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Abstract 
In the current work, instantaneous adaptation in speech recognition is performed 
by estimating speaker properties, which modify the original trained acoustic 
models. We introduce a new property, the size of the model space, which is 
included to the previously used features, VTLN and spectral slope. These are 
jointly estimated for each test utterance. The new feature has shown to be effective 
for recognition of children’s speech using adult-trained models in TIDIGITS. 
Adding the feature lowered the error rate by around 10% relative. The overall 
combination of VTLN, spectral slope and model space scaling represents a 
substantial 31% relative reduction compared with single VTLN. There was no 
improvement among adult speakers in TIDIGITS and in TIMIT. Improvement for 
this speaker category is expected when the training and test sets are recorded in 
different conditions, such as read and spontaneous speech. 

 
Introduction 
In this paper, initial work is presented on 
including a new speaker property for speaker 
adaptation. This property is the size of the 
space spanned by the set of trained models. It 
is well known that this type of acoustic 
property is closely related to articulation 
clarity, speech rate, and to difference between 
speech styles, such as read and spontaneous 
speech (e.g. Lindblom, 1963, Nord, 1986). 
There are also indications that the reduced 
spectral space of spontaneous speech in 
comparison with read speech is a major cause 
of the decrease of recognition accuracy in 
spontaneous speech (Nakamura, Iwano and 
Furui, 2008). These findings support the 
hypothesis that adaptation to this property 
would improve recognition performance in 
these types of mismatch. 

In previous work, we have used vocal tract 
length and spectral slope for instantaneous 
speaker adaptation (Blomberg & Elenius, 
2008, 2009). In the current paper, model space 
scaling is jointly estimated with these 
properties 

Model space scaling 
We apply the procedure, in a framework where 
the speaker properties are estimated by 
maximizing the likelihood output of the 
recognizer on the test utterance. In this search, 
the property values are implemented by 
property-specific transformations on the 

trained models and a recognition procedure is 
performed for each examined value. An 
alternative to transforming the models would 
be to perform the inverse transformation on the 
test utterance. We have chosen to operate on 
the models, since this facilitates phoneme-
specific transformation. 

The transformation implements a simple 
radial movement of the mean vector of each 
mixture component in a set of continuous-
density HMMs towards/away-from a center-
of-gravity point which is common to all 
models in the set. The new position of a 
component is derived by scaling its distance to 
the center-of-gravity by a scaling factor.   

For a model space scaling factor α, 0 < α, 
the scaled mean feature vector of a mixture 
component will be 
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where uijk is the average feature vector of 
mixture component number k in state number j 
of model number i and CGH is the center-of-
gravity of the model set H. A scale factor value 
0 < α < 1 corresponds to a compression of the 
model space. α > 1 corresponds to an 
expansion. This linear equation is basically the 
same as one which was used to map formant 
frequencies of short vowels in mono-syllabic 
words to those spoken in sentences 
(Stålhammar, Karlsson and Fant, 1973).  

TMH - QPSR Vol. 51

77



 

 

It should be noted that linear scaling in the 
spectral or cepstral domains will not give the 
same result as in the formant frequency 
domain. Furthermore, studies have mainly 
been performed on vowels and the function  
for consonants is not as well known. For these 
reasons, it is uncertain if the simple linear 
interpolation formula in Eq. (1) will model the 
actual relations accurately enough to improve 
recognition performance. 

It is possible to scale the static and the time 
differential elements differently. Even if both 
categories may be important for scaling, it is 
quite likely that the best scale factor value 
differs between them. It may therefore be 
necessary to estimate separate values for these 
feature categories. 

The speech rate affects both static and 
dynamic features and is consequently expected 
to have impact on the model space. For this 
reason, it may be of interest to use speech 
corpora with mismatch in this respect for 
experiments. Children’s speech has been found 
to be generally slower compared with adults 
(Lee, Potamianos and Narayanan,  1999) and is 
therefore a good candidate for evaluation. It 
would also be interesting to study read vs. 
spontaneous speech. This is planned for future 
work. 

Three variance scaling functions have been 
considered. These are: (i) no change, (ii) the 
same scale factor as for the mean values and 
(iii) squared mean scale factor. In preliminary 
experiments, the best performance was 
achieved when the variance was not changed. 
This was used for the subsequent experiments 
in the paper. Further studies are required for a 
more decisive conclusion.  

Experiments 
In the experiments performed, model space 
size is evaluated in combination with 
frequency warping (Vocal Tract Length 
Normalization, VTLN) (Lee and Rose, 1996) 
and spectral slope. A low number of values of 
each property are examined in all 
combinations with the other properties. In 
these preliminary experiments, the model 
space scaling factors were tentatively set to 8 
values from 0.8 through 1.5 with a linear step 
of 0.1. The frequency warping factor was 
quantized into 16 log-spaced values between 
0.8 and 1.7 in TIDIGITS and between 0.79 and 
1.24 in TIMIT. Spectral slope was 

implemented by two parameters, a spectral real 
pole and a spectral real zero. The pole and zero 
cut-off frequencies were varied in 8 
logarithmically spaced steps between 100 and 
4000 Hz (Blomberg and Elenius, 2009).  

Corpora 
Two American-English corpora, TIDIGITS 
and TIMIT, were chosen for initial evaluation. 
TIDIGITS consists of digit strings spoken by 
adults and children of both genders. The adult 
test set consists of 28583 digits.  The adult 
male, the adult female and the children’s test 
sets contain 14159, 14424, and 12637 digits, 
respectively. Models were trained on two sets: 
the adult (male + female) and the adult male 
training speakers. Evaluation was performed 
for the separate adult, male, female and 
children’s test sets.  

TIMIT contains read sentences of 630 adult 
speakers. The training set consists of 4620 
utterances spoken by 462 subjects. The full test 
set of 1344 sentences from 168 speakers was 
used for evaluation. 

System 
The TIDIGITS experiments were performed 
using a connected-digit recognition system 
with triphone HMMs implemented in HTK. In 
TIMIT, monophones and a phoneme pair 
grammar (equal probabilities) were used.  

In both cases, the acoustic models had 3 
states with GMMs consisting of 32 mixture 
components and diagonal covariance matrices. 
Models were trained with a 57-dimensional 
acoustic feature vector, composed by 18 
MFCCs and normalized log energy and their 
velocity and acceleration coefficients. Feature 
extraction was performed at a frame rate of 
100 Hz with a 25 ms Hamming window and a 
mel-scaled filterbank of 38 filters in the range 
corresponding to 0 to 7.6 kHz.  

Frequency warping was implemented as a 
piece-wise linear function using a linear 
transformation of models in the cepstral 
domain and truncation from 18 cepstral 
coefficients to 12 after transformation as in 
(Blomberg and Elenius, 2008). A standard  39-
element feature vector was, thus, used in the 
decoder. 

To reduce the computational load of 
searching the very large space of speaker 
property values, the estimation was performed 
by a tree-based joint search algorithm 
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(Blomberg & Elenius, 2009). In this procedure, 
an iterative recognition search starts at the root 
of the tree, which contains broad models 
representing all allowed values of the speaker 
properties. Child node models each represent a 
subset of the mother node property values. The 
maximum scoring child node for the test 
utterance is selected for further search until a 
leaf node is reached, whose corresponding 
models represent a single value of each 
property. 

In the absence of separate development 
data, the insertion likelihood (“penalty”) was 
adjusted to minimize the error rate on the 
baseline case of adult test data using the 
original adult model.  

Results and Discussion 
Results on TIDIGITS for varying sets of 
speaker properties and combinations of 
training and test speaker categories are 
presented in Table 1. Adding model space size 
adaptation to VTLN and spectral slope reduces 
the error rate by around 10% relative for 
children using adult or male models. The 
improvement when including this property 
indicates that there is a systematic difference 
between adult and child speech in the size of 
their spectral space and that the proposed 
technique can compensate for this. The 
spectral space difference agrees with (Lee, 
Potamianos and Narayanan, 1999).  

There is no such error reduction visible 
between any of the adult speaker categories. A 
possible interpretation is that there is no space 
size mismatch between the two categories 
male and female speakers. Even though there 
may be differences between individual adult 

speakers in this respect, this variability is 
already included in the training data.  

In order to have an indication of which 
elements of the acoustic feature vector that are 
mainly involved in the improvement with 
model space size adaptation, we ran two new 
experiments for children’s speech against male 
adult models. The experiments differed from 
the previous ones in that only the static or the 
time differential elements were adapted. The 
results are presented in Table 2. 

When model space size was performed only 
on the static elements of the feature vector, the 
error rate was not reduced compared with no 
size adaptation. When instead adapting only 
the time differential elements, the error rate 
decreased compared with adapting both static 
and dynamic elements. These results show 
clearly that it was the dynamic properties, 
which reduced the error rate by this kind of 
adaptation.  

Even lower error rate was achieved by 
another selection criterion in the hierarchical 
search tree. When the model with the highest 
likelihood along the search path was chosen, 
the error rate was lowered further to 2.09%.  

The distribution of the estimated size scale 
factor in the adult-male/child case and when 
only the time differential feature elements are 
adapted is displayed in Figure 1. For a majority 
of the utterances, the model space is 
compressed. Evidently, children’s speech has 
in general slower and smoother transitions than 
that of adult males. This is in agreement with 
previous findings that children’s speech is 
slower than that of adults (Lee, Potamianos 
and Narayanan, 1999). It is also obvious that 
the minimum allowed factor value has been set 
too high. Still better results are expected when 
this will be corrected in further experiments.  

 

Table 1. WER for adaptation to different sets of speaker properties in TIDIGITS. Model space scaling 
is denoted “Size”. 

Train set Adult Adult Adult Adult Male Male Male Male 
Test set Adult Male Female Child Adult Male Female Child 
Original  0.55 0.76 0.35 3.17 6.44 0.58 12.19 46.73 
Size 0.55 0.76 0.35 2.99 5.84 0.56 11.02 44.76 
Slope 0.53 0.73 0.33 2.95 5.51 0.58 10.41 42.41 
VTLN 0.54 0.73 0.35 1.23 0.64 0.52 0.76 3.56 
Slope+Size  0.52 0.73 0.33 2.65 5.00 0.57 9.35 40.11 
VTLN+Size 0.54 0.72 0.35 1.20 0.64 0.54 0.74 3.36 
VTLN+Slope 0.55 0.74 0.36 1.07 0.62 0.52 0.66 2.83 
VTLN+Slope+Size 0.54 0.74 0.35 0.96 0.63 0.54 0.71 2.58 
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Table 2. Word error rate with size estimation 
of different parts of the acoustic feature vector. 
Training and test speakers were male adults 
and children, respectively. 

No size adaptation 2.83 
All features adapted 2.58 
Only static features adapted 2.85 
Only Delta+Accel. features adapted 2.46 
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Figure 1. Histogram of number of utterances 
with estimated model space scale factor for 
time-differential acoustic features in children’s 
speech using male adult models. 

 
A few experiments have been performed on 

TIMIT. Due to computational load 
considerations, spectral slope was excluded 
from adaptation. The results are shown in 
Table 3. 

Table 3. TIMIT results (Phoneme Error Rate). 
Both static and dynamic features are adapted. 

Baseline VTLN    VTLN+Size
37.03     36.66 36.64 

 
In the adult/adult condition of TIMIT, there 

is a small improvement from VTLN but no 
further improvement from model space 
scaling, similarly to TIDIGITS. We tried 
scaling only static or differential features as 
well as estimating different scale factors for 
the two feature groups. These settings had only 
marginal influence on the result. A likely 
explanation to the lack of improvement in 
TIMIT is that there is no speaker mismatch 
between training and test speakers in the model 
space size respect. 

Conclusions 
Speaker adaptation by adjustment of model set  
size is efficient for the recognition of 
children’s speech using adult or male adult 

models. Adding model space size to vocal tract 
length and spectral slope in a joint estimation 
framework lowered the word error rate by 10% 
and 9% relative, respectively, for the two 
training speaker categories. When also 
excluding static features from adaptation, the 
error rate using male adult models was further 
decreased by 5% relative. This overall 
combination of VTLN, spectral slope and 
model space scaling represents a substantial 
31% relative reduction compared with single 
VTLN.  

The method needs to be further developed 
for better scaling of the static features. For 
vowels, scaling in the formant frequency 
domain would be a natural choice, but the 
theoretical advantage is reduced by the  
unavoidable formant tracking errors.  

Still another possibility would be to allow 
time varying model space size, as has been 
done for VTLN (Elenius and Blomberg, 2010).  

Further experiments include testing on 
corpora with speech style mismatch between 
training and test, such as between read and 
spontaneous speech.  
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