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e-mail: orejas(at)lsi.upc.edu
4 Generative Software Development Lab, University of Waterloo, Canada

e-mail: {kczarnec, zdiskin}@gsd.uwaterloo.ca
5 Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, China

e-mail: xiongyf@pku.edu.cn
6 Institute of Software, School of Electronics Engineering and Computer Science, Peking University, China

Received: 19-APRIL-2012 / Revised version: 31-OCTOBER-2012

Abstract Triple graph grammars (TGGs) have been used

successfully to analyze correctness and completeness of bidi-

rectional model transformations, but a corresponding formal

approach to model synchronization has been missing. This

paper closes this gap by providing a formal synchronization

framework with bidirectional update propagation operations.

They are generated from a given TGG, which specifies the

language of all consistently integrated source and target mod-

els.

As our main result, we show that the generated synchro-

nization framework is correct and complete, provided that

forward and backward propagation operations are determin-

istic. Correctness essentially means that the propagation op-

erations preserve and establish consistency while complete-

ness ensures that the operations are defined for all possible

inputs. Moreover, we analyze the conditions under which

the operations are inverse to each other. All constructions and

results are motivated and explained by a running example,

which leads to a case study, using concrete visual syntax and

abstract syntax notation based on typed attributed graphs.

Keywords: model synchronization, correctness, bidirec-

tional model transformation, triple graph grammars

1 Introduction

Bidirectional model transformations are a key concept for

model generation and synchronization within model driven

Correspondence to: frank.hermann(at)uni.lu, xiongyf@pku.edu.cn

engineering (MDE, see [36,31,5]). Triple graph grammars

(TGGs) have been successfully applied in several case stud-

ies for bidirectional model transformation, model integration

and synchronization [29,35,15,14], and in the implementa-

tion of QVT [19]. Inspired by Schürr et al. [33,35], we started

to develop a formal theory of TGGs [12,22], which allows us

to handle correctness, completeness, termination, and func-

tional behavior of model transformations.

The main goal of this article is to provide a TGG frame-

work for model synchronization with correctness guarantees,

which is based on the theory of TGGs, work on incremental

synchronization by Giese et al. [15,14], and the model syn-

chronization framework [8]. The main ideas and results are

the following:

1. Models are synchronized by propagating changes from a

source model to a corresponding target model using for-

ward and backward propagation operations. The opera-

tions are specified by a TGG model framework, inspired

by symmetric replica synchronizers [8] and realized by

model transformations based on TGGs [12]. The speci-

fied TGG also defines consistency of source and target

models.

2. Since TGGs define, in general, non-deterministic model

transformations, the derived synchronization operations

are, in general, non-deterministic. But we are able to pro-

vide sufficient static conditions based on TGGs to ensure

that the operations are deterministic.

3. The main result shows that a TGG synchronization frame-

work with deterministic synchronization operations is

correct, i.e., consistency preserving, and complete. We

also give sufficient static conditions for invertibility and
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2 Frank Hermann et al.

weak invertibility of the framework, where “weak” re-

stricts invertibility to a subclass of inputs.

Deriving a synchronization framework from a TGG has

the following practical benefits. Consistency of the related

domains is defined declaratively and in a pattern-based style,

using the rules of a TGG. After executing a synchronization

operation, consistency of source and target models is always

ensured (correctness) and the propagation operations can be

performed for all valid inputs (completeness). The required

static conditions of a TGG and the additional conditions for

invertibility can be checked automatically using the existing

tool support of AGG [37].

This article is based on previous work in [23] and pro-

vides extended explanations and results. In particular, we

present the technical details concerning determinism of TGG

operations in Sec. 6 including the corresponding formal re-

sult in Thm. 8.1. Concerning correctness, completeness and

invertibility of the synchronization framework, we provide

extensive technical details leading to the two main theo-

rems Thm. 8.2 and Thm. 8.6. Moreover, we present the com-

plete TGG of our case study throughout the paper including

the derived operational rules and the detailed analysis results

using the tool AGG, while only a small subset of the rules is

presented in [23].

The next section presents our running example and a gen-

eral motivation. Sec. 3 introduces the TGG model synchro-

nization framework and Sec. 4 reviews model transforma-

tions based on TGGs. Thereafter, Sec. 5 provides extended

concepts concerning efficient executions based on marking

rules. We present the automated analysis techniques for en-

suring deterministic behavior in Sec. 6. On this basis, we de-

scribe and illustrate the general synchronization process in

Sec. 7. Thereafter, Sec. 8 presents the main results on correct-

ness, completeness and invertibility of the model synchro-

nization framework. Finally, Sec. 9 and 10 discuss related

work, conclusions, and future work. The proofs of technical

results are provided in a technical report [24].

2 Example and Motivation

Throughout the paper, we use a simple running example,

which is based on previous work [6]. The example considers

the synchronization of two organizational diagrams as shown

in Fig. 2.1. Diagrams in the first domain — depicted left —

provide a view on employees of the marketing department of

a company, while diagrams in the second domain — depicted

right — show all employees. Furthermore, both domains dif-

fer on the type of information they specify for a person. Di-

agrams on the left show the base and bonus salary values of

each person, while diagrams in the second domain show only

the total salary for each person, but additionally, they pro-

vide the birth dates (marked by “*”) for each person. There-

fore, both domains contain exclusive information and none of

them can be interpreted as a view—defined by a query—of

the other. Both diagrams together with some correspondence

structure build up an integrated model, where we refer to the

first diagram as the source model and to the second diagram

as the target model. Such an integrated model is called con-

sistent, if the diagrams coincide on names of corresponding

persons, the salary values are equal to the sums of the cor-

responding base and bonus values, and persons in the source

domain are exactly those who are marked with “M” in the

target domain.

Fig. 2.1 Forward propagation

Example 2.1 (Update Propagation) The first row of Fig. 2.1

shows a consistent integrated model M in a visual notation.

The source model of M consists of two persons belonging

to the marketing department (depicted as persons with label

“M” and without pencils) and the target model additionally

contains the person “Bill Gates” belonging to the technical

department (depicted as a person with label “T” and with pen-

cil). The first column shows an update of the source model,

where person “Bill Clinton” is removed and some attribute

values of person “Melinda French” are modified. This change

is propagated to the target domain leading to a target update

(right column) and a new integrated model (bottom row).

The synchronization problem is to propagate a model up-

date in a way, such that the resulting integrated model is

consistent. Looking at Fig. 2.1, this requires that the source

model update of removing person “Bill Clinton” and chang-

ing the attributes LastName and Bonus of person “Melinda

French” is propagated in an appropriate way to the target do-

main. In this example, this means that the executed forward

propagation (fPpg) shall remove person “Bill Clinton” and

update the attribute values of “Melinda French” in the target

model, such that the unchanged birth date value and consis-

tency is preserved.

Synchronization scenarios like the one in our example,

are present in many domains. Consider for example synchro-

nizations between different kinds of visual models for soft-

ware development, models for software analysis and even

source code. Synchronizations between these domains of-

ten need to provide mechanisms that do not require that one

model can be completely obtained from the other. In other

words, none of the models is just a view of the other. In this

article, we will show how this flexibility in the synchroniza-

tion process is possible based on the formal notion of triple

graph grammars. We stepwise develop the required formal

techniques and illustrate them on the running example in
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Model Synchronization Based on Triple Graph Grammars 3

Fig. 2.1, whose intermediate steps are presented in Fig. 7.2

of Sec. 7.

3 Model Synchronization Framework

In this section, we describe the basic framework that we con-

sider in the paper. First, we introduce the notion of triple

graphs to describe pairs of interrelated models and triple

graph grammars (TGGs) as a tool to specify classes of what

we consider consistent interrelated models [33]. Then we de-

fine the notion of a TGG model framework to describe the

basic TGG setting that we must consider to define and solve

synchronization problems. The framework is a simplified ver-

sion of the symmetric delta lens proposed by Diskin et al. [8].

Finally, we define formally synchronization problems, and the

propagation operations that are needed to solve them. In par-

ticular, a model framework becomes a synchronization frame-

work when these operations are considered. Moreover, we

state some properties that in our view propagation operations

must satisfy.

Model synchronization aims to achieve consistency

among interrelated models. In particular, we consider that

a model is some kind of graph and that graphs are related

by means of graph morphisms consisting of two functions

that map nodes to nodes and edges to edges, respectively, in

a consistent way. Moreover, we consider that a pair of in-

terrelated models (MS ,MT ), called source and target mod-

els, are represented by a triple graph, which we also call an

integrated model. This triple graph consists of three graphs

GS (representing MS ), GC , and GT (representing MT ), called

source, correspondence, and target graphs, respectively, to-

gether with two mappings (graph morphisms) sG : GC → GS

and tG : GC → GT . These two mappings specify a correspon-

dence r : GS ↔ GT , which relates the elements of GS with

their corresponding elements of GT and vice versa. In addi-

tion, our triple graphs may also contain attributed nodes and

edges [12,11].

For simplicity, we use double arrows (↔) as an equiva-

lent shorter notation for triple graphs, whenever the explicit

correspondence graph can be omitted.

(GS

mS ��

G GCsG
oo

mC ��

tG
// GT )
mT ��

(HSH

m
��

HC
sH

oo

tH

// HT )

Fig. 3.1 Triple graph morphism

A triple graph mor-

phisms m : G → H

relates two triple graphs

G and H. It consists of

three graph morphisms

that preserve the associ-

ated correspondences (i.e., the diagrams in Fig. 3.1 com-

mute).

Our graphs and triple graphs are typed. This means that

a type triple graph TG is given (playing the role of a meta-

model) and, moreover, every triple graph G is typed by a

triple graph morphism typeG : G → TG. It is required that

morphisms between typed triple graphs preserve the typing.

Triple graphs specify the abstract syntax of visual languages

in an integrated way. For TG = (TGS ← TGC → TGT ),

we use VL(TG) (integrated models), VL(TGS ) (source do-

main), and VL(TGT ) (target domain) to denote the classes of

all graphs typed over TG, TGS , and TGT , respectively.

A TGG specifies a language of triple graphs, which are

considered as consistent integrated models. The triple rules of

a TGG are used to synchronously build up source and target

models, together with the correspondence structures.

(LS

� _
trS

��

L LC
sL

oo
� _

trC
��

tL
// LT )

� _
trT

��

(RSR

� _
tr
��

RC
sR

oo
tR

// RT )

L

m
��

� � tr
// R

n
��

(PO)

G
� �

t
// H

Fig. 3.2 Triple rule and triple graph transformation step

A triple rule tr, as depicted in Fig. 3.2, is an inclusion

of triple graphs, represented L ֒→ R. It specifies how a given

consistent integrated model can be extended simultaneously

on all three components yielding again a consistent integrated

model. In particular, this means that triple rules are non-

deleting. This is sufficient, because triple rules are not used

for editing in the source and target domains. Moreover, as

shown in [22], triple rules can be extended by negative ap-

plication conditions (NACs) for restricting their application

to specific matches. Notice that one or more of the rule com-

ponents trS , trC , and trT may be empty. In the example, this

is the case for a rule concerning employees of the technical

department within the target model. A triple rule is applied to

a triple graph G by matching L to some part of triple graph G.

Technically, a match is a morphism m : L→ G. The result of

this application is the triple graph H, where L is replaced by

R in G. Technically, the result of the transformation is defined

by a pushout diagram [11] (PO), as depicted in Fig. 3.2 on the

right. This triple graph transformation (TGT) step is denoted

by G =
tr,m
==⇒ H. From the application point of view, we con-

sider that matches should be injective on the structural part.

This means that two distinct nodes (edges) in the left hand

side of a rule are never mapped to the same node (edge) in the

current triple graph G, i.e., identification of elements in L via

a match to G is not possible. But it would be too restrictive to

require injectivity of the matches also on the data and variable

nodes, because we must allow that two different variables are

mapped to the same data value. For this reason we use the no-

tion of almost injective matches, which requires that matches

are injective except for the data value nodes. This way, at-

tribute values can still be specified as terms within a rule and

matched non-injectively to the same value. For the rest of this

paper we generally require almost injective matching for the

transformation sequences.

A triple graph grammar TGG = (TG, S ,TR) consists of

a triple type graph TG, a triple start graph S (typically, the

empty triple graph) and a set TR of triple rules. The lan-

guage generated by TGG, denoted VL(TGG), is the set of all

(well-typed) triple graphs that can be generated from the start

graph S using the rules in TR. Notice that, as a consequence,

VL(TGG) ⊆ VL(TG).
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4 Frank Hermann et al.

The triple graph grammar TGG = (TG,∅,TR) of our case

study is given by the triple type graph TG in Fig. 3.3, the

empty start graph and the triple rules in Fig. 3.4.

Fig. 3.3 Triple type graph TG

Example 3.1 (Type Graph) The triple type graph TG of our

example is shown in Fig. 3.3. It specifies that models of the

source domain contain persons including their detailed salary

information (bonus and base salary) and their names. Models

of the target domain additionally contain the departments to

which a person is assigned to, the birth date of a person, and

a single value for the complete salary of a person, while the

details about bonus and base salary are not provided.

Example 3.2 (Triple Rules) The triple rules of the TGG

are depicted in a compact notation in Fig. 3.4. Left- and

right-hand side of a rule are depicted in one triple graph

and the elements to be created—and, thus, exist in the

right-hand side only—have the label “++”. The first rule

(Person2FirstMarketingP) inserts a new department with

name “Marketing” and the NAC ensures that none of the ex-

isting departments is named equally. The rule creates a per-

son of the new department in the target model as well as a

corresponding person in the source model. Note that the left

hand side of this rule is empty, i.e., it does not require existing

structures. Rule Person2NextMarketingP is used to extend

both models with further persons in the marketing depart-

ment. The left hand side of this rule contains the department

node with name “Marketing”. Note that the attributes of the

created persons are not set with these rules. This is possible

in our formal framework of attributed graph transformation

based on the notion of E-graphs [11]. The main advantage is

Fig. 3.4 Triple rules

that we can propagate changes of attribute values without the

need for deleting and recreating the owning structural nodes.

This is important from the efficiency and application point

of view. Thus, rules 3-6 concern the creation of attribute val-

ues only. Rules 3 (FName2FName) and 4 (LName2LName)

create new corresponding values for first and last names, re-

spectively. The next rule (Empty2Birth) assigns the birth date

of a person in the target component and does not change the

source component. Finally, rule 6 (DetailedSalary2Salary)

assigns the detailed salary values (bonus and base) in the

source component and the sum of them in the target com-

ponent. Rule 7 (Empty2OtherDepartment) creates a new de-
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Model Synchronization Based on Triple Graph Grammars 5

(a1) :

∀ c ∈ C :

GS oo
c

//

1
�� u:fPpg

GT

1
��

GS oo
c

// GT

(a2) :

∀ G′S ∈ VLS :

GS oo
r

//

a
�� u:fPpg

GT

b��

G′S oo

r′:C

// G′T

(b1) :

∀ c ∈ C :

GS oo
c

//

1
�� w:bPpg

GT

1
��

GS oo
c

// GT

(b2) :

∀ G′T ∈ VLT :

GS oo
r

//

a
�� w:bPpg

GT

b��

G′S oo

r′ :C

// G′T

(c1) :

GS oo
r

//

a1
��
u:fPpg

GT

b
�� u:bPpg

GS//
r

oo oo
r

//

a2
��
u:fPpg

GT

b
��

GS
1
oo

r1

// G′T GS
2

//
r2

oo oo
r2

// G′T
(d1) :

GS oo
r

//

a1 �� u:fPpg

GT

b�� u:bPpg

GS//
r

oo

a2��

G′S oo

r′
// G′T G′S//

r′
oo

(c2) :

GT oo
r

//

b1
��
u:bPpg

GS

a
�� u:fPpg

GT//
r

oo oo
r

//

b2
��
u:bPpg

GS

a
��

GT
1
oo

r1

// G′S GT
2

//
r2

oo oo
r2

// G′S
(d2) :

GT oo
r

//

b1 �� u:bPpg

GS

a
�� u:fPpg

GT//
r

oo

b2��

G′T oo

r′
// G′S G′T//

r′
oo

Fig. 3.5 Laws for correct and (weak) invertible synchronization frameworks

partment that is not named “Marketing”, but does not change

the source model. The negative application condition (NAC)

ensures that the used attribute value is different from “Mar-

keting”. The last rule Empty2OtherP of the TGG creates

a new person of a department that is not in the marketing

department. Therefore, there are no correspondences to the

source model and the rule directly creates the person includ-

ing all attribute values.

A TGG model framework specifies the possible corre-

spondences between models and updates of models for a

given TGG, according to Def. 3.3 below. More precisely, a

model framework is defined as consisting of the classes of

well-typed source and target models, the class of correspon-

dences between source and target models (i.e., the class of

well-typed triple graphs), the subset of consistent correspon-

dences (i.e., the class of triple graphs defined by the given

TGG) and the classes of source and target updates. In partic-

ular, a model update δ : G → G′ is specified as a graph mod-

ification consisting of two inclusions, δ : G ←֓ I ֒→ G′. The

intuition of a graph modification is that the inclusion I ֒→ G

specifies the elements that are deleted from G (all the ele-

ments that are not in I) and I ֒→ G′ specifies all the elements

that are added by δ (all the elements in G′ that are not in

I). Therefore, the elements in I are the elements that remain

invariant after the modification. It may be noted that graph

modifications look like triple graphs, however their role is

different: triple graphs are used to make explicit the interrela-

tions between two integrated models, while graph modifica-

tions are used to describe updates on a given model.

Definition 3.3 (TGG Model Framework) Let TGG =

(TG,∅,TR) be a triple graph grammar with empty start

graph ∅ and triple type graph TG containing source and

target components TGS and TGT , and a set TR of triple

rules. The derived TGG model framework MF(TGG) =

(VL(TGS ),VL(TGT ),R,C, ∆S , ∆T ) consists of source domain

VL(TGS ), target domain VL(TGT ), the set R of correspon-

dence relations given by R = VL(TG), the set C of consistent

correspondence relations C ⊆ R given by C = VL(TGG),

(i.e., R contains all integrated models and C all consistent in-

tegrated ones), and sets ∆S , ∆T of graph modifications for the

source and target domains, given by ∆S = {a : GS → G′S |

GS ,G′S ∈ VL(TGS ), and a is a graph modification} and

∆T = {b : GT → G′T | GT ,G′T ∈ VL(TGT ), and b is a graph

modification}, respectively.

GS oo
r

//

a
�� u:fPpg

GT

b��

G′S oo

r′
// G′T

GS oo
r

//

a
�� w:bPpg

GT

b��

G′S oo

r′
// G′T

Fig. 3.6 Synchronization operations

Given a TGG model framework, the synchronization

problem is to provide suitable total and deterministic forward

and backward operations fPpg and bPpg that propagate up-

dates on one model (GS or GT ) to the other model. More

precisely, given an integrated model (a correspondence rela-

tion) GS ↔ GT and an update a : GS → G′S , the opera-

tion fPpg must propagate the update a to GT returning as re-

sults an update b : GT → G′T and a correspondence relation

G′S ↔ G′T . Similarly, bPpg is the dual operation that prop-

agates updates on target models to updates on source mod-

els. The effect of these operations is depicted schematically

in the diagrams on Fig. 3.6, which we call synchronization

tiles, where we use solid lines for the inputs and dashed lines

for the outputs [8]. Note that, in a common tool environment,

the required input for these operations is either available di-

rectly or can be obtained. For example, the graph modifica-

tion of a model update can be derived via standard difference

computation and the initial correspondence can be computed

based on TGG integration concepts [10,29]. Note also that

determinism of fPpg means that the resulting correspondence

G′S ↔ G′T and update b : GT → G′T are uniquely deter-

mined. The propagation operations are correct, if they addi-

tionally preserve consistency as specified by laws (a1) − (b2)

in Fig. 3.5. Law (a2) means that fPpg always produces con-

sistent correspondences from consistent updated source mod-

els G′S . Law (a1) means that if the given update is the iden-

tity and the given correspondence is consistent, then fPpg

changes nothing. Laws (b1) and (b2) are the dual versions
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6 Frank Hermann et al.

concerning bPpg. Moreover, the sets VLS and VLT specify

the consistent source and target models, which are given by

the source and target components of the integrated models in

C = VL(TGG).

Definition 3.4 (Synchronization Problem and Framework)

Let MF = (VL(TGS ), VL(TGT ),R,C, ∆S , ∆T ) be a TGG

model framework. The forward synchronization problem is

to construct an operation fPpg : R ⊗ ∆S → R × ∆T

leading to the left diagram in Fig. 3.6, where R ⊗ ∆S =

{(r, a) ∈ R × ∆S |r: GS ↔ GT , a: GS → G′S }, i.e., a and r co-

incide on GS . The pair (r, a) ∈ R ⊗ ∆S is called premise and

(r′, b) ∈ R × ∆T is called solution of the forward synchroniza-

tion problem, written fPpg(r, a) = (r′, b). The backward syn-

chronization problem is to construct an operation bPpg lead-

ing to the right diagram in Fig. 3.6. Operation fPpg is called

correct with respect to C, if axioms (a1) and (a2) in Fig. 3.5

are satisfied and, symmetrically, bPpg is called correct with

respect to C, if axioms (b1) and (b2) are satisfied.

Given total and deterministic propagation operations

fPpg and bPpg, the derived synchronization framework

Synch(TGG) is given by Synch(TGG) = (MF, fPpg, bPpg).

It is called correct, if fPpg and bPpg are correct; it is weakly

invertible if axioms (c1) and (c2) in Fig. 3.5 are satisfied; and

it is invertible if additionally axioms (d1) and (d2) in Fig. 3.5

are satisfied.

Invertibility (laws (d1) and (d2)) means that the propaga-

tion operations are essentially inverse of each other. For in-

stance, axiom (d1) states that if we propagate update a1 :

GS → GS
1

to GT obtaining as result update b, and now we

propagate update b to GS , we obtain the same result GS
1

.

However, notice that we do not require that the resulting up-

date a2 must coincide with a1. In particular, it may be possible

that the set of elements of GS that are not modified by a1 may

not coincide with the set of elements that are not modified

by a2, even if they produce the same result GS
1

(see Ex. 3.5

below). However, as we show in Sec. 8, we are able to en-

sure the more flexible notion of weak invertibility (laws (c1)

and (c2)) for our example. More precisely, weak invertibil-

ity expresses that the two operations are the inverse of each

other, up to certain information that may be lost when ap-

plying the operations. For instance, in axiom (c1) the intu-

ition is that update b, the result of propagation of update a1,

may ignore part of the information added by a1, because this

kind of information may not be relevant for target models. As

a consequence, when propagating b to GS this information

would be lost. However, this law also states that no informa-

tion added by update b would be ignored when propagating

it to GS . The reason is that all that information was, in some

sense, included in update a1, so it must be relevant for source

models.

Example 3.5 (Invertibility and Weak Invertibility) Consider

a model update b1 of a given target model, as depicted in

Fig. 3.7, where a new person is added together with his birth

date, leading to a target model G′T . The propagation via bPpg

Fig. 3.7 Counter example for invertibility

Fig. 3.8 Example for weak invertibility

yields an update a, whose resulting source model G′S in-

cludes that person without his birth date. Now, the propaga-

tion of a via fPpg yields an update b2 whose resulting target

model G′′T does not contain any information about the birth

date. Therefore, G′T , G′′T meaning that Synch(TGG) is not

invertible, since law (d2) does not hold. However, if we con-

tinue the diagram and perform an additional backward propa-

gation as in Fig. 3.8, we derive a source update that coincides

again with a, i.e., the diagrams satisfies law (c2) of weak in-

vertibility.

4 Model Transformation Based on TGGs

In the previous section, we have seen how we can use TGGs

to specify the set of consistent correspondences between two

classes of models. In this section, we show how we can use

TGGs to implement (bidirectional) model transformations

[33,12]. More precisely, given a source model GS (respec-

tively, a target model GT ), the model transformation prob-

lem is to find a target model GT (respectively, a source model

GS ) such that GS ↔ GT is a consistent correspondence (or,

equivalently, GS ↔ GT belongs to the language generated

by the TGG). In particular, we will see that this can be done

by means of the operational transformation rules that can be

generated automatically from a TGG.

There are four classes of operational transformation rules,

source rules allow us to parse source models, forward rules

build target models out of source models, target rules allow

us to parse target models, and finally backward rules build

source models out of target models. In particular, for a given

TGG, the sets TRS and TRF including all source and forward

rules, respectively, are derived from the triple rules TR in the

TGG as shown in Fig. 4.1. Their construction is shown by

Ex. 4.1. The sets of target rules TRT and backward rules TRB

are derived analogously. Moreover, in [12], the generation of

operational transformation rules has been extended to triple

rules with negative application conditions.
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triple rule tr

(LSLS

trS
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∅oo
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(RSRS

trS ��

∅oo // ∅)

source rule trS

(RS

id ��

LF LC
trS ◦sL
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trC
��

tL
// LT )

trT
��

(RSRF

trF ��

RC
sR

oo
tR

// RT )

forward rule trF

Fig. 4.1 Derived source and forward rules

Fig. 4.2 Derived source and forward rules for FName2FName

Example 4.1 (Operational Transformation Rules) The rules

in Fig. 4.2 are the derived source and forward rules of the

triple rule FName2FName in Fig. 3.4.

The basic idea of how we can build a target model out

of a source model using source and forward rules can be ex-

plained quite simply1. Let us suppose that we want to find

a model GT from a source model GS such that GS ↔ GT

is a consistent correspondence (assuming that this model

exists). If GS ↔ GT is consistent this means that, start-

ing from the empty triple graph, there must be a derivation

(∅ ↔ ∅) =
tr1

=⇒ (GS
1
↔ GT

1 ) =
tr2

=⇒ . . . =
trn

=⇒ (GS
n ↔ GT

n ), where

GS
n ↔ GT

n = GS ↔ GT ) and tr1, . . . , trn are triple rules in the

TGG. Now we may notice that each triple rule can be seen as

the composition of its associated source rule followed by its

associated forward rule. This means that the above derivation

is equivalent to the derivation (∅ ↔ ∅) =
trS ,1

==⇒ (GS
1
↔ ∅) =

trF,1

==⇒

(GS
1
↔ GT

1 ) . . . =
trS ,n

==⇒ (GS ↔ GT
n−1) =

trF,n

==⇒ (GS ↔ GT ),

where each source rule trS ,i and its associated forward rule

trF,i are applied with a compatible match. But, since the ap-

plication of a source rule trS ,i is independent of the applica-

tion of any forward rule trF, j, provided that i < j, we have

that the previous derivation is equivalent to the derivation

(∅ ↔ ∅) =
trS ,1

==⇒ (GS
1
↔ ∅) =

trS ,2

==⇒ . . . =
trS ,n

==⇒ (GS ↔ ∅) =
trF,1

==⇒

(GS ↔ GT
1 ) =

trF,2

==⇒ . . . =
trF,n

==⇒ (GS ↔ GT ), where each source

rule trS ,i and its associated forward rule trF,i are applied with

a compatible match.

In this sense, we say that a forward transformation se-

quence (G0 =
tr∗

F

==⇒ Gn) is source-consistent if there is a corre-

sponding source sequence (∅ =
tr∗

S

=⇒ G0) , such that the matches

of corresponding source and forward steps are compatible;

and, as a consequence, we know that a source model GS can

be transformed into a target model GT if there is a source-

1 The backward case is similar.

consistent forward transformation sequence (GS ↔ ∅) =
tr∗

F

==⇒

(GS ↔ GT ). The set of all source consistent forward se-

quences defines a model transformation based on forward

rules from the source domain VL(TGS ) to the target domain

VL(TGT ).

Definition 4.2 (Model Transformation based on Forward

Rules) A model transformation sequence (GS , G0 =
tr∗

F

=⇒ Gn,

GT ) consists of a source graph GS , a target graph GT , and

a source consistent forward TGT-sequence G0 =
tr∗

F

=⇒ Gn with

GS = GS
0

and GT = GT
n . A model transformation MT :

VL(TGS ) ⇛ VL(TGT ) is defined by all model transforma-

tion sequences (GS ,G0 =
tr∗

F

=⇒ Gn,G
T ) with GS ∈ VL(TGS ) and

GT ∈ VL(TGT ).

Hence, source consistency is a control condition that has

to be used in the construction of forward transformation se-

quences, in order to implement a model transformation based

on TGGs. In principle, the source sequence is obtained a

priori by parsing the given source model in order to guide

the forward transformation. However, source and forward se-

quences can be constructed simultaneously and backtracking

can be reduced (c.f. Sec. 6) in order to derive efficient execu-

tions of model transformations [12,22].

Model transformations based on forward rules as defined

above are always correct and complete [12,18,22] in the fol-

lowing sense. Correctness means that for each source model

GS that is transformed into a target model GT there is a model

G = (GS ← GC → GT ) in the language of consistent inte-

grated models VL(TGG) defined by the TGG. Completeness

ensures that for each consistent source model there is a for-

ward transformation sequence transforming it into a consis-

tent target model.

5 Model Transformation and Marking using Translation

Attributes

According to the results presented in the previous section,

in order to build forward transformation sequences to im-

plement model transformations, we need to use source con-

sistency as a separate control condition. In this section, we

show how we can automatically integrate the computation

of source consistency in the model transformation process.

The idea is to use translation attributes and forward trans-

lation rules instead of standard forward rules. In particular,

as shown in [22], this allows for the efficient implementation

and analysis of model transformations. We also show that the

same idea can be used to partially parse a given triple model

G, where partial parsing means finding a maximal consis-

tent submodel G0 ⊆ G. For this reason, the rules needed in

this case are called consistency creating rules. The section

is organized as follows, first we describe what translation

attributes are. Then we define forward translation rules and

consistency creating rules, and how they are used. Finally,

we provide some discussion about termination of transfor-

mations using these rules.
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main components new NAC for each

n : L→ N of tr

trCC LCC KCC
? _

lCCoo � � rCC // RCC

(R ⊕ AttT
L ⊕ AttF

R\L) (R ⊕ AttT
L ) (R ⊕ AttT

L ⊕ AttT
R\L)

NCC = (LCC +L N)

⊕AttT
N\L

trFT LFT KFT
? _

lFToo � � rFT // RFT

(LF ⊕ AttT
LS
⊕ AttF

RS \LS
) (LF ⊕ AttT

LS
) (RF ⊕ AttT

LS
⊕ AttT

RS \LS
)

NFT = (LFT +L N)

⊕AttT
NS \LS

trBT LBT KBT
? _

lBToo � � rBT // RBT

(LB ⊕ AttT
LT
⊕ AttF

RT \LT
) (LB ⊕ AttT

LT
) (RB ⊕ AttT

LT
⊕ AttT

RT \LT
)

NBT = (LBT +L N)

⊕AttT
NT \LT

Fig. 5.1 Components of derived operational translation rules

Translation attributes are boolean-valued attributes that

we associate to nodes, edges, and also other attributes to de-

note if that element has been translated or not, in the case of

model transformation, or if it has been parsed or not, in case

that we are interested in finding a maximal consistent sub-

model of a given model. In general, we may not want to add

translation attributes to the complete graph, but only to a part

of it. For instance, in the case of forward transformation we

just need to add attributes to the source part. More precisely,

given an attributed graph AG and a subset M of its elements

(nodes or edges), we call AG′ a graph with translation at-

tributes over AG if it extends AG with one Boolean-valued at-

tribute tr x for each element x in M and one Boolean-valued

attribute tr x a for each attribute associated to such an ele-

ment x in M. The set M of marked elements, together with

all these additional translation attributes is denoted by AttM .

Using the concept of translation attributes we provide ex-

tended operational rules, called operational translation rules,

such that transformations via these rules do not need to be

controlled by a separate control condition. There are three

sets of operational translation rules that we derive from a

given set TR of TGG-triple rules: TRFT (the set of forward

translation rules), TRBT (the set of backward translation rules)

and TRCC (the set of consistency creating rules).

A forward translation rule trFT , introduced in [25], ex-

tends the forward rule trF by additional Boolean valued trans-

lation attributes, which are markers for elements in the source

model and specify whether the elements have been translated

already. Each forward translation rule trFT turns the markers

of the source elements that are translated by this rule from

F to T (i.e., the elements that are created by trS ). This way,

we can ensure that each element in the source graph is not

translated twice, but exactly once. The idea of how forward

translation rules are used to implement model transforma-

tions works as follows. At the beginning, the source model

of a model transformation sequence is extended by transla-

tion attributes that are all set to “F”. Then, the application

of a forward translation rule sets to “T” all the elements that

are translated by the rule. Finally, the model transformation

is successfully executed if the source model is completely

marked with T. However, if we arrive to a model which can-

not be further transformed and where some of its translation

attributes are F then we know that the transformation process

has failed and we would probably have to backtrack to find

a correct transformation. In the examples, we indicate these

markers by check marks in the visual notation and by bold

font face in the graph representation.

Due to the modification of the translation attributes, the

rules are deleting, which means that, technically, the rules

cannot be denoted by inclusions L ֒→ R. As a consequence,

from a formal point of view, triple transformations are not

defined as a pushout, but in terms of the classical double

pushout (DPO) approach [11]. Moreover, according to the

theory of graph transformation ([11]), the application of a

deleting graph transformation rule must satisfy the so-called

gluing condition. However, in the case of the operational

triple rules with translation attributes, this is guaranteed. The

reason is that forward translation rules are deleting only on

attribution edges, where there are no dangling points, and

all identification points are preserved for almost injective

matches.

Consistency creating rules are used to compute maxi-

mal subgraphs Gk of a given triple graph G typed over TG,

such that Gk ∈ VL(TGG). In the special case that G ∈

VL(TGG), we know that Gk � G. Each consistency creat-

ing rule switches labels from F to T for those elements that

would be created by the corresponding TGG-rule in TR. This

means that elements in the left hand side LCC = R are labeled

with T, if they are also contained in L, and they are labeled

with F otherwise. Accordingly, all elements in the right hand

side RCC are labeled with T.

The operational translation rules of a TGG are used for

the propagation of changes during a synchronization. They

consist of the derived forward translation, backward transla-

tion and consistency creating rules.

Definition 5.1 (Operational Translation Rules) Given a

triple rule tr = (L→ R) and its derived source rule trS =

(LS → RS ), target rule trT = (LT → RT ), forward rule

trF = (LF → RF) and backward rule trB = (LB → RB), the
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Model Synchronization Based on Triple Graph Grammars 9

derived translation rules of tr are given by consistency creat-

ing rule trCC = (LCC ←
lCC
−−− KCC −

rCC
−−→ RCC), forward translation

rule trFT = (LFT ←
lFT
−− KFT −

rFT
−−→ RFT ), and backward translation

rule trBT = (LBT ←
lBT
−− KBT −

rBT
−−→ RBT ) defined in Fig. 5.1 using

the notation based on translation attributes. By TRCC, TRFT ,

TRBT we denote the sets of all derived consistency creating,

forward translation and backward translation rules, respec-

tively.

Remark 5.2 (Construction of Operational Rules) Note that in

Fig. 5.1 (B+A C) is the union of B and C with shared A, such

that for instance (LFT +L N) is the union of LFT and N with

shared L. Also, G⊕AttT
M denotes adding to the graph G trans-

lation attributes for all the elements and attributes included in

M ⊆ G, and moreover all these attributes are set to T. Sim-

ilarly, G ⊕ AttF
M denotes adding to G all these attributes, but

this time they are set to F.

Remark 5.3 (Interdependencies between Operational Rules)

The consistency creating rules (TRCC) are used in Sec. 7 for

marking the already consistent parts of a given integrated

model in the second sub-phase of the synchronization. The

forward and backward translation rules are used for the third

sub-phase. This third sub-phase can be interpreted as a com-

pletion of the computed sequence of the second sub-phase.

We show in Sec. 7 that this continuation is always possible if

the sets of operational rules are deterministic, for which we

also provide an automated check and analysis. If a TGG does

not ensure deterministic sets of operational rules, the com-

puted maximal subgraph via TRCC may be too large to find a

corresponding completion via forward (backward) translation

rules. In this case, a possible solution would be to perform

backtracking for sub-phases 2 and 3 of the synchronization.

Example 5.4 (Derived Sets of Consistency Creating Rules)

Figures 5.2-5.3 show the set of the consistency creating rules

derived from the triple rules in Ex. 3.2 according to Def. 5.1.

They do not modify the structure of a triple graph, but only

the translation attributes. They are used for marking consis-

tent substructures of a given triple graph, i.e., of a given in-

tegrated model. By applying all derived consistency creating

rules as long as possible to a given triple G graph with all

translation attributes set to “F”, a maximal consistent triple

graph that is contained in G is computed. Intuitively, for each

element x ∈ R (node, edge, or attribute) of a triple rule

tr = (L → R) a separate translation attribute (tr or tr x)

is added for the consistency creating rule trCC. If an element

x ∈ R is preserved by the triple rule tr (x ∈ L), then the

consistency creating rule preserves it as well and the transla-

tion attribute has value T. Otherwise, if x ∈ R is created by

tr (x ∈ R \ L), then it becomes a preserved element in the

consistency creating rule trCC and the corresponding transla-

tion attribute is changed from F to T. In visual notation, this

means that all plus signs are replaced by additional transla-

tion attributes whose values are changed from F to T and we

denote such a modification by [F⇒ T].

Fig. 5.2 Derived Operational Triple rules: TRCC (part 1)

Example 5.5 (Derived Sets of Forward Translation Rules)

Figures 5.4-5.5 show the set of the forward translation rules

derived from the triple rules in Ex. 3.2 according to Def. 5.1.

These rules are used for translating a source model into its

corresponding target model. For this reason, the rules are only

modifying the translation attributes on the source component.

Intuitively, for each element x in the source component RS

(node, edge, or attribute) of a triple rule tr = (L → R) a

Page 9 of 54

Software and Systems Modelings Editorial Office, Colorado State University, Computer Science Depart, Fort Collins, CO80523, USA

Software and Systems Modeling

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r S

o
sym

 R
eview

10 Frank Hermann et al.

Fig. 5.3 Derived Operational Triple rules: TRCC (part 2)

Fig. 5.4 Derived Operational Triple rules: TRFT (part 1)

separate translation attribute (tr or tr x) is added for the

forward translation rule trFT . If an element x ∈ RS is pre-

served by the triple rule tr, then the forward translation rule

preserves it as well and the translation attribute has value T.

Otherwise, if x ∈ RS is created by tr, then it becomes a pre-

served element in the forward translation rule trFT and the

corresponding translation attribute is changed from F to T. In

visual notation, this means that each plus sign in the source

component of a triple rule is replaced by an additional trans-

lation attribute whose value changes from F to T.

Note that the rules 6-8 are contained in TR1s
FT , i.e., they are

identities on the source component and according to Def. 3.4,

they are not used for fPpg, which is based on TR+s
FT . This

is important to ensure termination (cf. Rem. 5.10) and we

show by Fact 7.8 that the derived sets of operational rules

are kernel-grounded (cf. Def. 6.5). For this reason, the re-

Fig. 5.5 Derived Operational Triple rules: TRFT (part 2)

duced set still ensures completeness according to Rem. 6.6

and Thm. 8.2.

Example 5.6 (Derived Sets of Backward Translation Rules)

Figures 5.6-5.7 show the set of the backward translation rules

derived from the triple rules in Ex. 3.2 according to Def. 5.1.

They are derived dually to the case of forward translation

rules and used for the translation of target models into their

corresponding source models. Thus, they do only modify

translation attributes on the target component. Intuitively, for

each element x in the target component RT (node, edge, or

attribute) of a triple rule tr = (L → R) a separate translation

attribute (tr or tr x) is added for the backward translation

rule trBT . If an element x ∈ RT is preserved by the triple rule

tr, then the backward translation rule preserves it as well and

the translation attribute has value T. Otherwise, if x ∈ RT

is created by tr, then it becomes a preserved element in the

backward translation rule trBT and the corresponding transla-

tion attribute is changed from F to T. In visual notation, this
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Fig. 5.6 Derived Operational Triple rules: TRBT (part 1)

means that all plus signs in the target component are replaced

by additional translation attributes whose values are changed

from F to T. Note that all backward translation rules are used

for bPpg in contrast to operation fPpg before.

Fig. 5.7 Derived Operational Triple rules: TRBT (part 2)

We define model transformations based on forward trans-

lation rules in a similar but slightly different way than for

forward rules in Def. 4.2. In both cases we start the trans-

formation process with a triple graph that consists only of

the given source graph, i.e., the target and the connection

graphs are the empty graphs. But now, the source graph is

completely marked with F-valued translation attributes, indi-

cating that no element from the graph has been translated yet.

Then, instead of applying to the start graph a source consis-

tent forward transformation sequence, we apply a sequence of

forward translation transformations leading to a graph whose

source part is completely marked with T, meaning that all the

elements from the given source graph have been translated.

These transformation sequences are called complete forward

translation sequences.

Definition 5.7 (Complete Forward Translation Sequence)

A forward translation sequence G0 =
tr∗

FT

==⇒ Gn with almost in-

jective matches is called complete if Gn is completely trans-

lated, i.e., all translation attributes of Gn are set to true

(“T”).

A model transformation based on forward translation

rules transforms models from the source domain into models

of the target domain by executing complete forward transla-

tion sequences. Given a concrete source model, then the re-

sulting target model of the model transformation is obtained

by restricting the resulting triple graph of the forward transla-

tion sequence to the target component. We have shown in [22]

that model transformation sequences based on forward rules

and those based on forward translation rules, respectively, are

equivalent. This ensures that the derived model transforma-

tion relations are the same.
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12 Frank Hermann et al.

Definition 5.8 (Model Transformation Based on Forward

Translation Rules) A model transformation sequence (GS ,

G′0 =
tr∗

FT

==⇒ G′n,G
T ) based on forward translation rules TRFT

consists of a source graph GS , a target graph GT , and a

complete TGT-sequence G′0 =
tr∗

FT

==⇒ G′n typed over TG′ = TG ⊕

AttF

|TGS |
⊕AttT

|TGS |
based on TRFT with G′0 = (AttF(GS )← ∅→

∅) and G′n = (AttT(GS )← GC → GT ).

A model transformation MT : VL(TGS ) ⇛ VL(TGT ) based

on TRFT is defined by all model transformation sequences as

above with GS ∈ VL(TGS ) and GT ∈ VL(TGT ). All the cor-

responding pairs (GS ,GT ) define the model transformation

relation MTRFT ⊆ VL(TGS ) × VL(TGT ) based on TRFT . The

model transformation is terminating if there are no infinite

TGT-sequences via TRFT starting with G′0 = (AttF(GS ) ←

∅→ ∅) for some source graph GS ∈ VL(TGS ).

Consistency creating sequences as defined in Def. 5.9 be-

low, are used for computing a maximal consistent part of a

given triple graph, which is used for the auxiliary operation

Del defined in Sec. 7. A consistency creating sequence starts

at a triple graph G′0 = AttF(G), i.e., at a triple graph where

all elements are marked with F. Each application of a con-

sistency creating rule modifies some translation attributes of

an intermediate triple graph G′
i

from F to T and preserves

the structural part G contained in G′
i
. Therefore, the resulting

triple graph G′n extends G with translation attributes only, i.e.,

some are set to T and the remaining ones to F.

Definition 5.9 (Consistency Creating Sequence) Given a

triple graph grammar TGG = (TG,∅,TR), a triple graph G

typed over TG and let TRCC be the set of consistency creating

rules of TR. A consistency creating sequence s = (G,G′0 =
tr∗

CC

==⇒

G′n,Gn) is given by a TGT sequence G′0 =
tr∗

CC

==⇒ G′n via TRCC

with G′0 = AttF(G) and G′n = G ⊕AttT
Gn
⊕AttF

G\Gn
, where Gn is

the subgraph of G derived from G′0 =
tr∗

CC

==⇒ G′n by restricting G′n
to all T-marked elements. Consistency creating sequence s is

called terminated, if there is no rule in TRCC which is appli-

cable to the result graph G′n. In this case, the triple graph G′n
is called a maximal consistency marking of G. A triple graph

G′ is called completely T-marked, if G′ = AttT(G) for a given

triple graph G, i.e., all translation attributes in G′ are “T”.

Remark 5.10 (Termination) It is quite easy to show that, un-

less the given TGG includes a trivial identical rule L ֒→ L,

every consistency creating sequence terminates. The reason

is that the application of each rule switches some translation

predicates from F to T. Since the number of these predicates

in a given triple graph is finite, only a finite number of rule

applications is possible.

The case of forward and backward translation sequences

is different. In particular, if a triple rule tr = L ֒→ R is source

identic, meaning that it does not change the source part, i.e.,

LS = RS or equivalently trs = id, its associated forward trans-

lation rule will not switch any translation predicate from F to

T. This implies that this rule could be applied infinitely many

often in a forward translation sequence. Something similar

happens with backward translation rules.

In this sense, according to whether rules modify or not

the source or target part of a rule, we classify rules as shown

below. In particular, this notation is used in the following sec-

tion. Let TR be a set of triple rules. We distinguish the follow-

ing subsets.

– The set of source creating rules TR+s = {tr ∈ TR | trS ,

id},

– The set of source identic rules TR1s = {tr ∈ TR | trS = id},

– The set of target creating rules TR+t = {tr ∈ TR | trT ,

id},

– The set of target identic rules TR1t = {tr ∈ TR | trT = id},

and

– The set of identic rules TR1 = {tr ∈ TR | tr = id}.

In order to ensure termination for forward translation se-

quences, if the given TGG includes source identic triple rules,

we propose a general strategy based on an automated analysis

using the tool AGG. The main idea is the following. If we can

show that none of the remaining triple rules depends on the

source identic triple rules, we can actually omit the source

identic ones. The reason is that for each forward transfor-

mation sequence, we can shift the steps along source identic

rules to the end and obtain an equivalent sequence. Since all

steps along source identic triple rules do not change the mark-

ing of the source model, we further derive that these steps can

be removed yielding still a complete forward translation se-

quence.

6 Deterministic TGGs

Since transformation systems are not deterministic in general,

we introduce the concept of policies for transformation rules

in order to obtain deterministic sets of operational translation

rules for the synchronization operations. The main idea is to

restrict the matches of a transformation rule using additional

attribute conditions in order to eliminate ambiguous results.

An attribute condition attCon for a (triple) rule tr : L→ R

is a set of equations for attribute values. A match m : L → G

satisfies attCon—written m |= attCon—if the evaluation of

attribute values satisfies each equation. In our case study, we

use one attribute condition (see Ex. 6.3).

A policy can be arbitrary restrictive in general. In the con-

text of model synchronization, we need to ensure that the

propagation operations are still defined for all valid inputs.

For this reason, we introduce the notion of a conservative pol-

icy. In the case of forward propagation, a policy for the set of

forward translation rules is conservative, if all valid source

models can be translated.

Definition 6.1 (Policy for Operational Translation Rules)

Given a TGG and let TRFT be the derived set of forward

translation rules. A policy pol : TRFT → TR′FT for restrict-

ing the applications of the rules in TRFT maps each rule

trFT ∈ TRFT to an extended rule tr′
FT
∈ TR′FT , where tr′

FT
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Model Synchronization Based on Triple Graph Grammars 13

is given by trFT extended by a set of additional attribute

conditions AttCpol(trFT ). The policy pol is called conserva-

tive, if the derived model transformation relation MTR′FT ⊆

VLS × VLT based on TR′FT is left total and is contained in

the model transformation relation MTRFT derived from TRFT ,

i.e., MTR′FT ⊆ MTRFT .

A policy for backward translation rules TRBT is defined

analogously by replacing FT with BT and it is conservative

if the derived model transformation relation MTR′BT ⊆ VLT ×

VLS is left total and contained in MTRBT .

In order to automatically check that a policy is conser-

vative we provide a sufficient condition by Lem. 6.2 below

based on the analysis of dependencies between rules [11]. In-

tuitively, two transformation steps G0 =
p1,m1

===⇒ G1 =
p2,m2

===⇒ G2

are sequentially independent, if (1) there is no use-delete de-

pendency (the first step uses (creates or reads) an element

(node, edge, or attribute) that is deleted by p2 in the sec-

ond step) and (2) there is no forbid-produce dependency. A

produce-forbid dependency occurs if the first step forbids a

pattern by a negative application condition of p1 and the sec-

ond step produces some elements of it, such that applying the

second step first will disable the execution of the first step

thereafter.

A policy restricts the applicability of rules. The main

challenge is to ensure that the restrictions are not too strict.

In more detail, for each valid input model of an operational

transformation sequence we have to ensure that there is an

equivalent transformation sequence respecting all restrictions

of the policy. The key idea is to check for each restriction of

a rule p whether there are rules that could depend on the ex-

ecution of p. If we can show that there is no dependency to

all possible subsequent steps in an operational transformation

sequence, we can conclude that all steps via p can be shifted

to the end of the sequence. This allows us to focus on p itself.

As stated by Lem. 6.2 below, it is then sufficient to show that

for each match of p there is an equivalent match satisfying

the conservative policy.

Lemma 6.2 (Conservative Policy) Let pol : TRFT → TR′FT

be a policy, such that for each rule tr′
FT
= pol(trFT ) in TR′FT

with tr : L→ R the following condition holds.

1. Given a match m : L → G for trFT , then there is also a

match m′ : L→ G for tr′
FT

satisfying AttCpol(trFT ).

2. If AttCpol(trFT ) , ∅, then for each rule tr2 ∈ TRFT with

trFT , tr2 the pair (trFT , tr2) is sequentially independent.

Then, the policy pol is conservative (cf. Def. 6.1). A similar

fact holds for a policy pol : TRBT → TR′BT concerning back-

ward translation rules.

Proof (Idea) According to Def. 6.1, policy pol is conserva-

tive, if the derive model transformation relation MTR′FT is left

total. The model transformation relation MTR based on TRFT

is left total due to the completeness result for TGG model

transformations based on forward translation rules (cf. Thm.

1 in [22]). Thus, given a source model GS ∈ VLS , there is a

complete forward translation sequence sFT via TRFT . We have

to show that there is also a complete forward translation se-

quence s′
FT

via TR′FT . First of all, MTR′FT ⊆ MTRFT , because

the additional attribute conditions only restrict the possible

transformation sequences and no additional ones are possible.

Item (1) in Lem. 6.2 ensures that for each step si,FT in sFT via

TRFT , there is a step s′
i,FT

via TR′FT , but this step may differ

on the resulting triple graph. However, item (2) ensures that

there is no subsequent step in sFT via a different rule that is se-

quentially dependent to neither si,FT nor s′
i,FT

. Therefore, we

can iteratively exchange the original steps with correspond-

ing ones via TR′FT , shift them to the end of the the sequence,

and continue with the next step that is not via TR′FT . Finally,

we derive a complete forward translation sequence s′
FT

via

TR′FT . For the full proof see Fact 7 in [24]. ⊓⊔

Fig. 6.1 Backward Translation Rule without (5) and with (5′) con-

servative policy

Example 6.3 (Conservative Policy) In Fig. 6.1, the backward

translation rule 5 : “DetailedSalary2SalaryBT ()” from Ex. 5.6

is extended to the rule 5′ : “DetailedSalary2SalaryBT ,2()” by

a policy in the form of an additional positive application con-

dition in order to ensure determinism. Since the left hand side

of this rule specifies only the sum of the salary of a person, the

values of the base and bonus components are not fixed via a

match. The positive application condition (PAC) [11] requires

that both values are set to half times the amount of the salary

sum. Now, this is possible for each number, such that we can

conclude that the policy is conservative (Lem. 6.2), which is

important for ensuring completeness of the propagation op-

eration bPpg (see Thm. 8.2).

In order to ensure termination of the propagation op-

erations, we restrict the sets of operational rules to those

that modify at least one translation attribute. We call these

rules kernel translation rules. In the case of forward transla-

tion rules, the kernel forward translation rules TR+s
FT ⊆ TRFT

are those forward translation rules that are derived from the

source creating triple rules TR+s ⊆ TR of the triple rules TR.

The remaining forward translation rules TR1s
FT = TRFT \ TR+s

FT
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14 Frank Hermann et al.

are those derived from the source identic triple rules TR1s.

Vice versa, the kernel backward translation rules TR+t
BT ⊆

TRBT are the backward translation rules that are derived from

the target creating triple rules TR+t ⊆ TR and TR1t
BT are the

remaining backward translation rules derived from the target

identic triple rules. Finally, the kernel consistency creating

triple rules, however, are given by the complete set of consis-

tency creating rules TRCC.

The restriction of the set of operational rules can pos-

sibly cause that for a valid input model, there is no longer

a valid operational transformation sequence via forward or

backward translation rules, respectively. However, we can use

the same idea as before and check that the remaining rules do

not depend on the omitted ones (TR1s
FT and TR1t

BT ) as stated

by Rem. 6.4 below. This ensures that the rules that do not

change any translation attribute can be shifted to the end of

each sequence and thus, can be omitted while still all valid

input models can be processed successfully.

Remark 6.4 (Shifting of Independent Steps) Given two sets

P1 and P2 of rules such that each pair (p1, p2) ∈ P1 × P2

is sequentially independent. Then, there is a transformation

sequence (G =
r∗

=⇒ H) via (P1 ∪ P2) if and only if there are

transformation sequences: s1 = (G =
p∗

=⇒ G1) via P2 and

s2 = (G1 =
q∗

=⇒ H) via P1 with same G1. This result is shown

by Fact 3 in App. A.2 in [24].

Now, we come to the most important property that has to

be checked for the operational translation rules in order to en-

sure correct propagation operations—deterministic behavior.

First of all, this means that their execution has functional be-

havior, i.e., ensures unique results. In addition to that, their

execution does not require backtracking. This means that

once an operational translation rule is applied, we do not have

to undo the step during the synchronization process. More-

over, we have to ensure termination. For this purpose, we in-

troduce the notion of kernel-grounded operational translation

rules and show thereafter that this property allows us to re-

strict the sets of rules appropriately.

Definition 6.5 (Kernel-Grounded and Deterministic Sets

of Operational Translation Rules) Let TGG = (TG,∅,TR)

be a triple graph grammar, from which we obtain the op-

erational translation rules TRCC, TRFT , and TRBT . They

are called kernel-grounded, if the pairs (TR1s
FT ,TR+s

FT ) and

(TR1t
BT ,TR+t

BT ) are sequentially independent. This means that

there is no pair (p1, p2) of sequentially dependent rules with

either (p1, p2) ∈ (TR1s
FT × TR+s

FT ) or (p1, p2) ∈ (TR1t
BT × TR+t

BT ).

The sets of operational translation rules TRCC,TRFT , and

TRBT (possibly extended by conservative policies) are called

deterministic, if they have functional behavior and do not re-

quire backtracking.

The tool AGG [37] supports the automated analysis of

dependencies between rules. We apply this analysis engine to

check whether a policy is conservative and that the reduced

sets of operational rules are sufficient to ensure completeness

of the propagation operations.

In order to check that the sets of operational translation

rules are kernel-grounded and deterministic, we first describe

how the preconditions of Def. 6.5 are checked using the tool

AGG.

1. Sequential independence of the pairs (TR1s
FT ,TR+s

FT ) and

(TR1t
BT ,TR+t

BT ): we can use the tool AGG for the analysis

of rule dependencies based on the generation of critical

pairs according to Fact 2 in [24].

2. Applied policies are conservative: According to Lem. 6.2.

This requires that the additional application conditions

according to the policy restricts the evaluation of attribute

values only, i.e., the assignment of variables. We have to

show that the existence of matches is preserved for each

rule and that other rules are not sequentially dependent.

For the latter, we can again use the tool AGG and validate

that the corresponding table entries show the value 0. The

preservation of the existence of matches can be ensured

by checking that the affected variables are free in the un-

modified rule (trFT or trBT ), i.e., they are not part of a

term that is connected to a node in the LHS (LFT or LBT ).

Moreover, we can apply the presented results for showing

that the derived model transformation relations are left total.

This is the basis to ensure that the propagation operations are

left total.

Remark 6.6 (Left Totality) If the sets of operational trans-

lation rules of a TGG are kernel-grounded, we can con-

clude that the forward model transformation relations

MTRF : VL(TGS ) ⇒ VL(TGT ) based on TR+s
FT and the back-

ward model transformation MTB: VL(TGT ) ⇒ VL(TGS )

based on TR+s
FT specify left total relations as shown by Fact

5 in [24]. This means that the model transformations can be

performed on reduced sets of operational translation rules.

Source identic triple rules TR1s
FT are not used for forward

translations and target identic triple rules TR1t
BT are not used

for backward translations. According to Def. 6.1, we can

specify conservative policies in order to reduce the amount of

possible transformation sequences and derive left total model

transformation relations MTR′FT and MTR′BT that use these

policies.

In order to check that the derived sets of operational trans-

lation rules have functional behavior and do not require back-

tracking, we first show by Lem. 6.7 below that we can ensure

termination if all operational translation rules modify at least

one translation attribute. We generally assume that the input

models are finite on the structure part, i.e., the carrier sets of

the data values can be infinite, but the graph nodes and all sets

of edges are finite.

Lemma 6.7 (Termination) Let TGG = (TG,∅,TR) be a

triple graph grammar, where TR does not contain a trivial

triple rule tr = (L → R) with L = R. Let further TRCC,TR+s
FT ,

and TR+t
BT be the derived sets of operational translation rules

for consistency creating, forward translation and backward

translation, respectively according to Def. 5.1 and possibly

extended by some policies. Then, the transformation systems
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Model Synchronization Based on Triple Graph Grammars 15

TRCC,TR+s
FT , and TR+t

BT are terminating for any finite input

triple graph.

Proof (Idea) As described in Rem. 5.10, an operational trans-

lation rule may change the value of a translation attribute

from F to T, but not vice versa. Since the amount of elements

that are marked with translation attributes is not changed by

any operational translation rule and the input models are fi-

nite, we can conclude that any transformation sequence via

the given sets terminates. For the full proof see Fact 8 in [24],

which is based on [22]. ⊓⊔

Functional behavior of a transformation system means

that the execution of the system yields unique results. In the

context of model transformations, the execution may involve

backtracking. Consider, e.g., a forward translation sequence

where no further operational rule is applicable, but the source

model is not completely translated. In this case, further se-

quences may exist, because of non-determinism concerning

the choice of possible transformation rules and matches.

A system of operational translation rules has functional

behavior and does not require backtracking, if all significant

critical pairs are strictly confluent as shown by Fact 9 in [24]

based on a corresponding result for forward translation rules

in [22].

Remark 6.8 (Analysis of Functional Behavior and Backtrack-

ing) The tool AGG [37] provides an analysis engine for gen-

erating the complete set of critical pairs as described in [22]

and we provide the analysis results for our example TGG in

Sec. 7. A critical pair (P1 ⇐
p1,m1

==== K =
p2,m2

===⇒ P2) consists

of two parallel dependent transformation steps. It is signifi-

cant, if it can be embedded in a transformation sequence via

operational translation rules starting at a valid input model

(cf. Def. 17 in [24]). A critical pair concerning a forward

model transformation is not significant, if the source com-

ponent of K cannot be embedded in a valid source model, be-

cause changes to the source component only occur on trans-

lation attributes. The dual result holds for backward model

transformations.

Strict confluence of a critical pair requires that we provide

sequences of transformation steps (P1 =
∗
⇒ H ⇐

∗
= P2) solving

the conflict (P1 ⇐
p1,m1

==== K =
p2,m2

===⇒ P2) in a compatible and

NAC-consistent way [11]. This means that any element that

is preserved in (P1 ⇐
p1,m1

==== K =
p2,m2

===⇒ P2) is also preserved in

(P1 =
∗
⇒ H ⇐

∗
= P2). If no critical pair exists at all, we directly

derive that the system has functional behavior and does not

require backtracking.

7 Synchronization Based on TGGs

This section shows how to construct the operation fPpg of

a TGG synchronization framework (cf. Def. 3.4) as a com-

position of auxiliary operations 〈fAln, Del, fAdd〉. Symmetri-

cally, operations 〈bAln, Del, bAdd〉 are used to define the op-

eration bPpg. As a general requirement, the given TGG has

to provide deterministic sets of operational translation rules,

meaning that the algorithmic execution of the forward trans-

lation, backward translation, and consistency creating rules

ensures functional behavior (unique results) and does not re-

quire backtracking. For this purpose, additional policies can

be defined that restrict the matches of operational transla-

tion rules as presented in Sec. 6 by Lem. 6.2. Rem. 6.8 in

Sec. 6 provides sufficient conditions for deterministic oper-

ational translation rules. We provide additional static condi-

tions and automated checks in the technical report [24].

The general synchronization process is performed as fol-

lows (see Def. 7.1 and Fig. 7.1, where we use double arrows

(↔) for correspondence in the signature of the operations,

and the explicit triple graphs for the construction details).

Given two corresponding models GS and GT and an update

of GS via the graph modification a = (GS
←

a1
−− DS

−
a2
−→ G′S )

with G′S ∈ VLS , the forward propagation fPpg of model up-

date a is performed in three steps via the auxiliary operations

fAln, Del, and fAdd. At first, the deletion performed in a is

reflected into the correspondence relation between GS and

GT by calculating the forward alignment remainder via op-

eration fAln. This step deletes all correspondence elements

whose elements in GS have been deleted. In the second step,

performed via operation Del, the two maximal subgraphs

GS
k
⊆ GS and GT

k
⊆ GT are computed such that they form

a consistent integrated model in VL(TGG) according to the

TGG. All elements that are in GT but not in GT
k

are deleted,

i.e., the new target model is given by GT
k

. Finally, in the last

step (operation fAdd), the elements in G′S that extend GS
k

are

transformed to corresponding structures in G′T , i.e., GT
k

is ex-

tended by these new structures. The result of fAdd, and hence

also fPpg, is an integrated model G′ = (G′S ↔ G′T ). Since

graph transformation is non-deterministic in general, we re-

quire that the sets of operational translation rules are deter-

ministic in order to ensure unique results for both, the second

and the third step of propagation operation fPpg.

Definition 7.1 (Auxiliary TGG Operations) Let TGG =

(TG,∅,TR) be a TGG with deterministic sets TRCC, TR+s
FT ,

and TR+s
BT of operational translation rules and let further

MF(TGG) be the derived TGG model framework.

1. The auxiliary operation fAln computing the forward

alignment remainder is given by fAln(r, a) = r′, as spec-

ified in the upper part of Fig. 7.1. The square marked by

(PB) is a pullback [11], meaning that DC is the intersec-

tion of DS and GC .

2. Let r = (s, t): GS ↔ GT be a correspondence rela-

tion, then the result of the auxiliary operation Del is the

maximal consistent subgraph GS
k
↔ GT

k
of r, given by

Del(r) = (a, r′, b), which is specified in the middle part of

Fig. 7.1.

3. Let r = (s, t): GS ↔ GT be a consistent correspondence

relation, a = (1, a2) : GS → G′S be a source modifica-

tion and G′S ∈ VLS . The result of the auxiliary opera-

tion fAdd, for propagating the additions of source mod-

ification a, is a consistent model G′S ↔ G′T extending
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Signature Definition of Components

GS oo
r=(s,t)

//

a=

(a1 ,a2)
��
u:fAln

GT

1
��

G′S oo

r′=(s′ ,t′)

// GT

GS

(PB)

GCs
oo

t
// GT

DS
?�

a1

OO

DC
?�

a∗
1

OO

s∗
oo

s′ = a2 ◦ s∗,

t′ = t ◦ a∗1

GS oo
r=(s,t)

//

a=

( f S ,1)
��
⇓:Del

GT

b=

( f T ,1)
��

GS
k
oo

r′=(sk ,tk):C

// GT
k

G = (GS GCs
oo

t
// GT )

∅
tr∗ +3 Gk = (GS

k

?�
f S

OO

?�
f

OO

GC
k

?�
f C

OO

sk
oo

tk
// GT

k
)

?�
f T

OO

∅ =
tr∗

=⇒ Gk

is maximal w.r.t. Gk ⊆ G

∀ G′S ∈ VLS :

GS oo
r=(s,t):C

//

a=

(1,a2)
��
u:fAdd

GT

b=
(1,b2)
��

G′S oo

r′=(s′ ,t′)

// G′T

(GS

� _
a2
��

G GCs
oo

t
//

� _
1
��

GT )
� _

1
��

(G′S
� _

1
��

G0

� _
g
��

GC

� _

��

a2◦s
oo

t
// GT )
� _

b2 ��

(G′SG′

tr∗
F
��

G′C
s′

oo
t′

// G′T )

G0 =
tr∗

F

==⇒ G′

with G′ ∈ VL(TGG)

Fig. 7.1 Auxiliary operations fAln, Del and fAdd

GS ↔ GT , and is given by fAdd(r, a) = (r′, b), according

to the lower part of Fig. 7.1.

Remark 7.2 (Auxiliary TGG Operations) Intuitively, opera-

tion fAln constructs the new correspondence graph DC from

the given GC by deleting all correspondence elements in GC

whose associated elements in GS are deleted via update a

and, for this reason, do not occur in DS . Operation Del is

executed by applying consistency creating rules (cf. Sec. 5)

to the given integrated model until no rule is applicable any

more. If, at the end, GS ↔ GT is completely marked, the in-

tegrated model is already consistent; otherwise, the result is

the largest consistent integrated model included in GS ↔ GT .

Technically, the application of the consistency creating rules

corresponds to a maximal triple rule sequence as shown in

the right middle part of Fig. 7.1 and discussed in more detail

in [23]. Finally, fAdd is executed by applying forward trans-

lation rules (cf. Sec. 4 and 5) to G′S ↔ GT until all the ele-

ments in G′S are marked. Intuitively, these TGT steps form a

model transformation of G′S extending GT . Technically, the

application of the forward translation rules corresponds to a

source-consistent forward sequence from G0 to G′, as shown

in the right lower part of Fig. 7.1. By correctness of model

transformations [12], the sequence implies consistency of G′

as stated above. The constructions for these auxiliary oper-

ations are provided in full detail in [24]. Note that the con-

structions for Del and fAdd yield unique results due to the

requirement that the operational translation rules are deter-

ministic (cf. Def. 7.1).

Auxiliary operation Del is based on the execution of con-

sistency creating rules. The computed resulting triple graph

Gk is required to be consistent (Gk ∈ VL). This result is en-

sured by the equivalence of maximal triple and complete ex-

tended consistency creating sequences according to Rem. 7.3

below and shown by Fact 11 in [24].

Remark 7.3 (Equivalence of Maximal Triple and Complete

Extended Consistency Creating Sequences) Given a set of

non-identic consistency creating rules TRCC and G ∈ VL(TG).

Then, the following are equivalent for almost injective

matches.

1. There is a TGT-sequence s = (∅ =
tr∗

=⇒ Gk) via TR with in-

jective embedding f : Gk → G, such that s is f -maximal,

i.e., any extension of s via TR is not compatible with f .

2. There is a terminated consistency creating sequence s′ =

(G′0 =
tr∗

CC

==⇒ G′
k
) via TRCC with G′0 = AttF(G), i.e., all trans-

lation attributes are set to F.

Moreover, the sequences correspond via G′
k
= H ⊕ AttT

Gk
⊕

AttF
H\Gk

.

Example 7.4 (Forward Propagation via Operation fPpg) Fig-

ure 7.2 shows the application of the three steps of synchro-

nization operation fPpg to the visual models of our running

example. After removing the dangling correspondence node

of the alignment in the first step (fAln), the maximal consis-

tent subgraph of the integrated model is computed (Del) by

stepwise marking the consistent parts: consistent parts are in-

dicated by gray boxes with checkmarks in the visual notation

and by bold font faces in the graph representation. Note that

node “Bill Gates” is part of the target graph in this maxi-

mal consistent subgraph, even though it is not in correspon-

dence with any element of the source graph. This is possi-

ble, because node “Bill Gates” is now connected to a differ-

ent department (cf. rule 8:Empty2OtherP in Fig. 3.4). More-

over, attributes Base and Bonus of Melinda Gates in the

source component are not marked, because they are inconsis-

tent with attribute Salary according to triple rule 6:Detailed-

Salary2Salary in Sec. 5 (base + bonus , Salary). In the fi-

nal step (fAdd), the inconsistent elements in the target model

are removed and the remaining new elements of the update

are propagated towards the target model by model transfor-

mation, such that all elements are finally marked as consis-

tent.

The constructions for the auxiliary operations fAln, Del,

and fAdd provide the basis for the propagation operation
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Fig. 7.2 Forward propagation in detail: visual notation (top) and graph representation (bottom)
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Signature Definition of Components

∀ G′S ∈ VLS :

GS oo
r

//

a

��
u:fPpg

GT

b
��

G′S oo

r′
// G′T

GS oo
r

//

aA �� u:fAln

a

//

GT

1��

b

oo

DS oo r1 //

aD �� ⇓:Del

GT

bD��

GS
k
oo r2 //

a f �� u:fAdd

GT
k

b f��

G′S oo

r′
// G′T

a = (a1, a2) = (GS
←

a1
−− DS

−
a2
−→ G′S )

aA = (a1, 1), aD = (a′1, 1), a f = (a1 ◦ a′1, a2)

b = b f ◦ bD

Fig. 7.3 Synchronization operation fPpg - formal definition

fPpg. Together with its symmetric version, namely the back-

ward propagation operation bPpg, we derive the TGG syn-

chronization framework according to Def. 7.5. Forward and

backward propagation operations fPpg and bPpg are called

complete, if they yield valid results for any valid input. Com-

pleteness of the synchronization operations is an important

property in the context of TGGs and therefore, it is worth to

emphasize it explicitly, while it is implicitly included already

within the signature in Fig. 7.3.

Definition 7.5 (Derived TGG Synchronization Frame-

work) Let TGG = (TG,∅,TR) be a TGG with deterministic

sets TRCC, TR+s
FT , and TR+s

BT of derived operational transla-

tion rules and with derived model framework MF(TGG), then

operation fPpg of the derived TGG synchronization frame-

work Synch(TGG) is given by the composition of auxiliary

operations (fAln, Del, fAdd) as described in Rem. 7.6 accord-

ing to Fig. 7.3. Symmetrically—not shown explicitly—we ob-

tain bPpg as composition of auxiliary operations (bAln, Del,

bAdd). Synch(TGG) is called complete, if its propagation op-

erations are complete, i.e., they always yield a result for any

valid input.

1 /* == alignment remainder == */

2 forall(correpondence nodes without image

3 in the source model){

4 delete these elements }

5 /* ==== delete === */

6 while(there is a triple rule p such that

7 R\L is unmarked){

8 apply to G the consistency creating

9 rule corresponding to p }

10 forall(unmarked nodes and edges from the

11 target model){

12 delete these elements }

13 /* ===== add ===== */

14 while(there is a forward translation

15 rule applicable to G){

16 apply to G the forward translation

17 rule }

Fig. 7.4 Synchronization operation fPpg - algorithm

Remark 7.6 (Construction of fPpg according to Fig. 7.3)

Given a not necessarily consistent integrated model r: GS ↔

GT and source model update a: GS → G′S with G′S ∈ VLS ,

we compute fPpg(r, a) as follows. First, fAln computes the

correspondence (DS ↔ GT ), where DS is the part of GS

that is preserved by update a. Then, Del computes its max-

imal consistent integrated submodel (GS
k
↔ GT

k
). Finally,

fAdd composes the embedding GS
k
→ G′S with correspon-

dence (GS
k
↔ GT

k
) leading to (G′S ↔ GT

k
), which is then

extended into the integrated model (G′S ↔ G′T ) via for-

ward transformation. If G′S < VLS , then the result is given

by b = (1, 1): GT → GT together with the correspondence

relation r′ = (∅,∅) and additionally, an error message is pro-

vided. Fig. 7.4 describes this construction algorithmically in

pseudo code, leaving out the error handling; marking is ex-

plained in Sec. 5.

Fact 7.7 (Case Study: Termination of Synchronization

Operations) The derived synchronization operations fPpg

and bPpg for our example TGG terminate.

Proof The TGG does not contain any trivial rule tr: L → L.

According to Def. 7.5, the synchronization operations are

based on the sets TRCC, TR+s
FT , and TR+s

BT of operational trans-

lation rules. Hence, we can apply Lem. 6.7 and derive that the

synchronization operations are terminating. ⊓⊔

By Fact 7.7, we know that the synchronization operations

are terminating. This allows us to use AGG to generate the

critical pairs (see Fig. 7.5) in order to check that the op-

erations are deterministic and that the derived synchroniza-

tion framework is correct and complete using Thm. 8.1 and

Thm. 8.2.

Fig. 7.5 Dependency analysis with AGG for TRFT - fields with “1”

contain dependencies

Fact 7.8 (Case Study: Determinism) The derived sets of op-

erational rules for fPpg and bPpg of our example TGG are

deterministic and kernel-grounded.

Proof In order to show that the synchronization operations

are deterministic, we can apply Thm. 8.1 by showing that the

sets of operational translation rules are kernel-grounded, ter-

minating, and all significant critical pairs are strictly conflu-

ent using that they are terminating according to Fact 7.7.
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Model Synchronization Based on Triple Graph Grammars 19

Fig. 7.6 Critical pair analysis with AGG for TRCC - fields with with

“1” contain conflicts

Fig. 7.7 Critical pair analysis with AGG for TRFT - fields with “1”

contain conflicts

Fig. 7.8 Dependency analysis with AGG for TRBT - fields with “1”

contain dependencies

Fig. 7.9 Critical pair analysis with AGG for TRBT - fields with “1”

contain conflicts

Concerning the set TRFT , we used AGG to derive the de-

pendency table depicted in Fig. 7.5. The source identic rules

are the rules with number 6 to 8. There is no dependency

(entry > 0) for any pair (p, q) with p ≥ 6 and q ≤ 5. More-

over, there are no target identic backward translation rules,

because all triple rules are creating on the target component.

Therefore, the sets of operational translation rules are kernel-

grounded (see Def. 6.5).

By Fact 7.7, we know that the transformation sys-

tems based on the operational translation rules are ter-

minating. We analyzed the critical pairs using the crit-

ical pair analysis engine of AGG. Concerning the set

TRCC, we derived the resulting table depicted in Fig. 7.6.

The only generated critical pair is (p1, p1) for p1 =

Person2FirstMarketingPCC and it is strictly confluent by ap-

plying rule p2 = Person2NextMarketingPCC to the remaining

structure and since p2 does not contain any NAC we automat-

ically have strict confluence.

Concerning the set TRFT , we derived the resulting table

depicted in Fig. 7.7, where we used the constraint that there

are no two departments with name “Marketing”. This is al-

ways ensured for the language VL(TGG) due to the NACs

of the first two rules. The only significant critical pair is

strictly confluent via one transformation step using rule p2 =

Person2NextMarketingPFT , where no NAC is involved.

The set TRBT is not functional, because there is a choice

of how to split the salary into base and bonus. We can

restrict the choice for the rule “DetailedSalary2Salary” to

base = bonus = 1/2 · salary as a policy, which is shown

by the additional positive application condition in Fig. 5.6.

We can apply Lem. 6.2 and derive that the policy is con-

servative. First of all, no other rule depends on this rule,

which we verified by the generated dependency table by AGG

in Fig. 7.8. Moreover, any match for the original rule im-

plies that there is a match for the restricted rule, because

the restricted values are real numbers and, therefore, always

possible. We derive the table of generated critical pairs de-

picted in Fig. 7.9, where the only significant critical pair is

again strictly confluent via one transformation step using rule

p2 = Person2NextMarketingPBT , where no NAC is involved.

Summing up, the sets of operational translation rules are

kernel-grounded and all significant critical pairs are strictly

confluent, such that we can apply Thm. 8.1 and derive that

the derived sets of operational rules are deterministic. ⊓⊔

8 Correctness and Invertibility

In this section, we present our main results that show the

correctness, completeness and invertibility of our synchro-

nization framework. According to Def. 3.4, correctness re-

quires that the synchronization operations are deterministic,

i.e., they have functional behavior (cf. Sec. 5) and ensure laws

(a1) - (b2). Concerning the first requirement, i.e., that the

synchronization operations are deterministic, Thm. 8.1 below

provides a sufficient condition based on the notion of critical

pairs [11]. In order to ensure this condition, Sec. 6 presents
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20 Frank Hermann et al.

the concept of additional propagation policies that eliminate

non-determinism. They can be seen as a kind of application

conditions for the rules and are called conservative, if they

preserve the completeness result. Lem. 6.2 provides a suffi-

cient static condition for checking this property and we per-

formed the automated analysis of this condition for our exam-

ple TGG using the tool AGG [37] as described in Sec. 6. Note

again that we generally require almost injective matching (cf.

Sec. 3).

Theorem 8.1 (Deterministic Synchronization Operations)

Let TGG be a triple graph grammar that does not contain an

identical rule tr : L→ L. If the significant critical pairs of the

sets of operational translation rules are strictly confluent and

the systems of rules are terminating, then the sets of opera-

tional translation rules are deterministic (see Def. 6.5), which

implies that the derived synchronization operations fPpg and

bPpg are deterministic as well.

Proof (Idea) Operations fAln and bAln are given by pullback

construction, which is unique up to isomorphism by defini-

tion. Therefore, they are deterministic. Termination of Del,

fAdd, and bAdd is ensured according to Rem. 5.10, because

TGG does not contain an identical triple rule and the oper-

ational translation rules are given by TRCC, TR+s
FT , and TR+s

BT .

By Rem. 6.8 we know that functional behavior of the transfor-

mation systems is ensured and backtracking is not required, if

all significant critical pairs are strictly confluent and the sys-

tem is terminating. This ensures that operations Del, fAdd,

and bAdd are deterministic. Thus, operations fPpg and bPpg

are deterministic. For the full proof see Fact 1 in [24]. ⊓⊔

A correct synchronization framework has to satisfy laws

(a1) − (b2) in Def. 3.4. Intuitively, the propagation opera-

tions have to preserve consistent inputs. First of all, if the

given integrated model is already consistent and the given up-

date does not change anything, then the resulting integrated

model has to be the given one and the resulting update on

the opposite domain has to be the identity (laws (a1) and

(b1)). Most importantly, given an arbitrary integrated model

together with a source update dS : GS → G′S with consistent

new source model G′S ∈ VLS , then the forward propagation

via fPpg has to provide a new consistent integrated model

G′S ↔ G′T ∈ VL. Completeness of a synchronization frame-

work Synch(TGG) requires that operations fPpg and bPpg

can be successfully applied to all consistent source models

G′S ∈ VLS and target models G′T ∈ VLT , respectively. This

property is of general importance in the context of TGGs and

therefore, we explicitly show it together with correctness in

Thm. 8.2 below. Both results are ensured, if the sets of op-

erational rules are deterministic as in Thm. 8.1 and addition-

ally, if they are kernel-grounded (cf. Def. 6.5), i.e., the effec-

tive forward and backward translation rules do not depend on

any source or target identic translation rule, respectively. This

second condition is important for laws (a1)− (b2), because it

ensures that the computed transformation sequences via aux-

iliary operations Del, fAdd, and bAdd can be composed in a

consistent way.

Theorem 8.2 (Correctness and Completeness) Let

Synch(TGG) be a derived TGG synchronization framework,

such that the sets of operational translation rules of TGG

are kernel-grounded and deterministic (see Def. 6.5). Then

Synch(TGG) is correct and complete.

Proof (Idea) By Thm. 8.1, the provided constructions of op-

erations fPpg and bPpg based on the operational translation

rules have functional behavior, i.e., for each input the compu-

tation yields a unique output. Thus, the derived synchroniza-

tion framework is complete.

In order to show correctness, we have to show laws (a1)

and (a2) of Def. 3.4. Precondition G ∈ VL of law (a1) im-

plies that there is a triple sequence ∅ =
tr∗

=⇒ G via TR and by

Rem. 7.3, there is a corresponding complete consistency cre-

ating sequence. Moreover, there is a corresponding forward

translation sequence via TRFT by Thm. 1 in [22]. Using the

precondition that the operational translation rules are kernel-

grounded, we can conclude that all steps via TR1s
FT can be

shifted to the end. Thus, no further forward translation rule

in TR+s
FT is applicable. The functional behavior of operation

fPpg and the given identical source update ds = idGS ensure

the requested result, i.e., we derive target update dT = idGT

and the integrated model G′ = G. In order to show law (a2),

we can use precondition G′S ∈ VLS , which implies that there

is a source consistent forward sequence sF starting at G′S

and a corresponding complete forward translation sequence.

Since the operational rules are kernel-grounded we can con-

clude by Rem. 6.6 that there is a complete forward transla-

tion sequence s+s
FT

via TR+s
FT . Due to functional behavior of

operation Del we derive a consistency creating sequence that

corresponds to the first part of sF and therefore, to a sequence

sFT via forward translation rules. Since the sets of operational

rules are kernel-grounded, we can conclude that the steps via

TR+s
FT do not depend on TR1s

FT . This allows us to complete sFT

using TR+s
FT , where we can shift the source identic steps via

TR1s
FT to the end. Thus, we derive a complete forward trans-

lation sequence, where we can omit the steps via TR1s
FT at the

end. Functional behavior of TR+s
FT implies that this sequence

corresponds to the complete forward translation sequence s+s
FT

and therefore, to a source consistent forward sequence s+s
F

leading to G′. Thus, G′ ∈ VL by Thm. 2 in [17]. For the full

proof see Lemma 3 in [24]. ⊓⊔

Example 8.3 (Correctness and Completeness) The initially

derived set of backward transformation rules for our running

example is not completely deterministic because of the non-

deterministic choice of base and bonus values for propagat-

ing the change of a salary value. Therefore, we defined a

conservative policy for the responsible backward triple rule

by fixing the propagated values of modified salary values to

bonus = base = 0.5 × salary. By Lem. 6.2 in Sec. 6, we pro-

vided a sufficient static condition for checking that a policy is

conservative; we validated our example and showed that the

derived sets of operational rules for fPpg and bPpg are deter-

ministic and kernel-grounded (cf. Fact 7.8 in Sec. 7). For this

reason, we can apply Thm. 8.2 and conclude that the derived
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Model Synchronization Based on Triple Graph Grammars 21

TGG synchronization framework is correct and complete (cf.

Fact 8.4 below).

Fact 8.4 (Case Study: Correctness and Completeness) The

derived synchronization framework for our example TGG is

correct and complete.

Proof By Fact 7.8, we know that the derived synchroniza-

tion operations of our example TGG are deterministic. This

allows us to apply Thm. 8.2 and we derive that the derived

synchronization framework is correct and complete. ⊓⊔

Invertibility of a synchronization framework intuitively

means that the propagation operations are inverse to each

other (cf. Def. 3.4). Weak invertibility requires this property

for a restricted set of inputs, namely those where the given

update on one domain can be interpreted as result of a propa-

gation of an update from the corresponding opposite domain.

In order to ensure invertibility, we require additional prop-

erties of the TGG. If the source identic triple rules are empty

rules on the source and correspondence components and anal-

ogously for the target-identic triple rules, then we say that the

TGG is pure. This condition is used to ensure weak invert-

ibility according to Thm. 8.6 below. In the more specific case

that all triple rules of a TGG are creating on the source and

target components (TR = TR+s = TR+t), then the TGG is

called tight, because the derived forward and backward rules

are strongly related. Effectively, a tight TGG ensures for the

operational forward and backward translation rules that each

of them changes at least one translation attribute. With other

words, for each triple rule tr there is a derived forward trans-

lation rule trFT ∈ TR+s
FT and a derived backward translation

rule trBT ∈ TR+t
BT . This additional property ensures invertibil-

ity according to Thm. 8.6 below.

Definition 8.5 (Pure and Tight TGG) A TGG is called pure,

if TR1s ⊆ TRT and TR1t ⊆ TRS . It is called tight, if the sets of

source and target creating rules TR+s and TR+t coincide with

the set of triple rules TR, i.e., TR = TR+s = TR+t.

Invertibility of the derived synchronization framework

means that the propagation operations are inverse to each

other, while the notion of weak invertibility requires this

property only for a restricted set of inputs (see Def. 3.4).

In addition to the conditions for ensuring a correct synchro-

nization framework (Thm. 8.2), the notions of pure and tight

TGGs allow us to ensure these properties in Thm. 8.6 below.

Theorem 8.6 (Invertibility and Weak Invertibility) Let

Synch(TGG) be a derived TGG synchronization framework,

such that the sets of operational translation rules of TGG

are kernel-grounded and deterministic (see Def. 6.5), TGG

is pure and at most one set of operational translation rules

was extended by a conservative policy, then Synch(TGG) is

weakly invertible. If, moreover, TGG is tight and there was

no policy applied at all, then Synch(TGG) is also invertible.

Proof (Idea) To prove weak invertibility law (c1) in Fig. 3.5,

we can first show that the intermediate triple graphs after ap-

plying bAln, Del and fAln, Del according to Fig. 7.1 and 7.3,

are the same in the last two diagrams of (c1). We compute

all three diagrams of (c1) and obtain consistency creating se-

quences via Del for each diagram using the precondition that

the operational rules are deterministic (which subsumes ter-

mination). Moreover, we derive that the second and the third

diagrams contain the same intermediate triple graph Gl. Af-

terwards, the auxiliary operations fAdd and bAdd for all three

diagrams can be executed. We can use the composition and

decomposition result for TGGs and the requirements that the

TGG is pure, deterministic and preserves functional behavior.

If at most one set of operational translation rules are extended

by a conservative policy, the proof shows that backward trans-

formation sequences are not eliminated by the policy. This

allows us to obtain the resulting diagrams according to law

(c1). The proof for axiom (c2) follows out of the symmetry

of the definitions. To prove invertibility (laws (d1) and (d2)),

we use the preconditions that no policy is applied and that

the TGG is tight, i.e., all rules are source and target creat-

ing. This ensures that for each forward translation sequence

there is a corresponding backward translation sequence. For

the full proof see Thm. 1 in [24], where sets of operational

rules are called deterministic, if they are kernel-grounded and

deterministic using the notions of this article. ⊓⊔

The sets of operational translation rules of TGG are

kernel-grounded and deterministic according to Fact 7.8 in

Sec. 7. Moreover, the TGG is pure and we used the conser-

vative policy for the backward direction only. Thus, Thm. 8.6

ensures that Synch(TGG) is weakly invertible (see Fact 8.7

below).

Fact 8.7 (Case Study: Weak Invertibility) The derived syn-

chronization framework for our example TGG is weakly in-

vertible.

Proof In order to apply Thm. 8.6 concerning weak invertibil-

ity, we have to show that the TGG is pure (cf. Sec. 8) and

at most one set of operational rules was restricted by a con-

servative policy (cf. Def. 6.5). The used policy for the set

of backward translation rules is conservative, which we have

shown already in Fact 8.4. No further policy is applied and

the TGG is pure, because each rule is either creating on the

source and target component, or it is creating either on the

source or the target component and empty on the other com-

ponents. Therefore, we can apply Thm. 8.6 and derive weak

invertibility. ⊓⊔

An intuitive example for weak invertibility is shown in

Ex. 3.5 in Sec. 3, where we also show by counterexample

that the derived synchronization framework for our example

TGG is not invertible in the general sense. The reason is that

information about birth dates is stored in one domain only.

The automated validation for our example TGG with 8 rules

was performed in 25 seconds on a standard consumer note-

book via the analysis engine of the tool AGG [37]. We are

confident that the scalability of this approach can be signifi-

cantly improved with additional optimizations.
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Remark 8.8 (Applicability of the Approach) We provided

sufficient conditions ensuring correctness and completeness

(Thm. 8.2) which can be checked statically. In the following,

we discuss these restrictions with respect to relevant applica-

tion scenarios.

1. Determinism: Most importantly, we require that the de-

rived sets of operational rules are deterministic, i.e.,

the forward and backward propagation operations ensure

unique results. In several application domains, this prop-

erty is already a requirement by the domain experts, i.e.,

has to be ensured anyhow. For example, unique results

are often required for the synchronization between visual

models and implementation code, i.e., for code generation

and reverse engineering. Existing triple rules can be mod-

ified to enforce deterministic based on the discussed crit-

ical pair analysis of a TGG using the tool AGG. For ex-

ample, the designer may insert additional correspondence

nodes (trace links) to enforce determinism and avoid con-

flicts between rules. The condition for determinism does

not seem to confine the expressiveness of TGG rules. In a

large scale industrial project, we used a TGG for the fully

automated translation of satellite control software [32],

where the used TGG contains more than 200 rules and

the derived system of operational rules is deterministic.

As a general recommendation based on the experiences

from this project, we can state that a designer of a TGG

should divide the rules in small groups, such that there are

no cyclic dependencies between the groups.

2. Kernel-grounded sets of operational rules: Intuitively, the

restriction to kernel-grounded rules concerns the possi-

bility that one domain may contain information that is

not present in the corresponding opposite domain. When

translating from one domain to the other, we apply only

those rules that are changing at least one translation at-

tribute (TR+s
FT and TR+t

BT ). Thus, we require that the struc-

tures that concern only one domain are handled separately

by triple rules that are the identity on the correspond-

ing opposite domain (TR1s
FT and TR1t

BT ) and that these sets

of rules do not create structures that may be needed by

the first group of rules. This means that the restriction to

kernel-grounded sets of operational rules mainly restricts

the freedom when designing the TGG and usually not the

problem and application domain itself.

The result on invertibility (Thm. 8.6) requires additional

properties. Weak invertibility is ensured, if the TGG is pure

and at most one of the sets of operational rules is extended

by a conservative policy. While this condition is not very re-

strictive in the experience of the authors, the stronger condi-

tion for invertibility requiring a tight TGG practically means

that all information in one domain are also reflected in the

corresponding opposite domain. This result is consistent with

Diskin et al.’s analysis of strong invertibility [9].

In the case that the specified TGG does not ensure de-

terministic synchronization operations, there are still two op-

tions for synchronization that ensure correctness and com-

pleteness. On the one hand, the triple rules can be modified in

a suitable way, such that the TGG can be verified to be deter-

ministic. For this purpose, the critical pair analysis engine of

the tool AGG [37] can be used to analyze conflicts between

the generated operational translation rules. Moreover, back-

tracking can be reduced or even eliminated by generating ad-

ditional application conditions for the operational translation

rules using the automatic generation of filter NACs [22]. On

the other hand, the TGG can be used directly, leading to non-

deterministic synchronization operations, which may provide

several possible synchronization results.

9 Related Work

Triple graph grammars have been successfully applied in

multiple case studies for bidirectional model transformation,

model integration and synchronization [29,35,15,14], and in

the implementation of QVT [19]. Moreover, several formal

results are available concerning correctness, completeness,

termination [12,16], functional behavior [25,16], and opti-

mization with respect to the efficiency of their execution [22,

30,16]. The presented constructions for performing model

transformations and model synchronizations are inspired by

Schürr et al. [33,35] and Giese et al. [14,15], respectively.

The constructions formalize the main ideas of model syn-

chronization based on TGGs in order to show correctness and

completeness of the approach based on the results known for

TGG model transformations.

Bidirectional transformation frameworks originate from

the lens framework proposed by Foster et al. [13]. Lenses

consider the asymmetric synchronization: one model is a

view of the other, and define a state-based framework for

asymmetric synchronization. ”State-based” means that the

synchronizer takes the states of models before and after up-

date as input, and produces new states of models as output.

Inspired by the lense framework, several researchers propose

state-based framework for symmetric synchronization [36,

27,7]. As a more general case, symmetric synchronization

allows neither of the model to be a view of the other. How-

ever, as Diskin et al. [6] point out, state-based bidirectional

transformations actually mix two different operations–delta

(correspondence relations between models or between dif-

ferent versions of a model) discovery and delta propagation,

leading to several semantic problems. To fix these problems,

several researchers [2,6,8,9,28] propose delta-based frame-

works, where deltas are taken as input and output. Typical

delta-based frameworks include delta lens [6] for the asym-

metric cases, and symmetric delta lens [9] and edit lens [28]

for the symmetric cases.

The model synchronization framework used in this paper

is a simplified version of the symmetric delta lens (sd-lens)

framework proposed by Diskin et al. [9]. The difference be-

tween this paper and sd-lenses is that we do not consider the

weak undoability laws (fUndo) and (bUndo) defined in the

sd-lens framework. In addition, Diskin et al. [9] also refine an

sd-lens as an alignment framework and a consistency main-

tainer. Our implementation is consistent with this refinement
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as well. The alignment framework corresponds to fAln and

bAln operations. The consistency maintainer is implemented

by Del, fAdd, and bAdd operations, which first mark the

consistent parts of the integrated model, then propagate the

changes, and finally delete the remaining inconsistent parts.

As a result, this paper also serves as a proof of concept for

the theory of symmetric delta lenses.

The BiG system proposed by Hidaka et al. [26] is a bidi-

rectional graph synchronization system. Different from our

work based on symmetric TGG specification, the BiG sys-

tem is based on an unidirectional graph transformation lan-

guage, UnQL [4], and thus is asymmetric by nature. Accord-

ingly, the BiG system adopts an asymmetric synchronization

framework (a variant of the basic lens framework [13]), while

our work adopts a simplified version of the symmetric delta

lens [9]. In an asymmetric framework, one model has to be

a view of the other, and it is not possible to synchronize

two models each containing information not presented in the

other.

Giese et al. introduced incremental synchronization tech-

niques based on TGGs in order to preserve consistent struc-

tures of the given models by revoking previously performed

forward propagation steps and their dependent ones [15].

This idea is generalized by the auxiliary operation Del in the

present framework, which ensures the preservation of max-

imal consistent substructures and extends the application of

synchronization to TGGs that are not tight or contain rules

with negative application conditions. Giese et al. [14] and

Greenyer et al. [20] proposed to extend the preservation of

substructures by allowing for the reuse of any partial sub-

structure of a rule causing, however, non-deterministic be-

havior. However, a partial reuse can cause unintended results.

Consider, e.g., the deletion of a person A in the source do-

main and the addition of a new person with the same name,

then the old birth date of person A could be reused.

In order to improve efficiency, Giese et al. [15,14] pro-

posed to avoid the computation of already consistent sub-

structures by encoding the matches and dependencies of

rule applications within the correspondences. In the present

framework, operation Del can be extended conservatively by

storing the matches and dependency information separately,

such that the provided correctness and completeness results

can be preserved as presented in Sec. 8.

Becker et al. presented a generally non-deterministic syn-

chronization approach based on TGGs [3] using the PRO-

GRES approach [34] with the focus to integration, i.e., con-

struction of missing correspondence links. The algorithm re-

quires user interaction at each rule application, where some

integration rules are in conflict for partial matches. For gen-

eral TGGs, such integrations may require backtracking to

achieve a resulting model that is fully integrated. In principle,

it might be possible to adapt this algorithm in order to apply

the main results in this article on correctness and complete-

ness, since the actual steps are performed via the operational

rules of a TGG.

10 Conclusion

Based on our formal framework for correctness, complete-

ness, termination and functional behavior of model transfor-

mations using triple graph grammars (TGGs) [12,22], we

presented a formal TGG framework for model synchroniza-

tion inspired by [15,14,33,35]. The main results (Thms. 8.2

and 8.6) show correctness, completeness and (weak) invert-

ibility, provided that the derived synchronization operations

are deterministic. Based on general results for TGGs in [22],

Thm. 8.1 and Sec. 6 provide sufficient static conditions for

checking that the operations are deterministic.

However, if the operations are not yet deterministic, we

may be able to define a conservative policy in order to ensure

determinism (see Ex. 8.3). Note that our notion of correct-

ness in Def. 3.3 requires that the synchronization operations

are deterministic. But if we drop this requirement for cor-

rectness we are optimistic that our theory can be extended to

handle also applications based on TGGs with nondetermin-

istic model transformations. In fact, the theory of TGGs in

general is not restricted to the deterministic case.

In future work, the Henshin tool [1] based on AGG [37]

will be extended in order to implement the synchronization

algorithm for forward propagation in Fig. 7.3. The implemen-

tation will also support concurrent model synchronization

with conflict resolution based on our approach in [21], where

we extended the synchronization framework of this article to

the concurrent case and we plan to apply these techniques

within an industrial research project [32]. Furthermore, we

will study model synchronization based on non-deterministic

forward and backward propagation operations in more detail.

Finally, the relationship with lenses [36] and delta-based bidi-

rectional transformations [9] will be studied in more detail,

especially in respect of the composition of lenses leading to

the composition of synchronization operations. It is also in-

teresting to investigate the potential of TGG’s to provide a

common implementation framework for a family of algebraic

models for different synchronization modes described in [8].
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Description of the performed changes according to the provided reviews: 
 

We would like to thank the anonymous reviewers for the detailed and constructive comments 

and criticism, which we carefully used for improving the paper. More precisely, the main 

criticisms in the reports are related to presentation aspects (structure, lack of explanations, 

discussion, etc). We have tried to follow your advice. Below you can find a brief description 

of the main changes. Detailed lists to the reviews are provided on the subsequent pages. 

 

1. Improved structure of the paper:  

Previous Sec. 9 on the case study is now integrated within the other sections and 

additional introductions and motivations are provided. 

2. Extension and improvement of explanations throughout the paper and in particular for: 

Definitions 4.2, 5.1, 5.7, 5.8, 8.5 and Theorem 8.6 

3. Improved discussion on relevance and results: e.g. Rem. 8.8 

4. Extended and improved related work in Sec. 9 

5. Improved and revised example: Extended Sec. 2, Improved Ex. 3.5, separate Ex. 6.3 

from Ex. 5.6 
 

 

  

Page 26 of 54

Software and Systems Modelings Editorial Office, Colorado State University, Computer Science Depart, Fort Collins, CO80523, USA

Software and Systems Modeling

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r S

o
sym

 R
eview

Detailed List of Changes Concerning Review #1 

 
 Reviewer Comment and Performed Changes 

 …The article is very well written and overall easy to read. The structural 
arrangement should be improved, since at now it is not proportioned, and 
the main contribution of the work comes only after half of the text. 

 CHANGES: The new parts are partly rearranged and start now in Sec. 3. Former Sec. 9 (case 

study) is integrated in Sections 3,5,7 and 8.  

 Nonetheless, the main problem with this article is the real contribution 
this paper adds to the bidirectional transformation and model 

synchronization community. The theoretical discussion on graph theory 
illustrating and proving conditions on correctness, completeness, and 
invertibility is thorough and technically sound. However, there is no 

discussion about what do these conditions entail for practical purposes. 
For example: 

- how many real-life problems meet the derived conditions? 
- is it possible to draw any conclusion on appropriateness of TGGs for 

model synchronization purposes? 
- how much is limiting to assume that relations are deterministic? 

- how additional trace links can help/influence the theory discussed in the 
paper and improve/relax conditions in order for correctness, completeness, 

and invertibility to hold?  
- how would you compare your derived properties with other graph-theory 
based approaches that provide support for non-bijective relations (e.g., 

PROGRES)? 
 CHANGES:  

- The discussion on how to achieve deterministic relations and the alternative to 

possibly extend the approach to nondeterministic relations is extended by a new 

paragraph 2 in Sec. 10. 

- There is a new Rem. 8.7 and a following paragraph on the applicability of the 

approach for practical purposes discussing opportunities and limitations including a 

pointer to an industrial case study in the domain of satellite systems and the 

discussion on additional trace links. 

- The discussion on related work and concerning the comparison with other 

approaches like PROGRES is extended by new paragraphs 4 and 7 in Sec. 9 

 MINOR COMMENTS: 
- at page 3, please refer to figures by their number; 

- at page 4, column 1, 9 lines from the end, the first relation should be 
G^s <-> G^t without ' ; 

- if figure 4.1, with respect to the forward rule tr_f, I am wondering if 
the first R^s on the left should be L^s instead; 

 CHANGES:  

- The suggested changes have been performed accordingly. 

- Fig. 4.1 was correct already: the forward rule does not change the source component 

and requires the elements to be translated (R^S\L^S) to be present in the LHS. 

 - at page 7, column 1, the last paragraph before Definition 5.1 discusses 
about consistency creating rules. In particular, it is illustrated how 

transformation labels are switched to true to complete the maximal subgraph 
G_k. Is that procedure always correct? In other words, could not happen 
that a rule acts on an overlapping subgraph of G_k and hence cannot be 

applied after the consistency creating rules? 
Please discuss more on this; 

 CHANGES:  

- An additional Remark 5.3 is now provided after Def. 5.1 discussing this effect and 

that it is does not occur in the case of deterministic sets of operational rules as 

presented in subsequent sections. 
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 - at page 9, column 1, please rephrase the paragraph before Definition 5.8 

starting from "In the special case that .. called tight."; 
- at page 10, column 1, line 9, the first MTR_ft should be MTR'_ft; 

- at page 18, column 2, 12 lines from the end, there is a double "is"; 
- when discussing on the critical pair analysis diagrams, please do not 

refer to colors. 

 CHANGES: The suggested changes have been performed accordingly. 

 

Detailed List of Changes Concerning Review #2 
 
 Reviewer Comment and Performed Changes 

 The paper presents a formal synchronization framework based on Triple Graph 
Grammars (TGGs). First the synchronization problem is formally defined in 

terms of enforcing a consistency relation defined by TGG rules. Then it is 
explained how to generate transformation rules from consistency relations. 

Determinism and termination of the transformation rules is discussed. The 
synchronization problems is finally tackled, and results about correctness, 

completeness and invertibility are proved. A small case study is introduced 
at the beginning of the paper and its full solution is described at the 
end. 

The paper is well written and organized. Topic and results are interesting 
both for the graph transformation and the model transformation community. 

For this reason I would recommend this paper for publication in SoSym. 
The level of detail in the formal description is slightly higher than the 

average SoSym publication, and the average reader could have problems 
following the full discussion. Nonetheless the formal framework and results 

are very interesting also for model-transformation researchers, hence I 
would not recommend a simplification. 

 CHANGES:  

Several explanations were added and revised. For example:  

- explanation before Def. 5.1 on the gluing condition 

- Rem. 5.3 on operational rules 

- explanation before Def. 5.7 on complete forward translation sequences 

 I have only a few technical remarks: 
At page 4, "given an integrated model G'S <-> G'T" should be GS <-> GT. 

At page 5, the example in Fig. 3.7 has a different semantics from the 
textual description. It should be updated. 

At page 17 "Empty2OtherPerson" should be "Empty2OtherP" to comply with the 
figure. 

 CHANGES: The suggested changes have been performed accordingly. 

 The paper is an extension of previous publications, and the quantity of new 
material is rather limited. Besides the full code of the example, the 

interesting addition is Section 8, with results on correctness and 
invertibility. However the update looks sufficient, and the topic certainly 

deserves journal publication. 
Finally, while the authors show how to apply the method with AGG, I have 

doubts on the direct usability of the approach in its current state. Given 
a generic consistency relation, a user has to analyze the TGG rules and 

modify them to arrive to get functional and deterministic forward and 
backward transformation. While the provided use case is very simple (it 

requires only to add a simple policy for splitting the salary) I can 
imagine how the applicability to real-world transformations could be 
hampered. The authors should comment about this. 

 CHANGES:  

- The revised version contains a new Rem. 8.7 and a following paragraph on the 
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applicability of the approach for practical purposes discussing opportunities and 

limitations including a pointer to an industrial case study in the domain of satellite 

systems and the discussion on additional trace links. This includes some suggestions 

based on the experiences within this project. 

- The last paragraph in Sec. 10 is extended concerning future work on industrial 

applications. 

 

 

Detailed List of Changes Concerning Review #3 
 
 Reviewer Comment and Performed Changes 

 This article addresses an important problem: how to synchronize models in 

the light of changes being applied to them. It is very well written, is in-
scope for the journal and the ideas and applications will be of interest to 

a wide readership. The article consists of a brief motivation, followed by 
a review of the basic concepts, a definition of the approach, some proofs 

of important properties and validation through a case study. 
 
The focus of the article is in the rigour and formality of the technology 

used to achieve the results. Whilst this is a strength for specialists in 
the field, it significantly detracts from the utility of the article to a 

general model-based readership. The motivation section (2) is woefully 
under-developed and much of the rest of the article consists of a sequence 

of definitions. 
 

I would strongly recommend that the authors consider trying to make this 
article more accessible to a more general readership. The approach appears 

important, novel and interesting, and therefore should be brought to as 
wide a pool of researchers as possible. Section 2 is frankly confusing 'and 
does not show the salary components' - all the boxes have some mention of 

salary, base and bonus. It would be great if the motivation could also be 
extended. Where will this be applied? 

 CHANGES:  

- Sec. 2 is revised concerning the example and including a new paragraph on the 

motivation at the end of the section. 

 It would help if each major section, sub-section, definition, theorem and 

remark could be introduced in terms of its relevance to the use of the 
technology without resorting to formal notation. I do not see this as 

requiring any new research and should be fairly straightforward to achieve. 
 CHANGES: The missing introductions and motivating explanations were added and revised. 

In particular:  

- Sec. 5: Explanation before Def. 5.1 on the gluing condition, Rem. 5.3 on operational 

rules, explanations before Def. 5.7 and 5.8 on complete forward translation 

sequences 

- Extended Def. 6.5 by an additional explaining sentence on sequential dependent 

rules. 

- Extended and revised explanations before Thms. 8.1, 8.2, 8.6 

- Separate Def. 8.5 used for Thm. 8.6 including introduction and discussion 

- General Rem. 8.8 on the applicability of the approach 

 

Page 29 of 54

Software and Systems Modelings Editorial Office, Colorado State University, Computer Science Depart, Fort Collins, CO80523, USA

Software and Systems Modeling

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r S

o
sym

 R
eview

Software and Systems Modeling, submission, manuscript No.
(will be inserted by the editor)

Model Synchronization Based on Triple Graph Grammars

Correctness, Completeness and Invertibility

Frank Hermann1, Hartmut Ehrig2, Fernando Orejas3, Krzysztof Czarnecki4, Zinovy Diskin4, Yingfei Xiong5,6, Susann

Gottmann1, Thomas Engel1

1 Interdisciplinary Center for Security, Reliability and Trust, Université du Luxembourg,
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Abstract Triple graph grammars (TGGs) have been used

successfully to analyze correctness and completeness of bidi-

rectional model transformations, but a corresponding formal

approach to model synchronization has been missing. This

paper closes this gap by providing a formal synchronization

framework with bidirectional update propagation operations.

They are generated from a given TGG, which specifies the

language of all consistently integrated source and target mod-

els.

As our main result, we show that the generated synchro-

nization framework is correct and complete, provided that

forward and backward propagation operations are determin-

istic. Correctness essentially means that the propagation op-

erations preserve and establish consistency while complete-

ness ensures that the operations are defined for all possible

inputs. Moreover, we analyze the conditions under which the

operations are inverse to each other. All constructions and

results are motivated and explained by a running example,

which leads to a case study, using concrete visual syntax and

abstract syntax notation based on typed attributed graphs.

Keywords: model synchronization, correctness, bidirec-

tional model transformation, triple graph grammars

1 Introduction

Bidirectional model transformations are a key concept for

model generation and synchronization within model driven

Correspondence to: frank.hermann(at)uni.lu, xiongyf@pku.edu.cn

engineering (MDE, see [36,31,5]). Triple graph grammars

(TGGs) have been successfully applied in several case stud-

ies for bidirectional model transformation, model integration

and synchronization [29,35,15,14], and in the implementa-

tion of QVT [19]. Inspired by Schürr et al. [33,35], we started

to develop a formal theory of TGGs [12,22], which allows us

to handle correctness, completeness, termination, and func-

tional behavior of model transformations.

The main goal of this article is to provide a TGG frame-

work for model synchronization with correctness guarantees,

which is based on the theory of TGGs, work on incremental

synchronization by Giese et al. [15,14], and the model syn-

chronization framework [8]. The main ideas and results are

the following:

1. Models are synchronized by propagating changes from a

source model to a corresponding target model using for-

ward and backward propagation operations. The opera-

tions are specified by a TGG model framework, inspired

by symmetric replica synchronizers [8] and realized by

model transformations based on TGGs [12]. The speci-

fied TGG also defines consistency of source and target

models.

2. Since TGGs define, in general, non-deterministic model

transformations, the derived synchronization operations

are, in general, non-deterministic. But we are able to pro-

vide sufficient static conditions based on TGGs to ensure

that the operations are deterministic.

3. The main result shows that a TGG synchronization frame-

work with deterministic synchronization operations is

correct, i.e., consistency preserving, and complete. We

also give sufficient static conditions for invertibility and
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weak invertibility of the framework, where “weak” re-

stricts invertibility to a subclass of inputs.

Deriving a synchronization framework from a TGG has

the following practical benefits. Consistency of the related

domains is defined declaratively and in a pattern-based style,

using the rules of a TGG. After executing a synchronization

operation, consistency of source and target models is always

ensured (correctness) and the propagation operations can be

performed for all valid inputs (completeness). The required

static conditions of a TGG and the additional conditions for

invertibility can be checked automatically using the existing

tool support of AGG [37].

This article is based on previous work in [23] and pro-

vides extended explanations and results. In particular, we

present the technical details concerning determinism of TGG

operations in Sec. 6 including the corresponding formal re-

sult in Thm. 8.1. Concerning correctness, completeness and

invertibility of the synchronization framework, we provide

extensive technical details leading to the two main theo-

rems Thm. 8.2 and Thm. 8.6. Moreover, we present the com-

plete TGG of our case study throughout the paper including

the derived operational rules and the detailed analysis results

using the tool AGG, while only a small subset of the rules is

presented in [23].

The next section presents our running example and a gen-

eral motivation. Sec. 3 introduces the TGG model synchro-

nization framework and Sec. 4 reviews model transforma-

tions based on TGGs. Thereafter, Sec. 5 provides extended

concepts concerning efficient executions based on marking

rules. We present the automated analysis techniques for en-

suring deterministic behavior in Sec. 6. On this basis, we de-

scribe and illustrate the general synchronization process in

Sec. 7. Thereafter, Sec. 8 presents the main results on correct-

ness, completeness and invertibility of the model synchro-

nization framework. Finally, Sec. 9 and 10 discuss related

work, conclusions, and future work. The proofs of technical

results are provided in a technical report [24].

2 Example and Motivation

Throughout the paper, we use a simple running example,

which is based on previous work [6]. The example considers

the synchronization of two organizational diagrams as shown

in Fig. 2.1. Diagrams in the first domain — depicted left —

provide a view on employees of the marketing department of

a company, while diagrams in the second domain — depicted

right — show all employees. Furthermore, both domains dif-

fer on the type of information they specify for a person. Di-

agrams on the left show the base and bonus salary values of

each person, while diagrams in the second domain show only

the total salary for each person, but additionally, they pro-

vide the birth dates (marked by “*”) for each person. There-

fore, both domains contain exclusive information and none of

them can be interpreted as a view—defined by a query—of

the other. Both diagrams together with some correspondence

structure build up an integrated model, where we refer to the

first diagram as the source model and to the second diagram

as the target model. Such an integrated model is called con-

sistent, if the diagrams coincide on names of corresponding

persons, the salary values are equal to the sums of the cor-

responding base and bonus values, and persons in the source

domain are exactly those who are marked with “M” in the

target domain.

Fig. 2.1 Forward propagation

Example 2.1 (Update Propagation) The first row of Fig. 2.1

shows a consistent integrated model M in a visual notation.

The source model of M consists of two persons belonging

to the marketing department (depicted as persons with label

“M” and without pencils) and the target model additionally

contains the person “Bill Gates” belonging to the technical

department (depicted as a person with label “T” and with pen-

cil). The first column shows an update of the source model,

where person “Bill Clinton” is removed and some attribute

values of person “Melinda French” are modified. This change

is propagated to the target domain leading to a target update

(right column) and a new integrated model (bottom row).

The synchronization problem is to propagate a model up-

date in a way, such that the resulting integrated model is

consistent. Looking at Fig. 2.1, this requires that the source

model update of removing person “Bill Clinton” and chang-

ing the attributes LastName and Bonus of person “Melinda

French” is propagated in an appropriate way to the target do-

main. In this example, this means that the executed forward

propagation (fPpg) shall remove person “Bill Clinton” and

update the attribute values of “Melinda French” in the target

model, such that the unchanged birth date value and consis-

tency is preserved.

Synchronization scenarios like the one in our example,

are present in many domains. Consider for example synchro-

nizations between different kinds of visual models for soft-

ware development, models for software analysis and even

source code. Synchronizations between these domains of-

ten need to provide mechanisms that do not require that one

model can be completely obtained from the other. In other

words, none of the models is just a view of the other. In this

article, we will show how this flexibility in the synchroniza-

tion process is possible based on the formal notion of triple

graph grammars. We stepwise develop the required formal

techniques and illustrate them on the running example in
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Model Synchronization Based on Triple Graph Grammars 3

Fig. 2.1, whose intermediate steps are presented in Fig. 7.2

of Sec. 7.

3 Model Synchronization Framework

In this section, we describe the basic framework that we con-

sider in the paper. First, we introduce the notion of triple

graphs to describe pairs of interrelated models and triple

graph grammars (TGGs) as a tool to specify classes of what

we consider consistent interrelated models [33]. Then we de-

fine the notion of a TGG model framework to describe the

basic TGG setting that we must consider to define and solve

synchronization problems. The framework is a simplified ver-

sion of the symmetric delta lens proposed by Diskin et al. [8].

Finally, we define formally synchronization problems, and the

propagation operations that are needed to solve them. In par-

ticular, a model framework becomes a synchronization frame-

work when these operations are considered. Moreover, we

state some properties that in our view propagation operations

must satisfy.

Model synchronization aims to achieve consistency

among interrelated models. In particular, we consider that

a model is some kind of graph and that graphs are related

by means of graph morphisms consisting of two functions

that map nodes to nodes and edges to edges, respectively, in

a consistent way. Moreover, we consider that a pair of in-

terrelated models (MS ,MT ), called source and target mod-

els, are represented by a triple graph, which we also call an

integrated model. This triple graph consists of three graphs

GS (representing MS ), GC , and GT (representing MT ), called

source, correspondence, and target graphs, respectively, to-

gether with two mappings (graph morphisms) sG : GC → GS

and tG : GC → GT . These two mappings specify a correspon-

dence r : GS ↔ GT , which relates the elements of GS with

their corresponding elements of GT and vice versa. In addi-

tion, our triple graphs may also contain attributed nodes and

edges [12,11].

For simplicity, we use double arrows (↔) as an equiva-

lent shorter notation for triple graphs, whenever the explicit

correspondence graph can be omitted.

(GS

mS ��

G GCsG
oo

mC ��

tG
// GT )
mT ��

(HSH

m
��

HC
sH

oo

tH

// HT )

Fig. 3.1 Triple graph morphism

A triple graph mor-

phisms m : G → H

relates two triple graphs

G and H. It consists of

three graph morphisms

that preserve the associ-

ated correspondences (i.e., the diagrams in Fig. 3.1 com-

mute).

Our graphs and triple graphs are typed. This means that

a type triple graph TG is given (playing the role of a meta-

model) and, moreover, every triple graph G is typed by a

triple graph morphism typeG : G → TG. It is required that

morphisms between typed triple graphs preserve the typing.

Triple graphs specify the abstract syntax of visual languages

in an integrated way. For TG = (TGS ← TGC → TGT ),

we use VL(TG) (integrated models), VL(TGS ) (source do-

main), and VL(TGT ) (target domain) to denote the classes of

all graphs typed over TG, TGS , and TGT , respectively.

A TGG specifies a language of triple graphs, which are

considered as consistent integrated models. The triple rules of

a TGG are used to synchronously build up source and target

models, together with the correspondence structures.

(LS

� _
trS

��

L LC
sL

oo
� _

trC
��

tL
// LT )

� _
trT

��

(RSR

� _
tr
��

RC
sR

oo
tR

// RT )

L

m
��

� � tr
// R

n
��

(PO)

G
� �

t
// H

Fig. 3.2 Triple rule and triple graph transformation step

A triple rule tr, as depicted in Fig. 3.2, is an inclusion

of triple graphs, represented L ֒→ R. It specifies how a given

consistent integrated model can be extended simultaneously

on all three components yielding again a consistent integrated

model. In particular, this means that triple rules are non-

deleting. This is sufficient, because triple rules are not used

for editing in the source and target domains. Moreover, as

shown in [22], triple rules can be extended by negative ap-

plication conditions (NACs) for restricting their application

to specific matches. Notice that one or more of the rule com-

ponents trS , trC , and trT may be empty. In the example, this

is the case for a rule concerning employees of the technical

department within the target model. A triple rule is applied to

a triple graph G by matching L to some part of triple graph G.

Technically, a match is a morphism m : L→ G. The result of

this application is the triple graph H, where L is replaced by

R in G. Technically, the result of the transformation is defined

by a pushout diagram [11] (PO), as depicted in Fig. 3.2 on the

right. This triple graph transformation (TGT) step is denoted

by G =
tr,m
==⇒ H. From the application point of view, we con-

sider that matches should be injective on the structural part.

This means that two distinct nodes (edges) in the left hand

side of a rule are never mapped to the same node (edge) in the

current triple graph G, i.e., identification of elements in L via

a match to G is not possible. But it would be too restrictive to

require injectivity of the matches also on the data and variable

nodes, because we must allow that two different variables are

mapped to the same data value. For this reason we use the no-

tion of almost injective matches, which requires that matches

are injective except for the data value nodes. This way, at-

tribute values can still be specified as terms within a rule and

matched non-injectively to the same value. For the rest of this

paper we generally require almost injective matching for the

transformation sequences.

A triple graph grammar TGG = (TG, S ,TR) consists of

a triple type graph TG, a triple start graph S (typically, the

empty triple graph) and a set TR of triple rules. The lan-

guage generated by TGG, denoted VL(TGG), is the set of all

(well-typed) triple graphs that can be generated from the start

graph S using the rules in TR. Notice that, as a consequence,

VL(TGG) ⊆ VL(TG).
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4 Frank Hermann et al.

The triple graph grammar TGG = (TG,∅,TR) of our case

study is given by the triple type graph TG in Fig. 3.3, the

empty start graph and the triple rules in Fig. 3.4.

Fig. 3.3 Triple type graph TG

Example 3.1 (Type Graph) The triple type graph TG of our

example is shown in Fig. 3.3. It specifies that models of the

source domain contain persons including their detailed salary

information (bonus and base salary) and their names. Models

of the target domain additionally contain the departments to

which a person is assigned to, the birth date of a person, and

a single value for the complete salary of a person, while the

details about bonus and base salary are not provided.

Example 3.2 (Triple Rules) The triple rules of the TGG

are depicted in a compact notation in Fig. 3.4. Left- and

right-hand side of a rule are depicted in one triple graph

and the elements to be created—and, thus, exist in the

right-hand side only—have the label “++”. The first rule

(Person2FirstMarketingP) inserts a new department with

name “Marketing” and the NAC ensures that none of the ex-

isting departments is named equally. The rule creates a per-

son of the new department in the target model as well as a

corresponding person in the source model. Note that the left

hand side of this rule is empty, i.e., it does not require existing

structures. Rule Person2NextMarketingP is used to extend

both models with further persons in the marketing depart-

ment. The left hand side of this rule contains the department

node with name “Marketing”. Note that the attributes of the

created persons are not set with these rules. This is possible

in our formal framework of attributed graph transformation

based on the notion of E-graphs [11]. The main advantage is

Fig. 3.4 Triple rules

that we can propagate changes of attribute values without the

need for deleting and recreating the owning structural nodes.

This is important from the efficiency and application point

of view. Thus, rules 3-6 concern the creation of attribute val-

ues only. Rules 3 (FName2FName) and 4 (LName2LName)

create new corresponding values for first and last names, re-

spectively. The next rule (Empty2Birth) assigns the birth date

of a person in the target component and does not change the

source component. Finally, rule 6 (DetailedSalary2Salary)

assigns the detailed salary values (bonus and base) in the

source component and the sum of them in the target com-

ponent. Rule 7 (Empty2OtherDepartment) creates a new de-
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Model Synchronization Based on Triple Graph Grammars 5

(a1) :

∀ c ∈ C :

GS oo
c

//

1
�� u:fPpg

GT

1
��

GS oo
c

// GT

(a2) :

∀ G′S ∈ VLS :

GS oo
r

//

a
�� u:fPpg

GT

b��

G′S oo

r′:C

// G′T

(b1) :

∀ c ∈ C :

GS oo
c

//

1
�� w:bPpg

GT

1
��

GS oo
c

// GT

(b2) :

∀ G′T ∈ VLT :

GS oo
r

//

a
�� w:bPpg

GT

b��

G′S oo

r′ :C

// G′T

(c1) :

GS oo
r

//

a1
��
u:fPpg

GT

b
�� u:bPpg

GS//
r

oo oo
r

//

a2
��
u:fPpg

GT

b
��

GS
1
oo

r1

// G′T GS
2

//
r2

oo oo
r2

// G′T
(d1) :

GS oo
r

//

a1 �� u:fPpg

GT

b�� u:bPpg

GS//
r

oo

a2��

G′S oo

r′
// G′T G′S//

r′
oo

(c2) :

GT oo
r

//

b1
��
u:bPpg

GS

a
�� u:fPpg

GT//
r

oo oo
r

//

b2
��
u:bPpg

GS

a
��

GT
1
oo

r1

// G′S GT
2

//
r2

oo oo
r2

// G′S
(d2) :

GT oo
r

//

b1 �� u:bPpg

GS

a
�� u:fPpg

GT//
r

oo

b2��

G′T oo

r′
// G′S G′T//

r′
oo

Fig. 3.5 Laws for correct and (weak) invertible synchronization frameworks

partment that is not named “Marketing”, but does not change

the source model. The negative application condition (NAC)

ensures that the used attribute value is different from “Mar-

keting”. The last rule Empty2OtherP of the TGG creates

a new person of a department that is not in the marketing

department. Therefore, there are no correspondences to the

source model and the rule directly creates the person includ-

ing all attribute values.

A TGG model framework specifies the possible corre-

spondences between models and updates of models for a

given TGG, according to Def. 3.3 below. More precisely, a

model framework is defined as consisting of the classes of

well-typed source and target models, the class of correspon-

dences between source and target models (i.e., the class of

well-typed triple graphs), the subset of consistent correspon-

dences (i.e., the class of triple graphs defined by the given

TGG) and the classes of source and target updates. In partic-

ular, a model update δ : G → G′ is specified as a graph mod-

ification consisting of two inclusions, δ : G ←֓ I ֒→ G′. The

intuition of a graph modification is that the inclusion I ֒→ G

specifies the elements that are deleted from G (all the ele-

ments that are not in I) and I ֒→ G′ specifies all the elements

that are added by δ (all the elements in G′ that are not in

I). Therefore, the elements in I are the elements that remain

invariant after the modification. It may be noted that graph

modifications look like triple graphs, however their role is

different: triple graphs are used to make explicit the interrela-

tions between two integrated models, while graph modifica-

tions are used to describe updates on a given model.

Definition 3.3 (TGG Model Framework) Let TGG =

(TG,∅,TR) be a triple graph grammar with empty start

graph ∅ and triple type graph TG containing source and

target components TGS and TGT , and a set TR of triple

rules. The derived TGG model framework MF(TGG) =

(VL(TGS ),VL(TGT ),R,C, ∆S , ∆T ) consists of source domain

VL(TGS ), target domain VL(TGT ), the set R of correspon-

dence relations given by R = VL(TG), the set C of consistent

correspondence relations C ⊆ R given by C = VL(TGG),

(i.e., R contains all integrated models and C all consistent in-

tegrated ones), and sets ∆S , ∆T of graph modifications for the

source and target domains, given by ∆S = {a : GS → G′S |

GS ,G′S ∈ VL(TGS ), and a is a graph modification} and

∆T = {b : GT → G′T | GT ,G′T ∈ VL(TGT ), and b is a graph

modification}, respectively.

GS oo
r

//

a
�� u:fPpg

GT

b��

G′S oo

r′
// G′T

GS oo
r

//

a
�� w:bPpg

GT

b��

G′S oo

r′
// G′T

Fig. 3.6 Synchronization operations

Given a TGG model framework, the synchronization

problem is to provide suitable total and deterministic forward

and backward operations fPpg and bPpg that propagate up-

dates on one model (GS or GT ) to the other model. More

precisely, given an integrated model (a correspondence rela-

tion) GS ↔ GT and an update a : GS → G′S , the opera-

tion fPpg must propagate the update a to GT returning as re-

sults an update b : GT → G′T and a correspondence relation

G′S ↔ G′T . Similarly, bPpg is the dual operation that prop-

agates updates on target models to updates on source mod-

els. The effect of these operations is depicted schematically

in the diagrams on Fig. 3.6, which we call synchronization

tiles, where we use solid lines for the inputs and dashed lines

for the outputs [8]. Note that, in a common tool environment,

the required input for these operations is either available di-

rectly or can be obtained. For example, the graph modifica-

tion of a model update can be derived via standard difference

computation and the initial correspondence can be computed

based on TGG integration concepts [10,29]. Note also that

determinism of fPpg means that the resulting correspondence

G′S ↔ G′T and update b : GT → G′T are uniquely deter-

mined. The propagation operations are correct, if they addi-

tionally preserve consistency as specified by laws (a1) − (b2)

in Fig. 3.5. Law (a2) means that fPpg always produces con-

sistent correspondences from consistent updated source mod-

els G′S . Law (a1) means that if the given update is the iden-

tity and the given correspondence is consistent, then fPpg

changes nothing. Laws (b1) and (b2) are the dual versions
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6 Frank Hermann et al.

concerning bPpg. Moreover, the sets VLS and VLT specify

the consistent source and target models, which are given by

the source and target components of the integrated models in

C = VL(TGG).

Definition 3.4 (Synchronization Problem and Framework)

Let MF = (VL(TGS ), VL(TGT ),R,C, ∆S , ∆T ) be a TGG

model framework. The forward synchronization problem is

to construct an operation fPpg : R ⊗ ∆S → R × ∆T

leading to the left diagram in Fig. 3.6, where R ⊗ ∆S =

{(r, a) ∈ R × ∆S |r: GS ↔ GT , a: GS → G′S }, i.e., a and r co-

incide on GS . The pair (r, a) ∈ R ⊗ ∆S is called premise and

(r′, b) ∈ R × ∆T is called solution of the forward synchroniza-

tion problem, written fPpg(r, a) = (r′, b). The backward syn-

chronization problem is to construct an operation bPpg lead-

ing to the right diagram in Fig. 3.6. Operation fPpg is called

correct with respect to C, if axioms (a1) and (a2) in Fig. 3.5

are satisfied and, symmetrically, bPpg is called correct with

respect to C, if axioms (b1) and (b2) are satisfied.

Given total and deterministic propagation operations

fPpg and bPpg, the derived synchronization framework

Synch(TGG) is given by Synch(TGG) = (MF, fPpg, bPpg).

It is called correct, if fPpg and bPpg are correct; it is weakly

invertible if axioms (c1) and (c2) in Fig. 3.5 are satisfied; and

it is invertible if additionally axioms (d1) and (d2) in Fig. 3.5

are satisfied.

Invertibility (laws (d1) and (d2)) means that the propaga-

tion operations are essentially inverse of each other. For in-

stance, axiom (d1) states that if we propagate update a1 :

GS → GS
1

to GT obtaining as result update b, and now we

propagate update b to GS , we obtain the same result GS
1

.

However, notice that we do not require that the resulting up-

date a2 must coincide with a1. In particular, it may be possible

that the set of elements of GS that are not modified by a1 may

not coincide with the set of elements that are not modified

by a2, even if they produce the same result GS
1

(see Ex. 3.5

below). However, as we show in Sec. 8, we are able to en-

sure the more flexible notion of weak invertibility (laws (c1)

and (c2)) for our example. More precisely, weak invertibil-

ity expresses that the two operations are the inverse of each

other, up to certain information that may be lost when ap-

plying the operations. For instance, in axiom (c1) the intu-

ition is that update b, the result of propagation of update a1,

may ignore part of the information added by a1, because this

kind of information may not be relevant for target models. As

a consequence, when propagating b to GS this information

would be lost. However, this law also states that no informa-

tion added by update b would be ignored when propagating

it to GS . The reason is that all that information was, in some

sense, included in update a1, so it must be relevant for source

models.

Example 3.5 (Invertibility and Weak Invertibility) Consider

a model update b1 of a given target model, as depicted in

Fig. 3.7, where a new person is added together with his birth

date, leading to a target model G′T . The propagation via bPpg

Fig. 3.7 Counter example for invertibility

Fig. 3.8 Example for weak invertibility

yields an update a, whose resulting source model G′S in-

cludes that person without his birth date. Now, the propaga-

tion of a via fPpg yields an update b2 whose resulting target

model G′′T does not contain any information about the birth

date. Therefore, G′T , G′′T meaning that Synch(TGG) is not

invertible, since law (d2) does not hold. However, if we con-

tinue the diagram and perform an additional backward propa-

gation as in Fig. 3.8, we derive a source update that coincides

again with a, i.e., the diagrams satisfies law (c2) of weak in-

vertibility.

4 Model Transformation Based on TGGs

In the previous section, we have seen how we can use TGGs

to specify the set of consistent correspondences between two

classes of models. In this section, we show how we can use

TGGs to implement (bidirectional) model transformations

[33,12]. More precisely, given a source model GS (respec-

tively, a target model GT ), the model transformation prob-

lem is to find a target model GT (respectively, a source model

GS ) such that GS ↔ GT is a consistent correspondence (or,

equivalently, GS ↔ GT belongs to the language generated

by the TGG). In particular, we will see that this can be done

by means of the operational transformation rules that can be

generated automatically from a TGG.

There are four classes of operational transformation rules,

source rules allow us to parse source models, forward rules

build target models out of source models, target rules allow

us to parse target models, and finally backward rules build

source models out of target models. In particular, for a given

TGG, the sets TRS and TRF including all source and forward

rules, respectively, are derived from the triple rules TR in the

TGG as shown in Fig. 4.1. Their construction is shown by

Ex. 4.1. The sets of target rules TRT and backward rules TRB

are derived analogously. Moreover, in [12], the generation of

operational transformation rules has been extended to triple

rules with negative application conditions.
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Model Synchronization Based on Triple Graph Grammars 7

(LS

trS
��

L LC
sL

oo

trC
��

tL
// LT )

trT
��

(RSR

tr
��

RC
sR

oo
tR

// RT )

triple rule tr

(LSLS

trS
��

∅oo

��

// ∅)

��

(RSRS

trS ��

∅oo // ∅)

source rule trS

(RS

id ��

LF LC
trS ◦sL

oo

trC
��

tL
// LT )

trT
��

(RSRF

trF ��

RC
sR

oo
tR

// RT )

forward rule trF

Fig. 4.1 Derived source and forward rules

Fig. 4.2 Derived source and forward rules for FName2FName

Example 4.1 (Operational Transformation Rules) The rules

in Fig. 4.2 are the derived source and forward rules of the

triple rule FName2FName in Fig. 3.4.

The basic idea of how we can build a target model out

of a source model using source and forward rules can be ex-

plained quite simply1. Let us suppose that we want to find

a model GT from a source model GS such that GS ↔ GT

is a consistent correspondence (assuming that this model

exists). If GS ↔ GT is consistent this means that, start-

ing from the empty triple graph, there must be a derivation

(∅ ↔ ∅) =
tr1

=⇒ (GS
1
↔ GT

1 ) =
tr2

=⇒ . . . =
trn

=⇒ (GS
n ↔ GT

n ), where

GS
n ↔ GT

n = GS ↔ GT ) and tr1, . . . , trn are triple rules in the

TGG. Now we may notice that each triple rule can be seen as

the composition of its associated source rule followed by its

associated forward rule. This means that the above derivation

is equivalent to the derivation (∅ ↔ ∅) =
trS ,1

==⇒ (GS
1
↔ ∅) =

trF,1

==⇒

(GS
1
↔ GT

1 ) . . . =
trS ,n

==⇒ (GS ↔ GT
n−1) =

trF,n

==⇒ (GS ↔ GT ),

where each source rule trS ,i and its associated forward rule

trF,i are applied with a compatible match. But, since the ap-

plication of a source rule trS ,i is independent of the applica-

tion of any forward rule trF, j, provided that i < j, we have

that the previous derivation is equivalent to the derivation

(∅ ↔ ∅) =
trS ,1

==⇒ (GS
1
↔ ∅) =

trS ,2

==⇒ . . . =
trS ,n

==⇒ (GS ↔ ∅) =
trF,1

==⇒

(GS ↔ GT
1 ) =

trF,2

==⇒ . . . =
trF,n

==⇒ (GS ↔ GT ), where each source

rule trS ,i and its associated forward rule trF,i are applied with

a compatible match.

In this sense, we say that a forward transformation se-

quence (G0 =
tr∗

F

==⇒ Gn) is source-consistent if there is a corre-

sponding source sequence (∅ =
tr∗

S

=⇒ G0) , such that the matches

of corresponding source and forward steps are compatible;

and, as a consequence, we know that a source model GS can

be transformed into a target model GT if there is a source-

1 The backward case is similar.

consistent forward transformation sequence (GS ↔ ∅) =
tr∗

F

==⇒

(GS ↔ GT ). The set of all source consistent forward se-

quences defines a model transformation based on forward

rules from the source domain VL(TGS ) to the target domain

VL(TGT ).

Definition 4.2 (Model Transformation based on Forward

Rules) A model transformation sequence (GS , G0 =
tr∗

F

=⇒ Gn,

GT ) consists of a source graph GS , a target graph GT , and

a source consistent forward TGT-sequence G0 =
tr∗

F

=⇒ Gn with

GS = GS
0

and GT = GT
n . A model transformation MT :

VL(TGS ) ⇛ VL(TGT ) is defined by all model transforma-

tion sequences (GS ,G0 =
tr∗

F

=⇒ Gn,G
T ) with GS ∈ VL(TGS ) and

GT ∈ VL(TGT ).

Hence, source consistency is a control condition that has

to be used in the construction of forward transformation se-

quences, in order to implement a model transformation based

on TGGs. In principle, the source sequence is obtained a

priori by parsing the given source model in order to guide

the forward transformation. However, source and forward se-

quences can be constructed simultaneously and backtracking

can be reduced (c.f. Sec. 6) in order to derive efficient execu-

tions of model transformations [12,22].

Model transformations based on forward rules as defined

above are always correct and complete [12,18,22] in the fol-

lowing sense. Correctness means that for each source model

GS that is transformed into a target model GT there is a model

G = (GS ← GC → GT ) in the language of consistent inte-

grated models VL(TGG) defined by the TGG. Completeness

ensures that for each consistent source model there is a for-

ward transformation sequence transforming it into a consis-

tent target model.

5 Model Transformation and Marking using Translation

Attributes

According to the results presented in the previous section,

in order to build forward transformation sequences to im-

plement model transformations, we need to use source con-

sistency as a separate control condition. In this section, we

show how we can automatically integrate the computation

of source consistency in the model transformation process.

The idea is to use translation attributes and forward trans-

lation rules instead of standard forward rules. In particular,

as shown in [22], this allows for the efficient implementation

and analysis of model transformations. We also show that the

same idea can be used to partially parse a given triple model

G, where partial parsing means finding a maximal consis-

tent submodel G0 ⊆ G. For this reason, the rules needed in

this case are called consistency creating rules. The section

is organized as follows, first we describe what translation

attributes are. Then we define forward translation rules and

consistency creating rules, and how they are used. Finally,

we provide some discussion about termination of transfor-

mations using these rules.
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main components new NAC for each

n : L→ N of tr

trCC LCC KCC
? _

lCCoo � � rCC // RCC

(R ⊕ AttT
L ⊕ AttF

R\L) (R ⊕ AttT
L ) (R ⊕ AttT

L ⊕ AttT
R\L)

NCC = (LCC +L N)

⊕AttT
N\L

trFT LFT KFT
? _

lFToo � � rFT // RFT

(LF ⊕ AttT
LS
⊕ AttF

RS \LS
) (LF ⊕ AttT

LS
) (RF ⊕ AttT

LS
⊕ AttT

RS \LS
)

NFT = (LFT +L N)

⊕AttT
NS \LS

trBT LBT KBT
? _

lBToo � � rBT // RBT

(LB ⊕ AttT
LT
⊕ AttF

RT \LT
) (LB ⊕ AttT

LT
) (RB ⊕ AttT

LT
⊕ AttT

RT \LT
)

NBT = (LBT +L N)

⊕AttT
NT \LT

Fig. 5.1 Components of derived operational translation rules

Translation attributes are boolean-valued attributes that

we associate to nodes, edges, and also other attributes to de-

note if that element has been translated or not, in the case of

model transformation, or if it has been parsed or not, in case

that we are interested in finding a maximal consistent sub-

model of a given model. In general, we may not want to add

translation attributes to the complete graph, but only to a part

of it. For instance, in the case of forward transformation we

just need to add attributes to the source part. More precisely,

given an attributed graph AG and a subset M of its elements

(nodes or edges), we call AG′ a graph with translation at-

tributes over AG if it extends AG with one Boolean-valued at-

tribute tr x for each element x in M and one Boolean-valued

attribute tr x a for each attribute associated to such an ele-

ment x in M. The set M of marked elements, together with

all these additional translation attributes is denoted by AttM .

Using the concept of translation attributes we provide ex-

tended operational rules, called operational translation rules,

such that transformations via these rules do not need to be

controlled by a separate control condition. There are three

sets of operational translation rules that we derive from a

given set TR of TGG-triple rules: TRFT (the set of forward

translation rules), TRBT (the set of backward translation rules)

and TRCC (the set of consistency creating rules).

A forward translation rule trFT , introduced in [25], ex-

tends the forward rule trF by additional Boolean valued trans-

lation attributes, which are markers for elements in the source

model and specify whether the elements have been translated

already. Each forward translation rule trFT turns the markers

of the source elements that are translated by this rule from

F to T (i.e., the elements that are created by trS ). This way,

we can ensure that each element in the source graph is not

translated twice, but exactly once. The idea of how forward

translation rules are used to implement model transforma-

tions works as follows. At the beginning, the source model

of a model transformation sequence is extended by transla-

tion attributes that are all set to “F”. Then, the application

of a forward translation rule sets to “T” all the elements that

are translated by the rule. Finally, the model transformation

is successfully executed if the source model is completely

marked with T. However, if we arrive to a model which can-

not be further transformed and where some of its translation

attributes are F then we know that the transformation process

has failed and we would probably have to backtrack to find

a correct transformation. In the examples, we indicate these

markers by check marks in the visual notation and by bold

font face in the graph representation.

Due to the modification of the translation attributes, the

rules are deleting, which means that, technically, the rules

cannot be denoted by inclusions L ֒→ R. As a consequence,

from a formal point of view, triple transformations are not

defined as a pushout, but in terms of the classical double

pushout (DPO) approach [11]. Moreover, according to the

theory of graph transformation ([11]), the application of a

deleting graph transformation rule must satisfy the so-called

gluing condition. However, in the case of the operational

triple rules with translation attributes, this is guaranteed. The

reason is that forward translation rules are deleting only on

attribution edges, where there are no dangling points, and

all identification points are preserved for almost injective

matches.

Consistency creating rules are used to compute maximal

subgraphs Gk of a given triple graph G typed over TG, such

that Gk ∈ VL(TGG). In the special case that G ∈ VL(TGG),

we know that Gk � G. Each consistency creating rule

switches labels from F to T for those elements that would

be created by the corresponding TGG-rule in TR. This means

that elements in the left hand side LCC = R are labeled with

T, if they are also contained in L, and they are labeled with

F otherwise. Accordingly, all elements in the right hand side

RCC are labeled with T.

The operational translation rules of a TGG are used for

the propagation of changes during a synchronization. They

consist of the derived forward translation, backward transla-

tion and consistency creating rules.

Definition 5.1 (Operational Translation Rules) Given a

triple rule tr = (L→ R) and its derived source rule trS =

(LS → RS ), target rule trT = (LT → RT ), forward rule

trF = (LF → RF) and backward rule trB = (LB → RB), the
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Model Synchronization Based on Triple Graph Grammars 9

derived translation rules of tr are given by consistency creat-

ing rule trCC = (LCC ←
lCC
−−− KCC −

rCC
−−→ RCC), forward translation

rule trFT = (LFT ←
lFT
−− KFT −

rFT
−−→ RFT ), and backward translation

rule trBT = (LBT ←
lBT
−− KBT −

rBT
−−→ RBT ) defined in Fig. 5.1 using

the notation based on translation attributes. By TRCC, TRFT ,

TRBT we denote the sets of all derived consistency creating,

forward translation and backward translation rules, respec-

tively.

Remark 5.2 (Construction of Operational Rules) Note that in

Fig. 5.1 (B+A C) is the union of B and C with shared A, such

that for instance (LFT +L N) is the union of LFT and N with

shared L. Also, G⊕AttT
M denotes adding to the graph G trans-

lation attributes for all the elements and attributes included in

M ⊆ G, and moreover all these attributes are set to T. Sim-

ilarly, G ⊕ AttF
M denotes adding to G all these attributes, but

this time they are set to F.

Remark 5.3 (Interdependencies between Operational Rules)

The consistency creating rules (TRCC) are used in Sec. 7 for

marking the already consistent parts of a given integrated

model in the second sub-phase of the synchronization. The

forward and backward translation rules are used for the third

sub-phase. This third sub-phase can be interpreted as a com-

pletion of the computed sequence of the second sub-phase.

We show in Sec. 7 that this continuation is always possible if

the sets of operational rules are deterministic, for which we

also provide an automated check and analysis. If a TGG does

not ensure deterministic sets of operational rules, the com-

puted maximal subgraph via TRCC may be too large to find a

corresponding completion via forward (backward) translation

rules. In this case, a possible solution would be to perform

backtracking for sub-phases 2 and 3 of the synchronization.

Example 5.4 (Derived Sets of Consistency Creating Rules)

Figures 5.2-5.3 show the set of the consistency creating rules

derived from the triple rules in Ex. 3.2 according to Def. 5.1.

They do not modify the structure of a triple graph, but only

the translation attributes. They are used for marking consis-

tent substructures of a given triple graph, i.e., of a given in-

tegrated model. By applying all derived consistency creating

rules as long as possible to a given triple G graph with all

translation attributes set to “F”, a maximal consistent triple

graph that is contained in G is computed. Intuitively, for each

element x ∈ R (node, edge, or attribute) of a triple rule

tr = (L → R) a separate translation attribute (tr or tr x)

is added for the consistency creating rule trCC. If an element

x ∈ R is preserved by the triple rule tr (x ∈ L), then the

consistency creating rule preserves it as well and the transla-

tion attribute has value T. Otherwise, if x ∈ R is created by

tr (x ∈ R \ L), then it becomes a preserved element in the

consistency creating rule trCC and the corresponding transla-

tion attribute is changed from F to T. In visual notation, this

means that all plus signs are replaced by additional transla-

tion attributes whose values are changed from F to T and we

denote such a modification by [F⇒ T].

Fig. 5.2 Derived Operational Triple rules: TRCC (part 1)

Example 5.5 (Derived Sets of Forward Translation Rules)

Figures 5.4-5.5 show the set of the forward translation rules

derived from the triple rules in Ex. 3.2 according to Def. 5.1.

These rules are used for translating a source model into its

corresponding target model. For this reason, the rules are only

modifying the translation attributes on the source component.

Intuitively, for each element x in the source component RS

(node, edge, or attribute) of a triple rule tr = (L→ R) a sepa-
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10 Frank Hermann et al.

Fig. 5.3 Derived Operational Triple rules: TRCC (part 2)

Fig. 5.4 Derived Operational Triple rules: TRFT (part 1)

rate translation attribute (tr or tr x) is added for the forward

translation rule trFT . If an element x ∈ RS is preserved by

the triple rule tr, then the forward translation rule preserves it

as well and the translation attribute has value T. Otherwise, if

x ∈ RS is created by tr, then it becomes a preserved element in

the forward translation rule trFT and the corresponding trans-

lation attribute is changed from F to T. In visual notation, this

means that each plus sign in the source component of a triple

rule is replaced by an additional translation attribute whose

value changes from F to T.

Note that the rules 6-8 are contained in TR1s
FT , i.e., they are

identities on the source component and according to Def. 3.4,

they are not used for fPpg, which is based on TR+s
FT . This

is important to ensure termination (cf. Rem. 5.10) and we

show by Fact 7.8 that the derived sets of operational rules

are kernel-grounded (cf. Def. 6.5). For this reason, the re-

Fig. 5.5 Derived Operational Triple rules: TRFT (part 2)

duced set still ensures completeness according to Rem. 6.6

and Thm. 8.2.

Example 5.6 (Derived Sets of Backward Translation Rules)

Figures 5.6-5.7 show the set of the backward translation rules

derived from the triple rules in Ex. 3.2 according to Def. 5.1.

They are derived dually to the case of forward translation

rules and used for the translation of target models into their

corresponding source models. Thus, they do only modify

translation attributes on the target component. Intuitively, for

each element x in the target component RT (node, edge, or

attribute) of a triple rule tr = (L → R) a separate translation

attribute (tr or tr x) is added for the backward translation

rule trBT . If an element x ∈ RT is preserved by the triple rule

tr, then the backward translation rule preserves it as well and

the translation attribute has value T. Otherwise, if x ∈ RT

is created by tr, then it becomes a preserved element in the

backward translation rule trBT and the corresponding transla-

tion attribute is changed from F to T. In visual notation, this
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Model Synchronization Based on Triple Graph Grammars 11

Fig. 5.6 Derived Operational Triple rules: TRBT (part 1)

means that all plus signs in the target component are replaced

by additional translation attributes whose values are changed

from F to T. Note that all backward translation rules are used

for bPpg in contrast to operation fPpg before.

Fig. 5.7 Derived Operational Triple rules: TRBT (part 2)

We define model transformations based on forward trans-

lation rules in a similar but slightly different way than for

forward rules in Def. 4.2. In both cases we start the trans-

formation process with a triple graph that consists only of

the given source graph, i.e., the target and the connection

graphs are the empty graphs. But now, the source graph is

completely marked with F-valued translation attributes, indi-

cating that no element from the graph has been translated yet.

Then, instead of applying to the start graph a source consis-

tent forward transformation sequence, we apply a sequence of

forward translation transformations leading to a graph whose

source part is completely marked with T, meaning that all the

elements from the given source graph have been translated.

These transformation sequences are called complete forward

translation sequences.

Definition 5.7 (Complete Forward Translation Sequence)

A forward translation sequence G0 =
tr∗

FT

==⇒ Gn with almost in-

jective matches is called complete if Gn is completely trans-

lated, i.e., all translation attributes of Gn are set to true

(“T”).

A model transformation based on forward translation

rules transforms models from the source domain into models

of the target domain by executing complete forward transla-

tion sequences. Given a concrete source model, then the re-

sulting target model of the model transformation is obtained

by restricting the resulting triple graph of the forward transla-

tion sequence to the target component. We have shown in [22]

that model transformation sequences based on forward rules

and those based on forward translation rules, respectively, are

equivalent. This ensures that the derived model transforma-

tion relations are the same.
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12 Frank Hermann et al.

Definition 5.8 (Model Transformation Based on Forward

Translation Rules) A model transformation sequence (GS ,

G′0 =
tr∗

FT

==⇒ G′n,G
T ) based on forward translation rules TRFT

consists of a source graph GS , a target graph GT , and a

complete TGT-sequence G′0 =
tr∗

FT

==⇒ G′n typed over TG′ = TG ⊕

AttF

|TGS |
⊕AttT

|TGS |
based on TRFT with G′0 = (AttF(GS )← ∅→

∅) and G′n = (AttT(GS )← GC → GT ).

A model transformation MT : VL(TGS ) ⇛ VL(TGT ) based

on TRFT is defined by all model transformation sequences as

above with GS ∈ VL(TGS ) and GT ∈ VL(TGT ). All the cor-

responding pairs (GS ,GT ) define the model transformation

relation MTRFT ⊆ VL(TGS ) × VL(TGT ) based on TRFT . The

model transformation is terminating if there are no infinite

TGT-sequences via TRFT starting with G′0 = (AttF(GS ) ←

∅→ ∅) for some source graph GS ∈ VL(TGS ).

Consistency creating sequences as defined in Def. 5.9 be-

low, are used for computing a maximal consistent part of a

given triple graph, which is used for the auxiliary operation

Del defined in Sec. 7. A consistency creating sequence starts

at a triple graph G′0 = AttF(G), i.e., at a triple graph where

all elements are marked with F. Each application of a con-

sistency creating rule modifies some translation attributes of

an intermediate triple graph G′
i

from F to T and preserves

the structural part G contained in G′
i
. Therefore, the resulting

triple graph G′n extends G with translation attributes only, i.e.,

some are set to T and the remaining ones to F.

Definition 5.9 (Consistency Creating Sequence) Given a

triple graph grammar TGG = (TG,∅,TR), a triple graph G

typed over TG and let TRCC be the set of consistency creating

rules of TR. A consistency creating sequence s = (G,G′0 =
tr∗

CC

==⇒

G′n,Gn) is given by a TGT sequence G′0 =
tr∗

CC

==⇒ G′n via TRCC

with G′0 = AttF(G) and G′n = G ⊕AttT
Gn
⊕AttF

G\Gn
, where Gn is

the subgraph of G derived from G′0 =
tr∗

CC

==⇒ G′n by restricting G′n
to all T-marked elements. Consistency creating sequence s is

called terminated, if there is no rule in TRCC which is appli-

cable to the result graph G′n. In this case, the triple graph G′n
is called a maximal consistency marking of G. A triple graph

G′ is called completely T-marked, if G′ = AttT(G) for a given

triple graph G, i.e., all translation attributes in G′ are “T”.

Remark 5.10 (Termination) It is quite easy to show that, un-

less the given TGG includes a trivial identical rule L ֒→ L,

every consistency creating sequence terminates. The reason

is that the application of each rule switches some translation

predicates from F to T. Since the number of these predicates

in a given triple graph is finite, only a finite number of rule

applications is possible.

The case of forward and backward translation sequences

is different. In particular, if a triple rule tr = L ֒→ R is source

identic, meaning that it does not change the source part, i.e.,

LS = RS or equivalently trs = id, its associated forward trans-

lation rule will not switch any translation predicate from F to

T. This implies that this rule could be applied infinitely many

often in a forward translation sequence. Something similar

happens with backward translation rules.

In this sense, according to whether rules modify or not

the source or target part of a rule, we classify rules as shown

below. In particular, this notation is used in the following sec-

tion. Let TR be a set of triple rules. We distinguish the follow-

ing subsets.

– The set of source creating rules TR+s = {tr ∈ TR | trS ,

id},

– The set of source identic rules TR1s = {tr ∈ TR | trS = id},

– The set of target creating rules TR+t = {tr ∈ TR | trT ,

id},

– The set of target identic rules TR1t = {tr ∈ TR | trT = id},

and

– The set of identic rules TR1 = {tr ∈ TR | tr = id}.

In order to ensure termination for forward translation se-

quences, if the given TGG includes source identic triple rules,

we propose a general strategy based on an automated analysis

using the tool AGG. The main idea is the following. If we can

show that none of the remaining triple rules depends on the

source identic triple rules, we can actually omit the source

identic ones. The reason is that for each forward transfor-

mation sequence, we can shift the steps along source identic

rules to the end and obtain an equivalent sequence. Since all

steps along source identic triple rules do not change the mark-

ing of the source model, we further derive that these steps can

be removed yielding still a complete forward translation se-

quence.

6 Deterministic TGGs

Since transformation systems are not deterministic in general,

we introduce the concept of policies for transformation rules

in order to obtain deterministic sets of operational translation

rules for the synchronization operations. The main idea is to

restrict the matches of a transformation rule using additional

attribute conditions in order to eliminate ambiguous results.

An attribute condition attCon for a (triple) rule tr : L→ R

is a set of equations for attribute values. A match m : L → G

satisfies attCon—written m |= attCon—if the evaluation of

attribute values satisfies each equation. In our case study, we

use one attribute condition (see Ex. 6.3).

A policy can be arbitrary restrictive in general. In the con-

text of model synchronization, we need to ensure that the

propagation operations are still defined for all valid inputs.

For this reason, we introduce the notion of a conservative pol-

icy. In the case of forward propagation, a policy for the set of

forward translation rules is conservative, if all valid source

models can be translated.

Definition 6.1 (Policy for Operational Translation Rules)

Given a TGG and let TRFT be the derived set of forward

translation rules. A policy pol : TRFT → TR′FT for restrict-

ing the applications of the rules in TRFT maps each rule

trFT ∈ TRFT to an extended rule tr′
FT
∈ TR′FT , where tr′

FT
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Model Synchronization Based on Triple Graph Grammars 13

is given by trFT extended by a set of additional attribute

conditions AttCpol(trFT ). The policy pol is called conserva-

tive, if the derived model transformation relation MTR′FT ⊆

VLS × VLT based on TR′FT is left total and is contained in

the model transformation relation MTRFT derived from TRFT ,

i.e., MTR′FT ⊆ MTRFT .

A policy for backward translation rules TRBT is defined

analogously by replacing FT with BT and it is conservative

if the derived model transformation relation MTR′BT ⊆ VLT ×

VLS is left total and contained in MTRBT .

In order to automatically check that a policy is conser-

vative we provide a sufficient condition by Lem. 6.2 below

based on the analysis of dependencies between rules [11]. In-

tuitively, two transformation steps G0 =
p1,m1

===⇒ G1 =
p2,m2

===⇒ G2

are sequentially independent, if (1) there is no use-delete de-

pendency (the first step uses (creates or reads) an element

(node, edge, or attribute) that is deleted by p2 in the sec-

ond step) and (2) there is no forbid-produce dependency. A

produce-forbid dependency occurs if the first step forbids a

pattern by a negative application condition of p1 and the sec-

ond step produces some elements of it, such that applying the

second step first will disable the execution of the first step

thereafter.

A policy restricts the applicability of rules. The main

challenge is to ensure that the restrictions are not too strict.

In more detail, for each valid input model of an operational

transformation sequence we have to ensure that there is an

equivalent transformation sequence respecting all restrictions

of the policy. The key idea is to check for each restriction of

a rule p whether there are rules that could depend on the ex-

ecution of p. If we can show that there is no dependency to

all possible subsequent steps in an operational transformation

sequence, we can conclude that all steps via p can be shifted

to the end of the sequence. This allows us to focus on p itself.

As stated by Lem. 6.2 below, it is then sufficient to show that

for each match of p there is an equivalent match satisfying

the conservative policy.

Lemma 6.2 (Conservative Policy) Let pol : TRFT → TR′FT

be a policy, such that for each rule tr′
FT
= pol(trFT ) in TR′FT

with tr : L→ R the following condition holds.

1. Given a match m : L → G for trFT , then there is also a

match m′ : L→ G for tr′
FT

satisfying AttCpol(trFT ).

2. If AttCpol(trFT ) , ∅, then for each rule tr2 ∈ TRFT with

trFT , tr2 the pair (trFT , tr2) is sequentially independent.

Then, the policy pol is conservative (cf. Def. 6.1). A similar

fact holds for a policy pol : TRBT → TR′BT concerning back-

ward translation rules.

Proof (Idea) According to Def. 6.1, policy pol is conserva-

tive, if the derive model transformation relation MTR′FT is left

total. The model transformation relation MTR based on TRFT

is left total due to the completeness result for TGG model

transformations based on forward translation rules (cf. Thm.

1 in [22]). Thus, given a source model GS ∈ VLS , there is a

complete forward translation sequence sFT via TRFT . We have

to show that there is also a complete forward translation se-

quence s′
FT

via TR′FT . First of all, MTR′FT ⊆ MTRFT , because

the additional attribute conditions only restrict the possible

transformation sequences and no additional ones are possible.

Item (1) in Lem. 6.2 ensures that for each step si,FT in sFT via

TRFT , there is a step s′
i,FT

via TR′FT , but this step may differ

on the resulting triple graph. However, item (2) ensures that

there is no subsequent step in sFT via a different rule that is se-

quentially dependent to neither si,FT nor s′
i,FT

. Therefore, we

can iteratively exchange the original steps with correspond-

ing ones via TR′FT , shift them to the end of the the sequence,

and continue with the next step that is not via TR′FT . Finally,

we derive a complete forward translation sequence s′
FT

via

TR′FT . For the full proof see Fact 7 in [24]. ⊓⊔

Fig. 6.1 Backward Translation Rule without (5) and with (5′) con-

servative policy

Example 6.3 (Conservative Policy) In Fig. 6.1, the backward

translation rule 5 : “DetailedSalary2SalaryBT ()” from Ex. 5.6

is extended to the rule 5′ : “DetailedSalary2SalaryBT ,2()” by

a policy in the form of an additional positive application con-

dition in order to ensure determinism. Since the left hand side

of this rule specifies only the sum of the salary of a person, the

values of the base and bonus components are not fixed via a

match. The positive application condition (PAC) [11] requires

that both values are set to half times the amount of the salary

sum. Now, this is possible for each number, such that we can

conclude that the policy is conservative (Lem. 6.2), which is

important for ensuring completeness of the propagation op-

eration bPpg (see Thm. 8.2).

In order to ensure termination of the propagation op-

erations, we restrict the sets of operational rules to those

that modify at least one translation attribute. We call these

rules kernel translation rules. In the case of forward transla-

tion rules, the kernel forward translation rules TR+s
FT ⊆ TRFT

are those forward translation rules that are derived from the

source creating triple rules TR+s ⊆ TR of the triple rules TR.

The remaining forward translation rules TR1s
FT = TRFT \ TR+s

FT
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14 Frank Hermann et al.

are those derived from the source identic triple rules TR1s.

Vice versa, the kernel backward translation rules TR+t
BT ⊆

TRBT are the backward translation rules that are derived from

the target creating triple rules TR+t ⊆ TR and TR1t
BT are the

remaining backward translation rules derived from the target

identic triple rules. Finally, the kernel consistency creating

triple rules, however, are given by the complete set of consis-

tency creating rules TRCC.

The restriction of the set of operational rules can pos-

sibly cause that for a valid input model, there is no longer

a valid operational transformation sequence via forward or

backward translation rules, respectively. However, we can use

the same idea as before and check that the remaining rules do

not depend on the omitted ones (TR1s
FT and TR1t

BT ) as stated

by Rem. 6.4 below. This ensures that the rules that do not

change any translation attribute can be shifted to the end of

each sequence and thus, can be omitted while still all valid

input models can be processed successfully.

Remark 6.4 (Shifting of Independent Steps) Given two sets

P1 and P2 of rules such that each pair (p1, p2) ∈ P1 × P2

is sequentially independent. Then, there is a transformation

sequence (G =
r∗

=⇒ H) via (P1 ∪ P2) if and only if there are

transformation sequences: s1 = (G =
p∗

=⇒ G1) via P2 and

s2 = (G1 =
q∗

=⇒ H) via P1 with same G1. This result is shown

by Fact 3 in App. A.2 in [24].

Now, we come to the most important property that has to

be checked for the operational translation rules in order to en-

sure correct propagation operations—deterministic behavior.

First of all, this means that their execution has functional be-

havior, i.e., ensures unique results. In addition to that, their

execution does not require backtracking. This means that

once an operational translation rule is applied, we do not have

to undo the step during the synchronization process. More-

over, we have to ensure termination. For this purpose, we in-

troduce the notion of kernel-grounded operational translation

rules and show thereafter that this property allows us to re-

strict the sets of rules appropriately.

Definition 6.5 (Kernel-Grounded and Deterministic Sets

of Operational Translation Rules) Let TGG = (TG,∅,TR)

be a triple graph grammar, from which we obtain the op-

erational translation rules TRCC, TRFT , and TRBT . They

are called kernel-grounded, if the pairs (TR1s
FT ,TR+s

FT ) and

(TR1t
BT ,TR+t

BT ) are sequentially independent. This means that

there is no pair (p1, p2) of sequentially dependent rules with

either (p1, p2) ∈ (TR1s
FT × TR+s

FT ) or (p1, p2) ∈ (TR1t
BT × TR+t

BT ).

The sets of operational translation rules TRCC,TRFT , and

TRBT (possibly extended by conservative policies) are called

deterministic, if they have functional behavior and do not re-

quire backtracking.

The tool AGG [37] supports the automated analysis of

dependencies between rules. We apply this analysis engine to

check whether a policy is conservative and that the reduced

sets of operational rules are sufficient to ensure completeness

of the propagation operations.

In order to check that the sets of operational translation

rules are kernel-grounded and deterministic, we first describe

how the preconditions of Def. 6.5 are checked using the tool

AGG.

1. Sequential independence of the pairs (TR1s
FT ,TR+s

FT ) and

(TR1t
BT ,TR+t

BT ): we can use the tool AGG for the analysis

of rule dependencies based on the generation of critical

pairs according to Fact 2 in [24].

2. Applied policies are conservative: According to Lem. 6.2.

This requires that the additional application conditions

according to the policy restricts the evaluation of attribute

values only, i.e., the assignment of variables. We have to

show that the existence of matches is preserved for each

rule and that other rules are not sequentially dependent.

For the latter, we can again use the tool AGG and validate

that the corresponding table entries show the value 0. The

preservation of the existence of matches can be ensured

by checking that the affected variables are free in the un-

modified rule (trFT or trBT ), i.e., they are not part of a

term that is connected to a node in the LHS (LFT or LBT ).

Moreover, we can apply the presented results for showing

that the derived model transformation relations are left total.

This is the basis to ensure that the propagation operations are

left total.

Remark 6.6 (Left Totality) If the sets of operational trans-

lation rules of a TGG are kernel-grounded, we can con-

clude that the forward model transformation relations

MTRF : VL(TGS ) ⇒ VL(TGT ) based on TR+s
FT and the back-

ward model transformation MTB: VL(TGT ) ⇒ VL(TGS )

based on TR+s
FT specify left total relations as shown by Fact

5 in [24]. This means that the model transformations can be

performed on reduced sets of operational translation rules.

Source identic triple rules TR1s
FT are not used for forward

translations and target identic triple rules TR1t
BT are not used

for backward translations. According to Def. 6.1, we can

specify conservative policies in order to reduce the amount of

possible transformation sequences and derive left total model

transformation relations MTR′FT and MTR′BT that use these

policies.

In order to check that the derived sets of operational trans-

lation rules have functional behavior and do not require back-

tracking, we first show by Lem. 6.7 below that we can ensure

termination if all operational translation rules modify at least

one translation attribute. We generally assume that the input

models are finite on the structure part, i.e., the carrier sets of

the data values can be infinite, but the graph nodes and all sets

of edges are finite.

Lemma 6.7 (Termination) Let TGG = (TG,∅,TR) be a

triple graph grammar, where TR does not contain a trivial

triple rule tr = (L → R) with L = R. Let further TRCC,TR+s
FT ,

and TR+t
BT be the derived sets of operational translation rules

for consistency creating, forward translation and backward

translation, respectively according to Def. 5.1 and possibly

extended by some policies. Then, the transformation systems
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Model Synchronization Based on Triple Graph Grammars 15

TRCC,TR+s
FT , and TR+t

BT are terminating for any finite input

triple graph.

Proof (Idea) As described in Rem. 5.10, an operational trans-

lation rule may change the value of a translation attribute

from F to T, but not vice versa. Since the amount of elements

that are marked with translation attributes is not changed by

any operational translation rule and the input models are fi-

nite, we can conclude that any transformation sequence via

the given sets terminates. For the full proof see Fact 8 in [24],

which is based on [22]. ⊓⊔

Functional behavior of a transformation system means

that the execution of the system yields unique results. In the

context of model transformations, the execution may involve

backtracking. Consider, e.g., a forward translation sequence

where no further operational rule is applicable, but the source

model is not completely translated. In this case, further se-

quences may exist, because of non-determinism concerning

the choice of possible transformation rules and matches.

A system of operational translation rules has functional

behavior and does not require backtracking, if all significant

critical pairs are strictly confluent as shown by Fact 9 in [24]

based on a corresponding result for forward translation rules

in [22].

Remark 6.8 (Analysis of Functional Behavior and Backtrack-

ing) The tool AGG [37] provides an analysis engine for gen-

erating the complete set of critical pairs as described in [22]

and we provide the analysis results for our example TGG

in Sec. 7. A critical pair (P1 ⇐
p1,m1

==== K =
p2,m2

===⇒ P2) consists

of two parallel dependent transformation steps. It is signifi-

cant, if it can be embedded in a transformation sequence via

operational translation rules starting at a valid input model

(cf. Def. 17 in [24]). A critical pair concerning a forward

model transformation is not significant, if the source com-

ponent of K cannot be embedded in a valid source model, be-

cause changes to the source component only occur on trans-

lation attributes. The dual result holds for backward model

transformations.

Strict confluence of a critical pair requires that we provide

sequences of transformation steps (P1 =
∗
⇒ H ⇐

∗
= P2) solving

the conflict (P1 ⇐
p1,m1

==== K =
p2,m2

===⇒ P2) in a compatible and

NAC-consistent way [11]. This means that any element that

is preserved in (P1 ⇐
p1,m1

==== K =
p2,m2

===⇒ P2) is also preserved in

(P1 =
∗
⇒ H ⇐

∗
= P2). If no critical pair exists at all, we directly

derive that the system has functional behavior and does not

require backtracking.

7 Synchronization Based on TGGs

This section shows how to construct the operation fPpg of

a TGG synchronization framework (cf. Def. 3.4) as a com-

position of auxiliary operations 〈fAln, Del, fAdd〉. Symmetri-

cally, operations 〈bAln, Del, bAdd〉 are used to define the op-

eration bPpg. As a general requirement, the given TGG has

to provide deterministic sets of operational translation rules,

meaning that the algorithmic execution of the forward trans-

lation, backward translation, and consistency creating rules

ensures functional behavior (unique results) and does not re-

quire backtracking. For this purpose, additional policies can

be defined that restrict the matches of operational transla-

tion rules as presented in Sec. 6 by Lem. 6.2. Rem. 6.8 in

Sec. 6 provides sufficient conditions for deterministic oper-

ational translation rules. We provide additional static condi-

tions and automated checks in the technical report [24].

The general synchronization process is performed as fol-

lows (see Def. 7.1 and Fig. 7.1, where we use double arrows

(↔) for correspondence in the signature of the operations,

and the explicit triple graphs for the construction details).

Given two corresponding models GS and GT and an update

of GS via the graph modification a = (GS
←

a1
−− DS

−
a2
−→ G′S )

with G′S ∈ VLS , the forward propagation fPpg of model up-

date a is performed in three steps via the auxiliary operations

fAln, Del, and fAdd. At first, the deletion performed in a is

reflected into the correspondence relation between GS and

GT by calculating the forward alignment remainder via op-

eration fAln. This step deletes all correspondence elements

whose elements in GS have been deleted. In the second step,

performed via operation Del, the two maximal subgraphs

GS
k
⊆ GS and GT

k
⊆ GT are computed such that they form

a consistent integrated model in VL(TGG) according to the

TGG. All elements that are in GT but not in GT
k

are deleted,

i.e., the new target model is given by GT
k

. Finally, in the last

step (operation fAdd), the elements in G′S that extend GS
k

are

transformed to corresponding structures in G′T , i.e., GT
k

is ex-

tended by these new structures. The result of fAdd, and hence

also fPpg, is an integrated model G′ = (G′S ↔ G′T ). Since

graph transformation is non-deterministic in general, we re-

quire that the sets of operational translation rules are deter-

ministic in order to ensure unique results for both, the second

and the third step of propagation operation fPpg.

Definition 7.1 (Auxiliary TGG Operations) Let TGG =

(TG,∅,TR) be a TGG with deterministic sets TRCC, TR+s
FT ,

and TR+s
BT of operational translation rules and let further

MF(TGG) be the derived TGG model framework.

1. The auxiliary operation fAln computing the forward

alignment remainder is given by fAln(r, a) = r′, as spec-

ified in the upper part of Fig. 7.1. The square marked by

(PB) is a pullback [11], meaning that DC is the intersec-

tion of DS and GC .

2. Let r = (s, t): GS ↔ GT be a correspondence rela-

tion, then the result of the auxiliary operation Del is the

maximal consistent subgraph GS
k
↔ GT

k
of r, given by

Del(r) = (a, r′, b), which is specified in the middle part of

Fig. 7.1.

3. Let r = (s, t): GS ↔ GT be a consistent correspondence

relation, a = (1, a2) : GS → G′S be a source modifica-

tion and G′S ∈ VLS . The result of the auxiliary opera-

tion fAdd, for propagating the additions of source mod-

ification a, is a consistent model G′S ↔ G′T extending
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Signature Definition of Components

GS oo
r=(s,t)

//

a=

(a1 ,a2)
��
u:fAln

GT

1
��

G′S oo

r′=(s′ ,t′)

// GT

GS

(PB)

GCs
oo

t
// GT

DS
?�

a1

OO

DC
?�

a∗
1

OO

s∗
oo

s′ = a2 ◦ s∗,

t′ = t ◦ a∗1

GS oo
r=(s,t)

//

a=

( f S ,1)
��
⇓:Del

GT

b=

( f T ,1)
��

GS
k
oo

r′=(sk ,tk):C

// GT
k

G = (GS GCs
oo

t
// GT )

∅
tr∗ +3 Gk = (GS

k

?�
f S

OO

?�
f

OO

GC
k

?�
f C

OO

sk
oo

tk
// GT

k
)

?�
f T

OO

∅ =
tr∗

=⇒ Gk

is maximal w.r.t. Gk ⊆ G

∀ G′S ∈ VLS :

GS oo
r=(s,t):C

//

a=

(1,a2)
��
u:fAdd

GT

b=
(1,b2)
��

G′S oo

r′=(s′ ,t′)

// G′T

(GS

� _
a2
��

G GCs
oo

t
//

� _
1
��

GT )
� _

1
��

(G′S
� _

1
��

G0

� _
g
��

GC

� _

��

a2◦s
oo

t
// GT )
� _

b2 ��

(G′SG′

tr∗
F
��

G′C
s′

oo
t′

// G′T )

G0 =
tr∗

F

==⇒ G′

with G′ ∈ VL(TGG)

Fig. 7.1 Auxiliary operations fAln, Del and fAdd

GS ↔ GT , and is given by fAdd(r, a) = (r′, b), according

to the lower part of Fig. 7.1.

Remark 7.2 (Auxiliary TGG Operations) Intuitively, opera-

tion fAln constructs the new correspondence graph DC from

the given GC by deleting all correspondence elements in GC

whose associated elements in GS are deleted via update a

and, for this reason, do not occur in DS . Operation Del is

executed by applying consistency creating rules (cf. Sec. 5)

to the given integrated model until no rule is applicable any

more. If, at the end, GS ↔ GT is completely marked, the in-

tegrated model is already consistent; otherwise, the result is

the largest consistent integrated model included in GS ↔ GT .

Technically, the application of the consistency creating rules

corresponds to a maximal triple rule sequence as shown in

the right middle part of Fig. 7.1 and discussed in more detail

in [23]. Finally, fAdd is executed by applying forward trans-

lation rules (cf. Sec. 4 and 5) to G′S ↔ GT until all the ele-

ments in G′S are marked. Intuitively, these TGT steps form a

model transformation of G′S extending GT . Technically, the

application of the forward translation rules corresponds to a

source-consistent forward sequence from G0 to G′, as shown

in the right lower part of Fig. 7.1. By correctness of model

transformations [12], the sequence implies consistency of G′

as stated above. The constructions for these auxiliary oper-

ations are provided in full detail in [24]. Note that the con-

structions for Del and fAdd yield unique results due to the

requirement that the operational translation rules are deter-

ministic (cf. Def. 7.1).

Auxiliary operation Del is based on the execution of con-

sistency creating rules. The computed resulting triple graph

Gk is required to be consistent (Gk ∈ VL). This result is en-

sured by the equivalence of maximal triple and complete ex-

tended consistency creating sequences according to Rem. 7.3

below and shown by Fact 11 in [24].

Remark 7.3 (Equivalence of Maximal Triple and Complete

Extended Consistency Creating Sequences) Given a set of

non-identic consistency creating rules TRCC and G ∈ VL(TG).

Then, the following are equivalent for almost injective

matches.

1. There is a TGT-sequence s = (∅ =
tr∗

=⇒ Gk) via TR with in-

jective embedding f : Gk → G, such that s is f -maximal,

i.e., any extension of s via TR is not compatible with f .

2. There is a terminated consistency creating sequence s′ =

(G′0 =
tr∗

CC

==⇒ G′
k
) via TRCC with G′0 = AttF(G), i.e., all trans-

lation attributes are set to F.

Moreover, the sequences correspond via G′
k
= H ⊕ AttT

Gk
⊕

AttF
H\Gk

.

Example 7.4 (Forward Propagation via Operation fPpg) Fig-

ure 7.2 shows the application of the three steps of synchro-

nization operation fPpg to the visual models of our running

example. After removing the dangling correspondence node

of the alignment in the first step (fAln), the maximal consis-

tent subgraph of the integrated model is computed (Del) by

stepwise marking the consistent parts: consistent parts are in-

dicated by gray boxes with checkmarks in the visual notation

and by bold font faces in the graph representation. Note that

node “Bill Gates” is part of the target graph in this maxi-

mal consistent subgraph, even though it is not in correspon-

dence with any element of the source graph. This is possi-

ble, because node “Bill Gates” is now connected to a differ-

ent department (cf. rule 8:Empty2OtherP in Fig. 3.4). More-

over, attributes Base and Bonus of Melinda Gates in the

source component are not marked, because they are inconsis-

tent with attribute Salary according to triple rule 6:Detailed-

Salary2Salary in Sec. 5 (base + bonus , Salary). In the fi-

nal step (fAdd), the inconsistent elements in the target model

are removed and the remaining new elements of the update

are propagated towards the target model by model transfor-

mation, such that all elements are finally marked as consis-

tent.

The constructions for the auxiliary operations fAln, Del,

and fAdd provide the basis for the propagation operation
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Fig. 7.2 Forward propagation in detail: visual notation (top) and graph representation (bottom)
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Signature Definition of Components

∀ G′S ∈ VLS :

GS oo
r

//

a

��
u:fPpg

GT

b
��

G′S oo

r′
// G′T

GS oo
r

//

aA �� u:fAln

a

//

GT

1��

b

oo

DS oo r1 //

aD �� ⇓:Del

GT

bD��

GS
k
oo r2 //

a f �� u:fAdd

GT
k

b f��

G′S oo

r′
// G′T

a = (a1, a2) = (GS
←

a1
−− DS

−
a2
−→ G′S )

aA = (a1, 1), aD = (a′1, 1), a f = (a1 ◦ a′1, a2)

b = b f ◦ bD

Fig. 7.3 Synchronization operation fPpg - formal definition

fPpg. Together with its symmetric version, namely the back-

ward propagation operation bPpg, we derive the TGG syn-

chronization framework according to Def. 7.5. Forward and

backward propagation operations fPpg and bPpg are called

complete, if they yield valid results for any valid input. Com-

pleteness of the synchronization operations is an important

property in the context of TGGs and therefore, it is worth to

emphasize it explicitly, while it is implicitly included already

within the signature in Fig. 7.3.

Definition 7.5 (Derived TGG Synchronization Frame-

work) Let TGG = (TG,∅,TR) be a TGG with deterministic

sets TRCC, TR+s
FT , and TR+s

BT of derived operational transla-

tion rules and with derived model framework MF(TGG), then

operation fPpg of the derived TGG synchronization frame-

work Synch(TGG) is given by the composition of auxiliary

operations (fAln, Del, fAdd) as described in Rem. 7.6 accord-

ing to Fig. 7.3. Symmetrically—not shown explicitly—we ob-

tain bPpg as composition of auxiliary operations (bAln, Del,

bAdd). Synch(TGG) is called complete, if its propagation op-

erations are complete, i.e., they always yield a result for any

valid input.

1 /* == alignment remainder == */

2 forall(correpondence nodes without image

3 in the source model){

4 delete these elements }

5 /* ==== delete === */

6 while(there is a triple rule p such that

7 R\L is unmarked){

8 apply to G the consistency creating

9 rule corresponding to p }

10 forall(unmarked nodes and edges from the

11 target model){

12 delete these elements }

13 /* ===== add ===== */

14 while(there is a forward translation

15 rule applicable to G){

16 apply to G the forward translation

17 rule }

Fig. 7.4 Synchronization operation fPpg - algorithm

Remark 7.6 (Construction of fPpg according to Fig. 7.3)

Given a not necessarily consistent integrated model r: GS ↔

GT and source model update a: GS → G′S with G′S ∈ VLS ,

we compute fPpg(r, a) as follows. First, fAln computes the

correspondence (DS ↔ GT ), where DS is the part of GS

that is preserved by update a. Then, Del computes its max-

imal consistent integrated submodel (GS
k
↔ GT

k
). Finally,

fAdd composes the embedding GS
k
→ G′S with correspon-

dence (GS
k
↔ GT

k
) leading to (G′S ↔ GT

k
), which is then

extended into the integrated model (G′S ↔ G′T ) via for-

ward transformation. If G′S < VLS , then the result is given

by b = (1, 1): GT → GT together with the correspondence

relation r′ = (∅,∅) and additionally, an error message is pro-

vided. Fig. 7.4 describes this construction algorithmically in

pseudo code, leaving out the error handling; marking is ex-

plained in Sec. 5.

Fact 7.7 (Case Study: Termination of Synchronization

Operations) The derived synchronization operations fPpg

and bPpg for our example TGG terminate.

Proof The TGG does not contain any trivial rule tr: L → L.

According to Def. 7.5, the synchronization operations are

based on the sets TRCC, TR+s
FT , and TR+s

BT of operational trans-

lation rules. Hence, we can apply Lem. 6.7 and derive that the

synchronization operations are terminating. ⊓⊔

By Fact 7.7, we know that the synchronization operations

are terminating. This allows us to use AGG to generate the

critical pairs (see Fig. 7.5) in order to check that the op-

erations are deterministic and that the derived synchroniza-

tion framework is correct and complete using Thm. 8.1 and

Thm. 8.2.

Fig. 7.5 Dependency analysis with AGG for TRFT - fields with “1”

contain dependencies

Fact 7.8 (Case Study: Determinism) The derived sets of op-

erational rules for fPpg and bPpg of our example TGG are

deterministic and kernel-grounded.

Proof In order to show that the synchronization operations

are deterministic, we can apply Thm. 8.1 by showing that the

sets of operational translation rules are kernel-grounded, ter-

minating, and all significant critical pairs are strictly conflu-

ent using that they are terminating according to Fact 7.7.
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Fig. 7.6 Critical pair analysis with AGG for TRCC - fields with with

“1” contain conflicts

Fig. 7.7 Critical pair analysis with AGG for TRFT - fields with “1”

contain conflicts

Fig. 7.8 Dependency analysis with AGG for TRBT - fields with “1”

contain dependencies

Fig. 7.9 Critical pair analysis with AGG for TRBT - fields with “1”

contain conflicts

Concerning the set TRFT , we used AGG to derive the de-

pendency table depicted in Fig. 7.5. The source identic rules

are the rules with number 6 to 8. There is no dependency

(entry > 0) for any pair (p, q) with p ≥ 6 and q ≤ 5. More-

over, there are no target identic backward translation rules,

because all triple rules are creating on the target component.

Therefore, the sets of operational translation rules are kernel-

grounded (see Def. 6.5).

By Fact 7.7, we know that the transformation sys-

tems based on the operational translation rules are ter-

minating. We analyzed the critical pairs using the crit-

ical pair analysis engine of AGG. Concerning the set

TRCC, we derived the resulting table depicted in Fig. 7.6.

The only generated critical pair is (p1, p1) for p1 =

Person2FirstMarketingPCC and it is strictly confluent by ap-

plying rule p2 = Person2NextMarketingPCC to the remaining

structure and since p2 does not contain any NAC we automat-

ically have strict confluence.

Concerning the set TRFT , we derived the resulting table

depicted in Fig. 7.7, where we used the constraint that there

are no two departments with name “Marketing”. This is al-

ways ensured for the language VL(TGG) due to the NACs

of the first two rules. The only significant critical pair is

strictly confluent via one transformation step using rule p2 =

Person2NextMarketingPFT , where no NAC is involved.

The set TRBT is not functional, because there is a choice

of how to split the salary into base and bonus. We can

restrict the choice for the rule “DetailedSalary2Salary” to

base = bonus = 1/2 · salary as a policy, which is shown

by the additional positive application condition in Fig. 5.6.

We can apply Lem. 6.2 and derive that the policy is con-

servative. First of all, no other rule depends on this rule,

which we verified by the generated dependency table by AGG

in Fig. 7.8. Moreover, any match for the original rule im-

plies that there is a match for the restricted rule, because

the restricted values are real numbers and, therefore, always

possible. We derive the table of generated critical pairs de-

picted in Fig. 7.9, where the only significant critical pair is

again strictly confluent via one transformation step using rule

p2 = Person2NextMarketingPBT , where no NAC is involved.

Summing up, the sets of operational translation rules are

kernel-grounded and all significant critical pairs are strictly

confluent, such that we can apply Thm. 8.1 and derive that

the derived sets of operational rules are deterministic. ⊓⊔

8 Correctness and Invertibility

In this section, we present our main results that show the

correctness, completeness and invertibility of our synchro-

nization framework. According to Def. 3.4, correctness re-

quires that the synchronization operations are deterministic,

i.e., they have functional behavior (cf. Sec. 5) and ensure laws

(a1) - (b2). Concerning the first requirement, i.e., that the

synchronization operations are deterministic, Thm. 8.1 below

provides a sufficient condition based on the notion of critical

pairs [11]. In order to ensure this condition, Sec. 6 presents
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the concept of additional propagation policies that eliminate

non-determinism. They can be seen as a kind of application

conditions for the rules and are called conservative, if they

preserve the completeness result. Lem. 6.2 provides a suffi-

cient static condition for checking this property and we per-

formed the automated analysis of this condition for our exam-

ple TGG using the tool AGG [37] as described in Sec. 6. Note

again that we generally require almost injective matching (cf.

Sec. 3).

Theorem 8.1 (Deterministic Synchronization Operations)

Let TGG be a triple graph grammar that does not contain an

identical rule tr : L→ L. If the significant critical pairs of the

sets of operational translation rules are strictly confluent and

the systems of rules are terminating, then the sets of opera-

tional translation rules are deterministic (see Def. 6.5), which

implies that the derived synchronization operations fPpg and

bPpg are deterministic as well.

Proof (Idea) Operations fAln and bAln are given by pullback

construction, which is unique up to isomorphism by defini-

tion. Therefore, they are deterministic. Termination of Del,

fAdd, and bAdd is ensured according to Rem. 5.10, because

TGG does not contain an identical triple rule and the oper-

ational translation rules are given by TRCC, TR+s
FT , and TR+s

BT .

By Rem. 6.8 we know that functional behavior of the transfor-

mation systems is ensured and backtracking is not required, if

all significant critical pairs are strictly confluent and the sys-

tem is terminating. This ensures that operations Del, fAdd,

and bAdd are deterministic. Thus, operations fPpg and bPpg

are deterministic. For the full proof see Fact 1 in [24]. ⊓⊔

A correct synchronization framework has to satisfy laws

(a1) − (b2) in Def. 3.4. Intuitively, the propagation opera-

tions have to preserve consistent inputs. First of all, if the

given integrated model is already consistent and the given up-

date does not change anything, then the resulting integrated

model has to be the given one and the resulting update on

the opposite domain has to be the identity (laws (a1) and

(b1)). Most importantly, given an arbitrary integrated model

together with a source update dS : GS → G′S with consistent

new source model G′S ∈ VLS , then the forward propagation

via fPpg has to provide a new consistent integrated model

G′S ↔ G′T ∈ VL. Completeness of a synchronization frame-

work Synch(TGG) requires that operations fPpg and bPpg

can be successfully applied to all consistent source models

G′S ∈ VLS and target models G′T ∈ VLT , respectively. This

property is of general importance in the context of TGGs and

therefore, we explicitly show it together with correctness in

Thm. 8.2 below. Both results are ensured, if the sets of op-

erational rules are deterministic as in Thm. 8.1 and addition-

ally, if they are kernel-grounded (cf. Def. 6.5), i.e., the effec-

tive forward and backward translation rules do not depend on

any source or target identic translation rule, respectively. This

second condition is important for laws (a1)− (b2), because it

ensures that the computed transformation sequences via aux-

iliary operations Del, fAdd, and bAdd can be composed in a

consistent way.

Theorem 8.2 (Correctness and Completeness) Let

Synch(TGG) be a derived TGG synchronization framework,

such that the sets of operational translation rules of TGG

are kernel-grounded and deterministic (see Def. 6.5). Then

Synch(TGG) is correct and complete.

Proof (Idea) By Thm. 8.1, the provided constructions of op-

erations fPpg and bPpg based on the operational translation

rules have functional behavior, i.e., for each input the compu-

tation yields a unique output. Thus, the derived synchroniza-

tion framework is complete.

In order to show correctness, we have to show laws (a1)

and (a2) of Def. 3.4. Precondition G ∈ VL of law (a1) im-

plies that there is a triple sequence ∅ =
tr∗

=⇒ G via TR and by

Rem. 7.3, there is a corresponding complete consistency cre-

ating sequence. Moreover, there is a corresponding forward

translation sequence via TRFT by Thm. 1 in [22]. Using the

precondition that the operational translation rules are kernel-

grounded, we can conclude that all steps via TR1s
FT can be

shifted to the end. Thus, no further forward translation rule

in TR+s
FT is applicable. The functional behavior of operation

fPpg and the given identical source update ds = idGS ensure

the requested result, i.e., we derive target update dT = idGT

and the integrated model G′ = G. In order to show law (a2),

we can use precondition G′S ∈ VLS , which implies that there

is a source consistent forward sequence sF starting at G′S

and a corresponding complete forward translation sequence.

Since the operational rules are kernel-grounded we can con-

clude by Rem. 6.6 that there is a complete forward transla-

tion sequence s+s
FT

via TR+s
FT . Due to functional behavior of

operation Del we derive a consistency creating sequence that

corresponds to the first part of sF and therefore, to a sequence

sFT via forward translation rules. Since the sets of operational

rules are kernel-grounded, we can conclude that the steps via

TR+s
FT do not depend on TR1s

FT . This allows us to complete sFT

using TR+s
FT , where we can shift the source identic steps via

TR1s
FT to the end. Thus, we derive a complete forward trans-

lation sequence, where we can omit the steps via TR1s
FT at the

end. Functional behavior of TR+s
FT implies that this sequence

corresponds to the complete forward translation sequence s+s
FT

and therefore, to a source consistent forward sequence s+s
F

leading to G′. Thus, G′ ∈ VL by Thm. 2 in [17]. For the full

proof see Lemma 3 in [24]. ⊓⊔

Example 8.3 (Correctness and Completeness) The initially

derived set of backward transformation rules for our running

example is not completely deterministic because of the non-

deterministic choice of base and bonus values for propagat-

ing the change of a salary value. Therefore, we defined a

conservative policy for the responsible backward triple rule

by fixing the propagated values of modified salary values to

bonus = base = 0.5 × salary. By Lem. 6.2 in Sec. 6, we pro-

vided a sufficient static condition for checking that a policy is

conservative; we validated our example and showed that the

derived sets of operational rules for fPpg and bPpg are deter-

ministic and kernel-grounded (cf. Fact 7.8 in Sec. 7). For this

reason, we can apply Thm. 8.2 and conclude that the derived
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TGG synchronization framework is correct and complete (cf.

Fact 8.4 below).

Fact 8.4 (Case Study: Correctness and Completeness) The

derived synchronization framework for our example TGG is

correct and complete.

Proof By Fact 7.8, we know that the derived synchroniza-

tion operations of our example TGG are deterministic. This

allows us to apply Thm. 8.2 and we derive that the derived

synchronization framework is correct and complete. ⊓⊔

Invertibility of a synchronization framework intuitively

means that the propagation operations are inverse to each

other (cf. Def. 3.4). Weak invertibility requires this property

for a restricted set of inputs, namely those where the given

update on one domain can be interpreted as result of a propa-

gation of an update from the corresponding opposite domain.

In order to ensure invertibility, we require additional prop-

erties of the TGG. If the source identic triple rules are empty

rules on the source and correspondence components and anal-

ogously for the target-identic triple rules, then we say that the

TGG is pure. This condition is used to ensure weak invert-

ibility according to Thm. 8.6 below. In the more specific case

that all triple rules of a TGG are creating on the source and

target components (TR = TR+s = TR+t), then the TGG is

called tight, because the derived forward and backward rules

are strongly related. Effectively, a tight TGG ensures for the

operational forward and backward translation rules that each

of them changes at least one translation attribute. With other

words, for each triple rule tr there is a derived forward trans-

lation rule trFT ∈ TR+s
FT and a derived backward translation

rule trBT ∈ TR+t
BT . This additional property ensures invertibil-

ity according to Thm. 8.6 below.

Definition 8.5 (Pure and Tight TGG) A TGG is called pure,

if TR1s ⊆ TRT and TR1t ⊆ TRS . It is called tight, if the sets of

source and target creating rules TR+s and TR+t coincide with

the set of triple rules TR, i.e., TR = TR+s = TR+t.

Invertibility of the derived synchronization framework

means that the propagation operations are inverse to each

other, while the notion of weak invertibility requires this

property only for a restricted set of inputs (see Def. 3.4).

In addition to the conditions for ensuring a correct synchro-

nization framework (Thm. 8.2), the notions of pure and tight

TGGs allow us to ensure these properties in Thm. 8.6 below.

Theorem 8.6 (Invertibility and Weak Invertibility) Let

Synch(TGG) be a derived TGG synchronization framework,

such that the sets of operational translation rules of TGG

are kernel-grounded and deterministic (see Def. 6.5), TGG

is pure and at most one set of operational translation rules

was extended by a conservative policy, then Synch(TGG) is

weakly invertible. If, moreover, TGG is tight and there was

no policy applied at all, then Synch(TGG) is also invertible.

Proof (Idea) To prove weak invertibility law (c1) in Fig. 3.5,

we can first show that the intermediate triple graphs after ap-

plying bAln, Del and fAln, Del according to Fig. 7.1 and 7.3,

are the same in the last two diagrams of (c1). We compute

all three diagrams of (c1) and obtain consistency creating se-

quences via Del for each diagram using the precondition that

the operational rules are deterministic (which subsumes ter-

mination). Moreover, we derive that the second and the third

diagrams contain the same intermediate triple graph Gl. Af-

terwards, the auxiliary operations fAdd and bAdd for all three

diagrams can be executed. We can use the composition and

decomposition result for TGGs and the requirements that the

TGG is pure, deterministic and preserves functional behavior.

If at most one set of operational translation rules are extended

by a conservative policy, the proof shows that backward trans-

formation sequences are not eliminated by the policy. This

allows us to obtain the resulting diagrams according to law

(c1). The proof for axiom (c2) follows out of the symmetry

of the definitions. To prove invertibility (laws (d1) and (d2)),

we use the preconditions that no policy is applied and that

the TGG is tight, i.e., all rules are source and target creat-

ing. This ensures that for each forward translation sequence

there is a corresponding backward translation sequence. For

the full proof see Thm. 1 in [24], where sets of operational

rules are called deterministic, if they are kernel-grounded and

deterministic using the notions of this article. ⊓⊔

The sets of operational translation rules of TGG are

kernel-grounded and deterministic according to Fact 7.8 in

Sec. 7. Moreover, the TGG is pure and we used the conser-

vative policy for the backward direction only. Thus, Thm. 8.6

ensures that Synch(TGG) is weakly invertible (see Fact 8.7

below).

Fact 8.7 (Case Study: Weak Invertibility) The derived syn-

chronization framework for our example TGG is weakly in-

vertible.

Proof In order to apply Thm. 8.6 concerning weak invertibil-

ity, we have to show that the TGG is pure (cf. Sec. 8) and

at most one set of operational rules was restricted by a con-

servative policy (cf. Def. 6.5). The used policy for the set

of backward translation rules is conservative, which we have

shown already in Fact 8.4. No further policy is applied and

the TGG is pure, because each rule is either creating on the

source and target component, or it is creating either on the

source or the target component and empty on the other com-

ponents. Therefore, we can apply Thm. 8.6 and derive weak

invertibility. ⊓⊔

An intuitive example for weak invertibility is shown in

Ex. 3.5 in Sec. 3, where we also show by counterexample

that the derived synchronization framework for our example

TGG is not invertible in the general sense. The reason is that

information about birth dates is stored in one domain only.

The automated validation for our example TGG with 8 rules

was performed in 25 seconds on a standard consumer note-

book via the analysis engine of the tool AGG [37]. We are

confident that the scalability of this approach can be signifi-

cantly improved with additional optimizations.
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Remark 8.8 (Applicability of the Approach) We provided

sufficient conditions ensuring correctness and completeness

(Thm. 8.2) which can be checked statically. In the following,

we discuss these restrictions with respect to relevant applica-

tion scenarios.

1. Determinism: Most importantly, we require that the de-

rived sets of operational rules are deterministic, i.e.,

the forward and backward propagation operations ensure

unique results. In several application domains, this prop-

erty is already a requirement by the domain experts, i.e.,

has to be ensured anyhow. For example, unique results

are often required for the synchronization between visual

models and implementation code, i.e., for code generation

and reverse engineering. Existing triple rules can be mod-

ified to enforce deterministic based on the discussed crit-

ical pair analysis of a TGG using the tool AGG. For ex-

ample, the designer may insert additional correspondence

nodes (trace links) to enforce determinism and avoid con-

flicts between rules. The condition for determinism does

not seem to confine the expressiveness of TGG rules. In a

large scale industrial project, we used a TGG for the fully

automated translation of satellite control software [32],

where the used TGG contains more than 200 rules and

the derived system of operational rules is deterministic.

As a general recommendation based on the experiences

from this project, we can state that a designer of a TGG

should divide the rules in small groups, such that there are

no cyclic dependencies between the groups.

2. Kernel-grounded sets of operational rules: Intuitively, the

restriction to kernel-grounded rules concerns the possi-

bility that one domain may contain information that is

not present in the corresponding opposite domain. When

translating from one domain to the other, we apply only

those rules that are changing at least one translation at-

tribute (TR+s
FT and TR+t

BT ). Thus, we require that the struc-

tures that concern only one domain are handled separately

by triple rules that are the identity on the correspond-

ing opposite domain (TR1s
FT and TR1t

BT ) and that these sets

of rules do not create structures that may be needed by

the first group of rules. This means that the restriction to

kernel-grounded sets of operational rules mainly restricts

the freedom when designing the TGG and usually not the

problem and application domain itself.

The result on invertibility (Thm. 8.6) requires additional

properties. Weak invertibility is ensured, if the TGG is pure

and at most one of the sets of operational rules is extended

by a conservative policy. While this condition is not very re-

strictive in the experience of the authors, the stronger condi-

tion for invertibility requiring a tight TGG practically means

that all information in one domain are also reflected in the

corresponding opposite domain. This result is consistent with

Diskin et al.’s analysis of strong invertibility [9].

In the case that the specified TGG does not ensure de-

terministic synchronization operations, there are still two op-

tions for synchronization that ensure correctness and com-

pleteness. On the one hand, the triple rules can be modified in

a suitable way, such that the TGG can be verified to be deter-

ministic. For this purpose, the critical pair analysis engine of

the tool AGG [37] can be used to analyze conflicts between

the generated operational translation rules. Moreover, back-

tracking can be reduced or even eliminated by generating ad-

ditional application conditions for the operational translation

rules using the automatic generation of filter NACs [22]. On

the other hand, the TGG can be used directly, leading to non-

deterministic synchronization operations, which may provide

several possible synchronization results.

9 Related Work

Triple graph grammars have been successfully applied in

multiple case studies for bidirectional model transformation,

model integration and synchronization [29,35,15,14], and in

the implementation of QVT [19]. Moreover, several formal

results are available concerning correctness, completeness,

termination [12,16], functional behavior [25,16], and opti-

mization with respect to the efficiency of their execution [22,

30,16]. The presented constructions for performing model

transformations and model synchronizations are inspired by

Schürr et al. [33,35] and Giese et al. [14,15], respectively.

The constructions formalize the main ideas of model syn-

chronization based on TGGs in order to show correctness and

completeness of the approach based on the results known for

TGG model transformations.

Bidirectional transformation frameworks originate from

the lens framework proposed by Foster et al. [13]. Lenses

consider the asymmetric synchronization: one model is a

view of the other, and define a state-based framework for

asymmetric synchronization. ”State-based” means that the

synchronizer takes the states of models before and after up-

date as input, and produces new states of models as output.

Inspired by the lense framework, several researchers propose

state-based framework for symmetric synchronization [36,

27,7]. As a more general case, symmetric synchronization

allows neither of the model to be a view of the other. How-

ever, as Diskin et al. [6] point out, state-based bidirectional

transformations actually mix two different operations–delta

(correspondence relations between models or between dif-

ferent versions of a model) discovery and delta propagation,

leading to several semantic problems. To fix these problems,

several researchers [2,6,8,9,28] propose delta-based frame-

works, where deltas are taken as input and output. Typical

delta-based frameworks include delta lens [6] for the asym-

metric cases, and symmetric delta lens [9] and edit lens [28]

for the symmetric cases.

The model synchronization framework used in this paper

is a simplified version of the symmetric delta lens (sd-lens)

framework proposed by Diskin et al. [9]. The difference be-

tween this paper and sd-lenses is that we do not consider the

weak undoability laws (fUndo) and (bUndo) defined in the

sd-lens framework. In addition, Diskin et al. [9] also refine an

sd-lens as an alignment framework and a consistency main-

tainer. Our implementation is consistent with this refinement
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as well. The alignment framework corresponds to fAln and

bAln operations. The consistency maintainer is implemented

by Del, fAdd, and bAdd operations, which first mark the

consistent parts of the integrated model, then propagate the

changes, and finally delete the remaining inconsistent parts.

As a result, this paper also serves as a proof of concept for

the theory of symmetric delta lenses.

The BiG system proposed by Hidaka et al. [26] is a bidi-

rectional graph synchronization system. Different from our

work based on symmetric TGG specification, the BiG sys-

tem is based on an unidirectional graph transformation lan-

guage, UnQL [4], and thus is asymmetric by nature. Accord-

ingly, the BiG system adopts an asymmetric synchronization

framework (a variant of the basic lens framework [13]), while

our work adopts a simplified version of the symmetric delta

lens [9]. In an asymmetric framework, one model has to be

a view of the other, and it is not possible to synchronize

two models each containing information not presented in the

other.

Giese et al. introduced incremental synchronization tech-

niques based on TGGs in order to preserve consistent struc-

tures of the given models by revoking previously performed

forward propagation steps and their dependent ones [15].

This idea is generalized by the auxiliary operation Del in the

present framework, which ensures the preservation of max-

imal consistent substructures and extends the application of

synchronization to TGGs that are not tight or contain rules

with negative application conditions. Giese et al. [14] and

Greenyer et al. [20] proposed to extend the preservation of

substructures by allowing for the reuse of any partial sub-

structure of a rule causing, however, non-deterministic be-

havior. However, a partial reuse can cause unintended results.

Consider, e.g., the deletion of a person A in the source do-

main and the addition of a new person with the same name,

then the old birth date of person A could be reused.

In order to improve efficiency, Giese et al. [15,14] pro-

posed to avoid the computation of already consistent sub-

structures by encoding the matches and dependencies of

rule applications within the correspondences. In the present

framework, operation Del can be extended conservatively by

storing the matches and dependency information separately,

such that the provided correctness and completeness results

can be preserved as presented in Sec. 8.

Becker et al. presented a generally non-deterministic syn-

chronization approach based on TGGs [3] using the PRO-

GRES approach [34] with the focus to integration, i.e., con-

struction of missing correspondence links. The algorithm re-

quires user interaction at each rule application, where some

integration rules are in conflict for partial matches. For gen-

eral TGGs, such integrations may require backtracking to

achieve a resulting model that is fully integrated. In principle,

it might be possible to adapt this algorithm in order to apply

the main results in this article on correctness and complete-

ness, since the actual steps are performed via the operational

rules of a TGG.

10 Conclusion

Based on our formal framework for correctness, complete-

ness, termination and functional behavior of model transfor-

mations using triple graph grammars (TGGs) [12,22], we

presented a formal TGG framework for model synchroniza-

tion inspired by [15,14,33,35]. The main results (Thms. 8.2

and 8.6) show correctness, completeness and (weak) invert-

ibility, provided that the derived synchronization operations

are deterministic. Based on general results for TGGs in [22],

Thm. 8.1 and Sec. 6 provide sufficient static conditions for

checking that the operations are deterministic.

However, if the operations are not yet deterministic, we

may be able to define a conservative policy in order to ensure

determinism (see Ex. 8.3). Note that our notion of correct-

ness in Def. 3.3 requires that the synchronization operations

are deterministic. But if we drop this requirement for cor-

rectness we are optimistic that our theory can be extended to

handle also applications based on TGGs with nondetermin-

istic model transformations. In fact, the theory of TGGs in

general is not restricted to the deterministic case.

In future work, the Henshin tool [1] based on AGG [37]

will be extended in order to implement the synchronization

algorithm for forward propagation in Fig. 7.3. The implemen-

tation will also support concurrent model synchronization

with conflict resolution based on our approach in [21], where

we extended the synchronization framework of this article to

the concurrent case and we plan to apply these techniques

within an industrial research project [32]. Furthermore, we

will study model synchronization based on non-deterministic

forward and backward propagation operations in more detail.

Finally, the relationship with lenses [36] and delta-based bidi-

rectional transformations [9] will be studied in more detail,

especially in respect of the composition of lenses leading to

the composition of synchronization operations. It is also in-

teresting to investigate the potential of TGG’s to provide a

common implementation framework for a family of algebraic

models for different synchronization modes described in [8].
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34. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach:

Language and environment. In: Ehrig, H., Engels, G., Kre-

owski, H.J., Rozenberg, G. (eds.) Handbook of Graph Gram-

mars and Computing by Graph Transformation, Volume 2: Ap-

plications, Languages and Tools. p. 487550. World Scientific

(1999)
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