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1.     Introduction 
Model structure selection is the central task in nonlinear system identification. This topic, which 

accompanies the development of system identification techniques, has been extensively studied in the 

literature. In a broader sense, model structure selection is closely related to many practical themes 

including data fitting, time series prediction, feature selection in classification, and complexity 

reduction in neural networks. The conventional Akaike information criterion (AIC) (Akaike 1974), the 

Bayesian information criterion (BIC) (Schwarz 1978), the minimum description length (MDL) 

(Rissanen 1978), the generalized cross-validation (GCV) (Golub et al. 1979), and many variants 

(Stoica et al. 1986, Miller 1990, Haber and Unbehauen 1990, Stoica and Selen 2004) have been 

proposed to determine the number of variables or regressors in the model, and this is often termed as 

model selection or model order determination. Both parametric and nonparametric techniques have 

been developed for variable selection (Hocking 1976, 1983, Breiman and Freedman 1983, Tjostheim 

and Auestad 1994, Breiman 1995, Vieu 1995, Rech et al. 2001, Huang and Yang 2004). Statistical 

methods, for example, conditional probability analysis (Savit and Green 1991) and hypothesis tests 

(Montgomery et al. 2001, Stark and Fitzgerald 1995, Anders and Korn 1999, Lind and Ljung 2005) 

have been studied for variable or regressor selection for some specific model structures. In network 

modeling, mutual information (Battiti 1994, Zheng and Billings 1996), genetic algorithms (Mao and 

Billings 1997, Madar et al. 2005), and robust regression and optimization methods (Hong and Harris 
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2002, 2002, Chen et al. 2003, Hong and Chen 2005), have been introduced for network training. In 

order to increase the robustness of a selected model for effectively handling ill-imposed problems or to 

avoid overfitting, regularisation methods have been introduced to complete the model structure 

detection procedure (Sjoberg and Ljung 1995, Orr 1995, 1998, Chen et al. 1996, Billings and Chen 

1998). Some quantitative validation methods have also been proposed to measure model performance 

and dynamic signatures (Aguirre and Billings 1995c, Haynes and Billings 1994, Zheng and Billings 

199, 2002).  

In nonlinear system identification and function (signal) approximation, model structure selection 

can involve a large number of candidate model terms or basis functions. The first key step is to 

determine which terms or bases are significant and should be included in the model. There exist some 

situations where the static nonlinearity of the system (and the eigenvalue function) can indicate which 

term clusters are required. Of course, if the static nonlinearity is not known a priori, then the terms 

should be chosen in a purely black-box fashion, as proposed in this paper. Because the main 

justification of this paper is to introduce a new integrated method that improves on the error reduction 

ratio (ERR) based algorithm, when the latter fails (for example, when there is “missing information” 

due to “poor input signals” or excessive noise) it would be interesting to investigate the potential use 

of alternative sources of information, whenever available. A general discussion on some possible 

alternative approaches can be found in Aguirre et al. (2000, 2002, 2004). 

It is known that inclusion of insignificant or redundant model terms might result in a much more 

complex model, involving a large number of parameters, and as a consequence the model may 

become oversensitive to training data and is likely to exhibit poor generalisation properties. For 

example, a redundant or overfitted model may lack a satisfactory long term predictive capability. One 

of the main tasks in nonlinear system identification therefore is to select a parsimonious model 

structure. Ideally, this requires that the resulting model structure is optimal or at least suboptimal with 

regard to specified modelling goals. Several approaches have been proposed to address this problem 

(Korenberg et al. 1988, Billings et al. 1988, Haber and Unbehauen 1990, Miller 1990, Mallat and 

Zhang 1993, David et al. 1994). One of the most efficient and popular model structure detection 

techniques are the class of orthogonal least squares (OLS) type algorithms (Korenberg et al. 1988, 

Billings et al. 1989, Chen et al. 1989), which have been widely applied in nonlinear system 

identification. The OLS type algorithms have a desirable advantage: the contributions of candidate 

model terms can be decoupled and decomposed, and as a consequence the significance of each 

candidate model term can be measured using the associated error reduction ratio (ERR). Significant 

model terms can thus be ranked according to the order that model terms are selected one at a time. 

The rank of selected model terms is independent of the positions in which the candidate model terms 

appear in the regression equation since at each step a significant model term is determined when the 

significance of all remaining candidate model terms have been evaluated (Wei et al. 2004). The 

incorporation of the OLS-ERR type algorithms with other modelling techniques has greatly raised the 
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capability of improving the generalisation properties of the resulting models, see for example, Aguirre 

and Billings (1994, 1995a, 1995b), Billings, Chen and Backhouse (1989), Zhu and Billings (1996), 

Chen et al. (2003, 2005), Billings and Wei (2005a, 2005b), and Zhu et al. (2007). 

It has been observed that the OLS-ERR type algorithms may occasionally select incorrect model 

terms or yield a redundant model subset when either the training data are contaminated by certain 

noise sequences (Mao and Billings 1997), or the input is poorly designed, for example a second order 

low frequency autoregressive process (Piroddi and Spinelli 2003). These are generic problems in 

nonlinear system identification and any algorithm may fail to produce correct models in these worse 

case scenarios. As will be seen later, however, the problems related to these cases can be avoided or 

alleviated by inspecting and comparing the performance of a few models produced from some trial-

and-error tests. Piroddi and Spinelli (2003) proposed a promising approach to solve the model 

structure selection problem by minimizing the simulation error, which is defined as the discrepancy 

between the model predicted outputs and the measurements. However, the method of Piroddi and 

Spinelli requires calculating model predicted outputs for all candidate model term combinations and is 

thus very time demanding. Mao and Billings (1997) proposed a solution to the combined problem of 

model structure selection and parameter estimation by introducing a genetic searching algorithm, 

combined with the standard orthogonal least squares routine. Although this requires much less 

calculations compared with an optimal exhaustive search, the necessary computations are still quite 

large. In the present study, a much simpler but efficient approach, which is easier to implement and 

quicker to compute, for general nonlinear model structure selection, is proposed to solve the problem 

addressed in Piroddi and Spinelli (2003) and in Mao and Billings (1997).   

This study focuses on the model structure selection problem in nonlinear dynamical system 

identification including model term detection and model subset selection. The main contributions of 

the work include: i) a new criterion for measuring the significance of model terms is introduced based 

on mutual information; the mutual information criterion can be used as a complementary approach or 

as an alternative to the ERR criterion; ii) a simple hypothesis test, based on the t-test, is incorporated 

into the new orthogonal forward search algorithm; for linear-in-the-parameters models, this kind of t-

test provides an index to indicate which model terms are significant; iii) a new approach is proposed 

for selecting an accurate model subset for a given identification problem. The squared correlation and 

mutual information criteria, along with the t-tests and a general cross-validation (GCV) criterion, are 

all incorporated into the new forward orthogonal search algorithm. For convenience, the new 

i f o sntegrated orward rthogonal earch algorithm assisted by squared correlation and mutual information 

will be referred to as the IFOS algorithm. The t-test has implicitly been applied in the OLS-ERR 

algorithm to aid the selection of significant mode terms in NARMAX modelling (Mendes and Billings 

1993). In the present study, the t-test is incorporated into the IFOS algorithm to explicitly demonstrate 

how this test works for NARX modelling. 
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The remainder of the paper is organised as follows. In section 2 the orthogonal forward regression 

(OLS) algorithm is briefly reviewed and the performance of this algorithm is discussed and analysed. 

In section 3, the new integrated forward orthogonal search (IFOS) algorithm assisted by mutual 

information is proposed. Four examples are described in section 4 to demonstrate the effectiveness and 

applicability of the new IFOS algorithm. Some suggestions and discussions are included in section 5, 

and finally the work is concluded in section 6.  

2.     The OLS-ERR algorithm 
In the following the discussion is restricted to models that can be expressed in a linear-in-the-

parameters form. This is an important class of representations for nonlinear system identification and 

signal processing. Compared to nonlinear-in-the-parameters models, linear-in-the-parameters models 

are simpler to analyse mathematically and quicker to compute numerically. The polynomial NARX 

model will be used as an example to demonstrate the OLS-ERR algorithm. For the sake of 

convenience in the descriptions, the two terms ‘system’ and ‘model’ will not be strictly distinguished 

but the meanings of the two terms should be self-evident from the context. 

2.1   The NARX model 

The general form of the NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous 

inputs) model (Leontaritis and Billings 1985, Billings and Chen 1998, Pearson 1999, Piroddi and 

Spinelli 2003) takes the form of the following nonlinear recursive difference equation: 

)())(,),1(),(,),1(),(,),1(()( tentetentutuntytyfty euy +−−−−−−= LLL           (1)   

where  is some unknown nonlinear mapping, , and  are the input, output, and the 
prediction error, , and  are the associated maximum lags. If the function f is specified as a 
polynomial function, model (1) can then be decomposed into a process related part and a noise related 
part as 

f )(tu )(ty )(te

un enyn

))(())(()( tftfty nnpp ϕϕ += )(te+                                                                                        (2) 

where  )(tpϕ T
untu )]( −),1([ L−= ty , ),( ynty − ,),1( L−tu  is the process regressor vector, and 

   is the extended regressor 

vector. The polynomial NARX (Nonlinear AutoRegressive with eXogenous inputs) model is a special 

case of the polynomial NARMAX model, where the noise related model reduces to a single noise 

term e(t) that can often be treated as an independent identical distributed (iid) zero mean noise 

sequence providing that the function gives a sufficient description of the data set. 

)(tnϕ , ),( ynty − T
eu ntetentu )](,),1(),( −−− L),1([ L−= ty ),1( L−tu ,

nf

pf

The polynomial NARX model can be expressed using a linear-in-the-parameters form 

)()()(
1

tetty
M

m
mm +=∑

=

φθ                                                                                                         (3) 
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are model terms generated in some way from the regressor vector )(tϕ  

, 

where ))(()( tt mm ϕφφ =
T

untu )]( −,),1([ L−= ty ),( ynty − ,),1( L−tu mθ  are unknown parameters, and M  is the total 

number of potential model terms. Clearly, the candidate model terms )(tmφ are of the 

form , where ,),1({)( L−∈ tytx ji
j)()(1

1 txtx ii l
lL ),( ynty −  ),1( L−tu ,  )}( untu −   for j=1, 2, …, , 

with  and . The maximum lag of such a polynomial model is determined 

by and , and the nonlinear degree of such a model is referred to as . Several algorithms are 

available for the determination of the maximum lags for both the input and the output (Bomberger and 
Seborg 1998, Feil et al. 2004, Wei et al. 2004). 

l

l≤≤ ji0 lL l ≤++≤ ii10

yn un l

2.2   The OLS-ERR algorithm 

Consider the term selection problem for the linear-in-the-parameters model (3). Let 

be a vector of measured outputs at N time instants, and  

be a vector formed by the mth candidate model term, where m=1,2, …, M. Let be a 

dictionary composed of the M candidate bases. From the viewpoint of practical modelling and 

identification, the finite dimensional set D  is often redundant. The model term selection problem is 

equivalent to finding a full dimensional subset

TNyy )](,),1([ L=y T
mmm N )](,),1([ φφ L=φ

},,{ 1 Mφφ L=D

},,{},,{
11 niinn φφαα LL ==D  of n ( ) bases, 

from the libraryD , where , i  and k=1,2, …, n, so that y can be satisfactorily 

approximated using a linear combination of  as below 

Mn ≤

kik φα = },,2,1{ Mk L∈

nααα ,,, 21 L

                                                                                                           (4) eααy +++= nnθθ L11

or in a compact matrix form  

eAθy +=                                                                                                                                (5) 

where the matrix  is assumed to be of full column rank,  is a parameter 

vector, and  is the approximation error.  

T
n ],,[ 1 θθ L=θ],,[ 1 nααA L=

e

The model structure selection procedure starts from equation (3), with . For 

j=1,2,…, M, define 

},,{ 1 Mφφ L=D

))((
)(

][ERR
2

)1(

j
T
j

T
j

T

j
φφyy

φy
=                                                                                                       (6) 

]}[ERR{maxarg (1)

11 j
Mj≤≤

=l                                                                                                        (7) 

11 lφα =The first significant basis can then be selected as , and the first associated orthogonal variable 

can be chosen as . 
11 lφq =

Assume that a subset , consisting of (m-1) significant bases, , has been 

determined at step (m-1), and the (m-1) selected bases have been transformed into a new group of 

121 ,,, −mααα L1−mD
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orthogonalized bases via some orthogonal transformation. To select the mth significant 

basis , let  

121 ,,, −mqqq L

mα

∑
−

=

−=
1

1

)(
m

k
k

k
T
k

k
T
j

j
m
j q

qq
qφ

φq                                                                                                      (8) 

]))[((
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][ERR )()(

2)(
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j

T

m
j

T
m j

qqyy
qy

=                                                                                        (9) 

where . The mth significant basis can then be chosen as1−−∈ mj DDφ
mm lφα =  and the mth associated 

orthogonal basis can be chosen as , where . Subsequent 

significant bases can be selected in the same way step by step. At each step, the ‘best’ basis with the 

strongest capability to represent the output y is selected. The selection procedure can be terminated 

when some specified termination conditions are met. 

)(m
m ml

qq = ]}[ERR{maxarg )(

1
jm

Mjm
≤≤

=l

The indices  are referred to as the error reduction ratios (ERR), and provide a simple 

but effective means of selecting a subset of significant regressors. A more detailed explanation of ERR 

can be found in Billings et al. (1989) and Chen et al. (1989).  

][ERR )( jm

Note that in many cases the noise signal  in Eq. (3) may be a correlated or a coloured noise 

sequence. This is likely to be the case for most real data sets. The NARX model (3) will then become 

the NARMAX model. For the NARMAX model, the structure selection procedure starts from 

identifying the process NARX model, and the noise model can then be identified in the same way as 

selecting the NARX model structure (Billings and Chen 1998). The inclusion of noise terms is mainly 

used to reduce the bias in the parameters of the process NARX model. 

)(te

2.3   The performance of the OLS-ERR algorithm 

The OLS-ERR algorithm has been widely applied in model structure selection for nonlinear 

system identification (Billings and Chen 1998) and has already become a standard algorithm for 

nonlinear function approximation and neural network training (Haykin 1999, Nelles 2001, Harris et al. 

2002). It has been observed, however, that this algorithm has some deficiencies when it is applied in 

some worse case situations, where there are some uncertainties in the data or the input signal is not 

very persistently exciting (Mao and Billings 1997, Piroddi and Spinelli 2003).  

It has been observed that for some specific input signals, the model term y(t-1) is nearly always 

selected as the first term with a very high ERR value, and as a consequence the contributions of other 

model terms, measured by the associated ERR values, become small and are sensitive to the effect of 

noise (Piroddi and Spinelli 2003). This problem arises largely because of the characteristics of the 

input: a low order, low frequency autoregressive (AR) process, though persistently exciting (of any 

finite order), by the standard definition for linear system identification (Ljung 1987, Söderström and 

Stoica 1989), may not be sufficient for nonlinear model identification. In fact, as noted in Piroddi and 
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Spinelli (2003), such a low frequency AR process often yields a slowly varying output signal. 

Assuming that the output signal, denoted by y(t), is sampled at a fast sampling rate (oversampled), the 

signal y(t) and the first few linear terms, y(t-1), y(t-2), …, will then become strongly correlated and 

thus indistinguishable, implying that )1()( −≈ tyty . This results in , where y and are 

vectors formed by the output variable y(t) and the term y(t-1). Consequently, the term y(t-1) is nearly 

always selected as the first term, regardless of whether the term y(t-1) exists in the true model. The 

implication is that no matter what identification algorithms are employed, only the information on the 

actual system that is contained in the data can be extracted. Some algorithms may be capable of 

extracting more information from the data, in some situations, compared with other algorithms. For 

small sampling times the terms of a same term-cluster become indistinguishable, and hence for a 

practical identification problems the sampling time should not be chosen to be too small (Billings and 

Aguirre 1995). This is likely to be true for all identification models and algorithms. 

1),ERR( 1 ≈yy 1y

Noise may also affect the model structure selection even when the training data are sampled with 

an appropriate sampling rate. While all correct model terms ( ‘correct term’ here means that the term 

exists in the original real model) can often be detected and included in the identified model, some 

‘unnecessary’ (incorrect) model terms that do not exist in the original model may occasionally enter 

into the selected model subset before some correct model terms. In most cases, nonlinear identification 

is a structure-unknown problem. Almost all existing model structure selection algorithms are thus 

data-oriented, that is, any algorithm will try to find a model structure that reflects as closely as 

possible the information carried by the observed noisy data (it is assumed that the data cannot be 

cleaned by filtering), without any knowledge of the true model structure. Since realistically models 

must be learned from noise-contaminated data, spurious terms (incorrect terms) may also be included 

in the identified model subset. However, a good model structure selection algorithm should be able to 

provide a good model structure that minimizes the effects of incorrect (spurious) model terms to a 

negligible level, such that the main underlying dynamics embodied in the data can be revealed or 

captured by the identified model. Model validation can also be used to assist in model construction 

and is therefore an important part of all narmax modelling procedures. Validation provides an 

independent assessment of the final identified model. 

It is an inherent problem that data uncertainty, sampling rates and the types of input signals will 

affect the selection of model structure in a nonlinear system identification task. The development of 

methods that can mitigate these effects will be highly desirable. 

2.4   Two examples 

Two simple examples will be used to illustrate some of the problems that arise if the training data 

are contaminated by noise, or if the input is not sufficiently exciting. The two artificial examples are 

given below: 

Model I:    y(t)=-1.7y(t-1)-0.8y(t-2)+u(t-1)+0.8u(t-2)+e(t)                                                       (10) 
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)1()2(1.0)1(7.0)( −+−−−= tutytytyModel II:                                                                      (11) 

The input u(t) in Model I is uniformly distributed on [-2,2], with the noise e . The input 

u(t) in Model II is a low frequency AR(2) process of the form: u(t)=1.6u(t-1)- 0.6375u(t-2)+

)1.0,0(~)( 2Nt

)(tξ , 

with )1,0(~)( Ntξ . Note that although the AR(2) process is persistently exciting of almost any finite 

order, it is a narrow band process behaving like a lowpass filter with minimum attenuation of low 

frequencies nearω ω πω ==0, with sharply increasing attenuation as  increases toward . This kind of 

AR processes may not be sufficiently exciting for ARX and NARX model structure selection 

(Leontaritis and Billings 1987).  

One thousand input-output data points were generated from Model I.  The candidate model terms 

were set to be y(t-k) and u(t-k) where k=1,2,3,4,5. By applying the OLS-ERR algorithm to the given 

10 candidate model terms, a model of 8 terms was produced as shown in Table 1, where the model 

terms are ranked according to the order in which they were selected. It can be seen from Table 1 that 

even though all the correct model terms were selected, the resulting model structure is not the 

minimum or correct structure. The structure is a redundant model structure due to the inclusion of 

some incorrect model terms. As will be seen later, all the incorrectly selected model terms can 

however easily be eliminated by introducing a simple t-statistic. 

 

Table 2  Model selection results for Model II using the OLS-ERR algorithm 

Selected model structure 
Number of times 
selected out of 100 

y(t)= 0.39y(t-2)-0.07y(t-3)+u(t-1)+ 0.7u(t-2) 35 

y(t)= 0.557143y(t-1)-0.014286y(t-3)+u(t-1)+0.142857u(t-2)  31 

y(t)= 0.5205y(t-1)-0.00256y(t-3)+u(t-1)+0.1795u(t-2)+0.02564u(t-3) 18 

y(t)= 0.7y(t-1)-0.1y(t-2)+u(t-1) 16 

Table 1  Model selection results for Model I using the OLS-ERR algorithm 

Parameter 
Term True Estimate ERR(%) 

y(t-1) -1.7 -1.704552 67.4213 
u(t-1) 1.0 1.000453 28.0911 
y(t-4) 0 -0.007688 2.9753 
u(t-4) 0 0.008823 0.5170 
y(t-3) 0 -0.020076 0.4823 
u(t-3) 0 0.011086 0.1250 
u(t-2) 0.8 0.801407 0.1524 
y(t-2) -0.8 -0.815569 0.0342 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model II was simulated 100 times and at each time 1000 input-output data points were recorded. 

By setting the candidate model terms to be the same as in Model I, the OLS-ERR algorithm, coupled 

with the GCV criterion, was applied over the 100 data sets respectively, and the model selection 

results are illustrated in Table 2. From Table 2, it can be seen that the true model structure was only 

correctly selected 16 times out of a 100 when the input signal was chosen to be a low frequency AR(2) 
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process, even though noise free data were used. These results suggest that the low frequency AR(2) 

input process is so slowly varying that it is not sufficiently exciting for ARX or NARX model 

structure identification. An interesting phenomenon is that, although the 4 models given in Table 2 

have different structures, they all produce the same (in fact indistinguishable) model predicted or long 

term outputs for any given input. Thus, in this regard, the four models are equivalent in output 

behaviour, even thought they are different in structure. It was also noticed that if the input signal was 

set to a high frequency AR(2) process, say u(t)=0.6u(t-1)- 0.0875u(t-2)+ )(tξ with )1,0(~)( Ntξ , then 

the true model structure will be correctly identified.  

As noted earlier, many factors can affect model structure selection including the presence of noise, 

the sampling rate and the richness of the input signal. Some subjective factors such as the selected 

maximum lags in the input and output terms, and the nonlinear degree specified for nonlinear 

candidate model terms will also affect the model structure selection. It has been verified by numerous 

simulation examples that if the maximum lags or key variables of the system can be appropriately 

chosen, then most of the irrelative model terms can be excluded and confidence of correctly selecting 

a minimum model structure or nearly minimum model structure can be significantly increased. Thus 

determining suitable values for the maximum lags and selecting significant variables as a first stage in 

model structure selection is likely to be highly beneficial. Several algorithms are available for the 

determination of the maximum lags for both the input and the output (Bomberger and Seborg 1998, 

Feil et al. 2004, Wei et al. 2004). In many cases, however, suitable maximum lags and significant 

variables may be difficult to determine, and some alternatives are thus worthy of investigation.  

3.     The new IFOS algorithm 
The above discussion suggests that there is a need to improve the OLS-ERR algorithm to try and 

ensure that the correct model structure can be determined even when the data sets are not ideal. This 

motivates the development of the new integrated forward orthogonal search (IFOS) algorithm assisted 

by both the squared correlation and mutual information criteria. Before describing the IFOS algorithm, 

some preliminaries will be described first.  

3.1   Some definitions 

Definition 1: Primary variables and derivative variables 

A primary variable is a dependent variable that originally exists in the model which characterises a 

given system. A derivative variable is derived from the primary variables. Generally, a primary 

variable is explicit in the model, but a derivative variable is implicit.  

    Consider the model below 

                                                                                             (12) ))1(),2(),1(()( −−−= tutytyfty

The variables  here are the primary dependent variables. Iterating (12) by one 

step with respect to the primary variable y(t-1), yields 

)1(),2(),1( −−− tutyty
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                 ))1(),2(),1(()( −−−= tutytyfty
))1(),2()),2(),3(),2((( −−−−−= tutytutytyff                                                         (13)   

)2( −tyThe induced model (13) now involves 4 variables , )3( −ty , )1( −tu and , where y(t-3) 

and u(t-2) are derived variables. Inspection of the results in Table 1 for Model 1 in section 2.4 shows 

that some of the derived variables may have been induced by the presence of noise if the candidate 

maximum lags are set to be too high. Therefore, if the primary variables of the system can be 

determined initially from the observational data, the accuracy of the model structure selection can then 

be significantly improved. Notice that the non-uniqueness which produces the result that the models in 

Eqs. (12) and (13) are equivalent is in general a direct result of the discrete model form. This non-

uniqueness is common in most discrete forms and is often independent of the structure selection 

algorithms employed. 

)2( −tu

Definition 2: Model term dictionary 

A model term dictionaryD is a set whose elements are some specified (candidate) model terms 

(also called atoms or bases in signal processing). A dictionary D is said to be over-complete if all the 

true model terms are included in . A dictionary D D is said to be under-complete (or incomplete) if at 

least one true model term is not included in . A dictionary D D is said to be exactly-complete if all the 

true model terms are included in , but D D contains no other candidate model terms. Clearly, for an 

exactly-complete dictionary the identification problem reduces to a structure-known estimation 

problem. 

)1()2(1.0)1(7.0)( −+−−−= tutytytyAssume that a system is described by the model: , then 

),1({ −ty ),1()1( −− tuty )}2( −tuis over-complete; )}2(),1(),2(),1({1 −−−−= tututytyD =2D is 

under-complete;  and )}1(),2(),1({ −−− tutyty is exactly-complete.  =3D

For a NARX model with a nonlinear degree l and maximum lags (for output) and (for 

input), the candidate model term dictionary, including the constant term, is   

yn un

}0  ,0  ,1  ,:)()({ 11,1,,
1 lLllL l

ll ≤++≤≤≤≤≤∈= iiijVxtxtx jnn
i
j

ii
nn uy

j

uy
D                        (14) 

where  ),( ynty − ),1( L−tu ,  u,),1({, L−= tyV
uy nn )}( unt − . The number of elements in the dictionary 

is . ]!)!/[(])![( ll
l

l uyuy
nn nnnnC uy +++=++

l,, uy nnD

Definition 3: Model library 

A model libraryL is a set whose elements are some specified models. A model selection criterion 

is always performed over a given model library.  

Given a model libraryL , the objective of model selection is to find the ‘best’ model from the 

library. All model selection criteria are relative, and there exists no absolute criterion that is able to 

measure all model fits under all conditions. A criterion will select the ‘best’ model structure over all 

the others even when the model library is inadequate (‘inadequate’ here means that no models in the 
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library are exactly correct but only approximately correct). What the ‘best’ model is, depends on the 

specific situation. For example, the first three models given in Table 2 are structure incorrect 

compared with the true model. However, all the four models are equivalent if the model predicted 

outputs are of the most concern. The ‘correctness’ of a model structure is thus always relative and the 

ultimate objective is always to find the model structure that best fits, in either the structure and the 

output behaviour, the real system under study. 

Definition 4: Model behaviour equivalence 

Two models  and  are said to be equivalent with each other in behaviour, if the (model 

predicted) outputs of the two models, driven by the same input, are the same. 

1M 2M

In practice, it may be impossible to get exactly the same output behaviour for two different 

models. Thus, two models  and  are often considered approximately equivalent when their 

outputs are sufficiently close when justified using a given criteria. 

1M 2M

Assume that an identified model, , is given by  M

))(,),1(),(,),1(()( uy ntytuntytyfty −−−−= LL )(te+                                                     (15) 

At a given time instance , setting  for k=1,2, …, , model predicted outputs 

at time instances  are defined as 

)()(ˆ 00 ktyktympo −=− yn0t

0tt ≥

))(,),1(),(ˆ,),1(ˆ( uy
mpompo ntutuntytyf −−−− LL=)(ˆ tympo =),(ˆ Mtympo                          (16) 

While one-step-ahead predictions are often used to validate an identified model, previous 

experience shows that even a poor (e.g., insufficient, biased, unstable, etc.) model can provide good 

one-step-ahead predictions. Model predicted outputs can reveal severe model deficiencies which 

would otherwise go undetected by one-step-ahead predictions. However, in some cases, model 

predicted outputs may be unstable or may decay to zero, implying that model predicted outputs 

become invalid. In this case, a trade-off between one-step-ahead predictions and model predicted 

outputs is to use multi-step-ahead predictions.  

3.2   Model term selection aided by mutual information 

In the OLS-ERR algorithm described in section 2.2, a non-centralised squared correlation 

coefficient was used to measure the dependency between two vectors. This coefficient, between two 

vectors x and y, is defined as 

∑∑
∑

==

=== N

i i
N

i i

N

i ii
TT

T

yx

yx
C

1
2

1
2
1

22 )(

))((
)(),(

yyxx
yxyx                                                                                (17) 

In the following, the well-known mutual information function will be employed as an alternative to the 

non-centralised squared correlation function, to aid the selection of significant model regressors. 
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3.2.1   Mutual information 

Mutual information has now been extensively studied in the literature and applied to various areas. 

Following Cover and Thomas (1991), mutual information is defined as follows. 

Consider two random discrete variables x and y with alphabet X  andY , respectively, and with a 

joint probability mass function p(x, y) and marginal probability mass functions and . The 

mutual information  is the relative entropy between the joint distribution and the product 

distribution , given as 

)(xp )(yp

),( yxI

)()( ypxp

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑∑

∈ ∈ )()(
),(log),(),(
ypxp

yxpyxpI
x yX Y

yx                                                                               (18) 

The mutual information is the reduction in the uncertainty of y due to the knowledge of x, and 

vice versa. Mutual information provides a measure of the amount of information that one variable 

shares with another one. If y is chosen to be the system output (the response), and x is one regressor in 

a linear model, can be used to measure the coherence of x with y in the model. Several 

algorithms have been proposed to estimate mutual information from observed data, see for example 

Moddemeijer (1989, 1999), 

),( yxI

),( yxI

Darbellay and Vajda (1999), and Paninski (2003) and the references 

therein. In this study, the adaptive partitioning histogram method proposed in Darbellay and Vajda 

(1999) was employed to estimate relevant mutual information. 

3.2.3   Inclusion of mutual information in model structure selection 

Mutual information can easily be incorporated into the orthogonalization procedure in the same 

way as the squared correlation coefficient. Let }1:{ Mjjj ≤≤== φD be a given model term 

dictionary. Let , and yr =0

                                                                                                          (19) )},({maxarg 011 jMj
I φr

≤≤
=l

where is the mutual information function given by (18). The first significant basis can thus be 

selected as , and the first associated orthogonal basis can be chosen as . Set  

),( ⋅⋅I

11 lφα =
11 lφq =

1
11

10
01 q

qq
qrrr T

T

−=                                                                                                                      (20) 

In general, the mth significant model term can be chosen as follows. Assume that at the (m-1)th 

step, a subset , consisting of (m-1) significant bases, , has been determined, and the 

(m-1) selected bases have been transformed into a new group of orthogonal bases via 

some orthogonal transformation. Let  

121 ,,, −mααα L1−mD

121 ,,, −mqqq L

1
11

12
21 −

−−

−−
−− −= m

m
T
m

m
T
m

mm q
qq
qrrr                                                                                                    (21) 
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∑
−

=

−=
1

1

)(
m

k
k

k
T
k

k
T
j

j
m
j q

qq
qφ

φq                                                                                                         (22) 

)},({maxarg )(
111,

m
jmmkjm I

k

qr −
−≤≤≠

=
l

l                                                                                         (23) 

where . The mth significant basis can then be chosen as1−−∈ mj DDφ
mm lφα =  and the mth associated 

orthogonal basis can be chosen as . Subsequent significant bases can be selected in the same 

way step by step.  

)(m
m ml

qq =

From (21), the vectors and  are orthogonal, thus  1−mr 1−mq

11

2
122

2
2

1
)(||||||||

−−

−−
−− −=

m
T
m

m
T
m

mm qq
qrrr                                                                                           (24) 

By respectively summing (21) and (24) for m from 2 to n+1, yields 

n

n

m
m

m
T
m

m
T
m rq

qq
qry ∑

=

− +=
1

1                                                                                                            (25) 

∑
=

−−=
n

m m
T
m

m
T
m

n
1

2
122 )(||||||||
qq
qryr                                                                                                 (26) 

The residual sum of squares, also called the sum-squared-error, , or its variants including the 

mean-square-error (MSE) or the error-to-signal ratio defined as 

2|||| nr

22 |||||||| yrn , can be used to form 

criteria for model selection. The model term selection procedure can be terminated when some 

specified termination conditions are met. 

The motivation for introducing the mutual information assisted criterion here is not to totally 

replace the commonly used ERR criterion, but rather to provide an alternative and complementary 

approach to the ERR criterion. Further details will be given in Section 4.  

3.2.3   Parameter estimation 

It is easy to verify that the relationship between the selected original bases , and the 

associated orthogonal bases , is given by 

mααα ,,, 21 L

mqqq ,,, 21 L

                                                                                                                        (27) mmm RQA =

where ,  is an matrix with orthogonal columns , and  is an 

unit upper triangular matrix whose entries 

mqqq ,,, 21 L],,[ 1 mm ααA L= mQ mRmN ×

mm× )1( mjiuij ≤≤≤  are calculated during the 

orthogonalization procedure. The unknown parameter vector, denoted by ,  for the 

model with respect the original bases (similar to (4)), can be calculated from the triangular equation 

 with  , where  or . 

T
mm ],,,[ 21 θθθ L=θ

T
mm ggg ],,,[ 21 L=g )/()( 1 k

T
kk

T
kkg qqqr −= )/()( k

T
kk

T
kg qqqy=mmm gθR =

Note that some tricks can be used to avoid selecting strongly correlated model terms. Assume that 

at the (m-1)th step, a subset , consisting of (m-1) significant bases, , has been 

determined. Also assume that is strongly correlated with some bases in , that is,  

121 ,,, −mααα L1−mD

1−−∈ mj DDφ jφ1−mD
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is a linear combination of . Thus there exist (m-1) real numbers , at least 

one of which is different from zero, such that 

121 ,,, −mααα L 121 ,,, −mkkk L

112211 −−++= mmj kkk αααφ L                                                                                                   (28) 

, such that From (27), there exists another set of real numbers, 121 ,,, −mμμμ L

112211 −−++= mmj qqqφ μμμ L                                                                                                  (29) 

For the candidate basis given by (29), equation (22) becomes 

0q
qq
qφ

φq =−= ∑
−

=

1

1

)(
m

k
k

k
T
k

k
T
j

j
m
j                                                                                                      (30) 

Therefore, . In the IOFS algorithm, the candidate basis  will be 

automatically discarded if , where 

0)( )()( =m
j

Tm
j qq mj DD −∈φ

},1{10)( )()(
j

T
j

m
j

Tm
j φφqq τ−< τ is a positive number that is large 

enough. In this way, any severe multicolinearity or ill-conditioning can be avoided.  

3.3   Model length determination  

The role of model length determination in dynamical system identification has been widely 

recognised and various model selection criteria have been well established, see for example the recent 

review paper by Stoica and Selen (2004). Model selection criteria are often established on the basis of 

estimates of prediction errors, by inspecting how the identified model performs on future (never used) 

data sets. One general routine for model selection, which tries to avoid or reduce any possible bias 

introduced by relying on any particular test data sets, is cross validation (Stone 1974). Cross-validation 

has a number of variations, two commonly used variants of which are the leave-one-out (LOO), also 

called predicted sum of squares (PRESS) (Allen 1974), and generalised cross-validation (GCV) 

(Golub et al. 1979). Generalised cross-validation, due to its convenience of use and effectiveness for 

avoiding overfitting, has been widely accepted.  

Following Golub et al. (1979) and Orr (1995), the generalised cross-validation criterion below will 

be used for model size determination 

)MSE()GCV(
2

n
nN

Nn ⎟
⎠
⎞

⎜
⎝
⎛

−
=                                                                                                     (31) 

where N is the length of the training data set, n is the effective number of model terms (Moody 1992) 

where GCV is a minimum value, and is the mean-square-error that is associated to 

the model of n model terms. It should be pointed out that the GCV criterion tends to produce 

overfitted models (Friedman and Silverman 1989, Barron and Xiao 1991). The evaluation of the 

performance of the GCV criterion and some relative improvements have been reported in Billings and 

Wei (2007a).  

Nn n /||||)MSE( 2r=

3.4   Hypothesis testing on individual regression coefficients 
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Statistical methods play a unique role in the diagnosis and analysis of linear models. One aspect of 

the application of statistical methods for linear model analysis is hypothesis testing on regression 

coefficients (Hocking 1976, 1983, Montgomery et al. 2001).  Consider the linear regression model 

with k regressors below 

eXθy +=                                                                                                                              (32) 

where y is , X is (if a constant term is included in (32), then all the elements of the first 

column of X are assumed to be unit), θ is 

1×N nN ×

, e  is 1×n 1×n , and n=k+1. Equation (32) is equivalent to 

(5), where y and X in (32) can be viewed as the output vector and the associated regression matrix A 

in (5), respectively. A frequently asked question is: do all the k regressors contribute significantly to 

the regression model?  

The simplest but useful hypothesis for testing the significance of any individual regression 

coefficient, for instance  in the model (32), is  jθ

0:0 =jθH                                                                                                                            (33a) 
0:1 ≠jθH                                                                                                                            (33b) 

0:0 =jθHIf there is no sufficient reason to reject the null hypothesis , then the corresponding 
regressor can be removed from the model. The test statistic for this hypothesis is  jx

)ˆse(
|ˆ|

0
j

jt
θ
θ

=                                                                                                                            (34) 

*2ˆ)ˆse( jjj cσθ =where is the standard error of the regression coefficient , is the diagonal 

element of  corresponding to , and is the unbiased 

estimator of variance. 

*
jjcjθ

jθ̂
1)( −XXT )/()( nNT −−= yHIysMSRe

2ˆ =σ

For a givenα , if , the null hypothesisnNtt −> ,2/0 α 0:0 =jθH  can then be rejected. Note that this is 

really a partial or marginal test (Montgomery et al. 2001) because the regression coefficient 

depends on all of the other regressors that are in the model. Thus it is a test of the contribution of 

given the other regressors in the model.  

jθ̂

jx

96.1,2/ ≈−nNtα α, ifFor practical identification problems, where 120>− nN is set to 0.05, an 
equivalent test to (34) is 

)ˆse(96.1
|ˆ|

0
j

jt
θ

θ
=                                                                                                                 (35) 

If , the null hypothesis  can then be rejected at the 95% confidence interval. Detailed 

information for the explanation of the rationale and the theoretical derivations for the above statistic 

can be found in (Montgomery et al. 2001). 

0:0 =jθH10 >t

The ERR (and mutual information) criterion and the t-test criterion are used in two separate 

procedures in the IFOS algorithm. The ERR criterion is used in the forward orthogonal search 
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procedure, where significant model terms are selected step by step, one at a time. This procedure, 

coupled with the GCV criterion, will produce a model (or a set of models) formed by the selected 

significant model terms. But it has been noted that some spurious model terms may still be in the 

resultant model when the input is poorly designed. To refine the resultant model, the t-test is then used 

to detect and then remove the most probable spurious model terms. 

In the next section, illustrations will be presented to show how the proposed IFOS algorithm 

works. A general procedure and some recommendation on how to apply the IFOS algorithm will then 

be given in Section 5. In the following, the IFOS algorithm, aided by the squared correlation, will be 

referred to as IFOS-SC. Similarly, the algorithm aided by mutual information criterion, will be 

referred to as IFOS-MI. As will be seen, for the same identification problem, IFOS-SC and IFOS-MI 

may or may not produce exactly the same model structure. By evaluating the performance of the 

resulting models, in accordance with some specified measures, a more accurate model structure can 

often be obtained. The relationship between ERR and MI criteria have not yet been found (Billings 

and Wei 2007b). A further study is still needed to reveal conditions under which one algorithm 

outperforms the other. 

4.     Case studies 
In this section, several examples are provided to illustrate how to select an accurate model 

structure using the new IFOS algorithm. It will be shown that the IFOS algorithm can detect spurious 

model terms even when the data are contaminated with noise. A spurious model term here means that 

the model term is not in the true model but is selected with an ERR value that is not small. For cases 

where the input may not be sufficiently exciting, a trial-and-error approach can be used to avoid 

selecting the terms y(t-1), y(t-2), etc., since these terms are most likely to be selected even if they are 

not in the true model. In cases where the true model is not known, the performance of model predicted 

outputs will be examined to find the best model from a model set containing several candidate models 

generated from different libraries.  

Notice that in the given examples, both artificial models and real data sets, where it is believed to 

be difficult to find the correct model structure, have been deliberately chosen to illustrate the 

effectiveness of the new IFOS algorithm. The examples are therefore far more demanding than typical 

model structure selection problems. 

4.1   Example 1—the input is white 

The following model was taken from Mao and Billings (1997) 

)2(6.0 2 −+ tu)2(5.0)( −−= tyty )1()1(7.0 −−+ tuty  
)1(2.0 3 −+ ty )2()2(7.0 2 −−− tuty )(te+                                                                (36) 
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Table 3  Identified model structure for system (36) using the IFOS-SC algorithm 

Parameter 
Term True  Estimate ERR(%) t-test GCV 

y(t-1)u2(t-2) 0 0.014704 34.9921 0.7382 0.074273 

y(t-1)u(t-1) 0.7 0.706678 21.9095 69.9612 0.049441 

u2(t-2) 0.6 0.601460 12.3828 99.9614 0.035379 

y(t-2) -0.5 -0.491838 23.6688 59.4477 0.008150 

y3(t-1) 0.2 0.204638 4.5382 33.6203 0.002915 

y(t-2)u2(t-2) -0.7 -0.708220 2.1595 27.4588 0.000412 

y(t-1)u(t-4) 0 -0.026297 0.0045 1.1833 0.000403 

y2(t-2)u(t-3) 0 -0.012915 0.0044 1.1315 0.000400 

y(t-4)u(t-2) 0 0.017330 0.0043 1.6214 0.000396 

y(t-3)y(t-4)u(t-2) 0 -0.025846 0.0032 1.1110 0.000397 

Run time: 0.906s 

Table 4  Identified model structure for system (36) using the IFOS-MI algorithm 

Parameter 
Term True  Estimate 

Mutual 
Info t-test GCV 

y(t-2)u2(t-2) -0.7 -0.690247 0.251193 42.2583 0.118617 

u2(t-2) 0.6 0.599793 0.320914 149.1860 0.048510 

y(t-1)u(t-1) 0.7 0.705487 0.188335 99.3864 0.026045 

y(t-2) -0.5 -0.501902 0.227581 66.5005 0.014168 

y3(t-1) 0.2 0.201394 0.214758 65.9884 0.000393 

u2(t-1)u(t-4) 0 -0.002367 0.012226 0.3664 0.000394 

u2(t-2)u(t-3) 0 -0.001729 0.008698 0.2627 0.000396 

y(t-4)u(t-2)u(t-4) 0 -0.010032 0.008073 0.8780 0.000396 

Run time: 2.126s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the input u(t) was uniformly distributed on [-1, 1], with the noise e . Following 

Mao and Billings (1997), the maximum lags of both the input and the output were assumed to be 4 and 

the nonlinear degree to be 3. Five hundred input-output data were generated and were used for model 

structure selection. The new IFOS algorithm, which incorporates the t-test given by (35), was applied 

to the data set, and the results are shown in Tables 3 and 4.  

)02.0,0(~)( 2Nt

From Table 3, the ERR values show that the first 6 model terms are significant and should be 

included in the model. The first selected term, y(t-1)u2(t-2), with the highest ERR value is spurious. 

The t-tests show that among all the 10 model terms selected with the ERR criterion, only 5 are 

significant and the t-tests of the 5 terms are significantly different from unity. This means that the 5 

terms with the highest t-tests dominate the regression model. This can easily be confirmed by 

inspecting the model predicted outputs based on the model with regard to the 5 model terms. The GCV 
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values show that the appropriate number of model terms is 9, but clearly a model of 9 terms is 

overfitted. 

Compared with Table 3, results given in Table 4 are quite optimistic. The t-tests show that only 5 

model terms are significant, and the five model terms are exactly consistent with the 5 true model 

terms. In addition, GCV provides a correct indication of the structure, suggesting that 5 model terms 

are appropriate. Thus, from the results given by Table 3 and 4, all model terms can be correctly 

determined. 

4.2   Example 2—the input is non-white 

Consider the following two systems 

5.0)2(05.0)1( 22 +−−−+ twtu)2(8.0)1(5.0)( −+−= tutwtw:                                      (37a) 1S

)(
5.01

1)()( 1 t
q

twty ξ−−
+= ,                                                         (37b) )05.0,0(~)( 2Ntξ

)1(3.0)2()1(25 3 −−−−+ tututu)2(5.0)1()( −+−= tututw:                                          (38a) 2S

)(
8.01

1)()( 1 t
q

twty ξ−−
+= ,                                                        (38b) )02.0,0(~)( 2Ntξ

Following Piroddi and Spinelli (2003), the input u(t) to the two systems were chosen as a low 

frequency AR(2) process of the form: u(t)=1.6u(t-1)-0.6375u(t-2)+ )1,0(~)( Ntζ)(16.0 tζ , with . Two 

data sets of 500 input-output samples were generated from each system and the two data sets were 

used for model structure selection. 

4.2.1   Experiments for system  1S

Following Piroddi and Spinelli (2003), the maximum lags of both the input and the output were 

assumed to be 2 and the degree of nonlinearity to be 2. Model structure selection results for system 

are reported in Tables 5 and 6. Following the analysis in Example 1, it is clear that the significant 

model terms should be selected as y(t-1), u(t-2), u

1S
2 2(t-1), y (t-2), and the const term,  which are exactly 

the same as the true model. Note that once the 5 model terms have been determined, the parameters 

need to be re-estimated based on just these selected model terms.  

4.2.2   Experiments for system  2S

Following Piroddi and Spinelli (2003), the maximum lags of both the input and the output were 

assumed to be 2 and the degree of nonlinearity to be 3. To ensure selection of the correct model 

subset, the IFOS-SC algorithm was applied over the following 5 different candidate model term 

dictionaries:  

3,2,0DD =u ,  ,  3,2,2
0 DD =

)}1({01 −−= tyDD ,  
)}2({02 −−= tyDD ,  
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)}2(),1({03 −−−= tytyDD ,  

where the model term dictionary D  was defined by (14). The reason that the 5 different 

candidate dictionaries were considered here was two fold: one goal is to illustrate that the choice of 

initial dictionaries will affect the model selection results, and another goal is to show that spurious 

model terms can be detected using the t-test. Five different models, corresponding to the 5 dictionaries, 

were selected and the identified models are shown in Table 7. Similar results were also obtained using 

the IFOS-MI algorithm, but are not shown to save space. 

l,, uy nn

While it is not quite apparent which model terms should be included in the model from the results 

with respect to D and D , it is quite clear from the results with regard to D , D and D  that the 

significant model terms included in the model should be u(t-1), u(t-2), u(t-1)u(t-2), and u

u0 2 1 3

3(t-1), which 

are exactly the same as required by the system. Note that the search time to select the model terms is 

quite short, and it is less than 0.1s for each of the 5 cases. 

 

 
Table 5  Identified model structure for the system (37) using the IFOS-SC algorithm 

Parameter 
Term 

True  Estimate 
ERR(%) t-test GCV 

y(t-1) 0.5 0.500106 91.1027 71.4985 1.511037 

y2(t-2) -0.05 -0.049757 3.5098 128.3416 0.922388 

u2(t-1) 1 1.000401 2.0742 132.8120 0.571884 

u(t-2) 0.8 0.806721 2.8537 125.5270 0.079973 

const 0.5 0.493459 0.4406 43.4106 0.003336 

y2(t-1) 0 -0.000419 0.0001 0.8359 0.003343 

u2(t-2) 0 0.006367 0.0001 0.6223 0.003360 

Run time: 0.032s 

Table 6  Identified model structure for the system (37) using the IFOS-MI algorithm 

Parameter 
Term 

True  Estimate 

Mutual 
Info t-test GCV 

 

 

 

 

 

 

 

 

 

 

 

 

 

u(t-1) 0 0.006148 1.313614 0.3120 15.160800 

u2(t-1) 1 0.994118 1.203510 61.4893 1.587509 

y(t-1) 0.5 0.496906 0.244386 84.2243 1.077226 

y2(t-2) -0.05 -0.049833 0.818507 135.5297 0.102098 

u(t-1)u(t-2) 0 0.011942 0.332722 0.5739 0.091160 

const 0.5 0.499216 0.218877 51.2285 0.039561 

u(t-2) 0.8 0.800587 1.156804 36.8467 0.003281 

y(t-1)u(t-1) 0 0.000024 0.000976 0.0210 0.003294 

Run time: 0.141s 
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Table 7  Identified model structures for the system (38) using the IFOS-SC algorithm 

Parameter 
Term 

True  Estimate 
ERR(%) t-test GCV 

u(t-2) 0.5 0.496879 66.5315 31.3303 0.344189 

u2(t-1)u(t-2) 0 0.000176 16.4164 0.0154 0.176546 

u(t-1)u(t-2) 0.25 0.253131 14.2253 113.7397 0.029466 

u(t-1) 1 1.002408 2.2567 61.4645 0.005983 

u3(t-1) -0.3 -0.299978 0.4670 26.4503 0.001090 

 
 
uD  

const 0 -0.002844 0.0005 0.8391 0.001092 

y(t-1) 0 0.117996 90.4984 3.2882 0.121247 

y(t-2) 0 -0.012730 3.8298 1.2854 0.072865 

u2(t-1) 0 0.040058 0.1612 2.4779 0.071273 

u(t-1)u(t-2) 0.25 0.184041 1.1284 18.3499 0.057063 

u(t-1) 1 1.026177 0.3607 52.7857 0.008343 

u3(t-1) -0.3 -0.296222 3.3894 85.2908 0.008343 

u(t-2) 0.5 0.318613 0.5477 15.5183 0.001121 

 
 
 
 

0D  

u3(t-2) 0 0.027746 0.0044 2.8930 0.001070 

y(t-2) 0 0.005719 81.2615 0.8224 0.195498 

u(t-1) 1 1.005003 5.5294 72.3156 0.138739 

u3(t-1) -0.3 -0.297251 5.5040 121.4937 0.081477 

u(t-1)u(t-2) 0.25 0.251067 6.9853 91.0853 0.007663 

u(t-2) 0.5 0.490089 0.6127 29.7224 0.001148 

 
 
 

1D  

const 0 0.003600 0.0007 0.9898 0.001148 

y(t-1) 0 0.097761 94.6515 4.0993 0.072308 

u(t-1) 1 1.021391 0.3734 60.3493 0.067714 

u3(t-1) -0.3 -0.307184 1.4250 55.8901 0.048646 

u2(t-1) 0 -0.029880 3.0680 1.9263 0.006651 

u(t-2) 0.5 0.336549 0.2329 7.6580 0.003461 

u(t-1)u(t-2) 0.25 0.265645 0.1777 19.8444 0.001000 

u(t-1)u2(t-2) 0 0.034981 0.0036 3.1287 0.000955 

 
 
 
 

2D  

y2(t-1) 0 -0.006900 0.0022 2.2771 0.000930 

y(t-1)u2(t-1) 0 0.000027 71.7306 0.0242 0.981663 

y2(t-1)u(t-1) 0 -0.000045 12.3847 0.1902 0.555321 

u(t-2) 0.5 0.496203 4.9718 43.4379 0.384091 

u3(t-1) -0.3 -0.298608 6.4838 228.1314 0.156944 

u(t-1)u(t-2) 0.25 0.251097 3.1894 141.8768 0.044227 

 
 
 
3D  

u(t-1) 1 1.000408 1.2084 77.1917 0.001123 

Run time: D (0.031s), D (0.059s), D (0.079s), D (0.094s), D (0.047s) u 0 1 2 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.3   Example 3—forecasting annual sunspot numbers 

The data set used in this example contains 301 observations of the annual sunspot numbers from 

1700 to 2000. The first 280 samples for years 1700 to 1979 were used for model identification and the 

remaining 22 data were used for model performance testing. The candidate model term dictionaries 

were chosen as 1,0,12
0 DD = ,),1({ L−= ty )}12( −ty , and -{y(t-1),y(t-2)}. The reason that the 

maximum lag was chosen to be 12 is due to the fact that the annual sunspot time series has a cycle that 

is about 11years. Although a nonlinear model for the sunspot time series may be more appropriate, the 

objective in this example is to illustrate the efficiency of the new IFOS algorithm for model structure 

selection, and a linear model was thus adopted.  

01 DD =

The selected model structures from the dictionary using both IFOS-SC and IFOS-MI are shown 

in Table 8. Both algorithms suggested that the best model subset be chosen as {y(t-1), y(t-2), y(t-9), 

const}. The selected model structures from the dictionary  by both IFOS-SC and IFOS-MI required 

5 model terms: y(t-3), y(t-4), y(t-9), y(t-11), and const. It easily be shown that the performance of the 

model generated from  is much inferior compared with the model generated from .  

0D

1D

1D 0D

The fact that the two different criteria (squared correlation and mutual information) yield the same 

results indicates that the linear regression model is dominated by the three significant variables y(t-1), 

y(t-2) and y(t-9). This result enhances the previous conclusion (Wei et al. 2004) that y(t-1), y(t-2) and 

y(t-9) are the three most important variables for describing the sunspot time series over the period 

from 1700 to 1979. By re-estimating the parameters in a linear model, the final identified model was 

given by y(t)=6.0223+1.2352y(t-1)-0.5404y(t-2)+0.1917y(t-9). One-step-ahead predictions and model 

predicted outputs produced by the identified model over the test data set are shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  One-step-ahead predictions and model predicted outputs produced from the identified model (with 4 
model terms) for the sunspot time series. Solid line with circles indicates the measurements; dashed line with 
stars, one-step-ahead predictions; and dotted line with squares, model predicted outputs. 
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Table 8  Identified model structures for the sunspot time series  

 ERR(%) 
Term Parameter or 

Mutual 
info 

t-test GCV  

 

 y(t-1) 1.202332 86.0183 10.1523 551.750797  

y(t-9) 0.187390 5.2192 3.3646 348.392854   

y(t-2) -0.428369 2.7622 2.2895 240.374414   
const 6.275233 0.1884 1.2828 234.594548 

SC 
 

y(t-3) -0.134668 0.0262 0.7185 235.314457  
y(t-4) 0.054645 0.0193 0.4780 236.322559  
y(t-1) 1.215845 0.442097 10.3688 551.750797  

 
y(t-2) -0.532471 0.239983 4.2013 358.789312  

 y(t-9) 0.161627 0.171117 1.6646 240.374414  

const 6.469004 0.036343 1.3200 234.594548 
MI  

y(t-10) 0.038577 0.045810 0.3668 235.862834  
y(t-4) -0.005922 0.030401 0.0835 237.642482  

Run time: IFOS-SC (0.078s), IFOS-MI (0.094s)  
  

 

4.4   Example 4—Drosphila or fruit fly modelling 

This data set came from experiments and observations on a fruit fly, called Drosophila. The system 

input was the response of the photoreceptors, and the output was the response of the large monopolar 

cells. Recordings of 1000 points, sampled at a rate of 1kHz, on wild-type flies were collected. 

The relationship between the input and the output in the fruit fly experiment is complex, because 

in addition to the response from the photoreceptors, several other factors may also affect the output 

response of the large monopolar cells. Identification of models relating these responses is therefore 

quite challenging. The objective of this example is to find a model that reflects, as closely as possible, 

the relationship between the response of the photoreceptors (the input) and the response of the large 

monopolar cells (the output), to facilitate the analysis and understanding of the associate behaviour of 

this kind of insect.  

For the fruit fly modeling, the 1000 points in the data set were partitioned into two parts: the first 

600 points were used for model identification, and the remaining 400 points were used for model 

testing. The input and the output over the test data set are shown in Figure 2.  
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The maximum lag for the input and the output were chosen to be 5 and 3, respectively, and the 

degree of nonlinearity to be 3. Similar to previous examples, the following 6 candidate model term 

dictionaries will be considered:  

5,3,0DD =u ,  , , ,  )}1({01 −−= tyDD )}2({02 −−= tyDD3,5,3
0 DD =

)}2(),1({03 −−−= tytyDD ,  , )}3(),2(),1({04 −−−−= tytytyDD

where the set was defined as defined as ={y(t-1), …, y(t- ), u(t), u(t-1), …, u(t- )}. The 

reason that the 6 different candidate dictionaries were considered here was as follows. Experience has 

shown that the terms y(t-1), y(t-2), etc. are most likely to be selected even if they are not in the true 

model. Based on this observation, the 6 different initial dictionaries were considered and these led to 6 

different models. The model that produces the best output performance was chosen to be the final 

model. The average time used by the IFOS-SC algorithm for model structure selection, over different 

model term dictionaries, was 2.425s, and 4.688s for the IFOS-MI algorithm running on a standard PC. 

yn
uy nnV , uy nnV , un

Following the same procedures as described in previous examples, the IFOS-MI identified model, 

selected over the dictionary , was found to be the best model, because the performance of the long-

term predictions produced by this model were superior to the other identified models. The final IFOS-

MI identified model contained 10 model terms. A comparison between the model predicted outputs 

and the measurements over the validation data set is shown in Figure 3. Clearly, the identified model 

fitted the experimental data extremely well. 

2D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  The input and output data used for model estimation for the fruit fly modeling problem. 

 

 

 24



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  A comparison between model predicted outputs and the measurements over the validation data set the 
fruit fly modeling problem. Solid line indicates the measurements and the dashed line indicates the model 
predicted outputs from the identified model for the fruit fly data set. 

5.     Discussions and recommendations 
Model structure selection is a central issue in any nonlinear system identification problem. In 

addition to the input signal and sampling interval, many other factors, including the initial choice of 

the maximum lags for both the input and the output, the determination of the primary variables, the 

choice of initial candidate model term dictionaries, and the presence of noise (uncertainty in the data), 

all affect model structure selection. All these are generic problems in nonlinear system identification.  

It is known that if the maximum lags or key (primary) variables for the system can be 

appropriately determined in advance, then irrelevant model terms can be precluded. Thus determining 

suitable maximum lags and selecting significant variables is a key step that could greatly improve the 

accuracy of all model structure selection procedures.  

Results from numerous examples and applications in the literature have shown that the OLS-ERR 

algorithm can select accurate model structures for general nonlinear system identification problems. 

The algorithm may however occasionally produce redundant or incorrect model subsets in the 

presence of noise or if the input signal is not very exciting over the system bandwidth. To solve this 

problem, Piroddi and Spinelli (2003) suggested a simulation error based approach, which was 

implemented by minimizing the simulation error. This method, however, has two main drawbacks. 

First, it requires the calculation of model predicted or simulated outputs for all candidate model terms 

and can thus be extremely time consuming. Secondly, when the model predicted output diverges (the 

model is unstable) this is a clear indication that the model should be rejected. The examples provided 
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in Piroddi and Spinelli (2003) and other related works show that the models rejected for this reason 

have an incorrect structure. For example, assume that a system is totally determined by a model subset 

of n model terms.  An often encountered scenario is that, models formed by any subset of up to r (< n) 

terms may be unstable (infinitely divergent) or over attenuated (converge to zero), the model predicted 

output may thus be either infinite or zero. Clearly, the simulation error based approach will not work 

well for these cases and will not select any correct model subsets.  

This study suggests the following four-stage trial-and-error experiments: 

 Stage 1—Select candidate model term dictionaries.  •

Let , , -{y(t-1)}, -{y(t-2)}, and -{y(t-1),   

y(t-2)}, where the model term dictionary  is defined by (14).  

l,,0 un
u DD = l,,

0
uy nnDD = 01 DD = 02 DD = 03 DD =

l,, uy nnD

 Stage 2—Model structure selection. •

Perform the forward orthogonal search algorithm over the 5 candidate dictionaries, 

respectively. This will lead to different model structures. Note that some spurious model 

terms may still be in the resultant models in cases where the input is poorly designed. 

 Stage 3—Model comparison.  •

Compare the performance of the identified models selected over the different model term 

dictionaries , , , and . Select the best model according to a specified 

criterion, for example the performance of model predicted outputs or multi-step-ahead 

predictions. 

uD 0D 1D 2D 3D

 Stage 4—Model refinement.  •

Check the values of the t-test statistic, which indicates which model terms might be 

removed from the resultant model structure.  Re-estimate model parameters if a couple of 

model terms need to be removed from or added into the selected model in Stage 3.  

Note that the time spent on model structure selection using the orthogonal least squares type 

algorithms, for instance the IFOS algorithm here, is very short even for general cases. The above 4-

stage trial-and-error experiments are thus not time demanding and can often be completed in a very 

short time. From the experience of numerous experiments including the four examples described in the 

present study, this 4-stage approach will usually provide accurate model structures. 

In many cases the noise signal  in Eq. (1) may be a correlated or coloured noise sequence. 

This is likely to be the case for most real data sets. In this case the NARX model (3) may fail to give a 

sufficient description due to the bias in the parameter estimates. As a consequence, the identified 

NARX model may not be sufficiently accurate if the model is used for other types of input signals. 

Practical identification experience shows that the bias on the parameter estimates can be virtually 

eliminated by including the noise signals 

)(te

in the model. Readers are referred to )(,),1( entete −− L
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Billings et al. (1989) and Billings and Chen (1998) for details about the NARMAX modelling 

methodology. 

6.     Conclusions 
A new integrated forward orthogonal search (IFOS) algorithm, which is assisted by both the 

squared correlation and mutual information, and which incorporates a t-test and a general cross-

validation (GCV) procedure, has been proposed for nonlinear system identification. The incorporation 

of the t-tests into the new IFOS algorithm has greatly enhanced the capability of detecting and hence 

removing any incorrect (spurious) model terms. The incorporation of a GCV into the new algorithm 

provides an important index for choosing an appropriate number of model terms.  

It has been observed that for some input signals with a specific structure, the model term y(t-1) is 

nearly always selected as the first term with a very high ERR value, and as a consequence the 

contributions of the other model terms, measured by the associated ERR values, can become small and 

sensitive to the effects of noise. This problem, however, has been effectively solved by introducing the 

four stage model selection procedure.  

The new mutual information criterion can be used as a complementary approach or alternative to 

the squared correlation criterion. For a given identification problem, the two criteria may or may not 

produce exactly the same model structure. By inspecting and comparing the performance of the 

resulting models, in accordance with some specified measures, for example model predicted outputs, 

or multi-step-ahead predictions, a more accurate model structure can often be obtained. In this way, 

the accuracy of the identified model structure will be significantly improved compared with results 

based on any one single criterion. 

The application of IFOS algorithm is not limited to the polynomial NARMAX model. The key 

idea in the IFOS algorithm can be applied to any linear-in-the-parameters model identification 

including the configuration and training of radial basis function (RBF) networks and wavelet 

modelling.  

It should be noted that a comprehensive comparison between the ERR and MI criteria still needs to 

be considered, because cconditions under which one algorithm outperforms the other or vice versa, 

have not yet been found. This is why we suggest using the two algorithms in parallel, to lead to a 

model that is better than, or at least as good as, those produced by any one single criterion. 
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