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We are thankful to the earth, which gives us our home.
We are thankful to the rivers and lakes, which give away their fruits and nuts to us.
We are thankful to the wind, which refreshes our life and brings rain and snow to water the plants.
We are thankful to the sun, which brings warmth and light for all beings on the Earth.
The trees, the animals, the sun, the wind, the rivers and the lakes share with

one another their unique qualities and so maintain universal balance.

We all live on one Earth.
We all live under one sun, one moon, one sky.
We all breathe the same air.
We all drink the same water.

We all have the same desires.

We all living beings have equal right to live on the Earth
The air, the water, the earth and the sun
are not the monopolies of human beings, only but equally belong to all living beings.
We should respect and protect all life on the Earth.
We should respect and protect all trees and plants.

We will not consume or use more than our actual needs.

We will live in love and harmony with nature and animals.

We promise to live in balance with all on the earth.

Ven. Bhikkhu Sanghasena
Mahabodhi Centre, Leh, Ladakh, India
December 2004
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1. Introduction and thesis outline

1.1. Introduction; objectives

Eutrophication is an excess input of nutrients, especially phosphorus and nitrogen, to naturally
oligotrophic or mesotrophic ecosystems. This causes the degradation or disappearance of
natural plant and animal communities. Shallow, more or less stagnant waters like lakes, ponds
and ditches are the most vulnerable for eutrophication. The naturally occurring communities of
these waters prevailing under mesotrophic conditions, mostly dominated by aquatic plants
(macrophytes) as primary producers, tend to change dramatically. Besides a collapse of the
macrophytes, the related communities of algae, invertebrates, fishes and so on also change
completely, and biodiversity as a whole generally decreases. This study concentrates on the
effects in shallow lakes and ponds on the one hand and in ditches on the other. In shallow lakes,
the clear-water community characterized by macrophytes is generally replaced by a dominance
of phytoplankton and turbid water, while a diverse fish community including piscivores is
transferred into a species-poor community dominated by bream. In ditches, small water
discharge channels in agricultural areas, eutrophication causes the typical, richly structured
community of submerged macrophytes to be replaced by a monotonous layer of small floating
plants, duckweeds. This leads, among others, to an anaerobic environment and loss of aquatic
life.
As these biotic effects are considered as undesirable, it is important to be able to predict, as far
as possible in a quantitative way, at what degree of eutrophication these changes will occur, and
whether they are reversible or not. Mathematical models are a useful tool to address prediction
questions.
This thesis describes two mathematical models made for this purpose, a model for lakes and a
model for ditches. The aim of both models is to answer the following questions:
a. At what nutrient loading the system changes from the natural state to the degraded state
b. How long does this take
c. Isthis change reversible, i.e. how far should the nutrient loading be decreased to restore the
natural state once the system is degraded
d.  Why are some types of lakes more susceptible to eutrophication than others
What are the key processes determining this
f.  Whatis the effect of different management options for restoration of degraded ecosystems,
or increasing the resilience of natural ecosystems.
2. What is the uncertainty of these predictions

1.2 Thesis outline

The section MODEL SETUP (Chapter 2) shortly describes the eutrophication process in both
lakes and ditches and, based on this, gives an outline of the model features (type of model as



Chapter 1

compared to other types), and a short description of the models PCLake (for lakes) and
PCDitch (for ditches). For a comprehensive description of the models the reader is referred to
the Appendix.

The section SYSTEMATIC ANALYSIS comprises five chapters describing the general
behaviour of the models. Chapters 3 and 4 deal with sensitivity and uncertainty analysis and
calibration. The need was felt for a combined model calibration on a set of lakes with different
features, loading and ecological state, rather than on separate cases. The methodological basis
for a calibration on a multi-lake dataset based on Bayesian principles is described in chapter 3.
The calibration itself, preceded by a sensitivity analysis and combined with an uncertainty
analysis, is the subject of chapter 4. The uncertainty analysis is applied to the ‘critical loading’
as a derived model output. The topic of critical loading is further explored in the chapters 5-6
for lakes and 7 for ditches. In chapter 5 the critical loading is simulated for an ‘average Dutch
lake’, and chapter 6 treats systematically the dynamic and long-term behaviour of the model at
different initial conditions, and how this is affected by different lake features (bifurcation
analysis). Chapter 7 deals with the critical loading for duckweed dominance in ditches.

In the section APPLICATIONS, a number of case studies have been brought together in which
the models have been applied to specific lakes or regarding specific aspects. Chapters 8-13 deal
with PCLake. Chapters 8-10 are devoted to Lake Loosdrecht (The Netherlands), a
eutrophicated lake where phosphorus loading has been reduced (this version of the model was
then called PCLoos). Chapters 11-12 describe simulations of a biomanipulation measure in
Lake Zwemlust (also in The Netherlands). Other applications (not included in this thesis) were:
Lakes Reeuwijk (Janse et al (1993), Janse (1995)), Kortenhoef (Aysever (1994), Kortenhoef
and Ankeveen (Zamurovic-Nenad, 1993; Dekker et al., 1996)), a number of lakes in The
Netherlands (Van Puijenbroek et al., 2003) and in some other European countries (Dagevos et
al (2003). All these cases were modelled with the lake model proper. The effect of a wetland
zone connected to a lake is illustrated in chapter 13, making use of the combined lake and
wetland modules.

Examples of PCDitch applications are described in chapters 14-15. Chapter 14 deals with a set
of 8 experimental ditches varying in sediment type and nutrient loading, chapter 15 discusses
the effects of nitrogen loading and depth to an average clay ditch and makes a comparison with
field situations. The model has also been applied to ditches in the Dutch regions of Hollands
Noorderkwartier (Janse & Van Puijenbroek, 1997) and Bergambacht (Van Liere et al., 2002)
(not included in this thesis).

Overall conclusions and summary can be found in the SYNTHESIS section, chapter 16.
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Model setup

2. Model setup

2.1. Eutrophication of shallow lakes

As aresult of high nutrient loadings during the past decades, many shallow lakes have become
highly eutrophic. They are now characterized by dense algal blooms of cyanobacteria, high
turbidity, absence of vegetation and a fish community dominated by bream. This in contrast to
the original, mesotrophic, state, characterized by a high coverage of submerged macrophytes,
low turbidity, low algal levels and a higher proportion of piscivores in the fish community (Fig.
2.1). (Note: in river delta areas like The Netherlands, the original state of lakes was
mesotrophic rather than oligotrophic.) Although these effects were caused by increased
nutrient loadings, restoration of the underwater vegetation often could not be achieved by
external load reduction alone: eutrophic lakes often show resistance to recovery. Apparently,
once the system has switched from a clear to a turbid state, this switch cannot simply be
reversed.

There is now ample evidence that, grossly speaking, shallow lakes may be in either of these two
alternative states, viz. a clear-water state dominated by macrophytes and a turbid-water state
dominated by phytoplankton (e.g. Timms & Moss, 1984; Hosper, 1989; Van Liere et al., 1989;
Jeppesen et al., 1991; Gulati et al., 1990b, Scheffer, 1998; and many others). Several factors
determine which state prevails in a certain case, but a key factor is the external nutrient loading.
At high loading, only the turbid state is stable, whereas the opposite is true for a low nutrient

‘Clear water’ foodweb Foodweb in eutrophic
turbid water
Fish of prey
Fish of prey | Whitefish [ (ssrers
/ (pike) \ (bream)
\\
Whitefish I Turbid, so no }
'Ie ® Water plants | waterpants|
el Light
v Light Phytoplankton ¢
. Nutrients
t Nutrients I
Sediment nutrients

S‘edyiyment nutrients

Fig. 2.1. Dominant components in a clear lake (left) and a turbid lake (right).
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Chapter 2

loading. In the intermediate range, both states may exist and switches between the two states
are possible. Because both states possess a number of self-stabilizing buffering mechanisms,
the critical loading level at which a shift occurs is dependent on the initial state of the system:
the shift from turbid to clear occurs at a much lower loading level than the opposite one
(hysteresis). In the intermediate range, a shift may be invoked by a natural or anthropogenic
disturbance of the system. For example, a shift from turbid water to clear water might be
induced by a natural fish kill or by a biomanipulation measure: removal of benthivorous and
zooplanktivorous fish (Gulati et al., 1990).

During the course of eutrophication of an originally mesotrophic, vegetated lake, changes
occur in all abiotic and biotic parts of the ecosystem. In a vegetated system, the different
components keep each other in equililibrium, and phytoplankton biomass is kept low due to
nutrient limitation and grazing. If the nutrient loading (especially with phosphorus, usually the
limiting nutrient for freshwater phytoplankton) increases above the uptake capacity of the
system, the phytoplankton biomass increases, usually first with green algae. Macrophytes
disappear due to shortage of light. At increasing turbidity the algae are often replaced by better
shade-adapted cyanobacteria (Van Liere, 1979), provided that the retention time is not too
short. The disappearance of the macrophytes results in a disturbance of the food web, leading
to a bream-dominated fish community, which itself contributes to the water turbidity and to
recycling of nutrients. Zooplankton cannot handle the high concentration of phytoplankton.
The cyanobacteria, which are very phosphorus efficient, are able to maintain a high biomass
even if the phosphorus loading would decrease again.

Both states possess a number of self-stabilizing mechanisms (Fig. 2.2). Several, often
interacting, mechanisms for the resistance of the turbid state have been proposed (see e.g.
Scheffer, 1998). Firstly, a prolonged internal loading from nutrient-rich sediments may delay the
response (Ryding & Forsberg, 1977). Secondly, an increase of the nutrient utilization efficiency
of the phytoplankton makes them produce the same biomass with less nutrient (Van Liere &
Janse, 1992). Thirdly, the zooplankton grazing pressure on the phytoplankton is low, both
because of the poor edibility of cyanobacteria by zooplankton and the strong predation on it by
bream (Gulati et al., 1990a). Finally, the high density of adult bream, by its feeding behaviour in
the sediment top layer, keeps the water turbid and impedes return of the vegetation. Clearly, both
direct effects of nutrients and indirect effects through the food web may contribute to the often
observed resistance to recovery. Therefore, besides nutrient load reduction, additional measures
such as direct food web manipulation are sometimes considered (Gulati et al., 1990a).

On the other hand, also the clear-water state of shallow lakes, dominated by submerged
macrophytes, shows a certain resistance to external forcings, like a moderate increase in
nutrient loading (Moss, 1990). Several stabilising mechanisms may play a role (Scheffer, 1998;
Jeppesen et al., 1998). Nutrient uptake by macrophytes may suppress algal growth due to
nutrient limitation, they may indirectly reduce the predation pressure on zooplankton by
providing favourable conditions for predatory fish and a hiding place for zooplankton, and they
may reduce wind-induced resuspension by stabilising the sediment. Allelopathic effects may
play arole as well. Fig. 2.2 (from Scheffer, 1993) gives a (non-exhaustive) schematic overview
of these relationships.

12
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Fig. 2.2. Main interactions in a lake ecosystem concerning water turbidity. Slightly modified
after Scheffer (1993).

A central factor for the prevailing state is thus the transparency of the water. The probability of
a switch at a certain nutrient loading depends on both physico-chemical and biological factors.
The former include lake depth, size, sediment type, water retention time, nutrient chemistry,
etc. Biological factors involve the properties of the organisms in the system, like their life
cycle, growth and loss rates and feeding behaviour. Growth parameters determine the
competition between the different primary producers for environmental factors like nutrients
and light. Loss factors include natural mortality, zooplankton grazing and fish predation.

The central question addressed in this study is the probability of either state, or a switch
between them, as a function of the main lake characteristics and input factors, with a focus on
the factors manageable by man.

2.2. Modelling approach

This topic is approached by means of the simulation model PCLake, an integrated ecological
model of shallow lakes, describing phytoplankton, macrophytes and a simplified food web,
within the framework of closed nutrient cycles. Its aim is to analyze the probability of a
transition from the vegetation-dominated clear-water state to the phytoplankton-dominated
turbid state, or vice versa, as a function of the external nutrient loading and other factors (fig.
2.3). Apart from loading scenarios, the effects of hydrological and morphological changes,
climate change, regional management options like dredging and biomanipulation, or
combinations of those, may be evaluated in at least a semi-quantitative way (fig. 2.3, b).

13
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Fig. 2.3. Schematic view of the scope of PCLake. a. schematic model structure; b. idem, with

indications of the ‘management buttons’.

Secondly, the model gives the opportunity to evaluate the impact of different assumptions on
ecological interactions (as derived, for instance, from ecophysiological knowledge).

The model describes the most important ecological interactions in a shallow lake ecosystem
that determine what state will prevail. Both bottom-up, top-down and indirect effects are
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Model setup

accounted for, within the general framework of the nutrient cycles. The model holds an
intermediate position between eutrophication models focusing mainly on the nutrients and
phytoplankton (e.g. Ambrose et al, 1988; Van der Molen et al, 1993; STOWA, 1999), more
detailed biological species models (e.g. Van Nes et al, 2002) and so-called minimodels
(Scheffer, 1989, 1998).

Key biotic variables are phytoplankton and submerged vegetation, key abiotic factors are
transparency and nutrients. The model is based on closed nitrogen and phosphorus cycles;
therefore, nutrient-to-biomass ratios are modelled dynamically. This is done to account for
adaptation of nutrient ratios of phytoplankton and macrophytes to the nutrient availability, and
because the nutrient ratios of organisms increase with their trophic level. For transport and
retention, it is essential to discern dissolved and particulate nutrient forms. In order to properly
include the available nutrients, it is essential to include the sediment top layer and its exchange
with the water column. This is also crucial for the water transparency as central factor, as is the
inclusion of organic and inorganic matter. The sediment is also necessary to model the lake’s
‘history’, the effects of measures like dredging, and, generally, the time needed for a reaction
(if any) to restoration measures. This is also an important reason to choose a dynamical
calculation method. A second one is to account for the fact that between every two growing
seasons (summers), there is a dormant season in which the importance of key ecological factors
may be quite different.

As of the higher trophic levels, only the essential influences are included, viz. the grazing
pressure on algae and the importance of whitefish for transparency and as a ‘nutrient storage’.
All organisms are considered as dependent, directly or indirectly, on the nutrients that are
available in the system as a whole, so trophic structure and nutrient cycles are coupled. The
inclusion of a trophic web makes it also possible to model the effects of biomanipulation.

The effect of variations in water level can be modelled, as the water depth is a state variable in
the model. The wetland module can be used to model the effects of marsh zone restoration on
lake quality. In the stand-alone version of the model, any further spatial variation in a lake can
not be taken into account, but this is indeed possible in the DUFLOW implementation (e.g.
depth, flow or sediment variations within a lake).

The model structure thus provides various ‘slots’ to account for differences in system
properties or to impose (combinations of) changes in input factors, with special emphasis on
the factors manageable by man. The model is meant to be an integrated evaluation tool.

2.3. Short description of PCLake

Structure

The model describes a completely mixed water body and comprises both the water column and
the sediment top layer, with the most important biotic and abiotic components. The model is
thus meant for shallow, non-stratifying lakes. No further horizontal or vertical distinction
within the lake is taken into account, but optionally, a wetland zone with marsh vegetation may
be included. The model can also be used in a spatial setting, in conjunction with the water
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Chapter 2

transport model DUFLOW (STOWA, 1999, 2000). The results described in this thesis are all
obtained with the zero-dimensional model, i.e. only one water body, with or without wetland
zone.

Mathematically, the model is composed of a number of coupled differential equations, one for
each state variable, as listed in table 2.1. The structure of the lake model is shown in Fig. 2.4,
that of the marsh module in Fig. 2.5. All biota are modelled as functional groups. Besides mass
fluxes (food relations etc.), the model also contains some ‘empirical’ or indirect relations
between components, such as the impact of fish and macrophytes on resuspension (see below).
The overall nutrient cycles for N, P and Si are described as completely closed (except for
external fluxes such as in- and outflow and denitrification). This was done by modelling most
components in three elements (as indicated by the ‘shadowed’ blocks in the pictures), viz. dry-
weight (abbreviated as D), nitrogen (N) and phosphorus (P), detritus also in silica (Si).
Inorganic carbon (CO,) is not explicitly modelled. The nutrient-to-dry-weight ratios are thus
variable. As the nutrient ratios of organisms increase with their trophic level (i.e. phytoplankton
< fish), mechanisms are included to allow for those differences, such as a higher assimilation
efficiency for nutrients than for carbon. The total mass balances per element are dynamically
checked during the calculations. ‘Day’ was chosen as a uniform time unit for all processes (but
the simulation time can be chosen as variable); however, the relevant time scale for the output
is about weeks to 1 month.

The main inputs to the model are: water inflow, infiltration or seepage rate (if any), nutrient (N,
P) loading, particulate loading, temperature and light, dimensions (lake depth and size), size of
the marsh zone, sediment features and loading history (initial conditions). As output, the
biomass and concentrations of all state variables, as well as a number of derived variables and
fluxes, are calculated.

The model structure is made flexible so that the user may lump, split or leave out certain
groups, but the default configuration (that was used in the ‘systematic analysis’ chapters of this
thesis) is described here. In the applications in other chapters other configurations and previous
model versions were used. The differences are described there. In particular, chapters 8-10
(Lake Loosdrecht), the macrophytes as well as the nitrogen cycle were left out, whereas in
chapters 11-12 (biomanipulation in Lake Zwemlust) in contrast, the macrophytes were split in
three functional groups.

Processes
The processes in the model will be briefly described here; a complete description of the model
can be found in the Appendix.

a. Abiotic and microbial processes

At the base of the model are the transport processes: in- and outflow and external loading by
nutrients and by organic and inorganic matter. The water depth (water level) can be made
variable, by defining (seasonal) differences between inflow and outflow rate. Infiltration to, or
seepage from, the groundwater can also be defined.

16
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Table 2.1. State variables in PCLake. Abbreviations: D = dry-weight, P = phosphorus, N = nitrogen, Si =
silica, O, = oxygen.

Component In water column In sediment top layer
(state variable) as element(s) [unit] as element(s) [unit]
Water
water depth water [m] -- (fixed)
Abiotic components
inorganic matter (IM) D [g m?] D [g m?]
humus -- D [g m?]
detritus D, P, N, Si [g m?] D, P, N, Si [g m?]
inorganic nutrients PO,.P [g m?] PO, P :NH,NO, [gm?]
NH,, NO,; SiO,
oxygen O, [g m?] -- (aerobic fraction)
Phytoplankton'
diatoms D, P, N, (Si) [g m?] D, P, N, (Si) [g m?]
small edible algae D,P,N [g m?] D,P N [g m?]
cyanobacteria D,P,N [g m?] D,P N [g m?]
Vegetation:
submerged vegetation? D,P N [g m?]
Animal groups®:
zooplankton D,P,N [g m?]
zoobenthos D,P,N [g m?]
juvenile whitefish D,P,N [g m?]
adult whitefish D,PN [g m?]
piscivorous fish D, (P,N) [g m?]
Marsh vegetation®:
reed shoots D,P N [g m?]
reed rhizomes D,P,N [g m?]

! Optionally, the phytoplankton may be lumped into one group.

2 Optionally, several groups of macrophytes may be defined rather than one. The submerged vegetation
may be split into several groups: rooted, non-rooted and charophytes, and/or floating-leaved plants may
be added. (The vegetation can also be left out.)

3 The food-web module optionally can be left out.

4 The wetland module is optional.

The sediment top layer has a fixed thickness (default 0.1 m) and consists of inorganic matter
(IM) (with a fixed lutum fraction), humus, detritus and pore water. Exchange of IM and detritus
between water and sediment may take place via settling (described as a first-order process) and
resuspension (zero-order process). The settling rate decreases, and the resuspension increases,
with the size of the lake. The resuspension also increases with the sediment porosity and with
the amount of benthivorous fish (see below), while it decreases with the vegetation cover. A net
increase of sediment material is met by an equal amount considered as buried to deeper layers;
also the siltation effect of this (a slight decrease of the water depth) can be accounted for.
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PCLake Model Structure
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Fig. 2.4. PCLake model structure (lake part). ‘Shadowed’ blocks denote compartments
modelled in both dry weight and nutrient units. Three functional groups of phytoplankton are
distinguished: cyanobacteria, diatoms and other small edible algae. Whitefish is split into a
Juvenile (zooplanktivorous) and an adult (benthivorous) subgroup. Arrows with solid lines
denote mass fluxes (e.g. food relations), arrows with dotted lines denote ‘empirical’ relations
(minus sign denotes negative influence, otherwise positive influence). Egestion and mortality
fluxes of animal groups and respiration fluxes are not shown.

Mineralisation of detritus (degradable organic matter) is described as a first-order process,
dependent on temperature. Humus (refractory organic matter) is assumed to be mineralised
only very slowly. The released nutrients are dissolved in the pore water. Inorganic P is subject
to reversible adsorption to IM according to a Langmuir isotherm. It might also precipitate in
case of a very high concentration. The relative adsorption increases with the sediment lutum
content and with the aerobic proportion of the sediment. The latter is modelled in a highly
simplified way by defining a quasi-steady state oxygen penetration depth (or aerobic sediment
fraction), which is a function of the oxygen concentration in the water, the potential sediment
oxygen demand and the diffusion rate. Nitrification of NH, increases, denitrification of NO,
decreases with the aerobic proportion of the sediment. Exchange of dissolved P and N between
pore water and water column is modelled according to the concentration differences. The
combined result of the described processes is that the PO, release rate follows a seasonal cycle,
dependent on the temperature and the amount of detritus in the system.
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Mineralisation and nitrification are described in the water column as well. Oxygen in the water
column is modelled dynamically, dependent on the BOD and SOD, the reaeration from the
atmosphere, and the oxygen production by phytoplankton and/or submerged plants.

b. Phytoplankton

The phytoplankton module describes the growth and loss of the three functional groups of
phytoplankton, viz. cyanobacteria, diatoms and other small edible algae. This distinction was
made because of their different characteristics and because of management interests. The
biomass of each group is described by the following differential equations:

dx/dt = production — respiration — mortality — settling + resuspension — grazing + transport
and by parallel equations for phytoplankton expressed in N and P units:

dy/dt = uptake — excretion — mortality — settling + resuspension — grazing + transport

The production (carbon fixation, for simplicity taken as equivalent to growth) depends on the
maximum growth rate, temperature, day length, under-water light, P and N, for diatoms also on
silica. The temperature dependence is described using an optimum function. The light
dependent growth of cyanobacteria and diatoms is described according to Di Toro & Matystik
(1980), using Steele’s equation integrated with respect to the depth. This equation implies
growth inhibition at high light intensities. For other algae, a similar equation is based on a
Monod-type equation, assuming no light inhibition. The available light is determined by the
light intensity at the water surface and its extinction in the water column (Lambert-Beer’s law).
The extinction coefficient is the sum of the background extinction of the water and the
contributions of IM, detritus and phytoplankton (and submerged plants) to it, thus accounting
for the self-shading effect, that sets a limit to the maximum biomass. P and N affect the growth
rate via the internal nutrient contents of the phytoplankton rather than the external
concentrations. Nutrient uptake is thus described separately from the production, to allow for
this variable stoichiometry. The uptake rate increases with the external nutrient concentration
up to a maximum that is determined by the actual ratio (‘cell quota’), the minimum cell quota
giving the highest maximum rate (Riegman & Mur, 1984). The biomass production is then
dependent on the cell quota according to the Droop (1974) equation: the growth rate increases
asymptotically with the cell quota provided is it above the minimum. For the silica-dependent
growth of diatoms, the more simple Monod formulation was chosen based on the external SiO,
concentration, with a fixed Si content of the diatoms. The actual growth rate is calculated by
multiplying the maximum growth rate with the combined reduction functions for light and
temperature and the one for nutrients. The latter is taken as the minimum of the functions for N
and P (and Si for diatoms), following Liebig’s law. The chlorophyll-a content of the
phytoplankton, a derived variable in the model, is assumed to be variable, being higher in case
of a more severe light limitation (Riegman, 1985).

The loss processes maintenance respiration and natural mortality are desribed as first-order
processes, respiration as temperature-dependent. Excretion of nutrients parallel to respiration
is assumed to decrease if the internal nutrient ratio is low. Settling is also described as first-
order, the rate being the settling velocity [m/d] divided by the water depth. For reasons of
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‘logic’, the settled algae are included as separate state variables, which may re-enter the water
column by resuspension, coupled to the resuspension of other particles (see above). It is
assumed that the settled algae do not grow, but are subject to respiration and mortality and may
be eaten by zoobenthos.

The parameter values of the three algal groups in the model differ. The cyanobacteria have a
higher light affinity (they are shade-adapted) as well as a higher phosphorus uptake rate than
the other groups. On the other hand, they have a much lower maximum growth rate and a
stronger sensitivity to temperature. The diatoms have a lower temperature optimum, while the
other small algae are not inhibited by high light intensities. Both these groups have higher
growth rates, but also higher loss rates through settling and zooplankton grazing (see below).
The diatoms are the only group that might be limited by silica.

c. Aquatic vegetation

The submerged vegetation is described as one lumped group by the following differential
equation for the biomass:

dx/dt = production - respiration - mortality (- bird grazing) (- management)

and for nutrients (N and P) stored in the plants:

dy/dt = uptake - excretion - mortality (- bird grazing) (- management)

It is assumed that the biomass is divided in an under-ground part (roots) and an above-ground
part (shoots), and that the latter is homogeneously divided over the water column. Seasonality
is modelled in a simplified way by assuming a high root fraction in the winter period and a low
one during the growing season (default 0.6 and 0.1, resp.). The switch between both values in
spring (triggered by water temperature) and autumn (triggered by season) mimicks allocation
and reallocation processes. The modelled vegetation thus stands for plants with overwintering
parts. Biomass production by the shoot is modelled largely analogous to the phytoplankton
production, viz. dependent on maximum growth rate, temperature, day length, under-water
light, N and P. It is assumed that the macrophytes may extract nutrients from both the water and
the sediment pore water, largely according to availability. In practice, sediment uptake is
mostly higher. Respiration and nutrient excretion are modelled as for phytoplankton. Natural
mortality is assumed to be low in the growing season and high at the end of it; a fixed fraction
(default 0.3) is assumed to survive the winter. The description of the growth and mortality is
combined with a density-dependent correction derived from the logistic growth equation, to
account for other factors than the ones explicitly modelled, for instance space, that might be
limiting for the plant density that could maximally be achieved, the ‘carrying capacity’.
Optionally, grazing by herbivorous birds and/or vegetation removal by man may be defined.
The vegetation is assumed to have some indirect impacts on other components of the system,
i.e. a hampering of resuspension, a slight negative impact on the feeding efficiency of whitefish
and a positive influence on the growth of predatory fish.
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d. Food web

The food web module is kept as simple as possible and comprises zooplankton,
macrozoobenthos, whitefish (juvenile and adult) and predatory fish. The general equation for
the animal groups is:

dx/dt = (feeding — egestion) — respiration — mortality - predation

combined with a density-dependent correction derived from the logistic growth equation
(Hallam et al., 1983; Traas, 2004). The carrying capacities have been set to high values.
Zooplankton feeds on both phytoplankton and detritus. Grazing is described as a Monod-like
function of the seston concentration, the specific filtering rate decreasing hyperbolically with
increasing seston concentration (Gulati et al., 1982; Gulati et al., 1985). A selectivity constant
is used for each food species to account for preference of the zooplankton: ‘other’ algae >
diatoms > detritus > cyanobacteria (e.g. Gliwicz, 1980). The assimilation efficiency for the
consumed food is constant and quite low (0.3) for carbon (Gulati et al., 1985), but variable
(depending on the internal P ratio of the food) and, therefore, mostly higher for phosphorus.
This is one of the mechanisms by means of which the differences in P content between the
trophic levels are maintained.

Zoobenthos is assumed to feed on sediment detritus and a bit on settled algae, also by a Monod-
type (or ‘type II’) functional response. It is also assumed to be able to ‘accumulate’ P from its
food comparable to zooplankton.

All fish predation processes are modelled as a so-called ‘type III’ response (Holling, 1965): the
predation rate depends on prey density according to a sigmoid curve. Juvenile whitefish feeds
on zooplankton, adult whitefish on zoobenthos, and predatory fish on both classes of whitefish.
Spawning is simulated as the transfer, every May, of a small proportion of the adult biomass to
the juvenile biomass. At the end of each year, half the juvenile biomass becomes ‘adult’. Also
the whitefish is assumed to have a relatively higher phosphorus assimilation efficiency, as the
internal P content of fish is again much higher than that of its food organisms (Kitchell et al.,
1975). For predatory fish, this mechanism doe not play a role any more. An indirect effect of
adult whitefish that is included in the model is its stirring up of the sediment during feeding,
causing a flux of particles and nutrients to the water column (Breukelaar et al., 1994).
Predatory fish is assumed to be dependent on the presence of vegetation. Its carrying capacity
can be made dependent on the size of the marsh zone connected to the lake.

e. Wetland module

The wetland part of the coupled simulation model is composed of a simplified growth model
for reed (Haslam, 1973; Dykyjova & Kvét, 1978; Bjorndahl, 1983), coupled to a description
of the nutrient processes in the water column and the sediment top layer of the marsh zone
equal to the ones in the lake (fig. 2.5). The biomass of the marsh vegetation is divided in a root
and a shoot fraction, as separate state variables. The seasonal development is modelled as
allocation of a part of the root biomass to the shoots in spring, photosynthetic growth during
summer and partly reallocation back to the roots in autumn. Summer growth is assumed
dependent on the marsh water depth, N and P in the sediment top layer, daylight and
temperature. Nutrients are taken up from the sediment top layer only. Optionally, regular
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Figure 2.5. Model structure of the wetland module

mowing of the vegetation can be taken into account.

The substances and process descriptions (mineralisation, settling, P adsorption, nitrification
and denitrification) are analogous to those in the lake model, except that the water depth is
much lower (default 0.5 m), settling velocities are higher due to the absence of wind action and
resuspension is assumed to be zero. Phytoplankton is assumed not to grow in the shadow of the
reed vegetation.

Mixing between the water columns of the lake and the wetland is described by an exchange
coefficient (representing both dispersive transport and transport due to water level changes)
multiplied by the concentration difference. The relation between the wetland zone and the fish
population in the lake is simplified as its role as spawning and nursery area for predatory fish.
It is assumed that the maximum possible biomass of these fish increases, within certain limits,
with the relative area of wetland vegetation (Ligtvoet & Grimm, 1992).

Input and output
As input factors the user should supply:

(a) Lake characteristics
= Mean water depth [m]
= Lake size, expressed as fetch [m]
= Sediment:
dry-weight content (d.m.) [%]
organic content (or loss on ignition) (OM) [% of d.m.]
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lutum [%] and/or Fe and Al [mg/g]
or (if not available) : estimate of sediment type, e.g. clay, sand, peat, mud
= Marsh area [-] (if any)

(b) Water and nutrient input
= Water inflow [mm/d] or retention time [d]
= Infiltration / seepage (if any)
= External P, N and Si loading [g m™ d!] or concentrations in inflowing water [mg/l]: sum
of point sources, diffuse and sources, surface inflow. Estimate of % dissolved /
particulate loading
= Input or inflow concentrations of (inorganic) suspended matter

(c) Other input
= water temperature
= day light

(c) Lake history and management
= P and N concentrations in the sediment top layer (give depth), or estimate of historical
nutrient loading
= Intensity of fishery [d']
= Any management measures (being) conducted, like biomanipulation, dredging, mowing.

As output, the concentrations or biomass of all the state variables can be saved at any desired

time scale. Some important derived output variables are:

= Total phosphorus (TP) [mgP/I] = PO, + P, + detrital P + algal P

= Total nitrogen (TN) [mgN/I] = NH, + NO3 + detrital N + algal N

= Chlorophyll-a (Chla) [mg m™] = algal biomass * Chla/D-ratio, summed for all groups

= Water transparency:

+ Extinction coefficient [m'] = background extinction + contributions of IM, detritus,
phytoplankton and submerged vegetation

+ Secchi depth [m] = penetration depth of light, measured by a black-and-white disk. It is
calculated as a constant divided by the extinction coefficient (excluding the vegetation
contribution).

Besides, the values of all fluxes can be saved as output as well.

Fig. 2.6 gives an overview of the main input and output of the model.
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Zoobenthos
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Predatory fish

Fig. 2.6. Overview of input and output of PCLake
2.4. Eutrophication of ditches

Drainage ditches are small, linear water bodies, usually less than 1.5 m deep and several meters
wide. With a total length of about 300,000 km, they are a common water type in the lowland
parts of The Netherlands, where their main task is the discharge of excess rainwater from
agricultural areas. They form the link between the farmland and larger water bodies such as
lakes and canals (Fig. 2.7). The water transport from the lowland polder areas often is mediated
by pumping stations (formerly by windmills). Many ditches also serve to transport water fo the
fields during dry periods. Besides their hydrological functions, ditches have an important
ecological function, providing a habitat for many plant and animal species. They are also
important as a source of drinking water for cattle. Because of their shallowness, ditches are
often dominated by macrophytes. Most ditches require yearly maintenance (removal of the
vegetation and/or the detrital layer) to ensure water flow.

Many ditches are strongly affected by eutrophication due to agricultural nutrient losses. This
has a number of adverse effects on the quality and functioning of the ditches, i.e. related to
duckweed coverage and oxygen household.

The vegetation structure in mesotrophic to moderately eutrophic ditches is often characterised
by a dominance of submerged vegetation, besides emergent species (helophytes) and often a
phytoplankton bloom in spring (De Groot et al., 1987; Veeningen, 1982). Yearly mowing
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usually hampers a further natural succession to helophyte dominance. Several tens of plant
species may occur, together with a rich fauna of, among others, insect larvae and amphibians.
Moderate enrichment with nutrients causes an increase of submerged vegetation biomass.
Further eutrophication often stimulates the blooming of filamentous and/or epiphytic algae.
Decreased light conditions cause a shift from species with a vertical growth strategy to those
with a horizontal growth strategy (Sand-Jensen & Sgndergaard, 1981; Bloemendaal & Roelofs,
1988) and the species diversity diminishes. At (very) high nutrient loading, the vegetation gets
dominated by a surface layer of pleustophytic plants only, such as duckweed (Lemnaceae) or
floating fern (Azolla), while submerged plants have disappeared (Portielje & Roijackers, 1995;
Eugelink et al., 1998). Several adverse effects are related to this shift to duckweed. Because the
oxygen produced is released into the atmosphere in stead of the water and reaeration is
hampered, while decomposition continues to extract oxygen from the water, the water becomes
often anoxic and mineralization occurs mainly anaerobically (Veeningen, 1982; Marshall,
1981; Portielje, 1994). This leads to loss of aerobic life in the ditch. Because of health effects
and/or a bad taste, the water becomes unsuitable as drinking water for cattle (Hovenkamp-
Obbema, 1998). Water passages and pumping stations are obstructed by duckweed. In some
regions, duckweed is removed by man, thus increasing management costs (STOWA, 1997).
There are indications that a shift from a predominantly submerged vegetation to a dominance
of floating duckweeed vegetation often occurs quite suddenly when a certain nutrient level is
exceeded. On theoretical grounds, it has been argued that both situations represent two
different stable states, and that both states can potentially be stable in a certain range of nutrient
loadings, analogous to the clear and turbid states in shallow lakes (Scheffer et al., 2003).
Duckweed dominance is now a fairly common phenomenon in The Netherlands (e.g. Van der
Does & Klink, 1991; STOWA, 1992; BKH, 1995). There are large differences between regions,
however. The main factor related to duckweed dominance is the degree of eutrophication. This
was also shown in mesocosm experiments (Portielje, 1994; Eugelink et al., 1998). Several
authors showed a positive correlation between duckweed cover on one hand, and nitrogen and
phosphorus concentrations in the water or the nitrogen fertilizing level on the adjacent fields on
the other (De Groot et al., 1987; Van der Does & Klink, 1991; STOWA, 1993; BKH, 1995), but
the correlations were often obscured by other factors, such as BOD, conductivity, pH and water
depth (Van der Does & Klink, 1991). Also transport processes and differences in soil type are
important, while Boeyen et al. (1992) and Twisk (2002) found duckweed cover to decrease as
a result of dredging. So, several factors co-influence the ecosystem’s response to nutrient
loading, and the probability of a shift from a predominantly submerged to a floating vegetation
depends on the ditch type.

For policy purposes, such as derivation of nutrient loading standards and the evaluation of
agricultural scenarios, it is desirable to know how the probability of these adverse effects
depends on the N and P losses from the fields and how this is depends on regional factors. The
analysis and prediction of these effects is the purpose of the PCDitch model. The model
focusses on the functional groups of water plants in relation to nutrients.
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2.5. Short description of PCDitch

The PCDitch model includes the water column and the upper sediment layer of a ditch, both
assumed to be well mixed, analogously to PCLake. The model is thus ‘zero-dimensional’, but,
like PCLake, is also available as a module in the water transport model DUFLOW (STOWA,
1998) if one wants to model networks of ditches (Fig. 2.7). The model is confined to the ditch
ecosystem itself (Fig. 2.8); the relation between land use and nutrient leaching is covered by
other models (e.g. Meinardi & Van den Eertwegh, 1995; Groenendijk & Kroes, 1997), the
results of which are used as input.

The model may be regarded as a competition model between several functional groups of water
plants (submerged, floating and emergent), coupled to a description of the nutrient cycles. The
model describes the cycling of four ‘substances’: dry weight (D), phosphorus (P), nitrogen (N)
and oxygen (O,). All plant groups as well as detritus are modelled in both D, N and P units.
This is done to achieve closed nutrient cycles within the model system, and to account for
variability of the nutrient ratios of water plants, e.g. depending on the loading level (e.g.
Wetzel, 1983; Gerloff & Krombholz, 1966). The main ‘goal variables’ of the model are the
biomasses of the different plant groups, as well as the phosphorus, nitrogen and oxygen
concentrations. Plant biomasses are also converted to coverage percentages.

The components of the model are listed in table 2.2 and shown in Fig. 2.9. They comprise
organic and inorganic matter, inorganic nutrients (P and N), oxygen, phytoplankton (lumped)
and six functional groups of water plants, described below. Animal groups such as

Polder .......... N
boundary — &
(small dike) l l
System of -————
ditches :
2T e :
LT
Canal sssssbsumsEnnEE snunfiennnmpgeennnnnn
To lake To sea
Pumping  Water inlet
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Fig. 2.7 Schematic picture of the position of ditches in the polder catchment area
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Fig. 2.8. Schematic picture of PCDitch
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Fig. 2.9. PCDitch model structure. Abbreviations of macrophyte groups are explained in the
text. Shaded blocks denote components modelled in both dry-weight and nutrient units.
Respiration fluxes are not shown.
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Table 2.2. State variables in PCDitch. Abbreviations: D = dry-weight, P = phosphorus, N = nitrogen, O,

= oxygen.
Component In water column In sediment top layer
(state variable) as element(s) [unit] as element(s) [unit]
Water

water depth water [m] --(fixed)
Abiotic components

inorganic matter (IM) D [g m?] D [g m?]

humus -- D [g m?]

detritus D,PN [g m7] D,PN [g m?]

inorganic nutrients PO,.P [g m7] PO, P :NH,NO, [gm?]

NH,, NO,

oxygen O, [g m7] -- (aerobic fraction)
Phytoplankton'

phytoplankton D,PN [g m?] D,P,N [g m?]
Vegetation®

submerged, rooted D,PN [g m?]

submerged, non-rooted D,P N [g m?]

charophytes D,P,N [g m?]

floating (duckweed) D,P,N [g m?]

nymphaeids D,PN [gm?]

helophytes D,P,N [g m?]

! Optionally, the phytoplankton may be split into several groups.
2 Optionally, one or several groups of macrophytes might be lumped, split or left out.

zooplankton, macrofauna and fish have been left out, as they are considered as generally
not very important for the prediction of the primary producers in ditches. The components in
the water column are modelled in [g m™], those in the sediment as well as the macrophytes in
[g m2]. As in PCLake, seasonal dynamics is included because temporal processes can be very
important for the outcome of the competition, and because the hydrology and loading of
ditches are often different beween summer and winter.

The water plants were divided into six functional groups, besides one functional group of algae.
The definition of the plant groups is primarily based on the layer(s) in which they grow and the
layer(s) from which they take up nutrients. The classification into 16 growth forms given by
Den Hartog & Segal (1964) and Den Hartog & Van der Velde (1988) has been used as a
template. Several groups were lumped, while others were left out because they are not common
in ditches. Duckweed and submerged plants were of course included; the latter were split into
rooted and a non-rooted group, with charophytes (also rooted) as macro-algae as a special
group. Helophytes (emergent plants) and floating-leaved plants are included because of their
role in the nutrient household and light interception. (In practice, the natural succession to
helophytes is impeded by regular ditch management.) The groups are defined by the relative
size of emergent, floating, submerged and root fractions, and their vertical distribution. The
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number and the definition of the plant groups has been made flexible. The default configuration
and their characteristics are:

1. Submerged plants, divided into:

a. Rooted submerged angiosperms (abbreviated as ‘Elod’). This group comprises the
elodeid and potamid growth forms. Assumed to fill the entire water column, nutrient
uptake from both water and sediment. Root fraction set to 0.1 in summer, 0.6 in winter.

b. Charophytes (‘Char’). Confined to the lower half of the water column. Root fraction set
to 0.05 in summer, 0.1 in winter. They were distinguished because of their special
character as macro-algae.

c. Non-rooted submerged angiosperms (‘Cera’). Canopy-formers, confined to the upper
half of the water column. Nutrient uptake from the water only.

2. Non-rooted, floating plants: duckweed (‘Lemn’). This group includes floating fern (Azolla)
as well. Nutrient uptake from the water only.
3. Rooted plants with floating or emergent leaves

a. Floating-leaved plants: Nymphaeids (‘Nymp’). Nutrient uptake from the sediment, root
fraction set to 0.75 in summer, 0.95 in winter.

b. Emergent plants: helophytes (‘Helo’). Nutrient uptake from the sediment, root fraction
set to 0.5 in summer, 0.8 in winter.

The phytoplankton comprises in reality both planktonic, epiphytic and filamentous species; for
simplicity, they have been lumped into one group (which may be split if desired, however). The
competition between the plant groups is mainly determined, in the model, by the factors light,
temperature, N and P and - for algae and possibly duckweed — in- and outflow. For all groups,
a logistic correction term based on a maximum carrying capacity has been included, which
represents all non-modelled factors, for instance space. Duckweed, algae and non-rooted
submerged plants are confined to the water column for their nutrient uptake, while helophytes
take nutrients from the sediment only and rooted submerged plants are able to use both pools.
Duckweed hampers the growth of submerged plants by light interception at the water surface.
Most processes are described analogously to the PCLake model. The water depth (usually
much lower than in lakes) can be made variable. Resuspension can ususally be neglected.
Reaeration (exchange of oxygen with the atmosphere) is assumed to be hampered by duckweed
(Marshall, 1981; Portielje & Lijklema, 1995). Default, yearly vegetation management in
autumn is defined, as occurs in practice. For long-term management, a sediment dredging
frequency can be set.

Input and output of the model
As input factors the user should supply:

(a) Ditch characteristics
Mean (initial) water depth [m]
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Sediment:

— dry-weight content (d.m.) [%]

— organic content (or loss on ignition) (OM) [% of d.m.]

— lutum [%] and/or Fe and Al [mg/g]

— or (if not available) : estimate of sediment type, e.g. clay, sand, peat, mud

(b) Water and nutrient input

— Water inflow [mm/d] or retention time [d]

— Infiltration / seepage (if any)

— External P and N loading [g m? d'] or concentrations in inflowing water [mg/l]: sum of
point sources, diffuse sources. Estimate of % dissolved / particulate loading

— Input or inflow concentrations of (inorganic) suspended matter

(c) Other input
— water temperature
— day light

(d) Ditch history and management

— P and N concentrations in the sediment top layer (give depth), or estimate of historical
nutrient loading

— Nature and frequency of management measures (being) conducted: dredging, mowing.

As output, the concentrations or biomass of all the state variables can be saved at any desired
time scale. The most important output variables are:

Total phosphorus (TP) in water and sediment

Total nitrogen (TN) in water and sediment

Oxygen concentration in the water
Algal biomass or chlorophyll-a (Chla)
Submerged macrophytes (per group and total): biomass or coverage

Duckweed: biomass or coverage

Emergent vegetation: biomass or coverage

Besides, the values of all fluxes can be saved as output as well.
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Fig. 2.10 Overview of the main input and output of PCDitch
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Abstract

A method is presented for the regression of dynamic lake ecosystem models on multi-lake data. The method
draws upon Bayesian Statistics as the main inference engine, as outlined by Box and Draper (1965), M.J. Box (1971)
and Box and Tiao (1973 /1992). The Bayesian approach allows the calculation of the uncertainty of parameters and
predictions both before and after the model is confronted with data.

There are several modelling objectives that can be dealt with through this technique in a unifying way: calibration
of parameters, on the basis of prior knowledge and the available data; estimation of parameter uncertainty and
correlation structure; estimation of predictive uncertainty for the assessment of trends and scenario analyses;
validation of model structure in relation to residual errors. Moreover the method allows an iterative approach
between hypothesis generation and data analysis.

The method is applied to perform a regression and uncertainty analysis of the model PCLake on data from an
18-lake Dutch survey. PCLake is a dynamic nutrient—ecosystem model with a closed nutrient budget, comprising one
water and one sediment layer. The model was run until steady state was reached and results were compared to
summer-averaged field data from the survey. The output variables selected are chlorophyil-a and total phosphorus
concentrations.

The analysis was done for three selected parameters, considered uniformly distributed within predefined ranges.
Posterior distributions were calculated for each lake on the basis of 125 three-parameter combinations. The residual
error of the prediction of chiorophyll-a was reduced from a factor of 3.8 on the basis of the prior uncertainty analysis
down to a factor of 2.3 after regression on both variables. For total P concentrations these factors were 1.4 before
regression and 1.5 afterwards, hence a small trade-off to match chlorophyll levels. The prior uncertainty factor of
mean chlorophyll predictions was reduced from 1.9 before regression to 1.1 after regression on both outputs, while
for mean total P predictions thesc factors were 1.1 and 1.05, respectively. The conclusion can be drawn that
chlorophyll-a is particularly sensitive to the three parameters, while total P is determined to a large extent by the
lake-specific input parameters. The posterior parameter distributions reflected these differences in sensitivity.
Pairwise correlations between parameters were low.

Analysis of systematic and case-specific deviations between model regression and data heips to identify other
critical parameters and possible structural modifications.
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It is concluded that through Bayesian Statistics empirical and dynamical water quality modelling can be

integrated.

Keywords: Bayesian statistics; Lake ecosystems; Regression models; Uncertainty analysis

1. Introduction

In ecological modelling — and water quality
modelling in particular — two quite distinct ways
of modelling have been used to tackle problems
of assessment and prediction: the systems dynam-
ics approach and the statistical approach. Confin-
ing the discussion to water quality modelling and
lake management, this dichotomy is clearly exem-
plified in the two-volume monograph on Lake
Management by Reckhow and Chapra (1983) and
Chapra and Reckhow (1983).

In the dynamical view, systems are comprised
of quantities that can be classified as state vari-
ables, input or control variables, parameters, and
so on, and the focus is on predicting change or
evolution of the system in response to stimuli.
Often, these studies are directed towards a spe-
cific type of lake, or even one particular lake, and
the general thought is that the more quantities
are measured, and the larger the timespan of
study, the better the understanding of that lake
will be.

In the statistical view, one tries to deal with a
more heterogeneous set of lake data at once,
often comprised of several different lakes of dif-
ferent type and under different conditions, such
as depth, residence time, nutrient loading, and so
on. Here also, it is thought that the more lakes
are entered in the study, the better the under-
standing of that lake data set will be.

There have been studies of direct comparison
between dynamical model predictions and empir-
ical relationships (e.g. Scavia and Chapra, 1977;
Thomann, 1977; Chapra and Reckhow, 1983;
Reckhow and Chapra, 1983; Aldenberg and Pe-
ters, 1990), but most are limited to individual
lakes, or just treat the two approaches as possible
alternatives with pros and cons.

One would be inclined to think that, if the aim
of study is dynamical understanding of one par-
ticular lake, e.g. for future predictions or evaluat-
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ing management alternatives, the dynamical ap-
proach is implied, while, if the aim is to detect
patterns in a survey of different lakes, e.g. to
assess their trophic state or other conditions, the
statistical approach is indicated. Furthermore,
one would conclude that there is not much in
between these two approaches, and therefore,
that there can not be much cross-fertilization
between both methodologies.

The aim of this article is to show that these
implications need not be automatic. We are going
to fit a complex dynamic lake model, PCLake, to
an 18-lake data set at once, to assess the predic-
tive strength of the model for different lakes and
to illustrate the statistical approach. In the pre-
sent study, only three parameters of this model
will be varied, namely those that were found to
be most influential in earlier simulations, in order
to see how the method works out. Unexpectedly,
this yields already quite promising results, though
the question remains, what will happen when one
further climbs the parametric ladder, and where
the phenomenon of overfitting will make results
decline. It seems too early to speculate on that.

From the present findings, it appears that the
apparent gap between empirical and dynamic
modelling in water quality seems largely to be
dictated by methodological difficulties of statisti-
cal nature, and is likely to disappear. It is easy to
indicate that, in principle at least, there should
not be any gap at all.

First, one can say that fitting a dynamical
model to a particular lake essentially is a statisti-
cal problem, but only one of formidable difficulty
for all but the simplest models.

Secondly, the distinction between empirical
models and mechanistic models seems to be
largely an artificial one, and one can say in Or-
wellian terms that all models are mechanistic, but
some are more mechanistic than others.

Thirdly, there does not seem to be any basic
difference in aims: both analyses collide in their
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wish to assess the strength of the model em-
ployed, i.e. the ability to reproduce and explain
the data, and to assess its generality, e.g. in
predicting outcomes under changed conditions.
For example, a model that does well under differ-
ent conditions is likely to be more reliable than
one that has to be recalibrated each time condi-
tions change. Clearly, being a reliable predictor is
what we wish a model to be in the first place.

So, if there are no principal differences be-
tween the statistical and the dynamical ap-
proaches in lake modelling, what makes these
approaches differ in current practice? The an-
swer seems to be related to the nature of differ-
ent statistical philosophies that may apply, and to
the availability of algorithms to evaluate complex
models in multi-case situations.

In this paper, we will show how one particular
type of statistical thinking, called Bayesian Statis-
tics or Bayesian Inference, suits the purposes of
the ecosystems modeller very well. The method
comprises several aspects of model analysis in a
unifying way: uncertainty analysis, parameter cali-
bration, regression on data, assessment of the
regression variability, calculation of the predictive
variability, and validation, i.e. the assessment of
extreme departures between model and data, or
of apparent trends in model deviations for some
cases.

We will first treat the main principles and
terminology of Bayesian Inference, which may be
skipped if the theoretical side of the problem is
not of interest to the rcader, and then employ
this statistical approach in calculating the regres-
sion of the dynamic model PCLake to a multi-lake
survey.

2. Statistical methodology
2.1. Bayesian Statistics versus Sampling Statistics

Most of the statistics we learn in present-day
courses belongs to a statistical philosophy that
may be called Confidence or Sampling Statistics.
The major alternative, and more suitable to our
modelling purposes as we will see shortly, is
Bayesian Statistics (Box and Tiao, 1973/1992;

Box, 1980; Lee, 1989; Press, 1989). Different sta-
tistical philosophies have different inferential
possibilities, and we must choose the onc with
most predictive power. Howevcer, Bayesian Statis-
tics is hampered by the fact that most of the
current statistical packages employ algorithms de-
veloped for Sampling Statistics.

In Sampling Statistics, parameters are thought
to have true fixed values by hypothesis. Samples
differ by mechanisms of chance, although one
may have only one sample at hand. To estimate
the parameters, estimators are considered, which
are functions of the data, such as sample mean
and sample standard deviation. To quantify one’s
uncertainty about the fixed parameters, still other
functions of the data come into play, yielding
estimated upper and lower bounds that, when
calculated for an infinity of repeated but other-
wise hypothetical data sets, would enclose the
true value of the parameters with a certain
amount of confidence.

This statistical philosophy is all right as long as
the model parameters can reasonably be thought
to be fixed and to have a true value, unknown to
the modeller.

The ecosystems modeller can not maintain
these presuppositions, however. The models are
gross simplifications of nature and it is more
realistic to assume from the outset that the pa-
rameters are ill-defined, exhibit spatial variability
or other, e.g. genetic, heterogeneities, so that
they can better be considered as probability dis-
tribution themselves. This is the realm of Bayesian
Statistics.

Fighting structural uncertainty with parameter
probability distributions is by no means the only
way of adding flexibility to fixed structure models.
One could make submodels for some parameters,
add spatial or time-variable coefficients, scparate
lumped state variables into two or more groups,
employ fuzzy sets instead of probability distribu-
tions (e.g. Keesman and Van Straten, 1990), ap-
ply the techniques of recursive parameter estima-
tion in the time-domain (e.g. Whitehead and
Hornberger, 1984; Young, 1993), and so on.

In Bayesian Statistics, the parameters of an
otherwise deterministically conceived model,
however complex, are thought to explicitly obey a
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prior probability distribution of some type. This
distribution is supposed to express a state of
knowledge or ignorance about them. Given this
prior distribution, and a probability model for the
discrepancy between model outcomes and data, it
is possible by means of Bayes’ Theorem to calcu-
late the change in our ignorance about the pa-
rameters, after the model is confronted with the
available data. This is the posterior parameter
distribution. Moreover, both prior and posterior
parameter uncertainty distributions can be used
to calculate predictive distributions of any quan-
tity that the model addresses. So, one can also
calculate how well we are doing and what the
resulting variation of our predictions will be, both
before and after data become available.

The monographs on Bayesian Statistics cited
above illustrate how problems of linear regression
and analysis of variance are treated the Bayesian
way. Thus, this methodology is applicable to the
empirical style of water quality modelling. In
mechanistic models, its basic statistical philoso-
phy fits the case of nonlinear ill-defined parame-
ters even more so. Hence, Bayesian Statistics is a
good candidate for bridging the gap between
empirical and mechanistic lake modelling. For
lakc management and extrapolating lake re-
sponses, the Bayesian spirit must be attributed to
Reckhow (1983) and Reckhow and Chapra (1983).
On p. 51 Reckhow and Chapra (1983) write: “It is
our belief that Bayesian statistical inference will
become increasingly valuable in water quality ap-
plications as its merits are recognized.”

However, in the Bayesian realm, we have to
face the problem of the availability of algorithms
to do the analysis. We will show how a simple
algorithmic approach allows for exploratory ex-
perimentation that can lead to quite useful in-
sights. We think that this approach can guide
more sophisticated numerical machinery.

We are not saying that classical Sampling
Statistics can not provide a similar unifying
framework, and, through confidence arguments,
can do tricks analogous to calculating predictive
uncertainties. The point is that neither in empiri-
cal lake modelling, nor in mechanistic lake mod-
elling, the assumption of well-defined fixed pa-
rameters seems appropriate. Moreover, the phi-
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losophy of repeated sampling seems at variance
with the unique character of natural data. And
finally, since variability of parameters does not
come in a priori, but by confidence limit argu-
ments afterwards, the distinction between prior
and posterior predictive variation is not easily
made.

2.2. Uncertainty analysis in probabilistic terms

A distinction will be made between fixed pa-
rameters and uncertain parameters. Let

n=M(x,0)

denote an explicitly formulated model, where 7 is
the predictive variable, e.g. chlorophyll, M (the
model) is a more or less mechanistic function,
formula or algorithm. M is both a function of x,
constituting the fixed parameters that are given
per case, but which may vary from case to case,
e.g. depth of the lake, as well as a function of the
variable parameters 6, e.g. settling velocity, that
we are uncertain about.

The model may be a constant, or straight line,
or numerical solution to a system of differential
equations, etc., i.e. anything parameterized, that
would yield deterministic results if the uncertain
parameters were fixed as well.

If @ varies according to some prior probability
distribution, the predictions will vary according to
a predictive distribution that readily follows from
the transformation M. Namely, in probabilistic
terms one would write:

p(m) = [p(n16) p(9) do.

Here p(n|8) is the conditional probability of n
for fixed 6. This probability is multiplied by the
prior chance on the value 6 and summed over all
such values.

Since 7 is a deterministic function M for given
0, we have the situation that all probability mass
is located just in the n value the model calculates
for that 6, i.e.:

p(nle)=1
p(nl8)=0

if p=M(x,0),
if 1 # M(x,0).
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For discrete 6, this means that all probability
of those @ values that map to the same 7 value is
added, and constitutes the prior predictive proba-
bility of 7, i.e.

p(m)= X p(6)
§=M"(p)

For continuous 6, the Jacobian of transformation
has to be taken into account

dé
p(m)= ¥ i

g=M"1(p)

p(0)-

This is uncertainty analysis in the purest sense,
only couched into standard probabilistic form.
The procedure is often applied intuitively, out-
side the probabilistic framework, and reasoning
goes like this: the model is fixed, some of the
parameters are uncertain, and so are the out-
comes.

Although this procedure yields information on
how uncertainties in parameter values are carried
through in the predictions, this has little to do
with how reliable the model is as a predictor.
Quite precise predictions may be way off what
they should be, i.e. have a high systematic bias,
while imprecise ones may on average be near the
truth. In other words, we have to confront the
model with data.

2.3. Fitting equations using Bayes’ Theorem

To allow for discrepancies between model and
data to occur, and study them, the model is
extended to include this discrepancy part. If y
denotes a random variable describing the poten-
tial observations that may occur, one may write:
y=m-+te¢
where n is the mechanistic part as before, albeit
uncertain due to uncertain parameters, and & is
an unstructured random part, e.g. a zero-based
normal distribution. It is important to be aware
of the word model being used in either of two
ways: in the smaller sense referring to the mecha-
nistic, or “explaining” part, 1, and in the wider
sense including the “unexplained” part, . This
distinction will be relevant if we get to the point
of prediction later on.

Now, if & is supposed to be normally dis-
tributed

e~N(0, ¢?),

it is in the Bayesian spirit to say that we do not
know the performance of the model (M) before-
hand, which amounts to a prior uncertainty about
o, next to the prior uncertainty about 8 in M.
The prior in ¢ should reflect our state of igno-
rance about o, i.e. how wide mode! data discrep-
ancies may be. Hence, one could employ Bayesian
Statistics to let the data teach us how large o
should be taken, in order to make sense of the
data.

Given the prior joint parameter distribution
p(6,0), one can calculate the prior predictive
probability distribution of potential observations,
before any data are available, by

p(y) = [p(y18,0) -p(6, ) db dor.

Now, given n actual, i.e. realized, observations y;
(i=1,...,n), one may calculate the posterior pa-
rameter distribution given these fixed data from
Bayes’ Theorem

p(8.0ly)ap(y18,0) p(6,0).

Here, p(y;16,0) is the so-called likelihood func-
tion of (8,0), i.e. a measure of the degree of
fitness of different parameter combinations given
the actual observations, if there werc no prefer-
ences for any parameter values whatsoever.
Hence, the posterior parameter distribution is
proportional to the product of what we first
thought the parameters could be, times what the
data say they could be.

From this posterior parameter distribution on¢
can calculate the marginal parameter distribution
of the mechanistic model part:

P(G\%)==fp(9,0|h)d”

and a similar equation for the marginal parame-
ter distribution of the discrepancy part:

p(olyJ==fp(0,aln)de.
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One also can calculate marginal parameter distri-
butions for each individual parameter, as well as
for all pairs of individual parameters, and so on,
by suitably integrating or summing over non-
wanted parameters.

2.4. Posterior predictive distributions

Now that one has obtained posterior parame-
ter distributions, one can do predictions based on
these posterior insights, analogous to the predic-
tions based on prior distributions. Predictions can
focus on the mechanistic part (1), on the discrep-
ancy part (¢), or on the observational sum (y).

For the mechanistic part, we write for the
posterior prediction

p(nly)=[p(nl6) p(91y,)de

which, since n is a function of 8, boils down to,
for discrete 6:

p(nly)= X

8=M""(n)

p(01y;)

analogous to the prior mechanistic prediction.
For continuous 6 the Jacobian gets in, as was the
case for the prior.

The prediction of potential obscrvational val-
ues involves the joint posterior of both # and o.
One could calculate, thus

p(y13) = [p(v16, ) -p(6, 71 v,) d6 do

As indicated above, it is important to distin-
guish between predictions on the basis of the
mechanistic part of the model (that is the model
in the smaller sense) and predictions of observa-
tional values. The latter predictions would in-
clude our posterior understanding of the discrep-
ancy part of the model output (the model taken
in the wider sense).

2.5. Regression, the Bayesian way

Although we will confine the calculations in
this paper to the predictional variation of the
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mechanistic part (7), just as a start, the authors
would like to stress that, when prediction of the
state of lakes under perhaps modified conditions,
e.g. management alternatives, is wanted, one
should employ posterior predictions that include
the discrepancy between the mechanistic part and
the observations.

Reckhow and Chapra (1983, p. 153) emphasize
exactly this same point in the realm of ordinary
regression in Sampling Statistics, based on the
confidence approach. But, one seldomly sees ana-
lysts following this advice in regression analysis.

This relates to the difference between the sta-
tistical philosophies alluded to above. If the model
is trusted, if the parameters are well-defined and
have a true fixed value by hypothesis, as is the
basic philosophy of Sampling Statistics, the dis-
crepancy part becomes ‘“noise” or “error”, as
stated literally, and one wants to get rid of it in
hunting for the truth. In the Bayesian philosophy,
truth is rather in the observations, while the
model is uncertain through its probabilistic na-
ture. Therefore, predictions of real cases, or fu-
ture cases, should include the not mechanistically
understood part of the model. This should be the
more attractive standpoint to the ecologist.

Since in ordinary regression, the variability of
the regression line, e.g. straight line, is assessed
through the confidence interval around the line,
and the line itself stands for the mean of poten-
tial observational values y, given a value of the
fixed parameter x (see any textbook on regres-
sion), we can define regression values in the
Bayesian way as the mean of the posterior predic-
tive distribution of the mechanistic part of the
model. That is, the regression value or fit is

Mean(7) =fn p(nly;)dn.

These means may depend on the fixed param-
eters, x, on many occasions in a nonlinear way.
Because of this nonlinearity, and because there
may often be several fixed parameters that label a
case (lake), we cannot expect the means to lie on
a straight line if data and fit are plotted against
case number. To stress the analogy with (linear)
regression, the authors have joined the means in
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successive lakes with straight line segments (cf.
Fig. 2). However, because the lakes may be in any
order, intermediate values have no significance,
other than to improve readability of the graphs.

Similarly, we recognize the variability of the
regression values or fit as the predictive posteri-
ors p(nly,) themselves. The posterior standard
deviation, or posterior percentiles, e.g other ex-
ploratory data summaries, may serve as measures
of the variability, or skewness, etc., of the regres-
sion. In Fig. 2 (broken lines), Bayesian “confi-
dence bands” are depicted as the successive
means plus or minus two times the respective
prior and posterior standard deviations. These
bands are symmetric about the mean. The predic-
tive distributions themselves, both prior and pos-
terior, may not need to be symmetric at all.

Now that we have defined regression, we can
define the standard error of estimate of the re-
gression as

\/Z (yi— Mean(n,))z/n

where Mean (%) is the regression estimate in
case i. This standard error of estimate constitutes
some point estimate of the posterior o, or, in
classical terms, the residual error.

2.6. Priors and posteriors according to Box and
Draper

In fact, the formulae presented so far are just
shells for probability functions to be filled in, and
integrals to be workcd out, either explicitly or
numerically. The reader is referred to the litera-
ture cited to see what can be done with different
types of models and priors. There is one set of
combinations of models and priors due to Box
and Draper (1965), Box and Tiao (1973/1992),
which is very powerful for ecological models.

The basic assumptions are that ¢ is normally
distributed, and that the prior probabilities of
and log(o) are approximately independent and
each distributed uniformly.

Then, if

S= Y (3~ M(x,, 0))

is the sum of squared deviations between obser-
vations and model outcomes (i.c. the mechanistic
part), the posterior marginal parameter distribu-
tion is proportional to:

p(Oly)aS "2

This is a remarkable result: it does not matter
whether the model is nonlinear in the parame-
ters; the familiar sum of squares pops up and is
the main element in the power function that
yields the posterior, apart from a scaling factor.
Here information about the posterior o is not
present anymore, but can be derived from other
formulac.

Note that the fixed parameters x used in the
model may depend on the case i. This makes the
method especially useful in a multi-lake survey,
since conditions specific to a lake, e.g. depth,
nutrient loading, and so on, can be taken into
account. The uncertain parameters are common
to all cases. Hence, part of the predictive success
of a parameter combination may be due to the
fixed parameters.

In the multi-variate casc of two or more pre-
dictive variables, for cxample the prediction of
chlorophyll-a (1) and total P (2), the two sums of
squares arc calculated, and the sum of products
of deviations:

S[i=z(yui_Ml('xui? 9))2 (i=l’2)*

S = Z (Vs = Mi(x,05 0)) - (Y2 = Ma( x5, 6)).
u
Then, the posterior parameter distribution
given actual data sets on both quantities is also
remarkably simple (Box and Tiao, 1973 /1992, p.
428):

PO Y,,v0) @ (sn Sy — Sk

This proportionality factor can be readily calcu-
lated for different parameter combinations 6.

If the number of data per predictive variable
differs, then one may follow Box (1971) and cal-
culate

p(g ‘ yu]7yu2) GSG'I'/z'SEZ'IZ/Z.

The price to pay is that the residual discrepancies
are supposed to be uncorrelated.

—n/2
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2.7. Numerical approach: grids

To numerically exercise with the Bayesian
method, we evaluated the posterior parameter
distribution at a rectangular equally-spaced grid
of discrete parameter values. This is not useful
for high-dimensional paramcter spaces, but it
makes further statistical evaluations very easy to
program.

The discrete parameter values are calculated
from

(i-05)
gj = omin + nBin : (gmax - emin)
j=1,...,nBin

wherc nBin is the number of discrete values, or
“bins”, wanted, say 5 for exploratory evaluations,
or anything higher one can afford in simulation
time.

For example, for FiltMax with prior minimum
2.0 and prior maximum 6.0, five bins lead to the
sequence: 2.4, 3.2, 4.0, 4.8, 5.6.

Then, the different parameters, which may dif-
fer in the number of discrete values (some
coarsely, others finely gridded), are systematically
combined to form a grid of parameter combina-
tions. The model is applied for each parameter
combination, as many times as there are cases
(lakes) to be fitted. Thus, we varied 3 parameters
with 5 bins each for 18 lakes, which means 2250
runs. Missing values are substituted for crashing
runs, or runs out of bounds.

In the univariate predictive case (e.g. chloro-
phyll), each parameter combination yields 18 pre-
dictions, one per lake, and these are combined
with the 18 observations to build a posterior
value, proportional to its probability (scaling af-
terwards), by calculating the sum of 18 squared
deviations, and raising this sum to the power
—18/2 = —9. This yields a table of 125 posterior
cntries, also called “weights”. If there were miss-
ing predictions for one or more lakes, that pa-
rameter combination gets zero probability, or zero
weight.

One casily obtains one-dimensional marginal
posterior parameter distributions, by summing for
each bin value of a particular parameter all
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weights that relate to that bin value. Similarly,
two-dimensional marginals can be formed for all
pairs of parameters.

Treating the posterior parameter distribution
as a joint discrete distribution, standard statistics
can be calculated like weighted means, weighted
standard deviations, weighted covariances and
weighted correlation coefficients. Univariate
means and standard deviations employ the uni-
variate weights, bivariate covariances are based
on the bivariate weights. Correlation coefficients
are calculated from the weighted covariances and
weighted standard deviations.

Since the parameter values form a regular
grid, the joint posterior parameter distribution
can either be perceived as a discrete distribution
with probabilities attached to the bin mids, or as
a histogram, i.e. a coarse approximation to a
theoretically continuous probability density. The
predictive values, however, result from a nonlin-
ear model, and may have values irregularly clus-
tered. For each lake, 125 predictive values (one
per parameter combination) become available.
To each of these 125 values a prior and a postc-
rior weight is attached, coming from the parame-
ter combination that gave rise to it, or the sum of
the parameter combinations that gave rise to it.
We have treated these in two ways: either as
discrete distributions as such with the probabili-
ties associated to the individual values, or as
regular equal-bin histograms by adding the
weights of all values falling in a bin. The raw
discrete distributions have been used for the
weighted means, weighted standard deviations,
and other statistics.

There is obviously no difference between the
statistical treatment of prior and posterior pa-
rameter and predictive distributions. The inter-
esting consequence is that the simulations are
done only once for all parameter combinations
and are written to disk files. The prior and poste-
rior statistical analysis can then be done after-
wards on the basis of these files alone. This phase
can be extended to an extensive multivariate
analysis, regarding questions of model scnsitivity
and multiple correlation and regression between
parameters and predictions. No re-running is
necessary, until other parameters have to be var-
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ied, parameter ranges narrowed, or grids refined.
This is perhaps a more convenient and clean
procedure than mixing simulation with other iter-
ative or optimizing searches.

3. Application to a multi-lake survey
3.1. Model and methods

3.1.1. The dynamic model PCLake

PClake is a combined nutrients—food web
model of shallow lake ecosystems. Its aim is to
simulate the effects of an increase or decrease of
the nutrients input (N, P, Si) in shallow water
bodies on a number of biotic and abiotic vari-
ables, in relation to lake characteristics and addi-
tional restoration measures. It is also meant to be
used as a tool for Dutch water quality policy to
assess the critical nutrient load for restoration of
cutrophic water bodies. PCLake is an extension
of PCLoos, developed originally for the Loos-
drecht Lakes (Janse and Aldenberg, 1990a,b;
Janse et al., 1992), and has been applied to sev-
eral other Dutch lakes (e.g. Janse et al., 1993).
Mathematically, the model consists of a set of
differential equations. The model has been im-
plemented in the simulation programming pack-
age ACSL (Mitchell and Gauthier, 1991). A copy
of the ACSL source code is available from the
authors.

The model comprises both the water compart-
ment and the upper sediment layer (Fig. 1). Inter-
nal nutrient cycles in the model system are com-
pletely closed. The trophic structure of the
ecosystem has been modelled on the basis of
functional groups as depicted in Fig. 1. phyto-
plankton, detritus (both in water and upper sedi-
ment), zoobenthos, zooplankton, benthivorous/
planktivorous fish, piscivorous fish and sub-
merged vegetation. In the current application, the
last two groups, as well as the consumption by
birds, have been left out to save computing time,
as attention is focussed on phytoplankton-
dominated cases. The phytoplankton is divided
into three groups: diatoms, green and blue-green
algae. Apart from feeding relations, also some
“informational relations” are included, e.g. ben-

PCLake Model Structure
Pisc_Birds, Man

Herb Birds

Subm.
Plants|

Inorganic
Matter
(1)

Zoobenthos
Detritus
Im)rgam'c] /’

Matter

SEDIMENT

Fig. 1. Structure of the dynamic water quality model PCLake.
Predatory fish, vegetation and consumption by birds are left
out in the current application. State variables depicted with
drop shadows are modelled in both dry-weight and nutrients.
Algae are divided into three functional groups. Nutrients
included are P, N and Si. Solid arrows: food web relations.
Broken arrows: other ecological interactions. Mortality and
respiration fluxes are not drawn.

thivorous fish may affect the resuspension. Also
the physical and chemical processes of phospho-
rus (e.g. adsorption), nitrogen (nitrification, deni-
trification) and silica are described, as well as the
exchange between sediment and water (sedimen-
tation, resuspension, diffusion of nutrients). Pa-
rameter values have mainly been derived from
research in the Loosdrecht Lakes (Van Liere and
Gulati, 1992) and sometimes have been adjusted
during calibration on data for the Loosdrecht and
the Reeuwijk Lakes.

In the current study, the model was run under
steady state, average Dutch summer conditions
(water temperature 20°C, day length 16 h, daily
irradiation 1.5-107 J-m~2-d~"). The main
case-specific input data are: water depth, water
retention time, nutrient inputs, average settling
and resuspension rates (dependent on average
wind speed distribution, fctch and lakc mor-
phometry) and the sediment dry-weight and iron
content, as well as initial valucs of all state vari-
ables. Outputs are the average concentrations of
all model components and the matter fluxes be-
tween them, in terms of dry weight and nutrients,
as well as derived watcr quality variables like
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chlorophyll-a, total phosphorus and Secchi depth.
For the current analysis, we used the chlorophyll-a
[mg-m~3] and total phosphorus [mg-1~'] con-
centrations.

3.1.2. Selection of parameters and data

The model was run until steady state was
reached for 18 cases (lakes) for which both the
above-listed input parameters and data of the
selected output variables were available (Table
1). Data were derived from CUWVO (1987),
Hooykaas et al. (1989), Van der Vlugt and Klap-
wijk (1990), Van der Does et al. (1992), Van Liere
and Gulati (1992), from staff of the Water Boards
of Rijnland and Amstel- en Gooiland and, occa-
sionally, from own estimates.

A grid was set up for three parameters with
for each parameter five uniformly distributed val-
ues (within a predefined range) representing, in
Bayesian terminology, a uniform prior parameter
distribution p(#). The parameters chosen are the
detrital settling velocity (VeloSedDet, m - d '), the
maximum filtering rate of the zooplankton
(FiltMax, m*-g~'-d~') and the specific extinc-
tion of blue-green algae (ExtSpecBlue, m*-g~").
The parameter values are summarized in Table 2.
All other, ca. 130, parameters were kept at their
nominal value. Thus, 125 runs were performed
for each case. The integration was performed by
means of a second-order Runge—Kutta—Fehlberg
algorithm with a variable step size. A Range
Check procedure ensured runs that produced very
unrealistic values to be interrupted in order to
prevent numerical errors and a collapse of the
programme. (This turned out to be necessary in
very few runs, though).

The results of the simulations, called n, were
collected in files and fed to a Pascal computer

programmc to compute the Bayesian statistics.
For both variables, we used the loglO-trans-
formed values of predictions and data in the
respective sums of squares, and sum of products.
This was done because the percentual deviation is
the most meaningful for the output variables cho-
sen. Statistics calculated are: prior and posterior
predictive distributions, their summary statistics,
the standard error of estimate, the average stand-
ard error of the predictions and the prior and
posterior parameter distributions and pair-wise
correlations of the three parameters. All of those
were calculated according to the equations in
Section 2, for four situations:
— based on the prior parameter distribution (viz.
without making use of the data);
— based on the posterior distribution, making usc
of the chlorophyll-a data only;
- idem, based on the total P data only;
— idem, based on the data for both variables.

3.2. Results and discussion

3.2.1. Regressions and standard errors of estimate

Fig. 2 shows the prior and posterior predictive
means (“regressions”), and plus /minus two-sigma
confidence bands, of simulated steady state
chlorophyll-a and total P concentrations com-
pared to observed summer averages for 18 differ-
ent lakes. The lakes have been arranged in order
of ascending chlorophyll-a concentration.

Figs. 2a and b depict the prior fit without using
any observational information, in fact represent-
ing the means of pure uncertainty analysis. Wc
observe that mean chlorophyll-a predictions show
large deviations, while mecan total P predictions
are quite good from the outset. The substantial

Table 2

Uncertain parameters

Parameter Explanation Unit Value 1 Value 2 Value 3 Value 4 Value 5

VeloSedDet detrital settling md™! 0.075 0.125 0.175 0.225 0.275
velocity

FiltMax maximum filtering m?g~!d™! 24 3.2 4.0 4.8 56
rate of zooplankton

FExtSpecBlue specific extinction m?g! 0.17 0.21 0.25 0.29 0.33

of blue-greens
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Fig. 2. Prior and posterior means of predictive distributions (solid lines) of steady state chlorophyll-¢ and total P concentrations
compared to observed summer averages for 18 lakes. Broken lines indicate plus and minus two standard deviations from the mean
respectively. a, b: Prior predictions, before calibration to data. ¢, d: Posterior predictions, after calibration on chlorophyll-a data. e,
f: Posterior predictions, after calibration on both chlorophyll-¢ and total P data.
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underpredictions in lakes #1 to S are accompa-
nied by large confidence bands. The symmetry of
these bands is misguiding here, since the prior
predictive distributions are heavily skewed to the
left for these cases.

If chlorophyll-a data are used for the posterior
predictive distributions, the mean regression fit
on chlorophyll is much improved (Fig. 2¢), that
on total P (Fig. 2d) looks similar to the prior
mean predictions (Fig. 2b). The confidence bands,
however, shrink dramatically in both Figs. 2c¢ and
d. Although the predictions scem to capture
trends very well, almost all data points are out-
side the confidence bands after calibration. This
means that there is substantial variation left, that
is not predicted by the mechanistic part of the
model per se. As explained above, this does not
mean that the model cannot be used for predic-
tive purposes. The mechanistically unexplained
part is estimated through the standard error of
estimate of the regression. This “error” should be
added to any managerial or lake-specific predic-
tion.

The mean regression predictions, when using
information on both chlorophyll and total P (Figs.
2e and f), do not differ very much from the ones
using chlorophyll-a data alone. To match both
observational quantities, the confidence bands
have increased somewhat with respect to calibra-
tion on chlorophyll-a alone.

In all chlorophyll-a graphs (a, c, and e), there
is a group of lakes which are underpredicted
(nos. 2, 3, 4, 5, 13 and 18), the others are overpre-
dicted. For all lakes, except no. 1, the regression
estimates of chlorophyll-a are closer to the data
than the prior ones (compare Figs. 2¢ and e to
2a).

Table 3
Standard errors of the estimate
Prior Posterior  Posterior Posterior
calibr. calibr. calibr.
on chl. on PTot on both
log(Chla) ~ 0.583  0.333 0.598 0.357
factor 3.83 2.15 3.96 2.28
log(PTot)  0.147  0.175 0.142 0.162
factor 1.40 1.50 1.39 1.45

Predictive Distribution log3(Chi-a) in Lake #13

Posterior. after calibration
i

0.8

Prior, before calibration

0.6
0.4
0.2

Sp it Sl 34
14 16 18 2 22 24 l4 16 18 2 22 24

Fig. 3. Prior (left) and posterior (right) predictive distribution
for chlorophyll-¢ in lake #13. Histograms correspond to Figs.
2a and 2e, entry #13, respectively. The posterior distribution
is based on calibration on both chlorophyll-« and total P data
in all lakes simultaneously. Dots indicate summer-averaged
measurement (from Table 1) of log,(124 mg chlorophyll-
a/m*)=2.09 in this lake.

It is difficult to see some of the improvements
between different fits. Therefore, estimates of the
residual error, i.e. the standard errors of estimate
are calculated. The standard error of estimate
decreases for loglO(chlorophyll-a) from 0.583
log-units for the prior to 0.333 logl0-units for the
regression on chlorophyll-a alone(Table 3). This
means a decrease of the relative error from nearly
a factor 4 to just over a factor 2.

By calibration on total P alone (not shown in
Fig. 2), however, the fit of chiorophyll-« was not
improved. Calibration on both variables gives a
standard error of 0.357 logl0-units (or a factor
2.28), which is slightly worse than the fit on
chlorophyll-a alone.

For log(total P), the prior fit is much better
than for chiorophyll: 0.147 log10-units, which is
equivalent to a factor 1.40. The fit improves very
little by calibration on total P and worsens some-
what by calibration on chlorophyll-a alonc or
calibration on both quantities.

The conclusion can be drawn that chlorophyll-a
is particularly sensitive to the three parameters:
the fit can be considerably improved by calculat-
ing posterior weights for the simulations based on
chlorophyll-a data, while total P is determined to
a large extent by the lake-specific input parame-
ters already (the x matrix, Table 1). Chlorophyll-a
and total P tend to have conflicting interest in
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optimum parameter combinations. However, the
simultaneous fit on both variables is quite near
the respective univariate optimum fits.

3.2.2. Standard errors of prediction

Confidence bands arc just summarizing statis-
tics for the predictive distributions themselves.
Fig. 3 gives an example of a prior and posterior
predictive distribution, in this case chlorophyll-a
in lake #13. The prior predictive distribution
(Fig. 3 left) expresses the uncertainty without
using the data. The variation results from the
variation in the three parameters only. Fig. 3
(right) shows the posterior predictive distribution
after calibration on chlorophyll-a and total P data
in all lakes simultancously. In fact, this distribu-
tion can be considered as the variation of the
regression in the Bayesian sensc (Section 2.5),
and can be compared to classical confidence in-
tervals for the mean. The uncertainty of mean
predictions is obviously smaller than the overall
deviation between data and means as indicated
by the standard error of estimate, but in this case,
chlorophyll- in lake #13 (124 mg - m %) is within
the reach of the predictive distribution.

Roughly the same trends as in the standard
errors of estimate were found in the average

Prior before Calibration

VeloSedDet FiltMax

ExtSpecBlue

Calibration on Total P

VeloSedDer FiltMax ExtSpecBlue
/ I
0.8 0.8
0.6 0.6
0.4 0.4
] 0.2 0.2
o 7 2 3 45 01523 45 012 345

Table 4
Standard errors of predictions
Prior Posterior Posterior Posterior
calibr. calibr. calibr.
on chi. on PTot on both
log(Chla) 0.276  0.037 0.185 0.046
factor .89 1.09 1.53 1.1L
log(PTot)  0.053  0.014 0.037 0.022
factor 1.13 1.03 1.09 1.05

standard errors of the predictions, i.e. the uncer-
tainties of the regression estimates (Table 4).
Also, one observes that predictive uncertainties
of one output variable are not worsened by fitting
on the other output alone, as occurred with the
residual errors. There is at least a slight improve-
ment each time. Of course, at this stage, conclu-
sions apply only to the three-parameter analysis
described here; the results might be different
when more parameters are considered,

3.2.3. Some systematic and individual deviations
The group of underpredicted lakes coincides
largely with the group where green algae are
predicted in most runs (only no. 7, which also
belongs to this group, is overpredicted). In the
other lakes, blue-green algae are predicted. This

Calibration on Chlorophyll-a

ExtSpechiue

VeloSedDet FiltMax
/

0.6]
0.4
0.2

Calibration on Chl-a and Total P

d
VeloSedDet FiliMax ExtSpecBlue
! 1 /
0.8 0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

o7 2345 0123405 0.7 2 34 5

Fig. 4. Marginal univariate prior and posterior parameter distributions for detrital settling velocity (VeloSedDet ), maximum filtering
rate (FiltMax), and specific extinction of blue-green algae ( ExtSpecBlue). a: Prior marginals before calibration. b: Posterior
marginals after calibration on chlorophyll-a. ¢: Posterior marginals after calibration on total P. d: Posterior marginals after
calibration on both chlorophyll-a and total P. Parameter indices 1,...,5 correspond to values in Table 2.
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sen as uniform, viz. all five values have equal
probabilities (Fig. 4a).

Calibration on chlorophyll-a alone (Fig. 4b)
results in a strong preference for the higher val-
ues of the detrital settling velocity (VeloSedDet ),
value #2 (3.2) for the maximum filtering rate
(FiltMax) and also preference for the higher spe-
cific extinction of blue-greens ( ExtSpecBlue).

Calibration on total P alone (Fig. 4¢) yields
different results: a preference for the lower set-
tling rates, also preference for one value of the
filtering rate, but less explicit (also higher values
arc possible) and as good as no opinion about the
specific extinction of blue-greens.

Calibration on both data sets (Fig. 4d) results
in a compromising optimum curve for the settling
rate; the other two distributions resemble those
of the chlorophyll-a calibration. This indicates
that both variables have something to tell about
the settling rate, but cach in a different way,
while for the other two parameters the influence
of chlorophyll-a seems predominant.

The same trends can be detected, when the
parameter distributions are expressed in terms of
mean and standard deviation (Table 5). In all
cases, except the specific extinction calibrated on
total P, the posterior standard deviation of the
univariate marginal parameter distributions is
considerably lower than the prior one. In this one
exceptional case, total P seems insensitive to the
parameter, as one would expect indeed, resulting
into indifference of total P about the valuc of the
specific extinction coefficient of the blue-greens.

3.2.5. Two-parameter distributions
Fig. S shows the marginal bivariate prior and
posterior parameter distributions between detri-

Table 5
Mean and standard errors of parameters

Prior  Posterior  Posterior  Posterior
calibr. calibr, calibr.
on chl. on PTot on both

VeloSedDet 0.175  0.254 0.128 0.207
I 0.071  0.033 0.057 0.047
FiltMax 4.000  3.201 3.807 3.202
o 1.131  0.034 0.752 0.043
ExtSpecBlue 0250 0.296 0.243 0.291
o 0.057  0.041 0.056 0.045

Table 6
Parameter correlations

VeloSedDet FiltMax ExtSpecBlue
(a) calibration on chlorophyli-a
VeloSedDet 1.0 0.026 0.066
FiltMax 1.0 -0.037
ExtSpecBlue 1.0
(b) calibration on total P
VeloSedDet 1.0 0.50 0.019
FiltMax 1.0 -0.012
ExtSpecBlue 1.0
(c) calibration on both
VeloSed Det 1.0 0.070 0.161
FiltMax 1.0 =0.026
ExtSpecBlue 1.0

tal settling rate (VeloSedDet ) and maximum filter-
ing rate (FiltMax) for the three different regres-
sions.

The correlation coefficients between the pa-
rameters are very low in most cases (Table 6).
Only in case of calibration on total P, there
appears to be some correlation (r=0.50) be-
tween detrital settling rate and filtering rate (Fig.
5c). This may be attributed to some indirect ef-
fect.

4. Conclusions

It can be concluded from this study that
Bayesian Statistics provides a promising frame-
work for the integration of statistical and dynami-
cal models in water quality assessment. The ap-
proach unites uncertainty analysis, calibration of
parameters, regression analysis, and model vali-
dation in one methodology.

In this way, it is possible to fit a complex
dynamic model on data of a multi-lake survey,
and to calculate parameter and predictive uncer-
tainties, both a priori and after confrontation
with available data.

Although only three parameters were varied,
residual errors of the fit on chlorophyll and total
P were significantly reduced. Also, the predictive
uncertainty of the regressions were smaller than
the prior predictive uncertainties without using
observational information. Whether the fits can
be further improved by taking the uncertainty of
other parameters into account, and what the in-
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division also coincides with a division based on
water inflow: the underpredicted cases all have a
water inflow exceeding 10 mm - d~' due to inflow
of water containing some algae already from the
main water system in the Netherlands. The lakes
with a predicted blue-green dominance also show
this in reality (except for no. 1). The lakes where
green algae are predicted in most runs in reality
show either a green algal dominance or a domi-
nance of Microcystis, a floating cyanobacterium
which is not modelled separately. The result for
the outlier no. 18, a lake with a very high external
P loading, might be attributable to a wrong esti-
mate of the ratio dissolved /particulate P in the
input; an extra run using a higher ratio gave

Prior before Calibration

0.2
Probability

3
VeloSedDet

better results. We left this lake unchanged in the
analysis to illustrate how this technique can point
to possible explanations of individual departures.

An interesting aspect is that within the “blue-
green” group, the residual error of the chloro-
phyll-a prediction decreases with increasing
chlorophyll-a and, mostly, total P. This points
towards some other parameters in the model to
be calibrated, such as the blue-greens’ phospho-
rus affinity.

3.2.4. One-parameter distributions

The marginal univariate posterior parameter
distributions of the three parameters were anal-
ysed. The prior parameter distribution was cho-

Calibration on Chlorophyll-a

0.6

Probabifiryo'4

Probability0.2

3
VeloSedDet

Fig. 5. Marginal bivariate prior and posterior parameter distributions for detrital settling velocity (VeloSedDet) and maximum
filtering rate (FiltMax). a, b, ¢, and d as in Fig. 4. Parameter indices 1,...,5 correspond to values in Table 2.
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fluence will be on predictive uncertaintics, needs
further analysis.
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4. Sensitivity and uncertainty analysis and
calibration

4.1. Approach and methods

Ecosystem models are often useful tools for the study of environmental problems. They
contain, however, a great deal of uncertainty, coming from different sources (e.g. Janssen et al.,
1990). (a) Some of the uncertainty lies in the model structure itself, as we do not know whether
the model is a correct representation (in view of the objectives of the model) of the system
studied. Several possible model structures might be an equally good representation of the
system. (b) Another source of uncertainty are the parameter values, which often can only be
estimated and/or exhibit an inherent variability because of spatial, temporal and/or species
variations. (c¢) This problem is even enhanced if the model is to be suitable for different
situations. (d) Among these parameters are also the initial conditions of the system, which
might influence the results in nonlinear models. (e) Finally, when model results are compared
with measured data, also these data exhibit a certain level of uncertainty. So, we have to do with
‘intentional’ uncertainty (because of natural variability) and unintentional uncertainty (because
our knowledge of the system is incomplete).
Ecological models thus typically are poorly identifiable systems, and PCLake is no exception.
A compromise usually has to be found between ‘physicality’ (the model structure should be
related to the causal mechanisms acting in the system under study) and ‘identifiability’ (it
should be possible to estimate the unknown model parameters from available data) (Reichert &
Omlin, 1997). PCLake was set up in a way to remain close to the causal relationships in the
lake, to meet the objective of applicability in a broad range of external factors (extrapolation).
The disadvantage of this is the occurrence of many parameters which are poorly identifiable
from an existing, typically limited, data set. Hence, an ‘overparameterized’ model was
preferred over an ‘overly simple’ model. For this kind of models, the Bayesian approach for
parameter estimation and prediction uncertainty is regarded as the most adequate (e.g.
Reckhow & Chapra, 1983, p. 51; Klepper, 1997; Reichert & Omlin, 1997; Omlin & Reichert,
1999; Hilborn & Mangel, 1997), for several reasons:
® The Bayesian method can deal with probability distributions of parameters (and model
structures), in contrast to traditional calibration where one seeks for single-point estimates.
® The method combines in the analysis prior knowledge of parameters and processes with
information contained in the data. This prior knowledge replaces to some extent the (non-
existing) data outside the domain of the data set.
® The approach directly yields an uncertainty analysis when used as a prediction tool.
Drawbacks of the method are a loss of accuracy, with wider (but probably more realistic)
uncertainty bounds, and an increase in computational demands because many model runs are
required.
Hence, we adopt the Bayesian way of model evaluation, realizing that model parameters are ill-
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defined, intrinsically variable entities, rather than well-defined, fixed numbers. It is important
to bear in mind that the focus in this project is on the model predictions; the parameter values
are only of intermediate interest. The effects of these uncertainties on the model results are to
be assessed and accounted for when the model is used for predictions (uncertainty analysis).
The outcome of the model can thus be expressed in probabilistic terms.

According to Bayes’ theorem, the posterior parameter distribution, conditional on the
measurements, called p( 8 | y,), is proportional to: p(y, | 6) * foor (0),

in which p(y, | 8) is the likelihood function of the model, the degree of fit of different parameter
combinations given the actual observations, and fpmr (0) is the prior parameter distribution, i.e.
the assumptions on the parameters before looking at these observations. The set of predictions
based on this prior parameter distribution is called the prior predictive distribution.

Hence, the final parameter combinations are derived from a combination of (a) prior
knowledge, e.g. derived from systems’ knowledge, literature, experimental data, field data or
previous calibration, and (b) evaluation and re-adjustment of parameter values in view of
measured data (‘calibration’). This step also involves validation, if the model is applied to
different cases. The parameter set after calibration is thus called the posterior parameter
distribution, and the resulting simulations the posterior predictive distribution. In fact, every
(combination of) parameter value(s) is given a weight (likelihood), which increases with the
degree of fit between model and data.

In practice, the weight can be based on the sum of squared residuals (differences between
simulations and data) as commonly used in regression analysis (Box & Tiao, 1973/1992). The
posterior parameter distribution is thus inversely proportional to the sum of squares raised to

the power n/2, with n the number of observations:

SOS = Sum(y, - M(x,, 6))
p(0]y,)~SOS -2

If two or more predictive variables are used, the probability function can be approximated as
the product of the sum-of-squares:

p(d | y,.y,) ~ SOS, ~"/2,SOS, ~2/2
with nl and n2 the number of observations for each variable.

Prior to the likelihood calculations, however, a sensitivity analysis is needed as a first step in
the model analysis, to determine which parameters have the most influence on the model
results. This step is important to make a preselection of parameters for calibration. The
parameters to focus on are the ones that are both sensitive and uncertain (Van Straten, 1986).
The sensitivity analysis is applied to both the model outputs themselves, and to the likelihood
measure (or fit function). The latter set may be smaller than the first one, e.g. a parameter may
have great influence in a region with low likelihood (Ratto et al., 2000).
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In this chapter, the PCLake model is evaluated by a method combining these three steps, viz.
sensititvity analysis, calibration and uncertainty analysis, using a Bayesian likelihood measure
based on a multi-lake data set. Finally, the model is used to calculate threshold loading levels
for the transition between the phytoplankton- and the vegetation-dominated state, which is an
important (derived) output variable. The dependence of this level on input factors as well as the
uncertainty due to the variation of model parameters, is determined.

Fig. 4.1 gives a schematic overview of the model analysis procedure. A distinction is made
between input factors and model parameters. Although mathematically comparable, these
categories have a different meaning when using the model. Input factors are the ‘steering buttons’
of the model, they are different per case (lake, region, situation) and (in principle) manageable.
The parameters, in contrast, describing biological or chemical processes, are assumed to be
independent of the location and therefore set identical for all cases (although they may show a
natural variability that is reflected in the uncertainty of the model output). The question whether
a certain quantity is regarded as parameter or as input factor is of course dependent on the type
and scope of the model, but a workable definition was made within the context of this study (a
complete list can be found in the appendix and the user’s manual, Janse (2003)).

data set
on lakes

input factors (x observations (m) jdentification

»( comparison

model

simulations (y)

selected pf
aram. (p* oo
P ® a priori V¥ posteriori
model
results
simulations T
model scenarios /
management
parameters (p)T options
sensitivity analysis (S.A.) uncertainty analysis (U.A.)

Fig. 4.1. Schematic view of the procedure of model analysis applied. p = distribution of all
parameters, p* = distribution of selected parameters.
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Step A: sensitivity analysis (S.A.).

The aim of this step is to select the most sensitive parameters. This was performed by applying

several sensitivity analysis methods. The focus was on the global sensitivity of the output for

the different parameters p and input factors x, rather than on the local sensitivity at the default
setting only.

The analysis was applied not only to the main output variables themselves (e.g. algal biomass),

but also to the likelihood (goodness of fit) of these values (e.g. the degree of conformance

between simulations and measurements of algal biomass). This is a combination of GSA-

GLUE: Global Sensitivity Analysis and Generalized Likelihood Uncertainty Estimate (Ratto et

al., 2000, 2001).

The sensitivity analysis itself made use of two methods (Saltelli et al., 2000):

a. a screening method in order to find the set of parameters and input factors that are globally
spoken the most influential. This was performed by the Morris method (Saltelli et al., 2000;
Morris, 1991; De Wit, 2000).

b. asemi-quantitative method, applied to the subset found by the previous method. For this, the
FAST method (Saltelli et al., 2000) was chosen.

Some analyses were also compared with the more ‘classical’ methods of linear regression

analysis and regression tree analysis.

Step B: identification.

After a pre-calibration by hand, a more formal calibration of a selected subset of parameters
was performed. This was a combined calibration on data from a multi-lake dataset. The model
is run for all cases (with known input, x) for a sample of the selected parameters (p). The
likelihood (‘fit’) of each run is assessed by comparison of the output (y) with the observations
(m). We aimed at maximum likelihood for all lakes and output variables together (a
‘compromise fit’) rather than calibration on a specific lake. The procedure is further explained
in § 4.3.

Step C: uncertainty assessment (U.A.).

As there are, for a number of reasons, no unique answers, there will remain an (a posteriori)
uncertainty in the predictions (i.e., after the confrontation of the model with the data). We
focussed on the uncertainty in the critical loading levels as an important derived model result.

4.2. Sensitivity analysis

Many methods for sensitivity analysis are available. They can be roughly divided in three
groups (Saltelli et al., 2000): screening methods, local methods and global methods. Following
the guidelines in this textbook, a two-step aproach was followed for PCLake: (a) a screening
method to select the most important parameters from the over 200 parameters in the model; (b)
a more quantitative global method applied to a subset of parameters.

54



Sensitivity and uncertainty analysis and calibration

4.2.1. Screening phase

Method

The screening phase was performed using the Morris method, having in view a rough selection
of those parameters that control most of the output variability, with a relatively low
computational effort (Saltelli et al, 2000). The Morris design can be considered as an OAT (‘one-
at-a-time’) design repeated at different points in the input space, thereby constituting a global
sensitivity experiment. This is in contrast to a local experiment, in which the factors vary only
around their nominal value and the results depend on the choice of these values. The Morris
method estimates the effect of each factor on a chosen output variable by computing a number
of ‘samples’, r, of local sensitivity measures (coefficients) at different points X ,...,X_in the input
space, and then calculating their average and spread (standard deviation) (Morris, 1991; De Wit,
2000). The local sensitivity measures are called ‘elementary effects’. Based on a specification
file with the minimum and maximum values for every parameter and input factor, a sample was
created of size (k+1) - r, with k the number of parameters. Every parameter can take p different
values, equally divided within its range; the sample is thus drawn from a k by p grid. In our case,
we used p=8 and r=15, values that are usually sufficient for the purpose (P. Heuberger, pers.
comm.). The method does not rely on specific assumptions on input/output behaviour. The
information one gets on the parameters is qualitative (ranking) rather than quantitative. The
method allows to determine which factors have either negligible effects, linear and additive
effects, or non-linear or interaction effects. (The method does not distinguish between those two
possibilities.) It can provide an ‘overall’ measure of the interactions of a parameter with the rest
of the model, but individual interactions among factors can not be estimated.

Besides the Morris method, the results were also analysed by a stepwise linear regression.

Results

The ‘elementary effects’ were calculated with respect to all important output variables. Fig. 4.2
shows the results for chlorophyll-a and vegetation biomass. The place of every parameter is
depicted as a circle (with the parameter number given to the right of it) in the plane of p and o,
the means and standard deviations of the ‘elementary effects’, which have the same units as the
output variable (viz. mg m™ for chlorophyll-a and g m™ for vegetation). (The parameters were
scaled already according to their range.) A parameter with a u close to zero has little effect on
the output, a positive u means that the parameter has an ‘overall’ positive effect on the output,
and a negative p the opposite. A low value of o means that the effect of the parameter is mainly
linear and is not much affected by the values of others, a high o means that the effect is non-
linear and/or shows interaction with others. The two lines in the plot forming a wedge
correspond to p + twice the standard error of the mean (SEM), with SEM = o/A/r. If a point is
situated outside the wedge, this can be interpreted as an undoubtedly positive or negative
impact of the parameter. The method is qualitative, it gives a ranking of parameters but does not
provide a significance level or the like.

An important conclusion that can be drawn from these plots is that for most parameters in
PCLake, the effect is non-linear and/or interactive.
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Fig. 4.2. Results of Morris sensitivity analysis. The place of every parameter is depicted in the
plain of the mean and standard deviation of their elementary effect. Parameter numbers are
explained in table 4.1. a, chlorophyll-a; b, submerged vegetation biomass.
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For all output variables, a ranking of the parameters and input factors according to their impact
has been made. The impact has been defined as the length of the vector of the parameter in the
p-0 plain. Table 4.1 shows the top-25 for 10 output variables. Some effects are evident.
Vegetation biomass, for instance, is affected most, and undoubtedly negative, by the water
depth (#1), while the external P load and also the water depth primarily affect the TP
concentration. However, most output variables are influenced by a large number of parameters,
not only the ones that directly affect their own growth, but also parameters that play a role in
other parts of the model. This points to the many indirect effects that can (potentially) occur in
the model.

We repeated the Morris analysis starting with a different seed of the random number generator,
giving rise to another sample based on the same specification file. While the more obvious
effects still hold, it turns out that some parameters in the list are now replaced by related
parameters; e.g. maximum growth rate is interchangeable with respiration or mortality rate of
the same group, or with the half-saturating food value.

Likewise, a cluster analysis of the mean elementary effects of the parameters on all the output
variables revealed that related parameters end up in the same cluster. This conclusion is
comparable to the one drawn by Klepper (1989, 1997) and Klepper et al. (1994) on a model of
an estuarine lake by a somewhat different clustering method.

The linear regression method that was applied to the same sample as a comparison, came up
with a partly different list of significant parameters. This can be understood from the fact that
the model shows many non-linear or interactive effects, that are not, or in a misleading way,
grasped by a linear approach.
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4.2.2. Second step: FAST method

Method

A subset of parameters (and no input factors), selected in the ‘screening phase’, was analysed
more quantitatively by a variance-based method, the FAST (‘Fourier amplitude sensitivity
test’) method (Saltelli et al., 2000). This method is most suited for non-linear or non-monotonic
models (or models for which this is not known beforehand). It is also called non-linear
sensitivity analysis. The FAST approach is based on numerical calculations to obtain the
variance of a model prediction, and the contribution of individual input factors to this variance.
The basis of this calculation is a transformation that converts a multidimensional integral over
the complete parameter domain to a one-dimensional integral. We used the ‘extended’ form of
FAST, that calculates both the ‘first order’ (direct effects) and the ‘total order effects’ (=
including interactions) of the parameters, scaled to dimensionless units. The minimum number
of runs needed is 65 times the number of parameters. We made use of the software package
SIMLAB (EC-JRC-ISIS, 2002).

We applied the method to the output variables directly and to their likelihood (as compared to
the multi-lake data set, see next paragraph). The 16 selected parameters are listed in Table 4.2.
Ten other parameters were coupled to the sampled parameters (for instance maximum growth
rate and respiration rate were coupled), in order to achieve the most reasonable parameter sets
while reducing the computational demand. The method was later also applied to the critical
load, see § 4.5.

Results

Fig. 4.3 shows the results of the FAST method applied to the likelihood measure (for the 43
lakes combined) for six output variables, viz. chlorophyll-a, Secchi depth, vegetation cover,
blue-greens, total N and total P, as well as for the combined likelihood measure, ¢, . The total-
order effects are shown (scaled to 100%), so including the direct and indirect effects of the
parameters. Chlorophyll, vegetation, Secchi depth and also blue-greens were mainly affected
by the zooplankton filtering rate. Vegetation and algae were also strongly affected by their own
maximum growth rates (or respiration rates) and those of their competitors. The macrophytes’
P uptake rate is important not only for the macrophytes, but also for blue-greens and Secchi
depth. Total N and total P are mainly dependent on the bioturbation coefficient, total P also on
the adsorption constant, the maximum PO, concentration in the sediment and the overwintering
fraction of the vegetation. For total N also the mineralisation constant and settling rates are
rather important. Not surprisingly, the total ¢ is dependent on a mix of all parameters
mentioned.

The remaining parameters thus have less impact on the model fit, or, to put it the other way
round, these parameters cannot be estimated very well from this data set.

We also analyzed the results for specific lakes. In lakes that are (in reality) vegetated, the
macrophyte parameters are in general more important for the fit results than in turbid lakes; the
opposite is true for the zooplankton parameters.

Only a few distinct relations could be observed between a certain likelihood and specific
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parameters. This may, on the one hand, be a reflection of the compromise character of the fit
(viz. summed over all lakes), on the other hand it may be caused by the rather high number of
direct and indirect interactions in the model, leading to mostly multi-factorial relations. The
correlation between parameters in the well-behaving runs was generally low. There thus exist
multiple parameter combinations leading to the same result.

4.2.3. Conclusions

With some caution, the sensitivity analysis points to the following ranking of parameters and
factors for which the model is the most sensitive. Parameters are in normal typeset, input
factors in italics. Related parameters are mentioned in combination.

P loading

N loading

water depth

water inflow

fetch, sediment properties and resuspension parameters
zooplankton filtering rate and/or assimulation and/or respiration
zooplankton food preference factors

settling rates

max. growth rates and/or respiration rate of algae

max. growth rate and/or respiration rate of macrophytes

fish assimilation rate and/or half-saturation food concentration
infiltration rate

overwintering fraction of macrophytes

minimum nutrient content of algae

mineralisation rate

Hence, the first important conclusion is that the model is very sensitive to the most important
lake features and input factors, among which the policy-relevant ones.

Secondly, there are a number of sensitive process parameters which are candidates to be further
assessed during calibration. Most of these parameters are a priori judged as difficult to
determine and probably quite variable in nature.
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Table 4.2. Parameters and ranges for the FAST sensitivity analysis

Min Max Unit Description
Sampled parameters:
fWinVeg 0.1 0.5 - overwintering fraction of subm. vegetation
cVSetIM 0.02 1.0 m d! settling rate of inorganic matter
coPO4Max 0.5 5.0 mgP 1! max. PO, conc. in pore water
cAffPUptVeg 0.001 0.1 m?>g'Dd' P uptake affinity of subm. vegetation
cKPAdsOx 0.5 3.0 m?® g''P max. P adsorption affinity
cVSetDiat 0.175 0.525 m d! settling rate of diatoms
cTurbDifNut 1 50 - bioturbation factor for diffusion
kDRespVeg 0.012 0.036 d! subm. vegetation respiration rate
cMuMaxDiat 1.0 2.5 d! max. growth rate of diatoms
kDMinDetS 0.001 0.1 d! mineralisation rate in sediment
kDAssFiJv 0.1 0.3 d! max. growth rate of juvenile whitefish
cMuMaxBlue 0.5 0.75 d! max. growth rate of cyanobacteria
kDRespZoo 0.075 0.225 d! zooplankton respiration rate
hFilt 0.5 1.5 gm? half-sat. food conc. for zooplankton
cVSetDet 0.05 0.25 md’ detrital settling rate
cMuMaxGren 1.0 2.25 d! max. growth rate of green algae
Coupled parameters:
cFiltMax =4 x hFilt Img'Dd' max. zooplankton filtering rate
hDZooFilv =5 x kDAssFilv mgD I'! half-sat. food conc. for juvenile whitefish
kDRespGren =0.033 x cMuMaxGren  d! green algal respiration rate
kDRespDiat =0.05 x cMuMaxDiat d! diatoms respiration rate
kDRespBlue =0.04 x cMuMaxBlue d! cyanobacterial respiration rate
cMuMax Veg =13.33 x kDRespVeg d! max. growth rate of subm. vegetation
kDMinDetW =1 x kDMinDetS d! mineralisation rate in water
cAffNUptVeg =1 x cAffPUptVeg m?g'Dd! N uptake affinity of subm. vegetation
cVPUptMaxVeg = 2.5 x cAffPUptVeg gPg'Dd' max. P uptake rate of subm. vegetation
cVNUptMaxVeg =25 x cAffPUptVeg gN g'Dd! max. N uptake rate of subm. vegetation
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4.3. Bayesian calibration of PClake
4.3.1. Method

This section describes step B of the method outlined in Fig. 4.1, the identification step. We
made use of data on a number of actual or historic cases (lakes), for which both input factors
(x) and observations (m) are known. (A case is defined as a certain combination of input
factors.) Recalling chapter 2, the main input factors to the PCLake model are:

® Mean water depth [m]

® Fetch [m]

Sediment type

Marsh area [-] (if any)

Water inflow [mm/d] or retention time [d]

Infiltration / seepage [mm/d] (if any)

External nutrient (P, N, Si) loading [g m™ d'']

Inflow concentrations of inorganic suspended matter [mg/1]

Intensity of fishery [d']

as well as the initial conditions.

The main output variables that are calculated by the model are: chlorophyll-a, transparency,
phytoplankton types, vegetation coverage and fish biomass, as well as the concentrations and
fluxes of the nutrients N, P and Si and oxygen. Input and output are again summarized in Fig.
4.4 (equal to Fig. 2.6).

Data on both input factors and output variables were available for 43 lakes (see § 4.3.2). From

INPUT P and N loading |
Depth Water inflow
Size, fetch, Histor:
marsh area

Sediment type
(d.m., OM, lutum)
Management

Process parameters

ouTPUT

Ptot, PO4, Ntot, NH4 and NO3 in water

Ptot, PO4, Ntot, NH4 and NO3 in sediment top layer
Algal biomass / chlorophyll-a:

- blue-greens

- diatoms

- other small algae (‘green algae’)

Transparency (Secchi depth, extinction)
Oxygen

Macrophytes (biomass/coverage and nutrients):
- Submerged plants

- Marsh plants

Zooplankton

Zoobenthos

Whitefish

Predatory fish

Fig. 4.4. Overview of input and output of PCLake
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an evaluation of the model output y with respect to the observations m for these lakes (the ‘fit’),
some of the parameters p and/or some model equations, can be improved, by selecting the well-
fitting runs. First, the model was calibrated by hand as far as possible, by visual comparison of
simulations and measurements and by examining the overall performance of the model
(sometimes called verification). Next, a more formal procedure was followed for a subset of the
parameters that were both sensitive and uncertain. Different kinds of sampling were used, both
FAST sampling (related to latin hypercube sampling, LHS) and grid sampling. In some cases,
an optimisation technique was used to further reduce the parameter space, by mean of the
programme PEST (Watermark Numerical Computing, 2000). These procedures were
performed for a subset of the parameters only, as it was too time-consuming to perform an
exhaustive analysis of all assumptions and parameters, and because the data set was considered
too incomplete (for instance on animal groups) for that purpose.

The likelihood function is based on the (quasi-)steady-state summer-averages of the following
variables, for the 43 lakes in the calibration data set:

total-phosphorus

total-nitrogen

chlorophyll-a

Secchi depth

submerged vegetation coverage

The squared residuals were based on the natural logarithms of the measured and simulated
values after adding a small value, the ‘minimum significant difference’ (8); the residuals were
squared to obtain the fit function Phii,j for every parameter combination i and every variable j.
Phi,, = [LOG(y, ., +9) - LOG(y, ;, + Bj)]2
or: Phi;; = [LOG{(Y, ,00s + 8) / (¥, y + Sj)}]2

This implies that the focus is on the relative differences, while downweighting the effect of
small absolute values. In this way, the large differences in ranges (e.g. total-P in mgP/l,
chlorophyll-a in mg m, vegetation coverage in %) are corrected for, as to give each variable a
comparable weight. By choosing reasonable values for the 3’s, the squared residual for each
variable may range from O (perfect fit) to about 20 (very bad fit) over the observed range. A
residual of 1.0 means a difference of a factor e (=2.72), or a difference equal to & if this is
higher (i.e. for low absolute values). The chosen values for & are:

Blue  cyanobacterial biomass [mgD 1] 8Phy1 =0.074
Chla  chlorophyll-a [mg m?] Sep =74
Cov vegetation coverage [%] By =27
Sec Secchi depth [m] 3. =0.074
Ntot total N [mgN 1] By = 0.074
Ptot total P [mgP 1] 3y = 0.0074

63



Chapter 4

The average Phi per variable was calculated by dividing by the number of observations:
avePhiivi = Sum[Phii‘j] / n,

The average squared residuals for all lakes and variables were combined (summed and
averaged), as to give a measure of the ‘overall’ combined fit for all of the available data. A
compromise, i.e. a reasonable fit for most cases, is preferred over a good fit of some cases at
the expense of others. This implies that the procedure will not always be conclusive about the
parameters, as several sets may give the same fit (‘pareto-optimal’ sets (Klepper, 1997)).

4.3.2. Data sets

Calibration data set

Data for 43 lakes were collected from different sources. Apart from lakes in The Netherlands,
some lakes in other European countries (Belgium, Poland, Ireland) were included. An overview
of the lake characteristics and input data is given in table 4.3, the water quality and biological
data in table 4.4. Most data are from the nineteen-nineties, some from the nineteen-eighties.
Most of them are averages over multiple years. The sources and quality of the data highly
differ, most have been collected for other purposes than model validation and they might not
always ‘match’ completely. Especially the loading data and the vegetation data are often based
on estimates. Nevertheless, we decided to be not too strict on the data so as to get a database
with enough variation.

The water inflow and loading data refer to year-averages (although for some lakes, half-year
averages were actually used). 50% of the P loading was assumed to be in inorganic form. Of
the remaining organic P load, most was defined as detritus, but a fraction of 2% (winter) to 10%
(summer) of it was assumed to be in the form of phytoplankton. For lakes known to receive a
substantial water inflow from other lakes, these fractions were taken as 5 and 25%,
respectively. The N loading in detrital or algal form was calculated by means of a fixed ratio (7
gN/gP), wheras the remaining inorganic fraction was equally divided over NH, and NO,. The
input of inorganic matter (mostly no data) was set at a concentration of 5 mg/l, except when it
was known to be higher. The silica inflow concentration was set at 3 mgSi I'".

The reported sediment types were translated into the average dry-weight, organic matter and
lutum fractions according to table 4.5 (from Kroon et al., 2001); Fe and Al were both set at 10%
of lutum. If available, lake-specific data were used, but these did not differ substantially from
these average values. Fetch was set at the square-root of the water surface area. As the water
exchange between lake and marsh zone was considered limited (the lakes have a fixed water
level), its effects on the nutrient transport were neglected, but the positive effect on the habitat
for predatory fish was included. The initial values of water and sediment quality and biota were
taken from the average measured winter values. For water temperature and outdoor light,
average sine curves were used. These were based on long-term averages for the Dutch
situation.
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The calibration data set encompasses a great variety of lakes, both ‘clear’ and ‘turbid’, all
sediment types, with P inflow concentration ranging from 0.03 - 2 mgP 1!, depth from 0.8 - 6.8
m, area from 1 — 4500 ha and retention time from 7 to over 500 days. Total P concentrations
measure between 0.001 and 1.5 mgP/l, total N between 0.2 and 6.6 mgN/l, chlorophyll-a
between 2 and > 200 mg m, vegetation cover between 0 and 90 % and Secchi depth between
0.2 and 2.0 m.

Data set used for comparison

Data on 9 Danish and Spanish lakes received later were not used in the calibration, but only for
comparison. The data on these lakes have been added to the tables 4.3 and 4.4. The input data
on temperature and day light were adapted to the different latitudes.

1001
%
80 BFWINVEG
% WCVSETIM
BCOPO4MAX
BCAFFPUPTVEG
BCKPADSOX
60 T DICVSETDIAT
% I BCTURBDIFNUT
BKDRESPVEG
DICMUMAXDIAT
BKDMINDETS
1 EKDASSFIV
40
% BCMUMAXBLUE
o OKDRESPZOO
OHFILT
mCVSETDET
| ECMUMAXGREN
20
% l
0 - - T T - T T T
% Phi-tot Chla Secchi Veg Blue Ntot Ptot

Fig. 4.3. FAST total-order effects of the subset of parameters on the likelihood of 6 output
variables as well as on the total likelihood Phi-tot, scaled to 100%. Parameters are explained
in Table 4.2.
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Chapter 4

As a check on the loading data, the in-lake nutrient concentrations were compared to the
(theoretical) inflowing concentrations. In most cases, the in-lake phosphorus concentration is
equal to, or lower than, the inflowing concentrations (Fig. 4.5a), as may be expected for lakes
more or less in equilibrium. The one or two exceptions may indicate recent large changes in
loading and/or questionable input data. For nitrogen (Fig. 4.5b) there are some more
exceptions, which might be attributable to the crude estimates for the more than 1/3 of the lakes

were input data were lacking.
4.3.3. Simulation setup

Simulations with PCLake were carried out for these lakes for 20 years, using the input values
as listed in table 4.3. Recalling chapter 2, the main input factors to the model are:
Mean water depth [m]

Fetch [m]

Sediment type

Marsh area [-] (if any)

Water inflow [mm/d] or retention time [d]

Infiltration / seepage [mm/d] (if any)

External nutrient (P, N, Si) loading [g m™ d'']

® Inflow concentrations of inorganic suspended matter [mg/1]

® Intensity of fishery [d]

as well as the initial conditions.

Output variables calculated by the model include:
tP, Po4, tN, NH4 and NO3 concentrations

Algal biomass / chlorophyll:

— blue-greens

— diatoms

muiti-lake dataset: in-lake vs input P concentrations multi-lake dataset: in-lake vs input N concentrations

N
£
a

n
®

in-lake total N concentration, summer [mg/l] o

in-iake total P concentration, summer [mg/l]
©

.
0.5 - . " ’
10
| e
i L T

0.0 °

0.0 05 1.0 15 2.0 0 5 10 15 20

input P concentration [mg/1] input N concentration [mg/l]

Fig. 4.5. Summer-averaged nutrient concentrations versus input concentrations in the lakes in
the dataset. a, total P; b, total N.
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— other small algae (‘green algae’)

Secchi depth (or extinction)

Oxygen

Macrophytes (in terms of biomass/coverage and nutrients):
— Submerged plants

— Marsh plants

Zooplankton

Zoobenthos

Whitefish

Predatory fish

The simulations were repeated, for all these lakes, for a grid sample of 7 varying parameters for
which the model had shown to be sensitive, while 4 other parameters were coupled to these
parameters with a correlation of 1.0 (Table 4.6).

The combined weights (likelihoods) of these runs were calculated according to the Bayesian
method explained above, based on the output variables chlorophyll-a, vegetation coverage,
Secchi depth and total P for all lakes. (Total N was left out for this purpose, because of the
lesser accuracy of the data and because P is generally the limiting nutrient in aquatic systems.
This did not affect the results much, as there was in general a good correlation between the fit
functions with or without total N). The likelihood distribution was used for uncertainty
assessment, applied to the critical loading levels (see paragraph 4.4).

The best run (with the maximum likelihood) from these simulations was selected, and the
corresponding parameter set used as a default. The results of this run are discussed first.

Table 4.6. Calibration parameters

Parameter Description Unit Range Bestrun  Optimum
FWINVEG Overwintering fraction of vegetation — 0.3-0.7 0.3 0.345
CVSETDET Detrital settling rate m/d 02-03 0.25 0.251
CFILTMAX Maximum zooplankton filtering rate 1 mg'd' 3.5-4.5 4.5 4.442
CPREFGREN Zoopl. pref. factor for green algae - 025-0.75 0.75 0.743
CMUMAXVEG  Max. growth rate of vegetation d! 02-03 0.2 0.204
CMUMAXGREN Max. growth rate of green algae d! 1.5-25 1.5 1.936
CMUMAXDIAT  Max. growth rate of diatoms d-! 1.5-25 2.0 1.960
Coupled parameters:

CPREFDIAT Zoopl. pref. factor for diatoms d-! = CPREFGREN
KDRESPGREN  Respiration rate of green algae d! =0.05 * CMUMAXGREN
KDRESPDIAT Respiration rate of diatoms d-! =0.05 * CMUMAXDIAT
KDRESPVEG Respiration rate of vegetation d’! =0.1 * CMUMAXVEG
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4.3.4. Results

The summer-averages of the last simulated year for a number of output variables were recorded
and compared to measured values. The ‘summer’ is defined as the period April 1 — Sep 30, in
accordance with the period used in Dutch water quality regulations.

Fig. 4.6, a-f, shows the results for total P, total N, chlorophyll-a (as a measure for algal biomass),
vegetation coverage and Secchi depth (transparency). The 1:1 lines are shown in each graph.
(Please note that in some of the graphs, especially the one for vegetation, several dots overlap near
the zero value.) In general, the model behaves reasonably well for total phosphorus, chlorophyll-
a (although in general somewhat overpredicted) and macrophytes, while the variability for total
nitrogen and Secchi depth is larger. The graph of the transparency looks much better if the
transparency is expressed as relative euphotic depth (Fig. 4.6, f), calculated as:

z,Jz_ =1.7%* Secchi/Depth [-]

Besides visual inspection of the graphs, several statistical methods were used to quantify the
model performance (Janssen & Heuberger, 1995). The first, most simple, method are the linear
correlation coefficients. A second method is to see whether the calculated = observed line lies
within the 95-confidence interval obtained from a linear regression between the observed and
calculated values. As all five variables are zero-bounded and span a wide range, the (natural)
log-transformed values after adding a small value (the ‘MSD’ or 3, see paragraph 3.1) were
used to approximate normally distributed residuals.

Other methods suggested by Janssen and Heuberger (1995) to quantify the agreement of a
model are based on the residuals between the individual points and the calculated = observed
(1:1) line. The calculation may be based on the Root Mean Square Error (RMSE), the Mean
Absolute Error (MAE), which is less sensitive to outliers, or the Mean Relative Error (MRE),
by dividing the residuals by the observed value. In this case, the MRE was calculated as the
mean absolute residuals of the log-transformed data plus their 3:

MRE = Sum{(|log(y, +8) - log(y +3)|) / log(y +8)} /n

in which y_and y_ are the modelled and observed values, respectively, and n is the number of
cases. The MRE thus denotes the mean relative difference (in natural log units) between
simulations and observations.

The results are in table 4.6.

Another approach is to evaluate the results in terms of ‘clear’ or ‘turbid’ state, which is the
model’s main objective. The values of 25 g I'! chlorophyll-a, 20% vegetation cover and a
relative euphotic depth of 0.90 were chosen as reasonable criteria for this distinction. With an
exception of 1 lake (with a high vegetation coverage despite a euphotic depth of only 0.80),
these criteria coincide for the measured data. As for the simulations, 100% of the lakes are
classified well according to the vegetation criterion, 95% following the chlorophyll criterion (2
lakes were overpredicted) and also 95% based on the relative euphotic depth criterion (1 lake
was over-, 1 was underpredicted) (Fig. 4.6); 91% met all three criteria together.
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a Total phosphorus [mgP/I} b Total nitrogen [mgN/I]
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Fig. 4.6. PCLake simulations compared to measurements (summer-averages) for a multi-lake
data set. a, total P; b, total N; c, chlorophyll-a; d, submerged vegetation; e, Secchi depth; f,
relative euphotic depth. The 1:1 lines and the (proposed) quality standards have been added in

the graphs.
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Table 4.6. Comparison between simulated and observed values, based on natural logarithms + ?. Shown
are the corelation coefficient, the mean relative error and the results of linear regression of the simulated
values on the observed ones.

Ptot Ntot Chla Veg Secchi
Correlation coeficient 0.63 0.61 0.71 0.74 0.70
MRE 0.71 0.83 0.52 0.44 0.37
Regression:
- intercept -0.64 -0.64 0 (forced) 0 (forced) 0 (forced)
- std. error 0.33 0.26 - - -
- PrC|t) 0.06 0.02 - - -
- coefficient 0.81 1.34 1.02 0.99 0.62
- std. error 0.16 0.26 0.02 0.06 0.07
- Pr(>|t) <10* <10+ <10* <10* <10
-R? 0.40 0.40 0.98 0.86 0.58
- meets 1:1? yes no yes yes no

For nutrients, it was tested whether an exceedance or not of the Dutch water quality standards
was simulated correctly. There are as yet two kinds of standards in The Netherlands, one for all
water bodies, viz. 0.15 mgP I'" and 2.2 mgN I, the other for water bodies designated as
‘ecologically valuable’ by the national or regional water authorities, for which the (proposed)
standards are 0.05 mgP 1" and 1.0 mgN I''.

With the low phosphorus standard of 0.05 mgP 1! as criterion, 81% of the predictions classified
the lakes in the right group; most of the others were underpredicted. When put against the high
standard of 0.15 mgP I'!, 86% of the predictions were correct; 4 lakes were under-, 2
overpredicted. For nitrogen, the results were somewhat less convincing. For the low nitrogen
standard of 1.0 mgN 1!, only 71% was classified correctly (all others were underpredicted). For
the high standard of 2.2 mgN 1!, 81% of the prediction were right; 5 lakes were under- and 3
overpredicted in this case.

A comment may be that the nutrient criteria do not always match with the biotic and
transparency criteria as defined above. Especially, some lakes are clear even with a total P
concentration > 0.05 (but in general < 0.15) mgP I''. Other factors than nutrients co-influence
the biotic response.

The results were further analysed by relating algal and macrophytes biomass to the nutrient
concentrations and light climate. The relation between chlorophyll-a and total P (Fig. 4.7, a-b)
shows a wide scatter for both the measurements and the simulations, but in general a positive
relation, the maximum chlorophyll/total-P ratio [g/g] being about 1.2 (measurements) to 1.5
(simulations). The same applies to total N (Fig. c-d), with maximum ratios [g/g] of about 0.10
(measurements) to 0.12 (simulations), but the measurements show a ‘lag’ of about 1 mg/1 that
is not reproduced by the simulations. This has been attributed to some ‘inert’ N fraction made
up of humic substances, which are not included in the model. The maximum ratios correspond
reasonably well with earlier studies in Dutch lakes (Lijklema et al., 1988; Portielje & Van der
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Molen, 1998). The total-N/total-P ratio ranges from about 5 to 25, with a few exceptions (Fig.
e-f).

The vegetation coverage shows, as expected, a clear negative relation with total-P (Fig. g-h),
which is, however, much steeper in the simulations as compared to the measurements. This is
partly due to the fact that the model simplifies the lake as a mixed water body with a uniform
depth, while in reality, shallower zones, with more favourable conditions for macrophytes,
often coexist besides deeper zones. This may ‘smoothen’ the relation, while the model predicts
more or less an ‘all or none’ response: macrophytes coverages of less than 20% do not exist in
the simulations, as they fall back to zero. A second cause might be an overestimation of
phosphorus uptake from the water column by the macrophytes.

The vegetation is clearly positively related to the relative euphotic depth (Fig. i-j), whereas the
opposite is true for chlorophyll-a (Fig. k-1). A relative euphotic depth of about 0.8 — 1.0 marks
the difference between dominance of algae versus submerged macrophytes. Again, the
relations are somewhat steeper than in reality.

71



Chapter 4

a Measurements b Simulations
J |
.. ' : !
200 2001
. .
7 . o .
€ ] . £
5150 . > 150
E . £ .
i O by . .
F 100 . =100
ol T S I '
< ce 2 M
Q 5 .
= . S
S s L 5 s0{ : H
. .« * ° - .o .
P @ . o *
Ja%e . od ade
0.0 05 15 0.0 05 15
total P {mg/l] total P [mg/l}
c Measurements d Simulations
|
. — —
2001 200 ¢
M -
<3 i £
150 . 1507 *
E o E .
iy . b . ° 8
31001 e . 100 g T e .
=3 . el =3 . *
I .o S
S . S ¢
=
5 50 G S| ., ‘ J
* . . * .
e . .
o
- e M o N -
v — . —i
[ 5 1017 0 5 1017
total N [mg/l] total N [mg/l]
e Measurements f Simulations
! }
I il - —
17 ES 17== ==
10 0
Z z
T 5 . w5 L34 * .
g . . g . . e
. % e * = °
. . e *
.o of . . . .
sd> e » . oo
ROER . .
. . 'o'.'.
0 ; 0 . .
; f— T . —
0.0 0.5 15 0.0 0.5 15
total P [mgP/I] total P [mgP/ij

Fig. 4.7. Relation between main biotic and abiotic variables for the lakes in the dataset,
measurements and simulations separately. a-b, chlorophyll-a vs. total P; c-d, chlorophyll-a vs.
total N; e-f, total N vs. total P; g-h, vegetation vs. total P; i-j, chlorophyll-a vs relative euphotic
depth; k-1, vegetation vs. relative euphotic depth.
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4.4. Confirmation on other lakes

After performing the calibration as described, nine other lakes were simulated with the same
parameter settings in order to perform a validation on independent data. These lakes are
situated in Denmark and Spain; data have been collected in the framework of the BIOMAN
project (De Meester et al., 2003). The main results are shown in Fig. 4.8, together with those
for the calibration lakes (note: four of the calibration lakes also figured in this project).
Although most of the BIOMAN lakes fitted reasonably well within the earlier results, at least
in terms of clear/turbid, there are some lakes in which macrophyte coverage was overpredicted.
Some of the assumptions on soil features and suspended matter, which had to be very rough
due to lack of data, were possibly not correct. The outlier is a lake under recent restoration
where macrophyte development has not (yet) started for unknown reasons (T. Lauridsen, pers.
comm.). Nevertheless, the results were considered satisfactory to allow the model’s
applicability outside the calibration set.
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Fig. 4.8. PCLake simulations compared to measurements (summer-averages) for both the
calibration and the ‘BIOMAN’ lakes used for comparison. a, chlorophyll-a; b, submerged
vegetation, c, relative euphotic depth. The solid line is the 1:1 line; the dashed lines indicate
the limits of 25 mg m chlorophyll-a and 20 % coverage.
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The model was also applied to another set of lakes in The Netherlands, partly overlapping with
the set described, partly differing. The hydraulic and nutrient loadings of the ‘new’ lakes were
estimated by applying a combination of a leaching model with emission data at the catchment
scale (Van Puijenbroek et al., 2004). The PCLake simulations based on these loadings gave
reasonable results, at least in classifying the lakes in terms of mesotrophic or eutrophic state.

4.5. Prediction uncertainty of the critical loading

Having discussed, in §§ 4.3 and 4.4, the results for the optimal parameter setting,we will now
finish the Bayesian approach (outlined in § 4.1) by considering the uncertainty in the model
predictions that is left after the model has been compared to the data. We focussed on the
uncertainty in a derived model output, viz. the threshold loading rate for the switch between the
clear, macrophyte-dominated state and the turbid, phytoplankton-dominated state. (This topic
is explained in chapters 5 and 6; here we only mention that the model indeed predicts such a
threshold loading, the value of which often differs along with the initial state of the system.)
The threshold was defined as the loading at which the summer-averaged vegetation coverage
crosses the value of 20 %.

The analysis was performed for an ‘average Dutch lake’: mean depth = 2 m, fetch = 1000 m,
water inflow = 20 mm d”, a lightly clayish soil, no wetland zone. As explained before,
simulations were performed for a grid sample of 7 varying parameters, while 4 other
parameters were coupled to these parameters with a correlation of 1.0 (Table 4.6 in the previous
section). For each parameter combination, runs were performed for two initial states and for a
range of loading rates. The critical loading rates (again for 20% vegetation coverage) were
derived for each combination.

The prior predictive distribution of the critical loading rates, i.e. before confrontation with the
data, is shown in Fig. 4.9, a, c. The threshold for the switch to the turbid state ranges from 0.5
to 7.9 mgP m? d-!, with a median value of 2.4. The opposite switch takes place at a loading rate
between 0.34 and 4.0, median 0.74 mgP m d'!. The switch point for “clarification’ (restoration)
is always lower than the one for ‘turbidification’ (Fig. 4.9, e).

Next, the runs were weighted according to their likelihood (the degree of fit with the data),
giving rise to the posterior predictive distribution (see § 4.1). This could, of course, only be
done in an indirect way, firstly because only the actual state of the lakes could be measured and
not their critical loading, secondly because the data set contained lakes of different types
(differing from the ‘default lake’). It was thus assumed that the likelihood of the different
parameter combinations, as derived from the degree of fit between measurements and
simulations for the lakes in the data set, can also be applied to the critical loading for the
‘average lake’. The likelihoods were calculated as explained in the previous section, based on
the total sum-of-squares for the variables chlorophyll-a, vegetation coverage, Secchi depth and
total P for all simulated lakes.

The weighted switchpoints were again collected in bins with a fixed width and shown in a
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histogram (Fig. 4.9, b, d). Compared to the priors, the bandwidth of both switchpoints is
markedly reduced. The threshold for restoration of the vegetation most likely lies between 0.75
and 1.25 mgP m? d", the value for the best run is 0.94 mgP m? d"'. The bandwidth of the
threshold for ‘turbidification’ is somewhat wider and lies between 2 and 4 mgP m™ d' with
2.56 mgP m d! for the best run. 95% of the density was made up by 50 runs, while 20% was
comprised by the best run. Again, the switch point for ‘clarification’ (restoration) is always
lower than the one for ‘turbidification’ (Fig. 4.9, f).

Besides the optimal parameter combination for the best run, also the ‘optimal’ values for the
individual parameters were calculated as the likelihood-weighted average of the parameter values
(more properly: using the weights for the runs with a given parameter value). These may differ,
as they are not restricted to the exact values in the sample. The combination of ‘optimal ‘values
had, however, a lower likelihood than the best run, which may be due to correlation effects.
Both sets are given in Table 4.6. The values from the best run were used as default values.

In general, there was no simple relation between the value of every single parameter and the
likelihood.

Parameter sensitivity of the critical loading

To explore the parameters or processes that determine the critical loading, we performed a
sensitivity analysis of the critical loading values for 18 process parameters, for the ‘standard
lake’ defined earlier. The parameters were chosen from the different ‘corners’ of the model and
were sampled according to the FAST method (Saltelli et al., 2000) uniformly within the ranges
given in table 4.7. We ran the model again for 20 years with different loading values, starting
from either the clear or the turbid initial state, and derived the loading that corresponded to a
summer-averaged macrophyte coverage of 20% by interpolation. We applied an extended
FAST sensitivity analysis (as explained in § 4.2.2) to find the spreading (uncertainty) and the
parameter sensitivity factors.

The distributions of the critical P loadings are shown in Fig. 4.10; the sensitivity measures are
depicted in Fig. 4.11, both for the critical P loading (with N in excess) and for the critical N
loading (with P in excess). All results are unweighted, i.e. prior distributions: no comparison
with observations was made. The ‘turbidification’ switchpoint varies from 0-10 mgP m? d"!,
the ‘clarification’ switchpoint only from 0-2(-3) mgP m™ d"!, a little bit wider than the prior
distributions shown in Fig. 4.9, a,c. The differences between the first-order and total-order
effects indicate that interaction effects between parameters are important (Fig. 4.11). The
parameters explaining most of the variability in the ‘restoration switchpoint’ are the vegetation
parameters: max. growth rate, overwintering fraction and light affinity, as well as the
zooplankton half-saturating food concentration and the mineralisation rate. The ‘turbidification
switchpoint’ is determined by the same vegetation parameters, but also by the growth rate of
planktivorous fish, and a litte bit by the nitrification rate. With some precaution, this could be
interpreted as an indication that top-down regulation is important for the stabilisation of the
clear-water state, but not for that of the turbid state.
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Fig. 4.10. Distribution of the (prior) critical P loading values [mgP m? d'] for a,
turbidification, and b, restoration.

We also analysed the results by multiple linear regression (Table 4.8).
Comparable results are found for the critical N loading (if P is in excess).

Table 4.7. Parameters and ranges for the sensitivity analysis

Min Max Unit Description
CMUMAXBLUE 0.5 0.7 d! max. growth rate of cyanobacteria
CMUMAXVEG 0.15 0.25 d! max. growth rate of subm. vegetation
CLOPTREFBLUE 10 16 W m? optium light for cyanobacteria
HLREFVEG 15 25 W m? half-saturating light for subm. vegetation
FWINVEG 0.2 0.4 - verwintering fraction of subm. vegetation
CPDBLUEMIN 0.002 0.003 gP g'D min. P/D ratio of cyanobacteria
CPDVEGMIN 0.0006 0.0011 gP g'D min. P/D ratio of subm. vegetation
CNDBLUEMIN 0.02 0.04 eNg'D min. N/D ratio of cyanobacteria
CNDVEGMIN 0.008 0.012 eNg'D min. N/D ratio of subm. vegetation
HFILT 0.8 1.2 gm? half-sat. food conc. for zooplankton
KDASSFIJV 0.09 0.15 d! max. growth rate of juvenile whitefish
KDASSFIAD 0.04 0.08 d! max. growth rate of adult whitefish
KDASSPISC 0.02 0.06 d! max. growth rate of piscivorous fish
KDMINDETS 0.001 0.004 d! mineralisation rate in sediment
KNITRS 0.2 1.5 d! nitrification rate in sediment
CSUSPMAX 20 30 gm? max. value of suspended matter function
KTURBFISH 0.5 2 ggld! relative bioturbation by adult whitefish
CVSETDET 0.2 0.3 md! detrital settling rate
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Fig. 4.11. Sensitivity coefficients of the critical loading values for the parameters, FAST
method. Restor. = critical loading for restoration; Turbid. = critical loading for
turbidification; P = P-limited runs; N = N-limited runs; first = FAST first-order effects; total
= FAST total-order effects. Parameters are explained in table 4.7.

Table 4.8. Results of linear regression (without interactions)

Turbidification switchpoint Clarification switchpoint
Value Std.error Pr(>|t) Value Std.error  Pr(>|t])

(Intercept) -11.7963 1.1778 <10* -2.9241 0.3147 <10+
CMUMAXBLUE -4.206 60.609 <10* -0.5063 0.1627 0.0019
CMUMAXVEG 89.2222 1.1393 <10* 18.7295 0.3044 <10+
CLOPTREFBLUE -0.0086 0.021 0.6826 0.004 0.0056 0.4745
HLREFVEG -0.4115 0.0126 <10* -0.0807 0.0034 <10+
FWINVEG 13.678 0.652 <10* 1.3208 0.1742 <10+
CPDBLUEMIN 6.4242 136.5283 0.9625 27.1283 36.478 20.4572
CPDVEGMIN -363.624 292.2091 0.2136 -59.4732 78.0736  0.4464
CNDBLUEMIN 12.3974 6.1969 0.0457 -4.5177 1.6557 0.0065
CNDVEGMIN -116.574 34.5844 0.0008 -10.7432 9.2404 0.2452
HFILT 9.0531 0.3329 <10* 2.256 0.0889 <10+
KDASSFIJV -45.9099 2.1089 <10* -7.9462 0.5635 <10+
KDASSFIAD -17.0245 3.3688 <10* 1.7683 0.9001 0.0497
KDASSPISC 39.9123 3.1377 <10* 0.7659 0.8383 0.3611
KDMINDETS 301.9624 45.8039 <10* 168.227 12.2381 <10+
KNITRS 0.1196 0.0995 0.2298 0.0895 0.0266 0.0008
CSUSPMAX -0.1485 0.0151 <10* -0.0294 0.004 <10+
KTURBFISH -0.758 0.0829 <10* -0.1932 0.0221 <10+
CVSETDET 18.9498 1.3649 <10* 2.5624 0.3647 <10+
Residual St.Error 0.9738 0.2602

df. 1151 1151

R 0.8839 0.8273
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Simulated critical loading of the calibration lakes

By the same method, the switch points corresponding to the lakes in the calibration data set
were calculated, using the lake characteristics listed in table 4.3. The results are listed in table
4.9 and compared with the actual loading. Also shown are the in-lake TP concentrations and the
Secchi depth ‘just before the switch’. All these figures are indicative only and should not be
used too strictly on these specific lakes.

It appears that in 11 out of 43 lakes, the P loading is/was lower than the threshold for
restoration, in 6 lakes the loading is between the two thresholds, and in the remaining 26 lakes
the loading is higher than the turbidification switchpoint, in 12 of which a factor 5 or more. For
most lakes, this corresponds to their actual state, clear or turbid. (Some lakes cannot
unambiguously be classified, as they have distinct vegetated and unvegetated parts.)

The critical in-lake TP concentrations show much less variation than the critical loadings. This
holds even more for the critical relative Secchi depth, as may be expected.

The critical TP concentration for restoration might be used as an in-lake indicator of how far
one is still off from the switchpoint.

The critical TP concentration for turbidification might be used as an indication for the stability
of the clear-water state in the lake, or as an ‘early warning signal’ in case the lake would be
moving towards the switchpoint.
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Chapter 4

Discussion and conclusions

In general, it may be concluded that the model simulations correspond reasonably well to the
observations in a wide variety of lakes. The results cannot easily be ‘biased’ by calibration of
certain parameters on data from a specific lake, as this would be counteracted by the results for
other lakes. Also a number of lakes that had not been used in the multi-lake calibration fitted in
quite well, with some exceptions, which may be regarded as some form of validation.
Apparently, the influence of the main input factors (listed in § 4.3.3) is reflected in the model
results in the right way, so the quality of the model can be regarded as sufficient for practical
purposes. This does not mean that all relations in the model are ‘true’; it is still possible that
other assumptions could explain the same results.

The multi-lake calibration has proven to be a useful tool. The uncertainty in the output could be
reduced markedly Fig. 4.9). The remaining uncertainty is still quite high, however. This is
partly due to the fact that the data set did not contain enough information to estimate all the
uncertain and sensitive parameters. Additional data might reduce the parameter variability still
further. But one should not thrive at a complete calibration of the model, as this is practically
impossible in view of its complexity. A principal point is that the one and only ‘true’ model
setting does not exist and that natural variability should be accepted. This principle is reflected
in the Bayesian way of looking at calibration and validation of models.

Application on ‘new’ cases should best be done in a probabilistic way, viz. taking the inevitable
variation into acount, for instance by performing multiple runs.

The uncertainty derived from the calibration should be regarded as a conservative estimate, as
only a subset of the parameters has been varied and the effect of variations in model structure
was not assessed. The uncertainty in the restoration switchpoint appeared to be less than the
one in the turbidification switchpoint, and the latter seems to be influenced by more factors
than the former. The topic of the critical loading values is discussed further in chapter 6.
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Abstract

There is increasing evidence that, within a range of nutrient loadings, shallow lakes may have two alternative stable
states. One is dominated by phytoplankton and the other one by submerged macrophytes as the main primary
producer. The question arises at what level of nutrient loading a transition may occur between the two states.
This question was addressed by means of the integrated lake model PCLake. The model describes the competition
between phytoplankton and macrophytes, within the framework of closed nutrient cycles in the lake system,
including the upper sediment. Top-down effects via the food web were regarded as well. The model was run for a
hypothetical shallow lake, representative for the situation in The Netherlands. Long-term simulations were carricd
out for a realistic range of nutrient loadings and starting from different initial conditions. The results showed a
highly non-linear response, which also showed hysteresis: the loading level at which a transition occurs turned
out to be dependent on the initial conditions. The results were compared with empirically derived chlorophyll a
to phosphorus rclations. Factors influencing the ‘critical nutricnt level” were the lake dimensions and the net
sedimentation rate. The model was also used to evaluate the role of food web management in lake restoration. The
results suggest that a long-term effect of additional management is possible only if combined with a decrease in

nutrient loading.

Introduction

As a result of high nutrient loadings during the past
decades, many shallow lakes have become highly
eutrophic. They are now characterized by dense algal
blooms of cyanobacteria, high turbidity, absence of
vegetation and a fish community dominated by bream.
Although these effects were caused by high nutri-
ent loadings, restoration of the former macrophyte-
dominated clear-water state often could not be achieved
by external load reduction alone: eutrophic lakes often
show resistance to recovery. Apparently, once the sys-
tem has switched from a clear to a turbid state, this
switch cannot simply be reversed (e.g. Jeppesen ct al.,
1991; Gulati et al., 1990b; De Haan et al., 1993; Boers
ct al.,, in press). Several, often interacting, mecha-
nisms for this resistance have been proposed. Firstly,
a prolonged internal loading from nutrient-rich sedi-
ments may delay the response (Ryding & Forsberg,

1977, Sas, 1989). Secondly, an increasc of the nutrient
utilization efficiency of the phytoplankton makes them
produce the same biomass with less nutrient (Riegman,
1985; Van Licre & Janse, 1992). Thirdly, the grazing
pressure on the phytoplankton is low, both because
of the poor edibility of cyanobacteria and the strong
predation by bream (Gulati et al., 1990a). Finally, the
large amount of detritus accumulated in the system
keeps the water turbid and impedes return of the veg-
etation (Van Dijk & Van Donk, 1991). Clearly, both
direct effects of nutrients and indirect cffects through
the food web may contribute to the often observed
resistance to recovery. Therefore, additional measures
are sometimes considercd apart from, or combined
with, nutrient load reduction (Gulati et al., 1990a).
On the other hand, also the clear-water state of
shallow lakes, dominated by submerged macrophytes,
shows a certain resistance to external forcings, like a
moderate increase in nutrient loading (Moss, 1990).
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Several stabilising mechanisms may play arole. Nutri-
ent uptake by macrophytes may suppress algal growth
due to nutrient limitation (Van Donk et al., 1993), they
may provide favourable conditions for predatory fish
and they may reducc wind-induced resuspension by
stabilising the sediment.

The question addressed in this paper is how the
probability of a transition from the clear-water statc to
the turbid state, or vice versa, is related to the external
nutrient loading. This topic is approached by means
of a mathematical model, in order to facilitate a sys-
tematic analysis. The model used in this study, called
PClLake, combines a description of the dominant bio-
logical components with a description of the nutrient
cycle in shallow lake ecosystems. The model differs
both from many eutrophication models, which confine
themselves mainly to the nutrient cycling, as well as
from morc detailed biological models. It also differs
from so-called minimodels (e.g. Scheffer, 1990} in that
it is based on closed nutrient cycles, allowing a more
quantificd analysis. The aim of this study is to analyse
the system’s long-term response, in terms of phospho-
rus, algal and macrophytes biomass, as a function of
the external nutrient loading and the initial conditions.
Some implications for lake management are discussed.

Model structure

The PCLake model calculates the water quality para-
meters chlorophyll a, transparency, phytoplankton
types and the density of submerged macrophytes. It
also calculates the distribution and fluxes of the nutri-
ents N and P. Inputs to the model are: lake hydrology,
nutrient loading, dimensions (mean depth and size) and
sediment characteristics. An extensive description of
the model may be found in Janse & Aldenberg (1996).

The model describes a completely mixed water
body and comprises both the water column and the
upper sediment layer (Figure 1). A default sediment
depth of 0.1 m has been used. Any further horizon-
tal or vertical distinction is not taken into account.
At the base of the model are the water and nutri-
ent budgets (in- and outflow). The physico-chemical
module describes the exchange of detritus, inorgan-
ic matter and nutrients between sediment and water.
Processes involved are sedimentation, resuspension,
diffusion, burial and chemical adsorption. Mineraliza-
tion processes are described in both layers. Two mod-
ules, for phytoplankton and macrophytes, respectively,
describe the primary production. The food web mod-
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ule is kept as simple as possible and comprises zoo-
plankton, macrozoobenthos, whitefish and predatory
fish. All biota are modelled on the basis of functional
groups. In this way, effects of the food-web structure on
the nutrient cycles are accounted for, and biomanipula-
tion measures may be simulated. The user may choose
between different model configurations according o
his questions and the available data. In this study, only
the phytoplankton has been split into three functional
groups, viz. cyanobacteria, diatoms and other small
cdible algac, because of their different characteristics |
and because of management’s interests. It is assumed
that the zooplankton has a lower food preference lor
cyanobacteria and detritus than for the other groups.
It is further assumed that the macrophytes may extract
nutrients from both the water and the sediment pore
water. Apart from mass fluxes (food relations ete.),
some ‘empirical relations’ are included in the mod-
el: the resuspension rate is positively affected by the
amount of whitefish and negatively by the vegetation
density, while the vegetation is assumed to have a pos-
itive influence on the growth of predatory fish.

The overall nutrient cycles for N, P and Si are
described as completely closed (except for in- and out-
flow and denitrification). This was done by modelling
all nutrient- to-dry-weight ratios dynamically (as indi-
cated by the doubled blocks in Figure 1). Mechanisms
were included to cope with the often observed increase
of the weight-specific nutrient contents of the organ-
isms at higher trophic levels (e.g. Gulati et al., 1991)
and with variations in algal nutrient contents. It should
be stressed that all organisms are considered as depen-
dent, directly or indirectly, on the nutrients that are
available in the lake or the lake sediment.

The model has been implemented in the simula-
tion package ACSL, version 10. Parameter values were
derived from literature and from calibration on sever-
al case studies (Janse et al., 1992, 1993; Van Dijk &
Janse, 1993). A partial calibration study on a multi-
lake data sct using Bayesian statistics has also been
carried out (Aldenberg et al., 1995). The model has
been used for several scenario analyses. These include
studies on nutrient load reduction (Janse et al., 1992),
biomanipulation (Janse et al., 1995; Janse et al., in
press) and combinations of these with dredging (Janse
etal., 1993; Zamurovi¢-Nenad, 1993; Aysever, 1994).

In this study, simulations have been performed
for a hypothetical lake system which may be consid-
ered as representative for many shallow lakes occur-
ring in The Netherlands. Its main characteristics are:
mean depth=2 m, areal hydraulic loading =20 mm
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Figure 1. PCLake model structurc. Doubled blocks denote compartments modelled in both dry weight and nutrient units. Three functional
groups of phytoplankton arc distinguished: cyanobacteria, diatoms and other small edible algae. Arrows with solid lines denote mass fluxes
(e.g. food relations), arrows with dotted lines denote ‘empirical’ relations (minus sign denotes negative influence, otherwise positive infiuence).
Egestion and mortality fluxes of animal groups and respiration fluxes are not shown.

d=! (=7.2m y~"), no seepage, porosity of upper sed-
iment = 0.9, sediment Fe content=10 mg g~}. Some
of the simulations have also been carried out for a mean
depth of 5 m and a mean depth of 10 m, with the same
hydraulic loading. The (theoretical) total P concentra-
tion in the inflow to Dutch shallow lakes ranges from
0.1 to 1.0 mg P 17!, Typical in-lake total phospho-
rus concentrations are between 0.05 and 0.5 mg P -1,
while summer averaged chlorophyll-a concentrations
are around 100-200 pg 17! (Lijklema et al., 1989).

Results
Variation of nutrient loading and initial conditions
The long-term impact of different nutrient loadings on

the above-mentioned ‘average shallow lake’, with a
depth of 2 m, was simulated. Simulations have been

performed for ten years, with the nutrient loading set
to a fixed valuc, ranging from 0 to 2.5 ¢ Pm 2 d~'.
The nitrogen loading has been set to 10 times the phos-
phorus loading. For every loading value, the simulation
has been done twice, starting either from a macrophyte-
dominated state, or from a phytoplankton-dominated
state with high chlorophyll @, respectively. The result-
ing summer-averaged total-P and chlorophyll @ con-
centrations in the tenth ycar are shown (Figure 2a, b), as
well as the relation between them (Figure 2¢). The rela-
tions between nutricnt input and both variables were
highly non-lincar, with a rather sudden switch between
a macrophyte-dominated state with low chlorophyll a
values and a phytoplankton-dominated statc with high
ones. Moreover, the response showed hysteresis, so
that the ‘critical’ nutrient loading was considerably
different whether one started from the ‘clear’ or from
the ‘turbid’ side. The calculations were also repeat-
ed for some different parameter values. The values of
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the switch points were notably sensitive for the para-
meters determining resuspension and sedimentation,
which are dependent on lake dimensions and sediment
characteristics. The lower the net sedimentation rate,
the lower were also the critical loading levels.

In comparable simulations of deeper lakes, where
the mean depth had been set to 5 m and 10 m, respec-
tively, this hysteresis phecnomenon did not occur (Fig-
ure 3). These lakes werc apparently too deep for
macrophyte development so that a phytoplankton dom-
inance appeared in all simulations, but with much low-
er chlorophyll @ concentrations than in the simulations
of the shallow lakes. The relation between phospho-
rus and chlorophyll @ was more or less continuous in
these cases. In the left part of the graphs, representing
a nutrient-limited situation, all curves overlap. To the
right, where light limitation occurs, the chlorophyll a
concentrations decrease with lake depth, as expected.

The points in the left part of the graphs (Figures 2c
and 3) coincide with the line of the maximum summer-
averaged chlorophyll-a concentration at a given P con-
centration, empirically derived from a data set of 120
lakes in The Netherlands (Lijklema et al., 1989). All
of these lakes were dominated by phytoplankton, the
lakes with the higher chlorophyll a to total P ratios, up
till 1.4 mg mg~', being dominated by cyanobacteria.
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Figure 2. Simulations for an average shallow lake (see text) with a
depth of 2 m, for a range of P loadings. The N loading is assumed
to be always [0 times the P loading. All simulations have been done
for two initial states, a clear-water state dominated by macrophytes
(solid symbols) and a turbid state with a blue-green algal dominance
(open symbols). Output values arc summer-averages after 10 ycars
with the same loading conditions. a. in-lake total P as a function
of the P loading; b. chlorophylil ¢ as a function of the P loading;
c. relation between chlorophyll ¢ and in-lake total P concentration.
The broken line in Figure 2c¢ is the empirically derived maximum
for a data base of Dutch lakes (Lijklema et al., 1989).
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Figure 3. Chlorophyll a to in-lake total P relation for three lakes
with a depth of 2 m, 5 m and 10 m, respectively, with equal water
inflow, for a range of P loadings. Simulations as in Figure 2. Solid
squares: depth 2 m, starting from clear state; diamonds: depth 2 m,
starting from turbid state; plus signs: depth 5 m; circles: depth 10 m.
The broken line is the empirically derived maximum for a data base
of Dutch lakes (Lijklema et al., 1989).

These data are in agreement with the chlorophyll @ and
total-P model simulations.

Eutrophication, de-eutrophication and management

In order to study the dynamical behaviour of the mod-
el, the same hypothetical shallow lake with a depth of
2 m was simulated during the course of eutrophica-
tion and restoration (Figure 4). The simulation started
under mesotrophic conditions with the inflowing water
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containing 0.03 mg 1~! total phosphorus and 0.3 mg
17" total nitrogen. After 10 ycars, these concentra-
tions were increased sevenfold, thus bringing the lake
into a hypertrophic state. After another 10 years, three
options were simulated:

(a) cutting down the nutrient loadings to the former,
low, values.

(b) idem, combined with dredging and fish man-
agement, each carried out once. This was done in the
modcl by removing 80% of the sediment detritus, half
of the zoobenthos and 80% of the whitefish, and intro-
ducing 0.1 g d.w. m~2 predatory fish.

(¢) dredging and fish management without nutrient
load reduction.

The effects of the increase and subsequent decrease
in nutrient loading arc discussed first. The simulated in-
lake total phosphorus concentration (Figure 4a) gener-
ally followed the changes in inflow concentration with
a lag time of about 4 years. This delay may be caused
by a slower reaction of the sediment with respect to
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Figure 4. Simulations for an average shallow lake (see text) with a
depth of 2 m. After 10 ycars, nutrient loadings have been increased
sevenfold. Aftcr another [0 years, three options were simulated:
(1) decrease in nutrient loading down to the starting value (circles):
(2) idem combined with dredging and food web management (tri-
angles); (3) dredging and fish management only (dashed line with
‘plus’ signs). a. total phosphorus; b. chlorophyll a; ¢. nutrient limi-
tation function of phytoplankton; d. submerged vegetation.

the water. After the load reduction at ycar 20, however,
the concentration did not quite drop down to the start-
ing value. The chlorophyll & concentration (Figure 4b)
remained low during the ‘mesotrophic period’, with
small edible algae dominating (data not shown). Their
growth rate in mid-summer is severely limited by the
availability of nutrients (Figure 4c¢). Within two years
after the increase in loading, the algae were replaced
by blue-greens, in high density. Their growth rate
was hardly limited by nutrient supply. Algal biomass
decreased again following the load reduction at year 20,
but the phytoplankton remained to be dominated by
blue-greens. As a consequence of the reduced loading,
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the algal growth rate became nutrient limited again
to some extent. The zooplankton almost completely
vanished when the blue-greens dominance established,
while the whitefish density gradually increased and the
predatory fish disappeared. The development of the
submerged vegetation (Figure 4d) was more or less
inverse to that of the blue-greens. The lake started in
a stable, macrophyte-dominated situation. By uptake
of the scarce nutrients, they clearly contributed to the
nutrient limitation of the algae. The macrophyte den-
sity first increased after the load increase, followed by
an almost complete disappearance. This was caused by
a deteriorating light climate (decreasing Secchi disk
depth) due to increasing seston concentrations. The
Joad reduction 10 years later failed to restore the macro-
phyte dominance. Summarizing, eutrophication made
the system change from a clear, macrophyte-dominated
state to a turbid state, dominated by blue-greens. This
process could not be reverted by nutrient load reduction
alone, in agreement with field observations in compa-
rable lakes.

Load reduction combined with dredging and fish
stock management, however, proved to be able to
make the system ‘switch back’: the blue-greens were
replaced by small edible algae again, in low densi-
ty, and the vegetation reestablished, as well as the
piscivorous fish and the zooplankton. The phytoplank-
ton growth rate became nutrient limited again. Appar-
ently, the sudden improvement in light climate creat-
ed favourable conditions for return of the vegetation,
which was able to stabilize the new situation. To com-
pare, the direct system manipulation as stand-alone
measure, while the nutrient loading remained high,
was only temporarily effective and failed to reestablish
a stable clear state of the system.

Discussion

The model results confirm the existing evidence that
shallow lakes may have two alternative states, a clear-
water state dominated by macrophytes and a turbid
state dominated by phytoplankton (Moss, 1990; Schef-
fer, 1990; Jeppesen et al., 1990). Several factors deter-
mine which state prevails in a certain case. A general
constraint is set by the external nutrient loading. At a
very high loading, only the turbid state is stable, where-
as the opposite is truc for very low loadings. In the
intermediate range, both states may exist and switch-
es between the two states are possible. Because both
states possess a number of self-stabilizing buffering
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mechanisms, the critical loading level at which a shift
occurs is dependent on the initial state of the system:
the shift from turbid to clear occurs at a much lower
loading level than the opposite one (hysteresis). Either
state has a certain attraction ficld, which are separated
by aso-called ‘separation line’. A shift may be invoked
by a (natural or anthropogenic) disturbance of the sys-
tem, moving it across the separation line (cf. Scheffer,
1990). Such a shift seems to be always correlated with
a dramatic change in water transparency, a key factor
for survival of submerged macrophytes. An example
of a disturbance might be food web management, pos-
sibly combined with physical measures as dredging.
The model suggests that additional management is, on
long term, more (or only) effective if combined with
load reduction, as was also concluded from biomanip-
ulation experiments (Gulati et al., 1990a). Analyses
like this one may contribute to improved predictions
of the chance of success of additional management at
different nutrient levels.

The model analyses also stress the close interrela-
tionship between the nutrient cycle on the one hand
and the biological structure on the other. The compe-
tition between the different primary producers, phyto-
plankton and macrophytes, is related to both light cli-
mate, nutrient availability and food web interactions.
Changes in trophic state may cause changes in food
web structure, while the latter may influence the sys-
temn’s (resistance to) response to nutrient loading. Cas-
cading effects in the food web may be analyzed also
in terms of changes in nutrient cycles (cf. Carpenter
et al., 1992), while the overall trophic state of the sys-
tem sets a constraint to its total productivity and may
be regarded as a general boundary condition. It may be
concluded that it is a useful approach to integrate these
aspects in one mathematical model in order to study
the combined effects of bottom-up and top-down con-
trol. It also allows evaluation of different ecological
hypotheses and mechanisms. This approach may be
complementary to the existing modelling tools for the
analysis of subsystems (e.g. Scheffer, 1990) and to the
more detailed eutrophication models.

The results of the long-term simulations for total
phosphorus and chlorophyll @ are, in general, within
realistic ranges, if compared with empirically derived
relations. Also the general shape of the response is in
agreement with observations from various shallow lake
studies (op. cit.). The calculation of the ‘critical load-
ing value’, the switch point between the turbid and
the clear state, might be useful for the derivation of
ecological standards for water quality. The calculated
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values should, however, only be regarded as indica-
tive values at this stage, because they are dependent on
model parameters which have only partly been calibrat-
ed. This is duc to the rather limited range in the present
water quality data in Dutch lakes, where, more specif-
ically, clear lakes are lacking. More extensive cali-
bration on a wider data set is needed. Secondly, many
model parameters are morc or less uncertain due to nat-
ural variability or other reasons. As (part of) this uncer-
tainty is inavoidable, the results should be interpreted
in a probabilistic rather than a deterministic way. The
uncertainty in the results as a function of the combined
uncertainty in the parameters should be established by
means of appropriate statistical tools, such as Bayesian
uncertainty analysis. The model outcome may then be
expressed as, for instance, the chance for recovery of
a lake or lake type under different circumstances or
with different management options, or in terms of the
minimum load reduction to be achieved. This approach
resembles the ecological risk assessment adopted for
toxic substances and other environmental issues.

Conclusions

The model results are in agreement with the concept of
two possible stable states, dominated by macrophytes
and phytoplankton, respectively. The simulated long-
term response of a hypothetical ‘average shallow lake
system’ as a function of the nutrient input was high-
ly non-linear and showed hysteresis. The modelling
approach presented here, taking into account both the
biological structure and the nutrient cycle, may be a
promising tool for the derivation of nutricnt regulation
and lake management strategies.
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6. Critical nutrient loading of shallow lakes

In this chapter, the long-term behaviour of the PCLake model is analysed in a systematic way.
After illustrating the long-term dynamics, the focus will be on the (quasi) steady state
behaviour of the various model components at different nutrient loadings, including the
hysteresis effect. The topic of the critical loading levels will be further explored, and we will
explain why these levels differ among lakes or lake types. These findings are discussed in view
of empirical information, and management implications are discussed.

6.1. Long-term dynamics

It is generally known that aquatic ecosystems often adapt slowly to changing nutrient
conditions. One of the causes of this is the slow reaction of the sediments and a high nutrient
release from the sediment for many years after a load reduction.

To explore this topic with the PCLake model, long-term simulations have been carried out for
a hypothetical lake which may be considered as representative for many Dutch shallow lakes.
Its main characteristics are: mean depth = 2 m, fetch = 1000 m, areal hydraulic loading = 20
mm d! (= 7.2 m y), no infiltration or seepage, no surrounding wetland zone, and a lightly
clayish sediment (30% dry matter, of which 10% organic matter, and 10% lutum of inorganic
matter).

This ‘average lake’ was first subjected to a high nutrient loading (20 mg P m?2 d! and 200 mg
N m? d') during 100 years so as to create a sediment rich in phosphorus and nitrogen: ca 13 g
m available P and 43 ¢ m? available N in the 10 cm top layer. Available nutrient is defined as
total nutrient except the refractory organic matter (‘humus’) fraction. The loading was then
reduced to 10% of the original value (so, 2 mg P m?d"' and 20 mg N m? d!) and the simulation
was continued for another 100 years. As a result, available P in the sediment gradually
decreased to its new equilibrium value of about 3.5 g m™? and available N to about 9 g m? (Fig.
6.1). Also the concentration in the water column followed this pattern. Most of the reduction
took place during the first 10-15 years. The loadings and concentrations are in the actual range
that is, or was, applicable in many Dutch lakes (Lijklema et al., 1989; Portielje & Van der
Molen, 1997).

An even stronger load reduction, to 0.5 mg P m? d! and 5 mg N m? d’!, starting from the same
eutrophic conditions, resulted in a shift from algae to submerged macrophytes as the main
primary producers (Fig. 6.2). Also in this case, it took about 15 years for sediment P to
approach the new, lower, value. Refractory P did not even reach an equilibrium in this
simulation, due to continued loss by the ‘burial’ process from the top layer (which had been
defined by a fixed thickness and porosity). The algae gradually declined until very low levels
in about 8 years, after which a shift to macrophytes occurred. Because it took the macrophyes
a few years to attain a high biomass, the TP concentration in the water temporarily increased in
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Fig. 6.1. Long-term simulations with a low nutrient loading, starting from eutrophic
conditions.

a, Available P (= without humus) in sediment top layer [gP m?]; b, Total P in sediment top
layer [gP m?]; ¢, Available N (= without humus) in sediment top layer [gN m**]; d, Total P in
water [gP m7].

the switch period before further decreasing to the new, low equilibrium. The equilibrium value
of available N in the sediment again increased a little after the macrophytes had settled,
possibly due to a higher retention compared to the unvegetated situation.

As explained in chapter 5, reduction of the nutrient loading of a eutrophicated lake, to a value
that previously supported the ‘clear’, macrophyte-dominated state, not always results in
restoration of this clear state, even after many years. A shallow lake often shows hysteresis in
its response to changes in nutrient loading. An example is shown in Fig. 6.3. The same ‘average
Dutch lake’ is simulated starting from the ‘clear state’ (mesotrophic conditions) and a loading
of 1.5 mg P m d”!, after 20 years followed by a five-fold increase (to 7.5 mg P m? d!), and
after another 20 years a reduction back to the original value. The sediment P again follows,
with some years of delay, the changes in loading, although it reacts more slowly after the load
reduction and the equilibrium is not quite reached after 20 years. The macrophytes that
disappear after the loading rise do not return after its decrease. The chlorophyll-a concentration
decreases after the final load reduction, but does not return to its original low values. Hence,
eutrophication made the system change from a clear, macrophyte-dominated state to a turbid
state, dominated by cyanobacteria. This process could not be reverted by nutrient load
reduction alone, in agreement with field observations in a number of lakes (see e.g. the review
by Gulati & Van Donk, 2002).
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Fig. 6.2. Long-term simulations with a very low nutrient loading, starting from eutrophic
conditions. a, Available P (= without humus) in sediment top layer [gP m?]; b, Total P in
sediment top layer [gP m?]; ¢, Available N (= without humus) in sediment top layer [gN m?];
d, Total P in water [gP m?]; e, Chlorophyll-a [mg m?]; f, Submerged macrophytes [% cover].

Without causing a complete shift, a moderate decrease in nutrient loading may lead to more
modest changes in a lake ecosystem, for instance a decrease of the chlorophyll/P ratio of the
phytoplankton, changes in the relative abundance of phytoplankton groups, in zooplankton or
fish densities, or in a small time shift of the biomass maxima. Examples, with time graphs of
these variables and comparisons with measured data, can be found in the case studies described
in Janse & Aldenberg (1990, 1991; chapters 8-9), Janse et al. (1992; chapter 10), Janse et al.
(1993), Janse (1995), Zamurovic-Nenad (1993), Aysever (1994) and also in Dekker et al.
(1996). A case study simulating a shift to macrophytes is described in Janse et al. (1995, 1998;
chapters 11-12).

Concluding, the hysteresis in the reaction time of the system is caused by the delayed response
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Fig. 6.3. Simulation for an ‘average Dutch lake’, starting from a clear state; years 1-20 low

loading, years 20-40 high loading, years 40-60 low loading, see text.

of the sediment, but the hysteresis in the long-term reaction is caused by other factors as well.
Several positive feedback mechanisms in the system are candidate for explaining (part of) this
phenomenon, which are further discussed in the next paragraphs.

6.2. Effects of nutrient loading and initial conditions in an ‘average
lake’

The long-term impact of different nutrient loadings on the above-mentioned ‘average shallow
lake’ was simulated. Simulations have been performed for 50 years, with the nutrient loading
set to a fixed value, ranging from O to 10 mg P m d!. The nitrogen loading has been set to
10 times the phosphorus loading. For every loading value, the simulation has been done
twice, starting either from a macrophyte-dominated state or from a phytoplankton-dominated
state.

The simulated long-term summer-averaged concentrations and biomasses, as a function of the
phosphorus loading, are shown in Fig. 6.4, a-k. The relations between nutrient input and
chlorophyll, and between nutrient input and macrophytes biomass were highly non-linear, with
a rather sudden switch between a macrophyte-dominated state with low chlorophyll-a values
and a phytoplankton-dominated state with high ones. Moreover, the response showed
hysteresis, so that the ‘critical’ nutrient loading was different whether one started from the
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‘clear’ or from the ‘turbid’ side. The critical loading for the switch from ‘turbid’ to ‘clear’ was
much lower than the one for the opposite switch, viz. ca 0.9 and 3 mgP m? d’!, respectively, for
this ‘default lake’. The multiple states only occurred in an intermediate range of nutrient
loadings. At a low loading, the system was always macrophyte-dominated, whereas at high
loading, it was always dominated by algae.

In accordance with this, also the Secchi depth (Fig. c¢) shows a rather sudden switch between
high values in case of macrophytes dominance and low ones if phytoplankton is high. The in-
lake total P and total N concentrations were proportional to the loading in the turbid situation,
but were much lower than that when the lake was in the clear state. These switches and
hysteresis were also found in the biomass of the different animal groups. When the lake was in
the ‘turbid state’, zooplankton showed a more or less asymptotic relation with the loading. In
the ‘clear state’ its biomass was lower, probably because of a lesser food availability, but the
ratio of zooplankton to phytoplankton was much higher (higher relative grazing pressure).
Zoobenthos was higher in the ‘clear state’, because of a higher food availability (organic matter
in the sediment). Juvenile (planktivorous) whitefish had a higher biomass when the lake was in
the ‘turbid state’ than in the ‘clear state’. The opposite was true for the adult (benthivorous)
fish. Predatory fish biomass is high in the ‘clear state’ only (with a limit being set by the
carrying capacity), reflected in a higher predatory fish / whitefish ratio.

From the relation between the simulated chlorophyll-a and in-lake total P concentrations (Fig.
6.4, 1), a critical P concentration of about 0.05 mgP 1! can be derived. The left part of the line
starting from the turbid state (‘2’) is in the range of empirical relations between maximum
summer-averaged chlorophyll-a and total P concentration, derived from data sets of
phytoplankton-dominated lakes in The Netherlands (CUWVO, 1980, 1987; Lijklema et al.,
1989; Hosper, 1997; Portielje & Van der Molen, 1997).

Fig. 6.5 gives a summarizing pictural view of the hysteresis phenomenon.
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Fig. 6.4. Simulations for an average shallow lake for a range of P loadings. All simulations
have been done for two initial states, a clear-water state dominated by macrophytes (‘I’,
circles) and a turbid state with a phytoplankton dominance (‘2°, triangles). Results are
summer-averages after 50 years with the same loading conditions. a-k: output values as a
function of the P loading: a, chlorophyll-a; b, submerged vegetation; c, Secchi depth; d, total
P; e, total N; f, zooplankton; g, zoobenthos, h, juvenile whitefish; i, adult whitefish; j, total
whitefish; k, predatory fish. I, chlorophyll-a vs. in-lake total P concentration.

104



Critical nutrient loading of shallow lakes

7
9 Zoobenthos 2 Juvenile whitefish
o
3
o
€
3
© 21
o
1
o
2 4 0 2 4 6 8
P loading [mg m-2 d-1] P loading [mg m-2 d-1]
i Adult whitefish Total whitefish
5
24
DN
€ 3
=
o
o
2
1
07 T T
2 ) [ 2 4 5
P loading [mg m-2 d-1] P loading [mg m-2 d-1}
—— 1
k Predatory fish Chlorophyll-a vs.total P o 2
0.20
0.15 1
o
£
3
0.10 7
j=2)
0.05 1
0.00
2 4 6 0.0 0.1 0.2 03 0.4
P loading [mg m-2 d-1] in-lake total P concentration [mgP/1]

105



Chapter 6

PCLake: model simulation of a shallow lake PCLake: model simulation of a shallow lake
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Fig, 6.5. Pictural view of the hysteresis phenomenon as simulated by PCLake. Left:
‘turbidification; right: ‘clarification’ (restoration). Adapted from Van Liere & Jonkers (2002).

6.3. Critical loading for different lake types

The same kind of simulations were carried out for different combinations of other lake features.

The following factors were varied, both one-at-a-time and combined:

(Note: an asterisk (*) denotes the value for the ‘default lake’.)

hydraulic loading rate: 10, 20", 40 or 80 [mm d'']

water depth: 1, 1.5, 2%, 3 or 4 [m]

fetch: 100, 300, 1000" or 3000 [m]

N/P ratio in loading: 10" or 3 [gN/gP]

marsh area: 0.001%, 0.15, 0.3 or 1.0 [m? marsh . m? lake]

sediment type: 1=clay”, 5=peat, 6=sand (see table 4.5 in chapter 4)

fishery rate: 0, 0.00137" or 0.01 [d]

and of course

® the initial state (1=clear, 2=turbid) and

® the P loading rate in terms of input concentration, ranging from 0.005 to 1.0 mgP 1! in 35
steps: [0.005 0.01 0.015 0.02:0.01:0.18 0.20:0.02:0.30 0.35 0.40 0.45 0.5:0.1:1.0].

The simulated summer-averaged results after 20 years were used for the analyses. The dynamic
results presented above and previous experience showed that in most instances, a period of
20 years is, for practical purposes, in general sufficient for the model to come quite close to
the (new) equilibrium situation, although a complete equilibration of the phosphorus levels
may take a longer period. The critical loading values were calculated by linear interpolation.
A summer-averaged vegetation coverage of 20% has been chosen as a criterion for
critical loading; as the relations are mostly quite steep, the exact value does not matter very
much.

The long-term chlorophyll-a concentrations as a function of the P loading are plotted in Fig.
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6.6, a-h. The impact of the different input factors is shown when they are varied one by one,
keeping all others at their default value. Fig. 6.9 shows the critical loading values for the most
important combinations of input factors.

In general, the results show the same qualitative pattern as shown in paragraph 6.2, but the
values reached, as well as the two critical loading values, the switch points or trajectories
between the two states, differ among lake types. For the most common lake types in The
Netherlands, the critical loading for ‘turbidification’ is calculated as about 2-5 mgP m? d"!, and
the value for ‘clarification’ (or ‘restoration’) as 0.6 — 1.0 mgP m?2 d-'.

The effect of increasing fetch (Fig. 6.6, a and 6.9) is a decrease of both critical loading values.
Increase of the water depth (Fig. 6.6, b and 6.9) gives rise to lower chlorophyll-a concentrations
and to a marked decrease of both critical loading values. The effect is most striking in the range
between 1 and 2 m depth. The critical load increases with (but less than proportional to) the
hydraulic loading rate (Fig. 6.6, ¢ and 6.9). The critical loading is the lowest for peat lakes and
the highest for sand lakes, with clay lakes in-between (Fig. 6.6, d and 6.9). Please note that, in
this context, the impact of the factors is shown as independent of each other; in practice,
nutrient loading and hydraulic loading rate are often positively correlated. A higher fishing rate
tends to increases the critical loading, but the effect is modest (within the investigated range)
a