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Model Specification in the Analysis of Spatial Dagence

Abstract

The recent surge in studies analyzing spatial digrgse in political science has gone hand in
hand with increased attention paid to the choiceesifmation technique. In comparison,
specification choice has been relatively neglea®dn though it leads to equally, if not more,
serious inference problems. In this article we ya®four specification issues. We argue that
to avoid biased estimates of the spatial effeetsearchers need to consider carefully how to
model temporal dynamics, common trends and comrhocks, as well as how to account for
spatial clustering and unobserved spatial hetemgenThe remaining two specification
issues relate to the weighting matrix employedtha creation of spatial effects: whether it
should be row-standardized and what functional faonchoose for this matrix. We
demonstrate the importance of these specificaBsnes by replicating Hays’s (2003, 2009)
model of spatial dependence in international capéba rate competition. Seemingly small
changes to model specification have major impactsthe spatial effect estimates. We
recommend that spatial analysts develop their tbeoof spatial dependencies further to
provide more guidance on the specification of tiséneation model. In the absence of
sufficiently developed theories, the robustneseesiilts to specification changes needs to be

demonstrated.
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1. Introduction

Political units often spatially depend on each ptimetheir policy choices. For example,
capital tax rates in one country are typically etiéel by tax policies in other countries.
Patterns of spatial dependence have been studietess as diverse as social policies
(Franzese and Hays 2006, Brooks 2007, Cho 2003eyBand Rom 2004; Jahn 2006),
monetary policies (Simmons and Elkins 2004; Plimgred Troeger 2008), tax and fiscal
policies (Basinger and Hallerberg 2004; Hays 2@089; Swank 2006, Pliumper et al. 2009),
trade and investment policies (Mansfield and Raidth2003; Elkins, Guzman and Simmons
2006), military spending and armed conflict (Shimd aVard 1999; Salehyan and Gleditsch
2006), democratization (Gleditsch and Ward 2008jusion of environmental technologies
and standards (Perkins and Neumayer 2008, 200@)nany others.

A search through the top 50 (in terms of total Qitpolitical science journals in the
Social Sciences Citation Index revealed very fawdists published in the 1990s that included
spatial effects, but almost 50 articles alreadyliphbd in this decade. This surging interest in
analyzing spatial dependence in the political smenwas fuelled by two developments: the
swift increase in global market integration, tedogocal changes and cross-border
communication on the one hand, and the rapid ingr@nt in both computing power and
spatial estimation techniques on the other hancgé/m 1988, Beck et al. 2006; Franzese and
Hays 2007a, 2009; Ward and Gleditsch 2008). Whigefirst development raised the interest
in spatial dependencies, the latter, which culneidain the development of instrumental
variable and spatial maximum likelihood estimatéasilitated their actual estimation.

Contrary to the aforementioned work, this papemdd concerned with estimation

techniques in spatial econometrics. Instead, itviges a complementary discussion of



specification issue5As it is well understood, misspecification incresghe probability of
wrong inferences at least as much as does theelodi@a biased or inefficient estimator.
Specifically, we analyze in detail the importance four specification issues in spatial
econometrics. First, failure to model temporal dyies and to control for common shocks
and common trends in cross-sectional time-seriggmoel data is likely to bias the estimated
coefficient of the spatial effect variable, withetbias often being upward. Second, failure to
model appropriately spatial patterns in the depenhgariable also biases the spatial effect
estimation. The remaining two issues relate diyeitithe connectivity or weighting matrix.
Different, but equally justifiable specificationd the weighting matrix can easily lead to
starkly differing results. This threatens the vi§icand reliability of inference. In particular,
we show that row-standardization of the weightingtnm changes the relative influence of
other units on the spatial effect, thereby altethmgestimation results. Despite being regarded
as usual practice by spatial econometricians, nibtsalways appropriate, requires theoretical
justification and should therefore not be appliathaut further thought as a general default
rule. Furthermore, changes to the functional forirthe weighting matrix, whether row-
standardized or not, can dramatically change thmated results of the spatial effect. This is
of great importance because existing theories afiapdependence typically do not derive a
functional form for the weighting matrix. This isnalified by the fact that one cannot simply
interpret estimation results on the spatial eféeecevidence for the correct specification of the
weighting matrix.

Are these specification problems in spatial anayserse than in other types of
econometric analysis? On the one hand, the ansaveorly be ‘no’. Misspecification may

lead to estimation results that largely differ frahe true effects and this is no different in

To be sure, the existing literature discussesesohthe issues covered here, but not all of thadret
in great detail. There are also more issues ofifspaton choice of course, which we cannot discuss
here for reasons of space (see, for example, Dair2606).
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spatial econometrics than it is in any other ecostoim subfield. However, we suggest that
these problems are more common in spatial econmsiebrecause ‘getting the specification
right' is more difficult for at least three reasorigst, theories predicting spatial effects
usually provide little guidance on the functionafirh of weighting matrices. Second, spatial
effects are notoriously difficult to distinguishkofn common shocks, common trends as well
as spatial clustering and unobserved spatial hggaeity. And third, applied researchers still
have little understanding of the specification essin spatial econometrics and are thus less
likely to avoid or solve them. In sum, the speatfion problems in spatial econometrics are
not different from specification problems in othemeas as such, but they tend to be more
pertinent and more difficult to solve.

We use one of Hays’s (2003, 2009) models of taxpmimon for replication purposes.
We have chosen his work not because his modelaaved (they are not), but because they
represent the state of the art of empirical reseerto spatial dependence in political science.
We demonstrate that model specification has a lagge effect on the estimation results for
the spatial effect. Whilst we show this for the gfie results reported in Hays (2003, 2009),
we contend that the specification issues we disatesselevant to all studies of spatial depen-
dence and that the identified problems occur witkitpve probability in all of them.

Researchers can model temporal dynamics and cdy eastrol for common trends and
shocks as well as for spatial clustering and unoleskespatial heterogeneity. However, the
remedies typically recommended come with probleftheir own. There is, similarly, no
easy solution to the problem of specifying the \gigg matrix. This opens spatial analysts to
the charge that they can produce results thahéir thypotheses by making one or more
seemingly arbitrary specification decisions. Weeptivo potential solutions to this problem.
Ideally, scholars formulate their theories more poghensively providing sufficient detail on
the spatial effect modeling. Theory should alwagsdble to decide on whether to row-

standardize the weighting matrix and while one wdtely be able to specify the exact
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functional form of the matrix, one can often ex@uzkrtain functional forms. In the absence
of sufficiently specified theories, the second-b&stition is to show in robustness tests how
the results on the spatial effect change if difiéreinctional forms of the weighting matrix

are used.

2. Modeling Spatial Effects: a Very Brief Overview

There are three ways of modeling spatial effecaspely as spatial lag, spatial-x and spatial
error models. Spatial lag models regress the degendariable on the spatially lagged

dependent variable, that is, on the (weighted) ealof the very same dependent variable in
all other units. Using a scalar notation, in a nbhoaross-sectional time-series or panel

dataset, the spatial lag is formally modeled asvd?

Yi = ,OZ Wikt Y + /Bxit + & ) (1)
k

wherei =1,2,.N, t=1,2,..T, k=1,2,.N. Notation is standard so thgt is the value of the

dependent variable in unitat timet, estimated with a spatially lagged dependent b&eia

(Z Wiktyktj, X, is a vector of unit specific variables influenciryg and ¢, is an identically
k

and independently distributed (i.i.d.) error praceko these, researchers may want to add the
temporally lagged dependent variable as well amgemd unit fixed effects if necessary.

The spatial autoregression parametegives the impact of the spatial lag on. The

spatial lag consists of the product of two elemeitge first element is afN [N [T block-
diagonal spatial weighting matrix, which measurbe telative connectivity betweeN
number of units andN number of unitk in T number of time periods in the off-diagonal

cells of the matrix (the diagonal of the matrix atues of zero as there k and units cannot

2 The analysis of spatial dependence is more fleXilut also more complicated in dyadic data — see

Neumayer and Plumper (2010) for an analysis afhallpossible forms of modeling spatial dependence
in such datasets.
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spatially depend on themselves of course). Thenseetement we call the “spatigl.® It is
an N[T matrix of the contemporaneous value of the depandariable, whereN is the
number of unitk andT the number of time periods

Spatial-x models regress the dependent variabla@weighted) values of one or more

independent explanatory variables (other than épeddent variable) in all other units:

Yie :a+pZWiktht+:8Xit t& . (2)
k

Spatial error models seek to identify spatial deleece in the error term, which is assumed to

consist of two parts: one is an independent andtichly distributed spatially uncorrelated

componentg, , the other is a spatial componepEWiktukt. The model to be estimated is
k

thus:

Yie :a+ﬂxit +& +pZWiktUkt . 3)
k

Political scientists have focused much of theierdibn on the choice of estimation technique
for these three models, paying less attention &rifipation issues.Here we will instead

focus entirely on specification issues, disregaydentirely the choice of estimator. The
choice between these models is of course also @fispon issue. However, it is an issue
which has been extensively addressed by Beck, sddand Beardsley (2006), so we refer

readers to their exhaustive discussion. Here, vnearttrate on spatial lag models, which are

We would call this the spatially lagged dependeriable, which we regard as the more appropriate
term, if Anselin (2003: 159) and others did not tige term for the entire spatial lag.
The spatialy may also be temporally lagged which can be adgaaas for estimation purposes — see
Beck et al. (2006) for details.
Based on Monte Carlo analyses, Franzese and (280@7a) have demonstrated that Spatial-OLS,
Spatial-2SLS and Spatial-ML provide flexible apprbes to estimating different types of spatial
dependencies. For example, using OLS as an estimfspatial dependence (spatial-OLS) works well
if researchers either analyze spatial-x modelspatial lag models with sender-receiver relations in
which senders cannot also be receivers. Using anmax likelihood estimator (spatial-ML) instead
usually changes results only marginally. If, howeve a spatial lag model the sender can also be a
receiver, researchers need to solve the endoggmaibfem, which can be done by using instruments
for the spatially dependent variable (spatial-2SaShy maximizing the joint likelihood of all theath
(spatial-ML).
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the most popular in political science, but evenythwe say applies similarly to spatial-x and

spatial error models.

3. Temporal Dynamics, Common Trends, and Common Shocks

Most spatial lag models in political science usesstsectional time-series or panel data,
which have well known advantages over cross-seditidesigns. Amongst other things, they
allow accounting for temporal dynamics, common dsrand common shocks. At the same
time, however, failure to control for these comations in the data generating process has
even more severe consequences in spatial thamnadatd panel data analysis. Such failure
will typically lead to upward biased spatial effe@nd may thus cause wrong infererftes.
Even though this problem is widely discussed in theoretical literature in spatial
econometrics (e.g., Beck et al. 2006; FranzeseHay$ 2006), only a minority of analyses
control for common trends by adding the lagged ddpaet variable to the list of regressors
(e.g., Hays 2003, Franzese and Hays 2006, Swark) 20@&dditionally account for common
shocks by further adding period dummies (e.g. Badled Rom 2004; Madariaga and Poncet
2007; Franzese and Hays 2006; Hays 2009).

To demonstrate the effect of failing to model temgpaynamics and control for common
shocks and common trends, we analyze the casepitalcéaxation in OECD countries.
Theories of tax competition contend that when edpst fully or partially mobile, independent
jurisdictions compete to some extent for a comnankiase (Wildasin 1989; Plumper et al
2007). The lower the effective tax rate in one gdittion relative to those of other
jurisdictions, the larger the share of the mobd& base it will attract. Thus, low capital

taxation leads to an inflow of capital, which aadéein the short run increases the tax base of

Downward bias is possible in rare cases. For el@ndownward bias is possible in international tax
competition if countries with similar initial leverespond differently to common shocks. Governments
have more than one tax instrument to generate u@grA common shock in tax revenues may thus
lead to higher labor taxation in some countriesinarease in VAT in others and rising capital tates

in a third group of countries. If these respongesnegatively correlated to the initial patterncapital
taxes, then not controlling for common shocks mawmivard bias the estimate of the spatial lag.
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the capital importing jurisdiction so that tax raue may increase even though the tax rate
becomes smaller.

Yet, the success of one jurisdiction in attractmgbile capital leads to a decline in the
tax revenue for the other jurisdictions. If polimakers in these jurisdictions want to avoid
budget deficits, they either need to increase taxesmmobile factors, cut spending, or
competitively reduce their own capital taxes toaatt an inflow of capital. Early models of
tax competition focus on the latter option and wmeacally predicted a ‘race to the bottom’,
that is, in equilibrium, tax rates on mobile taxsés approach zefo.

However, empirical analyses do not find much supgor the race-to-the-bottom
hypothesis (Hays 2003, 2009; Basinger and Hallerl2604). Indeed, ‘taxes on mobile
capital continue to be the rule rather than theepton’ (Plumper et al 2009). Effective
capital tax rates remain positive and convergerntean tax rate rather than approaching zero
(Hays 2009). Hays’s theory of capital tax rate cetitpn explains this by arguing that the
ability of governments to actively engage in suompetition is constrained by the domestic
political incentive structure governments face hpctapital being imperfectly mobife.

Common wisdom has it that the average effectivétaagax rate in OECD countries has
declined over time, at least since the abolitiogagital controls in the early 1980s. However,
as figure 1 shows, while a common trend clearlgtsxbetween 1966 and 2000, it is upward

rather than downwardWhether common shocks also exist is not clear fiois figure, but

See inter alia Wildasin (1989), Zodrow and Mieszkki (1986), and Frey (1990).

At least three other theories have been put fahw@ explain the apparent puzzle of tax ratesnigito
converge to the low-rate equilibrium predicted byly models. First, Rodrik (1997), Garrett (1998)ia
Swank and Steinmo (2002) argue that shifting taxemees to immobile factors, especially to labor, is
costly. Second, Basinger and Hallerberg (2004) amppersistently high capital tax rates by the
existence of veto-players which prevent some gowvernis from lowering tax rates. Third, Plimper et
al. (2007) show that empirical observations arknie with a model in which capital mobility is lited
and governments are constrained by voter prefeseiocdow budget deficits and tax fairness.

The upper and lower bands denote the averageatex plus and minus one standard deviation,
respectively.
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one should keep in mind that OECD countries welectgd by two oil price hikes during this

period.

0.6

0.5

0.2

Effective Capital Tax Rate

0.1

0.0

' 19I70 ' 19I75 ' 19IBO ' 15;85 ' 19I90 ' 19I95 ' 2000
Year
Figure 1: Common Trend in the Average Effective i@dprax Rate of OECD Countries

(Data Source: Hays 2009).

If they are not fully explained or controlled, commtrends and common shocks bias the
estimation of spatial lags because when one courasyrelatively high (low) effective tax
rates, the majority of the other countries and thgsweighted mean of the other countries
also has relatively high (low) effective capitak teates even in the absence of spatially
dependent tax policies. In other words, failuredmtrol for common trends and shocks can
make one believe that spatial dependence exisexy @vthere might not be any such
dependence. To demonstrate this, we replicate stete the analysis of Hays (2009), which
builds upon Hays (2003%.He analyzes effective capital tax rates in an lamz@d panel of
20 OECD countries over the time period 1966 to 28 main variables of interest are

capital mobility interacted with various measurégalitical economy that are of no further

10 Recognizing that a failure to include period duesrmay bias the spatial lag coefficient, Hays @00

includes period dummies, which were missing frony$1&003).
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interest here. In addition to a temporal lag ad a&kountry and period fixed effects, a spatial

lag enters the estimations with row-standardizadtiguoity as the weighting matrix (see sec-

tion 5 for a discussion of row-standardization).

Table 1: Replication of Hays (2008) and S-OLS Eation of the Model

dependent variable: model 1 model 2
effective capital tax rate replication
S-ML S-OLS with robust s.e.
temporal lag (LDV) 0.772 0.771
(0.025) *** (0.034) ***
spatial lag 0.040 0.047
(0.010) **=* (0.026) *
capital mobility 0.088 0.088
(0.038) * (0.035) *
union density 0.037 0.037
(0.059) (0.053)
left government -0.018 -0.018
(0.019) (0.025)
european union 6.670 6.613
(2.723) * (3.214)
capital mobility interacted with
capital endowment -0.004 -0.004
(0.001) *** (0.001) **=*
consensus democracy 0.016 0.017
(0.010) (0.016)
union density -0.000 -0.000
(0.000) (0.001)
left government 0.000 0.000
(0.000) (0.000)
european union -0.074 -0.074
(0.030) * (0.035) *
unit fixed effects yes yes
period fixed effects yes yes
W row-standardized yes yes
weight contiguity contiguity
R2 0.921 0.935
Nobs 581 581

Note: results reported in Hays (forthcoming) aré exactly replicable due to minor changes in the
data structure. * statically significant at .1 level ** at .01 level **at .001 leve

Model 1 reported in the first column of table 1lregtes column 2 of table 2 in Hays (2009),

using, like Hays, a maximum likelihood (ML) estiraatin the next column we estimate the

same model with ordinary least squares (OLS) inst€ae coefficient size of the spatial lag

variable in model 2 is slightly higher than undeL Mstimation, but substantively identical.
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The standard errors are higher in OLS estimatiomdicating the greater efficiency of ML
estimators.

There is evidence for positive spatial dependeritgher tax rates in contiguous
countries raise the domestic tax rate and viceavérs lower tax rates. For comparison we
stick to the ML estimations in what follows. Theosiiterm spatial effect of the ML
estimations is 0.04, whereas the asymptotic long-t&patial effect — computed according to

Plumper, Troeger and Manow (2005: 336) — is

0¥, . ( j Tt
~. =2 P2 Wi M ) (4)
az Vvlkt ykt ; ; kt Skt 0

k

BXig t-T
Where S, is the coefficient of the lagged dependent vaeablis the number of periods with

t denoting a single period artd- T meaning that periotl approaches T. In our case, the
asymptotic long-term spatial effect is approximat@I[L8.

Table 2 presents the estimation results of threeetsp which deal differently with
temporal dynamics, common trends and common sho&ksviating from Hays’s
specification, we first exclude the lagged depebhdanable from the estimations (model 3),
then the period fixed effects (model 4), and thethlihe lagged dependent variable and the
period fixed effects (model 5). Note that the perixed effects control for common shocks
and partly capture common trends (Plumper et &520vhile the lagged dependent variable

solely but effectively captures common trends atwbants for temporal dynamics.
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Table 2: Different Treatments for Common Trends Godhmon Shocks.

model 3 model 4 model 5
Idv excluded period fe excluded ldv and period
fe excluded
temporal lag 0.776
(0.023) ***
spatial lag 0.124 0.078 0.257
(0.016) *** (0.012) *** (0.039) ***
unit fixed effects yes yes yes
period fixed effects yes no no
W row-standardized yes yes yes
weight contiguity contiguity contiguity
N 581 581 581

Note: all models include the full battery of comtvariables reported in table 1.

In model 3, the degree of spatial dependence i240.Which is slightly but statistically
significantly lower than the long-term spatial etf@f model 1, which was 0.18. In model 4,
the coefficient size of the spatial lag almost destwhile the standard error increases only
slightly compared to model 1. The asymptotic loagwt effect of the spatial lag is now
approximately 0.35. Clearly, failure to control fstiently for common shocks and common
trends tends to inflate the spatial effect. In middboth period dummies and the temporal lag
are left out. The spatial effect is approximate38

The reported differences in the size of the spafi@ct thus demonstrate the importance
of accounting for temporal dynamics and controliogcommon shocks and common trends,
especially when the data is so obviously trendeil asfor capital taxation. Importantly, for
capital taxation, we are on safe grounds arguireg the common trend is not primarily
caused by spatial dependence, because accordadfjtteories, tax competition should not
lead to the common increase in capital taxationclvican be observed in the data, but to a
decrease instead. If, however, the common treruhidy due to spatial dependence, then
inclusion of the temporally lagged dependent vdgiatan downward bias the coefficient of
the spatial lag if the lagged dependent variablesdoot correctly specify the temporal

dynamics. Moreover, the inclusion of period fixeffieets will in general induce a small-

13



sample Hurwicz-Nickell downward bias of the spated coefficient (Franzese and Hays

2007b: 67).

4, Spatial Clustering, Unobserved Spatial Heter ogeneity and Unit Fixed Effects

Spatial patterns in the distribution of the dependeariable do not need to be caused by
contagion. The odds are that contiguous or geograibh close political units are more
similar than more distant units. Observable as wasllunobservable phenomena such as
cultures and customs, preferences and percepomstitutions and institutions, and so on
are very often spatially clustered, which leadspatial patterns in the dependent variable
even in the absence of spatial dependence. Sutilgpatterns can also emerge along non-
geographic ordering principles. For example, caltusimilarity can impose similar
constraints on policy-makers from very distant does and the absence of capital controls
suggest a certain type of banking regulation evewudh regulatory agencies may not
compete with or learn from each other. If theseemeinants of spatial patterns in the
dependent variable are observed (i.e. the regreshor spatial patterns), we refer to them as
spatial clustering and we denote unobserved spatsterns as unobserved spatial
heterogeneity (spatial patterns in errors).

Distinguishing such spatial clustering and unobsérspatial heterogeneity from spatial
dependence is a problem commonly known as Galt(¥889) problent! If they are not
adequately modeled, then a spatial analysis wilirispsly suggest spatial dependence. In
other words, the challenge is to identify the tapatial effect. Identification rests on the
assumption that all the spatial pattern of the ddpet variable that has nothing to do with
spatial dependence itself is fully explained by itiependent variables other than the spatial
lag. This is a strong assumption, which will nateof hold, so that the estimated coefficients

for the spatial effects are likely to be biased.

Franzese and Hays (2008) discuss the sourceadackrof this problem in some detail.
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A popular method for mitigating the problem createy the unobserved spatial
heterogeneity is the inclusion of unit fixed efecBuch models take out all of the between
variation in the data and are estimated based emwithin variation of the data in each
observational unit only. This reduces bias becamsespatial clustering or unobserved spatial
heterogeneity in policylevels are fully captured by the fixed effects. Howevepatial
clustering or unobserved spatial heterogeneityalicp changesmay still bias the estimates
of the spatial lag even if researchers simultangoemntrol for common shocks. Moreover,
the inclusion of unit fixed effects reduces theiogfhcy of the estimate of the spatially
clustered independent variables, such that themt gstimates become less reliable.

Thus, this seemingly easy fix to the problem oftigp&lustering and unobserved spatial
heterogeneity does not necessarily provide an adecolution. In addition, the inclusion of
unit fixed effects reduces mis-specification bigssmall samples it also introduces another
bias into the estimations known as Nickell-Hurwhias (Franzese and Hays 2007b). More
importantly perhaps, unit fixed effects estimatadso changes the tested hypothesis. To see
why this is the case, let us briefly consider ththiv transformation of the data in the unit
fixed effects model formally. Starting from equati@l), the within transformation generates

as the new estimating equation

Yi =¥ :a+,0(zwiktykt‘zw.kykj+...+g“ -& . (5)
k k
where
1 = 1<
V=T Ve 2w = 2 D e Y (6)
t=1 k t=1 k

and likewise for all control variables and the btastic error.
This within-transformation effectively eliminatedet level effects of all observed

variables, including the dependent variable, thatiaplag and all control variables. By
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regressing deviations of the dependent variablenfits unit mean on deviations of all
regressors from their unit means, hypotheses oal leffects become virtually untestable.
Similar problems occur if researchers estimateetbffices-in-differences models, which in
addition often suffer from failure to model adeaatheterogeneous lag structures (Plumper
et al. 2005)?

In many cases, the advantages of using unit fix@fécts will outweigh the
disadvantages. In particular, if the between vemabf the transformed variables is small
relative to the within variation, the loss in efiocy remains unimportant relative to the
decline in omitted variable bias and the decline problematic spatial clustering and
unobserved spatial heterogeneity. In other casmsever, the specification of a unit fixed
effects model is either too costly in terms of @éncy loss (when the within variation is
small relative to the between variation) or not rappate (when the theory suggests level
effects).

Researchers should therefore first clearly spetigir theory and justify whether they
expect level effects or effects in changes. Inrma@onal tax competition, for example, both
explanations seem possible. Theory would predictlleffects if one were to argue that tax
competition is a function of existing differences effective tax rates and competition is
triggered at a point in time by institutional chasgsuch as the abolition of capital controls,
which exposes countries to the effect of intermatidax rate differences. In contrast, theory
will predict dynamic effects if one were to argumeatt tax competition is triggered by tax
reforms in one or more countries. In this lattesegat is not so much the existing differences
in tax levels, which lead to competitive adjustmpriicesses, but the changes in tax rates.

Model 6 of table 3 presents the effects on themedion results of excluding unit fixed

12 Note that differencing requires a correctly sfieditemporal lag structure. Fixed effects modesfar

less vulnerable to misspecification of the lagaite because they do not estimate in differenae#b
deviations from the unit means.
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effects, which were so far included. The spati@ tmefficient is no longer statistically
significant and indeed even changes its coefficsggm relative to model 1, which is reported

again in table 3 for ease of comparison.

Table 3: Excluding Unit Fixed Effects.

model 1 (repeated) model 6
no fixed effects

temporal lag 0.772 0.945

(0.025) *** (0.014) ***
spatial lag 0.040 -0.018

(0.010Q) *** (0.011)
unit fixed effects yes no
period fixed effects yes yes
W row-standardized yes yes
weight contiguity contiguity
N 581 581

Note: all models include the full battery of comtvariables reported in table 1.

5. Row-Standardization of the Weighting Matrix

The specification of the weighting matrix also egents a delicate issue. In this section, we
deal with whether the weighting matrix should bewstandardized”. In the next section, we
discuss the influence of functional form choice tfoe weighting matrix. Row-standardization
means that for each row of the matrix each calliveded by its row sum, resulting in a new
row-standardized weighting matrix in which the wegyin each row now must add up to one.
This makes the spatial lag a weightactrageof the lagged dependent variable in other units.
In contrast, if the weighting matrix is not row+stiardized, then the spatial lag is a weighted
sumof the lagged dependent variable in other units.

Our survey of studies employing spatial effectpdattical science research revealed
that few scholars actually row-standardize theirgiviing matrix (or if they do, they fail to
say so). In contrast, spatial econometricians alfyidreat row-standardization as something
that is ‘commonly’ (Franzese and Hays 2006: 174nEese and Hays 2008: 29), ‘generally’

(Darmofal 2006: 8), ‘typically’ (Anselin 2002: 250y ‘usually’ (Beck et al. 2006: 28) done.
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This seems to suggest that row-standardizationoit linproblematic and need not be
justified.

Neither is warranted. Row-standardization is ngbrablematic since, apart from one
special case discussed below, it changes thevelagight that observations of all the other
units exert in the creation of spatial lags. Thusyeeds to be well justified. Some spatial
econometricians are aware of this (e.g., FranzadeHays 2008: 68; Ward and Gleditsch
2008: 80), but often mention the potential problehsow-standardization merely in passing.

Why would one want to row-standardize at all? Geaeson given by, for example, Ward
and Gleditsch (2008: 80) is that ‘this specificmatization has the advantage that the spatial
lag will have the same potential metric or units'the dependent variable itself. This can be
advantageous if one wants to compare the coefficize of the spatial lag with that of the
temporal lag. Row-standardization allows an eagcklon the stationarity requirement: the
sum of the coefficient of the temporal lag and tbefficient of the row-standardized spatial
lag must be less than one (Franzese and Hays ZH)8:It also allows interpreting the
estimated coefficient size of the spatial lag as dapproximate strength of interdependence
(Franzese and Hays 2008: 35). However, it is oofyohe specific type of weighting matrix
that row-standardization changes nothing else Ibeitmetric or unit of the spatial lag. This
specific type is a weighting matrix with unitary iglkts, which contains values of one in all of
the off-diagonal cells. This is identical to notngsany weighting at all. For such a weighting
matrix row-standardization obviously makes no satiste change.

These ‘unweighted’ or ‘identically weighted’ spatiags can make sense in special
cases, but are in general unappealing from a thealr@oint of view since it is often unlikely
that the strength of the spatial interdependentexte$hould be the same independent of the
degree with which the ‘infected’ unitand the unit& from which the spatial effect emanates

are connected to each other. For all other matnoesstandardization not only changes the
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metric or unit of the spatial lag, but also theatiele weight given to the observations of ke
units®?

An example helps illustrate this point. Take a \aéiigg matrix that measures contiguity.
It has cell entries of one for observations that@ntiguous, and zero otherwise. If country
has two contiguous countries whereas counhrgs six contiguous countries, then both' sf
neighbors and all six gfs neighbors exert the same influence each on dieabkfag variable.
After row-standardization, however, the two neigtsbof i now exert an influence on the
spatial lag that is three times larger than thdéuerfce of the six neighbors @f Row-
standardization has changed the relative subseantight of units from which the contagion
originates. Without row-standardization all conbgs countries exert the same influence no
matter how many contiguous countries there areerAfiw-standardization contiguous coun-
tries exert an influence that becomes proportignalinaller the larger the number of
contiguous countries. Either can be consistent witpecific theory of spatial dependence,
but of course not the same theory. In other wardew-standardized weighting matrix and a
weighting matrix that has not been row-standardizggte to substantively different theories
of spatial dependence.

To illustrate the effect of row-standardizationaar replication exercise and for easy
comparison, column 1 of table 4 reports again tesdubm model 1, i.e. the results of the
model with period dummies and a temporal lag ana-standardized contiguity as the
weighting matrix for the spatial lag. Model 7, refeal in the second column of table 4, is
identical in its specification with one importantception: this time contiguity is not row-

standardized in the weighting matrix.

13 If, however, each of the row sums of the weigitinatrix happens to be the same, which is generally

not the case, then row-standardization makes netautive change even for non-uniform weighting
matrices.
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Table 4: Weighting Matrix Not Row-Standardized.

model 1 (repeated) model 7
not row-standardized

temporal lag 0.772 0.762

(0.025) *** (0.025) ***
spatial lag 0.040 0.019

(0.010Q) *** (0.002) ***
unit fixed effects yes yes
period fixed effects yes yes
W row-standardized yes no
weight contiguity contiguity
N 581 581

Note: all models include the full battery of comtvariables reported in table 1.
With the weighting matrix not row-standardized inael 7, the degree of spatial dependence
can no longer be derived directly from the estimateefficient of the spatial lag, but needs to
be computed. With an average number of neighbarmumtries of 3.1, the short-term effects
of the row-standardized and the not row-standaddinedel are significantly different from
each other (0.04 in the row-standardized case s€r€6 in the not row-standardized case) as
are the asymptotic long-term effects (0.18 versiz})0 At the same time, the not row-
standardized estimate shows a much higher leva&bafficance. Changing the relative weight
of observation from which spatial dependence enesnhfs thus the potential to impact
inference.

The change in relative weights following from rotassdardization is not restricted to a
binary weighting matrix that only contains valuéne or zero. It equally applies to cardinal
weighting matrices. If the weights relate to, faample, stocks of foreign direct investment
(FDI), then row-standardization implies that onlffetences in relative shares of FDI matter
instead of differences in a country’s absoluteifprenvestment exposure.

Our argument is not that one cannot justify a dighimg influence of contiguous units as
the number of these units increases or that oneotgustify measuring connectivity by FDI
stock shares instead of absolute FDI stock expof#pending on the context, one clearly
can. Rather, our point is that row-standardizat®onot substantively neutral. It changes the

relative substantive weight of units from which tkpatial dependence originates and
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therefore needs careful theoretical justificationother words, row-standardization is not just
a question of convenience for making the coefficenes of the spatial and temporal lags

easily comparable and should not be applied théeggly as a default rule.

6. The Functional Form of the Weighting Matrix

By far the most popular variables for measuringnemtivity in existing spatial econometric
work are contiguity and geographical distance (Betckl. 2006). Apart from the question of
row-standardization, it is clear how contiguitytts be specified, namely as a binary matrix
with values of one for contiguous units and zetweorise. However, with non-dichotomous
measures such as geographical distance there abwiously “correct” functional form for
specifying connectivity (Anselin 2002: 259). In nyacases, estimation results depend on the
assumed functional form, which gives researchebstantial leeway in choosing a form that
produces results favourable to their hypothesis.

To illustrate the problem, we use geographicaladist as the measure of connectivity,
but our argument applies equally to other substantieights such as trade or investment
links. Assume a theory which predicts that the iaspdependence from more proximate units
should be stronger than the dependence from metandiunits. This would be in line with
what is known as the first “law” of geography: ‘Eything is related to everything else, but
near things are more related than distant thir{gsbler 1970: 236). However, assume further
that the theory does not specify the degree witichvkthe spatial dependence decreases as
distance increases. This would leave researchebsami infinite number of possibilities for

specifying a functional form for the weighting matrFor example, one could specify prox-

imity as 1/d", whered is distance and is some positive number greater than zero, as

1/(Ind)" or as1-d/d wheredmax IS maximum observable distance, and so on. Further

max !
more, one can divide the continuum of distance seteeral discrete bands, e.g., from 0 to 500

miles, 501 to 1000 miles, etc. By changing the Wweane attaches to each band, one changes
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the relative importance that units falling into asfethese bands exert on the spatial lag. One
popular choice is to set the weight for one or nadrthese bands to one and the other ones to
zero (Gleditsch and Ward 2000; Murdoch and San2i0€¥4). This creates a dichotomous
weighting matrix out of the continuous variabletdiee in which units within a certain dis-
tance, say within 1000 miles, all exert the sanfei@mce, while units further away do not
count at all.

To demonstrate the enormous influence that choosieg functional form of the
weighting matrix can exert, we now use geographiisiance instead of contiguity for the
weighting matrix in our replication exampféBoth contiguity and distance are compatible
with many theories of international tax competitidn fact, if one were to ignore that
countries can be geographically close to each atitbout necessarily being contiguous, then
contiguity would merely be an extreme form of dista in which spatial dependence derives
only from geographically close countries definedcastiguous countries whereas distant
(non-contiguous) countries do not count at all.ngsa continuous measure of distance relaxes
this strict dichotomy. More proximate countriedl stiatter more than more distant countries.

Just how much more depends on the functional faed in the weighting matrix.

In model 8, reported in the first column of tablewe usel/d =d™ in the weighting
matrix, whered is distance in kilometers between countries. Indeh®, reported in the
second column of table 5, we uBénd = (In d)_1 for the weighting matrix instead. We do not

row-standardize either of these two matrices, batresults are qualitatively the same if we

do.

14 Data come from Mayer and Zignago (2006). Thealdei measures distance in kilometers between the

principal cities of countries weighted by populatisize, which thus takes into account the uneven
spread of population across a country.
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Table 5: Different Functional Forms of the Weiglgtidatrix.

model 8 model 9
1/(distance) 1/In(distance)
temporal lag 0.730 0.808
(0.034) *** (0.031) ***
spatial lag 3.392 -0.181
(1.606) * (0.050) ***
unit fixed effects yes yes
period fixed effects yes yes
W row-standardized no no
weight d* (Ind)™
Nobs 581 581

Note: all models include the full battery of cortvariables reported in table 1.

The coefficient of the spatial lag is positive astdtistically significant in model 8, with an
asymptotic long-term degree of spatial dependericapproximately 0.38. Strikingly, the
coefficient of the spatial lag becomes negative statistically significant in model 9. Thus, a
seemingly small change in the functional form cimofee the weighting matrix exerts a large
influence on the estimated spatial lag, entirelyersing inferences. Model 8 would suggest
that higher taxes in other countries, particulanigre proximate onesaise the domestic tax
rate. In contrast, model 9 suggests that highesstax other countries, again particularly so in
more proximate oneseducethe domestic tax rate.

Apparently, the difference in results is driventbg fact that in model 8 the weight given
to more distant countries decreases much fastarithanodel 9. In the particular data sample
that we analyze more proximate countries tend e ha positive impact on domestic tax
rates, whereas more distant countries tend to Aaedatively stronger negative impact. With

1/d as the functional form for the weighting matrie thositive effect dominates, whereas the

negative effect dominates witl/(Ind) as the functional form, which gives more distant

countries a relatively higher weight.

15 Not surprisingly then, the spatial lag with 1&lthe weighting variable has a non-monotonic efiiect

the estimations: the coefficient of the linear sdalag term is positive and statistically signiid,
whereas the coefficient of its squared term is tieg@nd significant (results not shown).
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Not all datasets are equally sensitive to funclidoem specification of the weighting
matrix and it may not always be possible to finddiional forms that lead to once positive
once negative estimated coefficients for the spitvariable. However, all datasets are to
some extent sensitive. Just how much so is almgsbssible to tell for those other than the
ones choosing the functional form.

The problem posed by the choice of functional fasmamplified by the fact that the
correct operationalization and functional form ohnectivity must be known (based on theo-
retical reasoning) by the researcher and the wglwoh these assumptions cannot be easily
tested. As Beck et al. (2006: 28) state: ‘As isalam all spatial econometric works, we
assume that the structure of dependence betweenvahisns is known by the researcher and
not estimated. (...) The assumption that these caitexs are known a priori is both a
strong assumption and critical for the methods pétial econometrics to work.” To

demonstrate this, the first column of table 6 répeaodel 8, in whici/d was the functional

form for the weighting matrix. We now reverse dim&ta by subtracting distance from the sum
of the minimum and the maximum of distance. Thellteg) variable — let us call i for
proximity — is one that has the same range (sanm&émmum and maximum) as the distance
variable, but is perfectly negatively correlatedhnit. The minimum (maximum) of distance
is the maximum (minimum) of proximity and the stardl deviation of both variables is the

same, whereas the mean differs of course. In mt@eleported in column 2, we ugép as

the functional form. Strikingly, the spatial lagssll positive in model 10 and not far from
statistical significance eithé?.Since neither of the weighting matrices in tablaré row-
standardized the degree of spatial dependence neduts computed and cannot simply be
inferred from the coefficient sizes. The asymptditg-term spatial effect is 0.38 in model 8

and 0.05 in model 10.

16 The coefficient from the spatial-OLS estimatidnmedel 10 is in fact significant.
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Table 6: Reversing the Weighting Matrix Variable.

model 8 repeated model 10

1/(distance) 1/(distance reversed)
temporal lag 0.730 0.775

(0.034) *** (0.025) ***
spatial lag 3.392 1.354

(1.606) * (0.998)

unit fixed effects yes yes
period fixed effects yes yes
W row-standardized no no
weight d? p*
Nobs 581 581

Note: all models include the full battery of cortvariables reported in table 1.

This result may seem counterintuitive. After alstdnce and reversed distance (or proximity)
are perfectly negatively correlated with each atlfethese were not weighting matrices, but
simply explanatory variables entering the estinmatioodel on their own, then their coeffi-
cients would be the same, but with opposite sibiwsvever, because they are multiplied with
the spatialy this becomes far less likely. Even if the two vieggare perfectly negatively
correlated with each other, the spatial lags naver It follows that these two spatial lags can
both lead to a statistically significant coefficievith the same sign for the spatial lag.

It would therefore be illegitimate to interpret tlpatial lag coefficient as telling us
anything on the validity of the weighting matrixorFexample, a statistically significant
positive spatial lag coefficient witl/d as the weighting matrix does not provide evidence
that spatial dependence is correctly modeled asedsing with the inverse of geographical

distance. If we are correct in our belief tHad is the right specification of the weighting

matrix, then a positive and significant coefficieoftthe spatial lag provides evidence that
other countries’ policy choices affect domestidgothoices and the more so the closer these
countries are to the home country. But our behethie weighting matrix specification cannot

be tested this directly.
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Since theory must ultimately determine the weigitimatrix, no simple or unproblematic
empirical test exists which would allow researcherdetermine the “correct” functional form
of the weighting matrix. For this reason there asstraightforward econometric solution to
the apparent arbitrariness in the choice of fumetioform. We recommend one of two
solutions. The first and ideal one is if researshprovide a better specification of the
underlying theory. Some theories will suggest syattial dependence diminishes very rapidly
as distance increases, whereas others would sutigessuch dependence diminishes only
slowly. Some theories will suggest that spatialed@lence diminishes at an increasing, others
at a decreasing rate. Admittedly, even with betfezcified theories some arbitrariness will
remain. Still an infinite number of functional fosntan specify, say, rapidly decreasing
spatial dependence that decreases at an increasemgiowever, more specified theories lead
to less arbitariness than less specified dfes.

Robustness tests provide the second-best solutisaholars can show that their results
uphold using several functional forms for the wéiiglp matrix and the results are sufficiently
similar, then one can be more confident in thetertse of a true spatial effect. At the very
least, we would suggest testing the robustnesssfits to such simple modifications of the

weighting matrix as doing a Box-Cox transformatfolor taking the natural log of the

1 An alternative option developed in network anslythat recently caught the attention of spatial

econometricians (Franzese et al. 2008) is the matearization’ of the weighting matrix. In order lbe able to
‘parameterize’ the weighting matrix, an assumptarthe distribution of the effect strengths is rezkdscholars
usually assume a normal distribution — an assumgtiat we believe is usually highly problematic. rglover,
the odds are that this technique simply overfiessdhata, as it is simply an optimization procedttence, more
extensive Monte Carlo analyses are needed befpl@dpesearchers should use this technique.

18

In many cases, a Box-Cox (or Power) transformagéosures that the distribution of the transformed

variabley approachesy N(Xﬁ,02|n), i.e. the Normal distribution. Transformation obgitive integers is

usually done by
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connectivity variable as well as using its squaraldie. Converting a continuous connectivity

variable into several discrete bands and reportsglts for each band separately may also be
worthwhile. What is the best way to show robustreéegsends on the problem at hand. The
important message is that demonstrating robustisesecessary in the absence of a theory

that provides sufficient guidance on the functicioam.

7. Conclusion

Model specification matters, and even more so énahalysis of spatial dependence. In this
article, we have demonstrated that seemingly sotahges to the specification of one of
Hays’s (2003, 2009) models of tax competition léaé surprisingly large variety of results
that are partly contradictory. Our replication exge raises four important issues that spatial
analysts need to address.

First, failure to model temporal dynamics and coinfor common trends and common
shocks will lead to bias in the spatial effectmsties. Second, the same applies if one fails to
model adequately spatial clustering and unobsespatial heterogeneity. Of course, common
shocks, common trends and unobserved heterogeatyvidely discussed in non-spatial
panel data analysis. However, if anything, theyracee likely to be present and at the same
time more difficult to solve in spatial panel dataalysis.

Third, the question of row-standardization mustdeeided on theoretical grounds and

should not be employed as a general default rubev-Randardization changes the relative

A _
Y 1 % az0

y(4)= -
log(y) ,ifA=0

(More complicated variants are available). Schotd#ten use the Box-Cox transformation to ensurem@nal

distribution of variables in the linear models. dlohowever, that linear models only assume thatrerare

normally distributed.
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weight of observations from which spatial dependesimanates in all weighting matrices but
the unitary one, which is in general an unappeatnadyrix. For the vast majority of weighting
matrices of interest therefore row-standardizatalh influence the results and may impact
inference.

Finally, we have shown that estimation results @arcially hinge on the functional form
of the weighting matrix, unless the matrix consddta binary variable such as contiguity. For
continuous variables measuring connectivity, reseas need to be concerned not only about
whether to row-standardize, but also about choosiiegright functional form. As we have
demonstrated, small changes to the functional foamlead to very different results. Spatial
analysts are thus vulnerable to the charge that thsults were obtained by choosing a
specific functional form and disregarding othemat led to different results.

There are no simple econometric fixes for any esthfour problems. Franzese and Hays
(2007b, 2008) recommend using temporal and ungdfigffects as a conservative estimation
strategy, i.e. one that is less likely to find spus evidence for spatial dependence in the
absence of true dependeriédVe have sympathy for such a view: failure to coinfor
common trends and common shocks is likely to leadhias of the spatial lag coefficient,
which is often an upward bias. However, controlliiog these dynamics by adding period
dummies and either the temporally lagged dependiatdble as suggested by Beck and Katz
(1995), or Prais-Winsten transformation as advatcdig Pliumper et al. (2005), or by a
distributed lag model as preferred by Adolph et(2005) may easily lead to the opposite
problem. If the trend is partly explained by thats lag, then these control mechanisms are
likely to lead to downward bias in the estimatedftioient of the spatial lag since it is all too
easy for the period dummies (and, if applicable, ttmporal lag) to fully capture the trend

(Plumper at al. 2005). Which bias is more problematill depend on the context. We

19 They also suggest that spatial-ML is a more cvadive estimator than either spatial-OLS or spatia

2SLS.
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recommend that researchers carefully consider rdiffe options for modeling temporal
dynamics and controlling for common trends and camrshocks and that they show how
robust the results are to different dynamic modgtiptions.

Similarly, controlling for spatial clustering anchabserved spatial heterogeneity by
including unit fixed effects (or eliminating levdly another technique) is neither a sufficient
solution nor one that is always appropriate. lfréhis spatial clustering or unobserved spatial
heterogeneity in policghangeghat has nothing to do with spatial dependenedf,then this
still needs to be carefully modeled by control &bkes and, if this is not possible, estimation
bias persists. Even when unit fixed effects suffitly eliminate irrelevant spatial clustering
and unobserved heterogeneity, the resulting esbmesatan be so inefficient as to be useless.
In addition, if the theory predicts level effecteen unit fixed effects estimation is
inappropriate. We recommend that researchers camiper unit fixed effects model to
alternative specifications, e.g., the model withantt fixed effects, the inclusion of group
dummies (rather than unit dummies), estimation \&ithifferenced dependent variable, or the
fixed effects vector decomposition model, whichyot-means variables that have sufficient
within variation (Plimper and Troeger 2007). Clgarksearchers not only need to develop
more fully their theory, they also need to underdtand communicate what their chosen
estimation procedure and the empirical model smatibn do to the data (King 1990: 11).

We also do not see a straightforward econometfidisa to the problem of specification
of the weighting matrix. In its absence, we beligves generally justified to expect
researchers to derive from theory predictions oretiwr to row-standardize the weighting
matrix. We are more skeptical whether theoriespattial dependencies will ever be able to
convincingly predict a functional form for the whitghg matrix. Even then, we believe that
researchers can develop their theories furthecifspogg that certain types of functional forms
are more plausible, while others should be excluted example, in many cases it would

seem possible to justify theoretically whetherfib& and second derivatives of the functional
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form are positive or negative. For example, a teecal model should not only be able to tell
us that spatial dependence decreases with geogehplstance, but also whether it decreases
slowly or rapidly and at an increasing or decreggite as other units are located further
away. In the absence of a theoretically fully spedifunctional form of the weighting matrix
only robustness tests can help. At the least, egppliesearchers should show whether the
spatial effect is robust if they use a linear, ggled and a squared function of the weighting
matrix. This may be a good idea in any case evemd is fairly confident that one has
specified the functional form on firm theoreticabgnds.

The more developed the underlying theory of spalegdendence, the less arbitrary the
specification of the empirical model. Of courseijsittrivially the case that, all other things
equal, a more comprehensively specified theory etteb than a less comprehensively
specified one. However, this seems to be even nmopertant for the analysis of spatial
dependencies than in most other fields of researbk. peculiar effects of the weighting
matrix on the estimation results and the fact thagarchers cannot test but have to assume its

correctness, make more theoretical guidance amtselement of the research process.
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