicons using oat EST-SNP primers revealed both simple (A) and complex (B)
polymorphism between Ogle1040 (O) and TAM O-301(T). Individual reads are identified by primer name (c2760_1 and c3768_1) and genotype
(O and T). Sequences were aligned using Geneious v4.8.3.
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within the A and D genomes, and the resulting tendency
to assemble composite AD contigs, it seems likely that a
disproportionate number of AD SNP loci were removed
due to misassembly, filtering bias, or redundant loci.
Thus, the C genome could be overrepresented in these
SNP markers. In genetic map construction, this bias
would result in seven more densely-populated linkage
groups, an outcome which is suggested, but not con-
firmed, with our limited data (Table 3). Future work
with large-scale marker development and mapping, and
physical anchoring with monosomic oat hybrids, should
help to resolve this question.
Further validation of this marker development

approach was provided by the linkage map positions of
markers polymorphic in the OT population. Considering
the small sample size, SNP markers showed remarkable

coverage, mapping across 17 of the 23 existing linkage
groups. Additionally, the proportion of SNP makers
mapping to the framework provides internal evidence
for mapping accuracy of the markers.
Several groups of SNP markers were derived from a

single contig (Table 3). Of these, two pairs mapped to the
same locus, likely representing haplotypes which differ at
more than one SNP. Three pairs mapped to different loci
on the same linkage group. Although separate map posi-
tions were not predicted for these markers, independent
SNP loci with a shared contig origin could represent
sequence duplication within the chromosome, a preva-
lent occurrence within the oat genome [46]. More pre-
dictable were groups of SNPs representing the same
contig but mapping to different linkage groups. This may
result from interlocus variation that was confounded
with allelic variation in the in silico discovery process,
and it underscores the need to validate all in silico-
derived SNPs through mapping. Although this adds com-
plexity to the process, the characterization of related loci
can be useful in the discovery of alternate disease-resis-
tance alleles or epistatically-interacting genes, and may
help to define homoeologous relationships between oat
chromosomes. As an example, previous work has sug-
gested association of multiallelic SSR map positions and
interacting disease resistance loci as a method for identi-
fying potential homoeologous chromosomes [35]. In that
work, SSR alleles derived from the same primer or
sequence were mapped to different linkage groups. Of
particular interest were two pairs of linkage groups
which appeared to represent homoeologous chromo-
somes: OT_32_33 and OT_27, and OT_6 and OT_11,
which contain alternate alleles of known resistance genes.
Similar linkage group associations were identified using
groups of SNP markers derived from the same contig.
For example, SNP loci from RA c11164 mapped to LG_6
and LG_11, linking closely to the respective alternate
QTL and homoeologous thaumatin-like protein (TLP)
loci [35,47]. A less direct connection was observed using
a combination of RA c2391 and RA c12516: loci from RA
c2391 mapped to OT_32_33 and OT_34, and loci from
RA c12516 mapped to OT_27 and OT_34. Taken
together, these shared contig sequences could suggest
homoeologous chromosome representations from the
three oat genomes. Other data points potentially obscure
the data, such as RA c2391, which mapped to OT_30 as
well as OT_32_33 and OT_34. Nonetheless, the putative
correlations are compelling and warrant future research
to confirm these identities and establish other possible
homoeologous relationships.

Conclusions
The SNP discovery and validation pipeline presented in
this study has been shown to be an effective method for

Figure 5 SNP discovery pipeline. Schematic representing a
sequence for SNP discovery in a complex genome. In silico removal
of ambiguous polymorphism was used to optimize candidate SNP
sequences prior to primer design and validation.
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identification of SNP markers in oat, a species with a
complex and poorly-characterized genome. These mar-
kers had a high assay validation rate and proven utility
in a variety of applications. In this study, we provide evi-
dence that interrogation of SNPs from the same contig
might allow delineation of homoeologous chromosomal
relationships between genomes. Additionally, interroga-
tion of SNP loci with HRM revealed a potential applica-
tion for studying the evolutionary ancestry of the loci.
Overall, this work provides the first set of oat-based
SNP markers, and a pipeline for large scale development
of a much-needed genomic resource. Impacts of this
work will be seen in areas of QTL and association map-
ping, and studies of genome structure and evolution,
leading to the accelerated improvement of oat through
marker-assisted breeding.

Methods
Plant materials
Four oat cultivars were selected for cDNA library con-
struction and sequencing (Additional file 2, rows 1-4).
Contig alignments from these cultivars were used to
identify candidate SNPs. Validation of SNP assays was
performed using Ogle and TAM parental lines and the
136 F6 derived recombinant inbred lines of the OT
mapping population [38]. Analysis of SNP diversity was
evaluated using a panel consisting of the four genotypes
used in marker development and 22 additional lines
selected to represent genetic diversity in North Ameri-
can oat breeding germplasm (Additional file 2, rows
5-28). Selection of this material was based primarily on
principal component analysis of DArT marker poly-
morphism [36]. Also included in the diversity panel
were eight genotypes representing five different Avena
species (Table 4). These materials were selected to
represent three ploidy levels and various genome combi-
nations, to facilitate a broader study of allele composi-
tion within Avena.

RNA and DNA isolation
Total RNA for development of transcriptome libraries
was isolated from four tissue types: mature embryos,
pistillate structures or immature embryos, etiolated
shoots, and roots (Additional file 3). Tissues were har-
vested from seed tracing back to a single genetic stock
for each genotype. Seed for each genotype was surface-
sterilized with 5% sodium hypochlorite (NaClO) and
plated on moist filter paper under sterile conditions.
Mature embryos were excised approximately 24-
30 hours after plating, while shoots and roots were har-
vested after approximately five days. Plates were kept in
the dark until tissue was collected. Pistillate structures
were collected approximately at anthesis from surface-
sterilized panicles produced in a growth chamber.

Growth chamber conditions consisted of 21d at 7.2°C
with a 9-h photoperiod, followed by a 30°C/21°C daily
phase with a 15-h photoperiod. Harvested tissues were
flash-frozen in liquid N2 and stored at -80°C, and RNA
was extracted using an UltraClean plant RNA isolation
kit (Mo Bio Laboratories, Cat. No. 13300-50) according
to the manufacturer’s guidelines. RNA concentration
from each tissue type was determined using a Nano-
Drop® ND-1000 spectrophotometer and pooled for each
genotype, as listed in Table 1. RNA pools were frozen
(-80°C) and shipped to Beckman Coulter Genomics
(Beverley, MA) for cDNA library development and
sequencing.
DNA for SNP validation and linkage analysis was

extracted using a cetyl trimethyl ammonium bromide
(CTAB) protocol. In brief, seedling leaf tissue was frozen
at -80°C, ground in liquid N2, and incubated with 1 ml
extraction buffer (0.35 M sorbitol, 0.3 M TrisHCl pH
8.0, 5 mM EDTA pH 8.0, 2 M NaCl, 2% CTAB, 5%
(w/v) N-Lauroylsarcosine, 2% (w/v) Polyvinylpyrrolidone
(PVP40, K29-32), and 0.5% (w/v) sodium metabisulfite)
at 65°for one h. DNA was extracted with 24:1 chloro-
form:isoamyl alcohol, precipitated with isoproanol,
washed with 70% EtOH, and resuspended in 10 mM
Tris buffer.

cDNA library construction
Total RNA for each genotype was isolated from pooled
RNA pellets by sample lysis using TRIzol reagent and
dissolved in nuclease-free water at an approximate con-
centration of ≥1 μg/μl. Poly(A)+RNA from total RNAs
was isolated by two rounds of oligo(dT) selection with
oligo(dT)-coated magnetic particles (Seradyn, Inc.).
From the poly(A)+RNA, cDNA libraries were con-
structed using an oligo dT primer-adapter containing a
NotI site and Moloney Murine Leukemia Virus Reverse
Transcriptase (M-MLV RT) to prime and synthesize
first strand cDNA. After second strand synthesis, dou-
ble-stranded (ds) cDNA was size fractionated (>1.2 kb)
and cloned directionally into the NotI and EcoRV
sites of the pExpress 1 vector. Primary clones were pro-
duced for each genotype from one bulk ligation (300 ng
pExpress 1 vector, NotI-EcoRV cut, and 120 ng of NotI-
digested cDNA per 120 μl ligation) followed by electro-
poration into T1 phage resistant E. coli.

Roche 454-Ready cDNA and sequencing
The four synthesized library DNAs were digested with
NotI, and in vitro RNA transcripts were produced using
the SP6 RNA polymerase promoter. First strand cDNA
was made from these transcripts using a modified pri-
mer adapter that reduces the size of the poly(A)
sequence to about 20 As. After synthesis of the second
strand, ds cDNA was blunt ended and size fractionated.
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This ds cDNA was resuspended in TE, pH 8.0, to
between 110-125 ng/μl. Published Roche 454 GS FLX-
Titanium protocols were followed for sequencing. In
brief, 3-5 μg DNA was nebulized to a mean size range
of 40-800 bp, followed by size selection of fragments
>300 bp by column exclusion and Ampure™ (Agen-
court Bioscience) isolation. Correct size selection was
confirmed on an Agilent DNA 1000 LabChip. Adapters
were ligated onto the fragments and fragments with cor-
rect adapters were selected using library capture beads.
Single stranded fragments were isolated with 0.125 N
NaOH, neutralized with acetic acid, and purified. Single
stranded libraries were validated qualitatively by the
Agilent RNA Pico 6000 LabChip and quantitatively by
the Invitrogen Ribogreen assay. Standard library dilu-
tions were made according to the published protocol.
Each library was amplified onto DNA capture beads

by emulsion PCR (emPCR). DNA capture beads were
collected by washes with isopropanol, Roche 454
emPCR collection reagents, and filtered syringes.
Sequencing primer was annealed by thermocycling and
collected beads were quantified by counting on a Beck-
man Multisizer. Beads for each genome were placed on
the picotitre plate and sequenced on a Roche 454 GS
FLX instrument. Associated image analysis and base-
calling software were performed with standard protocols
and default parameters. 454 reads were generated using
the Roche 454 GS-FLX Sequencer.

Sequence assembly and annotation
Sequence assembly was performed using the MIRA
assembly program [[48], http://sourceforge.net/projects/
mira-assembler] version 3.1 with 454 EST assembly spe-
cific parameters. The MIRA 3.1 assembly software was
used in place of the Roche 454 Newbler (gsAssembler)
version 2.0 based on flexibility of the parameter condi-
tions which were part of the software package; current
versions of the Roche gsAssembler now have added
parameter selection and generate assemblies comparable
to those of the MIRA version used. Of the four geno-
types sequenced, TAM had the greatest read depth and
was therefore used as a reference for base calling of can-
didate SNPs.
Each contig was searched against the UniProt Knowl-

edgebase (Release 15.13, Jan 2010) using BLASTX, and
matches which were≤E-10 and at least 30% similar were
compared to annotated terms of the Gene Ontology
(GO) Consortium [49]. Using GO/UniProt comparison
tables (gene_association.goa_uniprot, Apr 2010), candi-
date GO assignments were predicted on the basis of
contig matches to the UniProt reference sequences.
Categories were assigned on the basis of biological,
functional, and molecular annotations available from
GO. Molecular GO terms were compared between

genotypes using a four-way Venn diagram constructed
using Venny [50].

in silico SNP identification
The Roche gsMapper software was run for all Roche
454 sequencing runs against the reference contig
assembly. Candidate SNPs were selected based mainly
on header file data, which included contig name,
nucleotide start and end position, reference and poly-
morphic base, variation frequency, and sample depth
or redundancy (Additional file 4). Since the software
called all sequence differences between the reference
and other genotypes, removal of ambiguous poly-
morphism was required to optimize SNP calls. in silico
SNPs were removed for: 1) nucleotide variations
greater than one base; this excluded regions of com-
plex polymorphism, 2) nucleotide variations designat-
ing an “N” or “-”; this excluded non-uniform
polymorphism and insertion/deletion, 3) nucleotide
variations with a frequency less than 100% within a
genotype; this avoided non-uniform polymorphism,
4) nucleotide variations with a sequencing depth less
than five; this assured accuracy (Additional file 5).

SNP assay design, validation, and diversity analysis
Contigs containing in silico SNPs were upload into
BatchPrimer v1.0 http://avena.pw.usda.gov/demos/batch-
primer3 following the NCBI dbSNP FASTA format with
SNP alleles masked using the IUB/IUPAC nucleic acid
code [37]. Primers were picked using the “Single base
extension (SBE) primers and SNP (allele) flanking pri-
mers” type. Default settings were used to select both the
SNP-specific and flanking primers with the only excep-
tion being an optimal product size of 90 bp +/- 30 bp.
Likewise, default settings were used for penalty weights.
Assays for which both flanking primers and forward and
reverse orientation SNP primers could be designed were
considered successful and validated (Additional file 6).
Assay validation was performed using high-resolution

melt (HRM) analysis of real-time PCR products. The
reaction comprised 1× SsoFast EvaGreen Supermix
(BioRad, #172-5201) with 55 ng genomic DNA and 0.5
μM forward and reverse primers in a 12.5 μl reaction
volume. Thermocycling was performed in 96-well PCR
microplates on a BioRad C1000 thermal cycler with a
CFX96 optics module, using the following reaction con-
ditions: initial denaturation at 98°C for 2 min; 46 cycles
of 98°C for 2 s and 55°C for 5 s, with a fluorescent read-
ing taken at the end of each cycle; and a melt curve ana-
lysis, with a melt gradient from 65°C to 95°C, increasing
in 0.2°C increments every 10 s, with a fluorescent read-
ing taken at the end of each increment. The HRM ana-
lyses were carried out using BioRad Precision Melt
Analysis Software Version 1.0.534.0511. Genotypes were
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assigned by examining the difference and melt curves,
based on relative fluorescence units (RFU) as a function
of melting temperature. Map positions of markers poly-
morphic in the OT population were assigned by
appending new loci to the existing OT linkage map [35]
using Map Manager QTX [51].
High-resolution melt analysis was used to evaluate 33

SNP markers across the diversity panel. For each mar-
ker, genotypes not corresponding to the bi-allelic model
were noted and scored as an insertion (larger difference
RFU), deletion (smaller difference RFU), or heterozygous
(intermediate between standard genotypes), according to
the difference plot.
To study genetic structure and relationships within

the diversity panel, genetic similarities were estimated
for the oat lines using Dice’s index [52] with NTSYSpc
ver. 2.20q [53]. Prior to analysis, the allele of each SNP
locus and/or presence or absence of an indel was coded
as one or zero to produce a binary data matrix. From
the similarity matrix, a dendrogram was constructed
using the unweighted pair group method with averages.

SNP sequence validation
To validate SNP sequence, DNA of Ogle and TAM was
PCR amplified, using the same reaction and thermocy-
cling conditions as for SNP validation. PCR products
were separated on 1% agarose, and DNA bands were cut
from the gel and dissolved in elution buffer (10 mM
magnesium acetate tetrahydrate, 0.5 M ammonium acet-
ate, 1 mM EDTA, and 0.1% (w/v) SDS). Gel fragments
were incubated overnight at 37°C, and DNA was puri-
fied from the solution using 24:1 chloroform:isoamyl
alcohol, washed twice in 70% EtOH, and resuspended in
H2O. Resuspended products were used as a template to
reamplify the fragment, and products were checked on
an agarose gel.
Gel-purified DNA was transformed into the pGEM®-

T Easy Vector System using JM109 competent cells,
following the manufacturer’s protocol (Promega,
Madison, WI, USA). DNA was extracted from the plas-
mid using the GenElute Plasmid Miniprep kit (Sigma,
St. Louis, MO, USA) and 300-400 ng plasmid DNA
was amplified using Big Dye cycle sequencing and
M13 forward (5’ GTA AAA CGA CGG CCA GT 3’)
and reverse (5’ CAG GAA ACA GCT ATG AC 3’) pri-
mers. The sequencing reaction profile included 25
cycles of 96°C for 10 s followed by 50°C for 6 s, and
60°C for 4 min. Amplified PCR product was purified
with Sephadex G-50 (GE Healthcare) and sequenced
with an ABI3730xl DNA Analyzer (Applied Biosys-
tems, Foster City, California). Sequenced vectors were
screened using NCBI VecScreen and the region of
interest was confirmed by BLASTing each sequence
against the NR database in NCBI. Sequences which

were conserved with mRNA, cDNA clones, and
hypothetical proteins of grass families were taken as
the insert of interest and included in this study.
Sequences were aligned using Geneious v4.8.3 [54].

Additional material

Additional file 1: Diversity panel allele designations. Allele calls were
based on high-resolution melting analysis of PCR amplicons generated
with 36 EST-SNP markers in a panel of 34 diverse oat genotypes.
Supplementary alleles were designated as insertion (In), deletion (Del), or
null (no amplification). When SNP sequences were not available, alternate
alleles were designated X and Y.

Additional file 2: Origin and pedigree links of oat genotypes used
in SNP development, validation, and diversity analysis. The first four
genotypes were used in cDNA library construction and sequencing and
SNP marker discovery. All genotypes in this table, together with the
additional genotypes listed in Table 4, were used for SNP genotyping
and diversity analysis.

Additional file 3: Tissue types. RNA was extracted from etiolated
shoots (A) and roots (B), pistillate structures (C), and mature embryos (D)
from four different oat varieties. Tissues were grown at standardized
conditions, and RNA for each tissue type was extracted at the same
stage of development.

Additional file 4: Header report files generated by Roche gsMapper.
Powerpoint file displaying header report files generated by Roche
gsMapper.

Additional file 5: Command line processing of header files and
sequences for SNP candidate design. Powerpoint file displaying
command line processing of header files and sequences for SNP
candidate design.

Additional file 6: Primer and allele sequences of SNP markers
mapped in the Ogle1040/TAM O-301 RIL population. Word DOC file
displaying primer and allele sequences of SNP markers mapped in the
Ogle1040/TAM O-301 RIL population.
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