
Article
DOI: 10.1111/exsy.12023

Model-to-model and model-to-text: looking for the
automation of VigilAgent

José Manuel Gascueña,1 Elena Navarro,2

Antonio Fernández-Caballero2 and Rafael Martínez-Tomás3

(1) Symbia IT S.L., Parque Científico y Tecnológico de Albacete, Albacete, Spain

E-mail: JManuel.Gascuena@symbiait.com

(2) Departmento de Sistemas Informáticos, Universidad de Castilla–La Mancha, Albacete, Spain

E-mail: Elena.Navarro@uclm.es; Antonio.Fdez@uclm.es

(3) Departamento de Inteligencia Artificial, Universidad Nacional de Educación a Distancia, Madrid, Spain

E-mail: rmtomas @dia.uned.es

Abstract: VigilAgent is a methodology for the development of agent-oriented monitoring applications that uses agents as the key

abstraction elements of the involved models. It has not been developed from scratch, but it reuses fragments from Prometheus and

INGENIAS methodologies for modelling tasks and the ICARO framework for implementation purposes. As VigilAgent intends to

automate as much as possible the development process, it exploits.

Model transformation techniques are one of the key aspects of the model-driven development approach. A model-to-model transformation

is used to facilitate the interoperability between Prometheus and INGENIAS methodologies. Also, a model-to-text transformation is

performed to generate ICARO code from the INGENIAS model. A case study based on access control is used to illustrate the fundamentals

of the model-to-model and model-to-text transformations implemented in VigilAgent.

Keywords: agent-oriented software methodologies, model-driven development, model-to-model transformations, model-to-text

transformations

1. Introduction

Model-driven development (MDD) (Beydeda et al., 2005) is

having more and more attention for developing software. It

revolves around raising the abstraction level at which the

developer works to exploit the models as the cornerstone of

the software development process. This has the following

consequences for the development process: (1) more time is

devoted to analysing and designing models; (2) the time

necessary to perform coding tasks is reduced, as code

generators are developed for the selected target platform, being

programmers responsible for completing those parts of the

systems that are not generated automatically; (3) the quality

of the developed system is improved as the generated code

(usually) does not have bugs; (4) productivity is improved as

the time necessary for coding is reduced, so that more efforts

are devoted to solving errors during early phases of the

life cycle, avoiding in this way the snow ball effect; and

(5) portability is improved as adopting a new technology

just requires developing a new code generator. Indeed, the

models are independent of any software implementation

technology. Furthermore, MDD also provides interoperability

among heterogeneous systems thanks to the specification of

bridges among different technologies. In short, using a MDD

approach for developing software applications offers important

benefits in fundamental aspects such as productivity,

portability, interoperability and maintenance (Kleppe et al.,

2003; Schmidt, 2006).

In the MDD approach, the model transformation

techniques (Czarnecki and Helsen, 2006) play a very

relevant role. On the one hand, model-to-model (M2M)

transformations turn a source model into a target model

located in the same or different abstraction level. On the

other hand, model-to-text (M2T) transformations are another

key for MDD as they automate the last step of the process by

generating the final source code of the system. Therefore, the

difference between M2M and M2T transformations is the

outcome obtained once they are run, as the former generates

a model and the latter just generates a document in textual

format, usually of string type.

Nowadays, security systems (Haering et al., 2008; Kumar

et al., 2008; Räty, 2010) are being installed in environments

such as bank, parking, highway and underground to protect

humans from attacks or burglaries. The development of

monitoring systems is a very complex task as they work in

highly dynamic and heterogeneous environments.Monitoring

systems deploy several kinds of sensors that perform actions

with a certain degree of autonomy to collect information

about their surrounding area in the observed scenarios and

to cooperate in the recognition of special situations in a

semi-automatic way. The characteristics of autonomy

and cooperation are often cited as the rationale of why

multi-agent systems (MAS) are especially appropriate for

monitoring tasks (Pavón et al., 2007; Patricio et al., 2008;

Rivas-Casado et al., 2011). In fact, agent technology has

been used in several monitoring systems (Gascueña and

Fernández-Caballero, 2011) so far. However, to the best of

our knowledge, they are usually developed following an ad

hoc approach, that is, without a methodology that guides a

stakeholder in achieving the quality standards expected from

© 2013 Wiley Publishing Ltd Expert Systems, July 2014, Vol. 31, No. 3 199



commercial software. So, this paper proposes the exploitation
of an agent-oriented software engineering methodology,
named VigilAgent, to carry out well-documented monitoring
applications throughout the different phases that make up
the development process. Moreover, VigilAgent uses agency
as the abstraction key element of the models specified to
develop monitoring applications.

VigilAgent methodology has not been developed from
scratch, but it reuses fragments from the Prometheus (Padgham
and Winikoff, 2004) and INGENIAS (Pavón et al., 2005)
methodologies for modelling tasks and the ICARO framework
(Garijo et al., 2008) for implementation purposes. VigilAgent
implements an M2M transformation to facilitate a seamless
transition from Prometheus models to INGENIAS models as
they do not use a common modelling language to specify
MAS applications. Moreover, VigilAgent applies an M2T
transformation to generate ICARO code from INGENIAS
models. Thus, VigilAgent takes advantage of one of the aspects
of the MDD approach, namely model transformation. This
paper focuses on describing the fundamentals of the M2M
and M2T transformations implemented in VigilAgent.

The rest of the paper is organized as follows. First, Section 2
presents a brief discussion about some of the most relevant
works developed in this area. In Section 3, an overview of the
phases that the VigilAgent methodology entails, explaining
why Prometheus, INGENIAS and ICARO have been
integrated, is offered. Then, Section 4 introduces a case study
used to illustrate the M2M and M2T transformations
implemented in VigilAgent. Section 5 describes the VigilAgent
concepts used by the implemented M2M transformation by
using examples extracted from the case study. Next, the
implemented M2M and M2T transformations are described
in Sections 6 and 7, respectively. Finally, Section 8 offers the
main conclusions and hints for future work.

2. Related work

Several works have been already developed in the area ofMAS
that exploit model transformations to a greater or lesser scope.
For instance, INGENIAS has been extended to support the
application of M2M transformations (García-Magariño
et al., 2011). Another related work is the ASEME
methodology (Spanoudakis, 2009), which employs the two
types of transformations previously described (M2M and
M2T) throughout its different phases. Moreover, it also uses
a text-to-model transformation for reverse engineering
purposes. Ayala et al. (2011) proposedM2M transformations
to translate PIM4Agents (Hahn et al., 2009), a generic
agent meta-model used at design phase, into Malaca, a
platform neutral meta-model for agents proposed by Amor
and Fuentes (2009).

Regarding M2T transformations, several works related to
the MAS area are found in the literature. For instance, the
INGENIAS methodology provides the possibility to specify
and run M2T transformations using a mechanism devised by
INGENIAS developers (Pavón et al., 2006). Similarly, a tool
developed by Kardas et al. (2009) supports the execution of
M2T transformations specified with MOFScript (OMG,
2011) to automatically generate code for two different agent
platforms. Themain difference between them is that the former
uses models from a higher abstraction level than the latter.
Taom4E (Morandini et al., 2011), a tool for the development

of software following the TROPOSmethodology (Morandini
et al., 2008), includes functionalities to generate code for
Jadex language (Braubach et al., 2005). Domain Specific
Modeling for Multiagent Systems (Dsml4mas) Development
Environment (DDE) (Warwas and Hahn, 2009) is an
environment for the development ofMAS based on a domain
specific modelling language for MAS that supports code
generation for JACK (Winikoff, 2005) and JADE
(Bellifemine et al., 2007) languages.

The identified methodologies internally use M2M
transformations to facilitate the transition among different
phases. However, the proposal presented in this work is the
exploitation of M2M transformations to implement the
transition between models used by different methodologies,
facilitating their integration.

3. Description of the VigilAgent methodology

As aforementioned, VigilAgent has been defined to ease the
development of agent-oriented monitoring applications. This
aim entails five phases that are briefly described as follows:

1. System specification. In this phase, the analyst specifies both
the requirements and the environment of the system in
hand. They are obtained after several meetings arranged
with the customers.

2. Architectural design. During this phase, the system architect
determines what kind of agents the system needs and how
the interaction between them has to be.

3. Detailed design. The agent designer and application
designer collaborate to specify the internal structure of each
entity that makes up the system with regard to the
architecture produced in the previous phase.

4. Implementation. The software developer generates and
completes the application code.

5. Deployment. The deployment manager opens out the
application according to a specified deployment model.

At this point, several issues have to be spelled out about the
identified phases. First, the phases named system specification

and architectural design in VigilAgent correspond to the two
first phases of the Prometheus methodology (Padgham and
Winikoff, 2004). Another important detail is that the third
phase of VigilAgent, named detailed design, uses INGENIAS
models (Pavón et al., 2005) in its definition. Finally, notice that
the code generated by VigilAgent is for its deployment in the
ICARO framework (Gascueña et al., 2010). Several reasons
have conducted to this integration:

• One of the main advantages of the exploitation of
Prometheus is the guidelines offered to identify both the
agents and their interactions. Another advantage of
Prometheus is the explicit use of the scenario concept, which
is also widely exploited in the monitoring domain. Indeed, a
monitoring application is developed to deal with a collection
of scenarios. Nevertheless, notice that the last phase of
Prometheus has not been integrated in VigilAgent because
it focuses on belief–desire–intention (BDI) agents and how
the entities obtained during the design are transformed into
concepts used in a specific agent-oriented programming
language named JACK (Bordini et al., 2005). This means,
in principle, a loss of generality. However, INGENIAS does

© 2013 Wiley Publishing Ltd200 Expert Systems, July 2014, Vol. 31, No. 3



facilitate a general process to transform models
specified during the design phase into executable code.
Unfortunately, INGENIAS does not offer guidelines to
identify the entities of the model, but the developer’s
experience is necessary for their identification. Therefore,
VigilAgent methodology is not developed from scratch but
integrates facilities of Prometheus and INGENIAS to take
advantage of both.

• Regarding the implementation phase, the ICARO
framework has been selected because it already provides
high-level software components that facilitate the
development of agent applications. Also, it is independent
of the agent architecture, that is, the developer creates new
architectures for their integration in the framework. This is
a clear difference regarding other agent frameworks such
as JACK or JADE (Bordini et al., 2005), which provide a
middleware to establish the communications among
agents instead of an extensible architecture. An additional
advantage is that this framework already implements
functionalities to automatically carry out component
management, application initialization and shutdown,
which are not usually provided by other frameworks. Thus,
the ICARO framework enables the developers to reduce
their workload and guaranty that all components are
under control.

A comparison between the agent-oriented methodologies
previously cited and other agent methodologies, as
well as a comparison between ICARO and other agent
programming languages, has recently been introduced
(Gascueña et al., 2011).

Lastly, different tools support the development of
monitoring applications according to the VigilAgent phases.
First, the Prometheus design tool (PDT) (Padgham et al.,
2008) is used during the system specification and architectural

design phases to specify the Prometheus model of the system.
Then, the specified Prometheus model is transformed to an
INGENIAS model by executing the M2M transformation
with the Medini QVT tool (QVT, 2012), (Pardillo et al.,
2010). Afterwards, according to the detailed design phase, the
INGENIAS model generated is completed by using the
INGENIAS development kit (IDK) (Gómez-Sanz et al.,
2008). Finally, the detailed INGENIAS model is transformed
into code for the ICARO framework by running our
INGENIAS ICARO framework (IIF) generator on the IDK.

4. Case study: access control

Access control is the usual and basic term used for monitoring
and controlling the entrance to and exit from a specific area.
In a previous work (Gascueña et al., 2011), we illustrated
how to use VigilAgent to develop an intelligent system for
access control. It automatically controls entrances/exits of
humans to/from an enclosure throughout the installed
modules (see Figure 1(a)). Each one of the modules enables
the entrances and exits according to their configuration and
is composed of the following elements (see Figure 1(b)): a
reader device, an automatic door, a contact sensor and an
infrared sensor. To go in/out of the enclosure throughout a
module, the user inserts a ticket into the reader device that
the system verifies against the users’ database. Then, a light-
emitting diode (LED) illuminates in green if the user is
authorized; otherwise, it illuminates in red. If the user
is authorized, then the door is opened and closed once the
user has crossed the door or too much time has elapsed.

In addition, the system collects and shows statistics to the
guard about the number of humans crossing each door and
the number of humans located inside the enclosure by using
the infrared sensor installed in each module. It has also to
control anomalous situations, such as tailgating or when a
human blocks a door that the system has opened. A tailgating
situation is detected when a cunning human crosses a door that
has been opened by a user correctly authenticated. The system
also shows the state of the devices and offers the guard the
possibility of disabling a module if its door remains closed
despite having correctly authenticated a user.

Sections 6 and 7 focus on providing a detailed description
about the fundamentals of theM2MandM2T transformations
implemented in VigilAgent by using examples of the presented
case study. Previously, a summary of the final system overview

diagram of the access control system obtained as result of the
architectural design phase is introduced in the following section.

5. System overview diagram

The system overview diagram is the final artefact obtained as
result of the two first phases of VigilAgent, that is, the system
specification and architectural design phases (Gascueña et al.,
2011). It provides an overview of the internal system
architecture and is the starting point to execute the
transformations explained in the following sections. Figure 2

Figure 1: The case study: (a) Surveillance environment. (b) Module devices.

© 2013 Wiley Publishing Ltd Expert Systems, July 2014, Vol. 31, No. 3 201



shows the system overview diagram of the case study presented
in the previous section. Several kinds of entities are used to
describe this diagram:

• Agent. It is ‘an entity that performs a specific activity in an
environment that is aware of and responds to changes’
(Sterling and Taveter, 2009). The communications between
the identified agents are summarized as follows. All
agents that perceive information captured by a device such
as ReaderAg or DoorAg use CommunicatorAg as an
intermediate agent to establish their communication.
Moreover, the TailgatingAg and SabotageDoorAg agents,
responsible for detecting anomalous situations, use
the knowledge offered by the InfraredSensorAg and
ContactSensorAg agents related to the infrared and contact
sensors, respectively, to carry out their tasks.

• Percepts. The information that comes from the environment
is identified as percepts. In Figure 2, examples of percepts are
the code associated to the card introduced by the user into
the reader (Ticket_p) and the signal captured by the infrared
device when its beam is broken (BrokenBeam_p).

• Actions. Every operation that the system requests to
the actors is identified as an action. Examples of actions
are the OpenDoor_a and CloseDoor_a commands
issued to open and close a door, respectively, and the
NotifySabotagedDoorByUser_a and NotifyTailgating_a

alert messages displayed on the user interface to notify that
an anomalous situation occurred.

• Data. Data are either information managed by agents or
beliefs representing their knowledge about the environment
or themselves. For example, the BDD data validate every
introduced ticket. It is worth noting that data have different
granularity. For instance, in the access control case study,
Traffic data is used to count how many people cross each
module, OccupationLevel data is employed to have control
on the enclosure capacity level and ModuleConfiguration

data is utilized to determine if a user goes in or out
the enclosure.

• Actors. An actor is an external entity – human or software/
hardware – that interacts with the system. In the access
control case study, an actor is specified for each device of a
module (reader, door, infrared and contact sensors). There
is also aCentral_A actor (see Figure 3) representing the user
interface that supports the human interaction with the
system, that is, it shows the monitored activities to
the security guard and the commands he or she can send to
the system to enable/disable modules. Moreover, the actors
specified in the interaction protocols are also used in the
system overview diagram. For instance, the Infrared_A and
Central_A actors are specified in the Tailgating_IP

interaction protocol shown in Figure 3. This interaction
protocol is also identified in the system overview diagram

illustrated in Figure 2.

Figure 2: System overview diagram.

Figure 3: Tailgating interaction protocol.

© 2013 Wiley Publishing Ltd202 Expert Systems, July 2014, Vol. 31, No. 3



• Message. This entity is used in the interaction protocols
to represent a communication among agents. For
instance, the BrokenBeam message, shown in Figure 3,
communicates that the infrared sensor beam has been
broken.

• Interaction protocols. These are a graphical representation
that shows (1) interactions among agents and (2)
interactions among agents and the environment. It should
be highlighted that percepts are originated by actors

that communicate with agents, whereas actions describe
a communication of agents with actors. For example,
Figure 3 details the internal structure of the Tailgating_IP
interaction protocol, a sub-protocol of Access_IP. As can
be noticed, it involves two agents (InfraredSensorAg and
TailgatingAg) and two actors (Infrared_A and Central_A)
that interact to detect a tailgating situation. This situation
happens when a door remains open even though an
authorized person has already crossed it and the related
infrared sensor has been activated once. At this moment,
when the InfraredSensorAg agent perceives that the
infrared sensor beam is broken again, a new crossing
through the module is counted (IncreaseTrafficCounter_a),
the number of people inside the enclosure is updated
(IncreaseOccupationCounter_a) and the detection is
communicated to the TailgatingAg agent sending a
BrokenBeam message. Finally, the TailgatingAg agent
notifies the Central_A actor an unauthorized access by
means of the NotifyTailgating_a action. This checking is
carried out until the ContactSensorAg agent notifies the
TailgatingAg agent that the door is closed thanks to the
Access_IP protocol. The defined Tailgating_IP interaction
protocol detects unauthorized entrances and exists.

6. Model-to-model transformation: from Prometheus to

INGENIAS

The M2M transformation from Prometheus to INGENIAS is
one of the major aspects and contributions of our VigilAgent
methodology. The proposed mappings have mainly been
inferred from the documentation of the Prometheus and
INGENIAS methodologies, the entities and their relations
supported by the PDT and IDK tools, and our own experience
(Gascueña and Fernández-Caballero, 2007, 2011). The process
of identification of mappings consists in analysing each
Prometheus concept and inferring how it can bemodelled using
an INGENIAS equivalent structure. Franklin and Graesser
(1996) defined an autonomous agent as ‘a system situated within
and a part of an environment that senses that environment and
acts on it, over time, in pursuit of its own agenda and so as to
effect what it senses in the future’. This definition has been

exploited to identify the key concepts that must be taken
into account to specify the mappings between INGENIAS
and Prometheus: the agent’s perception and action, the
interchanged messages to satisfy its objectives and the
information to be recorded about both its environment and
itself. The next sections describe four conceptual mappings to
transform the structures that involve percepts, actions,
messages and data related to agents.

The conceptual mapping has been automated specifying
an M2M transformation by using the QVT language
(OMG, 2008). This language has been selected as it offers
characteristics such as directionality and traceability, which
are not available in other languages such as ATL (Jouault
et al., 2008) or XSLT (Tidwell, 2008). The first characteristic
means that transformations are executed in both directions,
whereas the second one enables to generate a traceability
model that establishes relationship among the involved
models. Navarro (2007, p. 248) has introduced a comparison
illustrating why QVT is the most complete option to perform
model transformations versus other model transformation
languages, according to the analysed features. Currently, in
VigilAgent, a transformation has been defined to generate
INGENIAS models from Prometheus models, but in the next
future, we want to take advantages of these features to exploit
the traceability both top–down and bottom–up between
Prometheus and INGENIAS models.

In the following, Entity 1 –RelationX➔Entity 2 notation is
used to specify that Entities 1 and 2 are related through the
relation RelationX. The direction of the arrow is a graphical
representation of the relation that links both entities. In the
figures that describe the identified mappings, dotted arrows
have been used to stand out how the Prometheus entities are
transformed into equivalent INGENIAS entities. Moreover,
a table below each figure provides information about the
related models. Finally, the notation to represent the entities
used in PDT and IDK is shown in Figure 4.

6.1. Mapping Prometheus percepts

A Prometheus percept is a piece of information from the
environment received through a sensor. Percepts are sent
by actors (Actor➔Percept) and are received by agents
(Percept➔Agent). The relations between actors and
percepts (Actor➔Percept) are specified in the Prometheus
interaction protocol diagrams and the relations between
percepts and agents (Percept➔Agent) are described in the
Prometheus system overview diagram. Figure 5 depicts an
example of their use for the access control case study. It shows
how InfraredSensorAg agent perceives from the environment
that a beam has been broken, that is, the Infrared_A actor
sends a BrokenBeam_P percept, containing the captured
signal by the infrared device, to the InfraredSensorAg agent.

Figure 4: Graphical representation of Prometheus and INGENIAS entities.

© 2013 Wiley Publishing Ltd Expert Systems, July 2014, Vol. 31, No. 3 203



In INGENIAS, if a software and/or hardware element
interacts with the system in hand and cannot be designed as
an agent, then it is specified as an application. According
to the second consistency criterion of the INGENIAS
environment model, every agent that perceives changes in the
environment must be associated to an application in the
environment model. Therefore, as arrow 1 in Figure 5 shows,
every percept of a Prometheus agent is mapped to an
operation of an INGENIAS application.

A Prometheus percept has a field, Information carried, to
specify the carried information. If Information carried is null,
then, as depicted by arrow 2 in Figure 5, this is described in
INGENIAS as a type of event named ApplicationEvent,
which is associated to the EPerceives relation established
between the agent and the corresponding application. If
Information carried is not null, then ApplicationEventSlots

is used instead of ApplicationEvent (e.g. to translate the
Ticket_P percept). Notice that Prometheus agent and actor
concepts are directly mapped to INGENIAS agent and
application concepts (see arrows 3 and 4 in Figure 5,
respectively). The basic elements of these equivalencies are
graphically and textually summarized in Figure 5.

6.2. Mapping Prometheus actions

A Prometheus action represents an interaction between an
agent and its environment. This is represented in
Prometheus through the structure Agent➔Action➔Actor.
For instance, Figure 6 illustrates that a TailgatingAg agent
sends a NotifyTailgating_a action to the Central_A actor
to display an alert message on the user interface that notifies
a tailgating situation. Therefore, a Prometheus action on the
environment is transformed into an operation of an
INGENIAS application specified in the INGENIAS
environment model (arrow 1 in Figure 6). In addition,
an Agent –ApplicationBelongsTo➔Application relation is
established to specify that an agent uses an application. All
these information are summarized in Figure 6.

6.3. Mapping Prometheus data

In Prometheus, data represent either external information
used by an agent or beliefs describing the agent’s knowledge
about the environment or itself. It is worth noting that data
both represent a simple data type (e.g. a string or Boolean)

Figure 5: Mapping Prometheus percepts into INGENIAS.

Figure 6: Mapping information related with Prometheus actions into INGENIAS.

© 2013 Wiley Publishing Ltd204 Expert Systems, July 2014, Vol. 31, No. 3



or a complex data type (e.g. database). Figure 7 shows one
of the data used in the access control case study. As it can
be observed, the ReaderAg agent writes and reads
information on the user’s database (BDD data) to check
whether the ticket introduced by a user is valid or not. In
the Prometheus system overview diagram, the relations
Agent➔Data and Data➔Agent express that an agent
reads and writes a data, respectively. In the INGENIAS
environment model, those Prometheus data with a coarse
granularity (e.g. a database or a complex data structure
to store non-persistent information) are translated to
Agent –ApplicationBelongsTo➔Application. Notice that
the INGENIAS application is not the data itself but the
entity that provides methods for its management (arrow 1
in Figure 7). All these equivalencies are graphically and
textually summarized in Figure 7.

6.4. Mapping Prometheus messages

A Prometheus message represents a communication among
agents. When the system overview diagram and interaction
protocols are specified, the AgentS➔Message➔AgentT
structure is used to represent that the AgentS sends a
Message to the AgentT. For instance, it can be observed in
Figure 8 that the ReaderAg agent sends a ValidIdentification
message to the CommunicatorAg agent with information
useful to start the process of opening the door because the
user has been properly authenticated. In INGENIAS, the
term interaction unit is used instead of message (arrow 1 in
Figure 8). Thus, it has been considered that AgentS
UIInitiates InteractionUnit –UIColaborates➔AgentT in
the INGENIAS interaction model is the equivalent
structure. If the message contains some information, then
this is expressed in INGENIAS by means of a FrameFact

included in the interaction unit. Figure 8 summarizes these
equivalencies.

6.5. Automating the Prometheus-to-INGENIAS

transformation

As stated before, the QVT relations language has been used
to define the transformation prometheus2ingenias, which
allows us to execute the mappings previously described in an
automatic way. Medini tool (QVT, 2012) is the engine used

to execute this transformation. Five inputs are required by
Medini to execute the prometheus2ingenias transformation:
the Prometheus meta-model, the Prometheus model to be
transformed, the INGENIAS meta-model, the name of the
INGENIAS model to be generated and the transformation
defined using QVT relations. The basic idea of a meta-model
is to identify the main concepts and their relations of a given
problem domain that are used to describe models of that
domain. Both Prometheus and INGENIAS meta-models
have been described using Ecore (Steinberg et al., 2009), a
language to describe meta-models.

As shown next, the prometheus2ingenias transformation has
two typed candidate models: pro represents any model that
conforms to the Prometheus meta-model (Gascueña et al.,
2012), and ing represents any model that conforms to the
INGENIAS meta-model (Fuentes-Fernández et al., 2010).

A transformation is made up of a set of relations, specifying
each of them one or several mappings between the candidate
models. For example, the MapDataToApplication and
MapAgentToAgent relations have been specified to automate
the mapping described in Section 6.3 and are illustrated next:

• The MapDataToApplication relation has two domains,
pro and ing, which are previously specified in the
declaration of the transformation. The relation imposes
a pattern on every domain, describing the constraints to
be satisfied by the elements of the involved model. When
the elements contained in each candidate model
simultaneously fulfil their corresponding patterns, then
the matching happens, and the relation is successfully
executed; otherwise, it fails, and it is not executed. In
the pro domain, the relation establishes that every
Prometheus data (i.e. all elements of type data) must be
retrieved to be used. But, the pattern also imposes a
condition that defines that name and description of these
data are bound to the nd and ded variables, respectively.
Simultaneously, in the ing domain, every INGENIAS
application (i.e. all elements of type Application) has the
attributes id and description bound to the same variables
nd and ded. It can also be observed that this relation has
a when clause, which describes a condition that must be

Figure 7: Mapping information related with Prometheus data into INGENIAS.

© 2013 Wiley Publishing Ltd Expert Systems, July 2014, Vol. 31, No. 3 205



held before the relation can be successfully applied. In
this case, the when clause specifies that the relation is only
applied for data entities, which have a defined data type
equals to DB string.

In QVT relations, a relation can be defined either to check
the models for consistency or to enforce the consistency by
modifying the model selected as target. Therefore, every
pattern can be evaluated using two different modes: checkonly,
which just checks if the pattern is satisfied, reporting an
inconsistency otherwise, and enforce, which first checks
whether the pattern is satisfied and then creates, modifies or
erases elements in the target model, as it is necessary to ensure
the consistency. In the MapDataToApplication relation, the
pro domain has been marked as checkonly, but the ing domain
has been marked as enforce. This means that when the
transformation is executed, it is checked whether there
are elements in the target INGENIAS model that satisfy
the MapDataToApplication relation, that is, the pattern
described for its ing domain. If this is not the case, elements in
the target INGENIAS model will be created, deleted or
modified to enforce the consistency. This allows either to
generate the target INGENIAS model or to check whether
inconsistencies emerge between the generated INGENIAS
and the Prometheus source models.

• The interpretation of the MapAgentToAgent relation is
similar to the previous one. Let us highlight that a where
clause has been defined to specify a condition that must
be held once, the relation has been successfully executed.
This is where clause specifies that other relations have
to be called once the relation MapAgentToAgent is
satisfied. For example, MapAgentWrittenToApplication

and MapAgentReadToApplication relations establish the
connections between the agents and applications related
to the data conceptual mapping.

Figure 8: Mapping information related with Prometheus message into INGENIAS.

© 2013 Wiley Publishing Ltd206 Expert Systems, July 2014, Vol. 31, No. 3



7. Model-to-text transformation: from INGENIAS to

ICARO framework

The M2T transformation from INGENIAS to ICARO is the
other major contribution of the VigilAgent methodology. The
development of IDKmodules to support ICAROas the target
platform for the implementation of multi-agent system
applications has followed a bottom–up approach. First,
the INGENIAS structures necessary to specify all the
concepts and relations of an application implemented in
ICARO have been identified. Then, a module has been
gradually developed, which automates the task of ICARO
code generation from INGENIAS specifications aligned
with the identified conceptual relations. Finally, a
new module has been developed to provide the ability
to upgrade the specification of a model according to
the changes made in the implementation. A detailed
description of the general process for developing IDK
modules can be found in Pavón et al. (2006). The next
section provides a description about the relations found
between the INGENIAS and ICARO concepts, and
Sections 7.2 and 7.3 describe the modules developed to
generate and update code for ICARO, respectively.

7.1. Conceptual relation between INGENIAS and ICARO

First, it is worth describing some details of the figures used in
this section to illustrate the relationship between INGENIAS
and ICARO. The left side of the figures provides the notation
used to express a fragment by using INGENIAS, whereas the
right side of these figures corresponds to the notation chosen
to express the same fragment of a model using ICARO
concepts. Any communication between the components
implemented to develop an executable ICARO application
is summarized as follows. First, an event is an entity
for exchanging information between the producer of the
event and the potential receivers. An event is used for
communication and information delivery from a resource

to its agent or among agents. Thus, an agent sends events
through its use interfaces, and similarly, a resource also

employs the use interface of an agent to send an event. Second,
an agent uses the use interface of a resource to request the
services (methods) offered.

From our point of view, the INGENIAS concepts of agent
and application can be mapped to the ICARO concepts of
reactive application named agent and resource, respectively.
For example, when an ApplicationBelongsTo relationship is
established between an agent and an application, it is
understood that the agent uses the services offered by the
resource (see Figure 9). In particular, the actions that the agents
execute on the environment are represented by this structure.
Services are modelled as application methods.

In ICARO, a resource sends information to an agent.
However, in INGENIAS, an agent perceives information from
an application (see Figure 10). For this reason, the following
mappings have been established: (1) for every INGENIAS
EPerceives relationship between an agent and an application
modelled as an event of type ApplicationEvent (to denote that
such event has no information), a signal between the
corresponding ICARO resource and agent is established, and
(2) for every INGENIAS EPerceives relationship between an
agent and an application modelled as an event of type
ApplicationEventSlots (to denote that such event does have
information), an ICARO entity event is created to specify the
sending of such information between the corresponding
ICARO resource and agent.

In INGENIAS, the communication among agents is
specified using an entity of type InteractionUnit related to
the producer and consumer agents by means of relationships
UInitiates and UICollaborates, respectively (see Figure 11).
If the producer agent sends information, then this is included
in the interaction unit by means of an entity of type
FrameFact, which contains the necessary slots to transport
it. This is graphically denoted in the interaction unit because
it shows an Info attribute (the value shown is the identifier of
the FrameFact). This communication is mapped to ICARO
by creating an entity event to specify the sending of such
information between the corresponding ICARO agents.
Conversely, if the INGENIAS producer agent does not
send information, then the interaction unit does not include
a FrameFact. This communication will be mapped to
ICARO by creating a signal between the corresponding
ICARO agents.

The behaviour of an ICARO reactive agent is specified by
means of an automaton. This is generated in an automatic
way from the INGENIAS state diagram of the related
INGENIAS agent. In particular, the following five structures,
available in INGENIAS state diagram, have been identified
to generate any ICARO automaton (see Figure 12):

• To generate the ICARO initial state, a starts relationship
between an INGENIAS InitialNode entity and the initial
state must exist.

• To generate an ICARO final state, an INGENIAS ends

relationship has to be specified from the final state to
the EndNode entity.

• To generate a transition between two different states in
ICARO, an INGENIAS WFollowGuarded relationship
between the corresponding states has to be specified using
the syntax event/semantic action in its Condition attribute.
The event represented in the INGENIAS state diagram is
related to an ApplicationEvent or ApplicationEventSlots

© 2013 Wiley Publishing Ltd Expert Systems, July 2014, Vol. 31, No. 3 207



Figure 9: Modelling an agent using resource’s services.

Figure 10: Modelling an agent’s perception.

Figure 11: Modelling a communication among agents.

Figure 12: Modelling an agent’s automaton.

© 2013 Wiley Publishing Ltd208 Expert Systems, July 2014, Vol. 31, No. 3



entity when the event is sent by a resource (see Figure 10) or
to an InteractionUnit entity if the event is sent by an agent
(see Figure 11).

• INGENIAS does not enable to explicitly represent
relationships that cycle over the same entity. To fix this issue,
the fourth structure has been considered: (1) a copy of the
state to be iterated over is made; (2) a WFollowGuarded

relation is established from the copied state to the original
state; and (3) a transition is specified following the syntax
described in the previous structure. This INGENIAS
structure is transformed to ICARO by specifying a cycle
over the same state.

• Universal transitions of the automaton of an ICARO
reactive agent are valid for any state of the automaton.
This means that when the finishing event happens, its
related actions are executed and the next state is reached,
regardless of the automaton current state. To represent
universal transitions in INGENIAS, the adopted solution
is to use a state that is always be named UniversalState

and plays the role of the source state of a universal
transition. Obviously, UniversalState cannot be used for
a different purpose in any automaton.

Finally, notice that the agent’s name is assigned to the state
diagram as a criterion to identify the agent’s behaviour.

In ICARO, the organization of an application is described
by means of deployment diagrams where the number of
instances of each type of agent and resource is specified.
However, taking into account that ICARO resources are
generated from INGENIAS applications and that the number
of INGENIAS application instances cannot be specified in
INGENIAS deployment diagrams, an alternative solution is
taken, namely to use INGENIAS environment models. These
models are specified carrying out the following steps: (1) copy
all the agents and applications in an environment model;
(2) relate them to entities of type UMLComment; and (3) set
the attribute text ofUMLComment to the number of instances
to be deployed. Obviously, this process is repeated to create as
many deployment configurations as necessary.

7.2. Code generation

To generate code for the ICARO framework, the IIF generator
IDK module has been developed. For this aim, the
IIFGenerator class has been extended so that its constructors
have the templates that the IIF module uses, in a similar way
to any other IDK code generator. Additionally, the extended
IIFGenerator class also implements the abstract methods
defined in BasicCodeGeneratorImp. It is worth noting that the
development of the IIF module has been simplified by defining
a template for each ICARO artefact (see Table 1).

The IDK templates for code generation have both source
code written in the programming language of the target
platform and tags to establish where the model information
is used during the generation of code. The kinds of tags to be
used in an IDK template are very limited (Gómez-Sanz,
2008): program is the main tag of the document, repeat

means that the text enclosed by this tag has to be copied
and pasted to have a duplicate, v represents a variable and
saveto is used to save the enclosed text into a file. Therefore,
it can be stated that the IDK code generation technology
is more straightforward and easy to learn than other
technologies for code generation, such as XSLT (Willians,
2009), Java Emitter Template (Vogel, 2009) or XPAND
(Gronback, 2009). However, IDK exhibits a disadvantage:
it does not allow developers to reuse templates so that
fragments have to copied and pasted to be reused, thus
hindering the code generator maintainability.

Next, the elements used by the IIF module to generate
code for the intermediate states of an ICARO reactive agent
automaton are shown. With this aim, the automaton

template specifies the following pattern: for each (first
repeat) intermediate state defined by the intermediateState

variable, generate code for each (second repeat) transition
that starts from such an intermediate state.

When the IIF module is executed using as input an
INGENIAS model, a sequence of data is generated. For
instance, in the following, a sketch of the sequence of a
generated agent automaton is shown.

Table 1: Description of the templates

Template Description

Automaton Used to generate an XML file with the automata agents code.
Semantic Action Employed to generate the code of the classes that implement the agents’ semantic action.
ResourceGeneratorClass Used to generate the code of the classes that implement the use interfaces of the resources. The code

of methods and parameters of these classes is automatically generated as well.
ResourceIseItf Used to generate the code of the use interfaces of the resources.
Deployment Employed to generate an XML file with the organization of the ICARO application under

development.

© 2013 Wiley Publishing Ltd Expert Systems, July 2014, Vol. 31, No. 3 209



Finally, it is worth noting that the IIF module performs a
matching between the templates and the data retrieved from
the model. Next, following our example, the code generated
by IIF is shown for an Infrared2 intermediate state and two
transitions that start from it. The first one means that when
the infrared beam is broken (BrokenBeam), then the agent
remains in the Infrared2 state and executes a NotifyTailgating

action to notify that a tailgating situation is happening. The
second one means that TailgatingAg agent changes to
WaitOpenDoor state when it is notified that the door has been
closed again.

7.3. Code update

Another important aspect to consider when developing a code
generator is to provide developers with facilities that prevent
manually written code from being overridden by subsequent
generator runs. The solution has been to integrate a facility
in the IIF module for marking protected regions where the
developers manually write code. The start and the end of a
protected region is marked by means of comments. A file has
as many protected regions as necessary, labelled each one with
a unique identifier. For instance, the classes that implement the
agents’ semantic actions have a protected region for each
semantic action established in the state diagram that specifies
the agent automaton. The following fragment of code shows
an example of this type of region, where ACTIONID has to
be replaced with the identifier of the related semantic action
(e.g. NotifyTailgating).

The IIF module uses the specification of the model to
generate code. Therefore, it is necessary to store a copy of the
code manually written in the protected regions. In this way,
each time the IIF module is run, each protected region is
overridden with the code manually written by the developer.

Another module named ICAROTCodeUploader, in charge
of synchronizing code and design, has been developed as well.
When it is executed, the design specification is updated with
the regions of the generated code. This module, unlike the IIF
module, does not require templates for its definition.

8. Conclusions

The learning curve of VigilAgent can be steep at first because
users must be used to different terms that have the same
meaning depending on the technology used in each phase
(Prometheus and INGENIAS for modelling and ICARO
for implementation). However, this disadvantage is overcome
thanks to the two transformations that are executed
automatically. First, an M2M transformation executed
by means of Medini automatically transforms Prometheus
structures into their equivalent INGENIAS structures. Second,

the M2T INGENIAS transformation generates code for the
ICARO framework from INGENIAS models. It is worth
pointing out that the time spent learning how to develop and
implement the IIF and the ICAROTCodeUploader modules
described in Section 7 was 2months and 15days. This effort
is worth as new applications are modelled and implemented
with an improved productivity. The main reason is that the
time necessary for coding is reduced because the developer does
not need to learn the structure, location and naming rules of
ICARO applications files. The developer only has to manually
write the body of both the resource methods and the agents’
semantic actions along with some auxiliary classes. The
remaining code is automatically generated by using as input
the INGENIAS models. We would also like to point out that
the presented transformations have been validated in the
context of two different applications developed with the
VigilAgent methodology. These applications revolve around
the problem of a robot team that patrols around a simulated
surveillance environment to deal with the alarms that rise in
such environment. The communications among robots are
established by means of a blackboard in the first application
(Gascueña et al., 2011). On the contrary, the second application
(Gascueña et al., 2011) uses an explicit communication
mechanism among robots to carry out the coordination tasks,
that is, a robot explicitly sends messages to all other robots. A
detailed description about the modelling phases using
VigilAgent is provided in the previous references. The
productivity for developing these applications was high.
Indeed, most of the necessary code was automatically
generated using as input the INGENIAS models during their
development. Moreover, they were developed iteratively in a
very easy way as the code manually written was automatically
maintained thanks to the IIF module.

Finally, notice that our methodological proposal is named
VigilAgent to expose one of the main motivations in our
research lines: developing surveillance or vigilance (Vigil)
systems using agent (Agent) technologies. However, let us
highlight that the proposal can be applied in other application
domains. The technologies used are of general purpose, that
is, they are not tied to a specific domain. Thus, an interesting
future work is to apply the methodology and proposed
transformations in domains different from surveillance.

Acknowledgements

This work is partially supported by the Spanish Ministerio
de Economía y Competitividad/FEDER under projects
TIN2008-06596-C02-01, TIN2010-20845-C03-01, TIN2010-
20845-C03-01 and TIN2012-34003.

References

AMOR, M. and L. FUENTES (2009) Malaca: a component and
aspect-oriented agent architecture. Information and Software

Technology, 51, 1052–1065.
AYALA, I., M. AMOR and L. FUENTES (2011) Towards the automatic

derivation of Malaca agents using MDE. Lectures Notes in

Computer Science, 6788, 128–147.
BELLIFEMINE, F., G. CAIRE and D. GREENWOOD (2007)

Developing Multi-agent Systems with JADE, New York: John
Wiley & Sons Ltd..

© 2013 Wiley Publishing Ltd210 Expert Systems, July 2014, Vol. 31, No. 3



BEYDEDA, S., M. BOOK and V. GRUHN (2005) Model-driven
Software Development, Berlin: Springer-Verlag.

BORDINI, R., M. DASTANI, J. DIX and A.E.F. SEGHROUCHNI (2005).
Multi-agent Programming: Languages, Platforms andApplications.
New York: Springer.

BRAUBACH, L., A. POKAHR and W. LAMERSDORF (2005) Jadex: a
BDI-agent system combining middleware and reasoning, in
Software Agent-Based Applications, Platforms and Development
Kits. 143–168. Basel, Switzerland: Birkhäuser Verlag.

CZARNECKI, K. and S. HELSEN (2006) Feature-based survey of model
transformation approaches, IBM Systems Journal, 45, 621–646.

FRANKLIN, S. and A. GRAESSER (1996). Is it an agent, or just a
program?: a taxonomy for autonomous agents, Lecture Notes in

Computer Science, 1193, 21–35.
FUENTES-FERNÁNDEZ, R., I. GARCÍA-MAGARIÑO, A. GÓMEZ-

RODRÍGUEZ and J. GONZÁLEZ-MORENO (2010) A technique for
defining agent-oriented engineering processes with tool support,
Engineering Applications of Artificial Intelligence, 23, 432–444.

GARCÍA-MAGARIÑO, I., R. FUENTES-FERNÁNDEZ and J.J. GÓMEZ-
SANZ (2011) Model transformations for improving multi-agent
system development in INGENIAS, Lectures Notes Computer

Science, 6038, 51–65.
GARIJO, F., F. POLO, D. SPINA and C. RODRÍGUEZ (2008) ICARO-T

user manual. Technical Report, Telefonica I +D.
GASCUEÑA, J.M. and A. FERNÁNDEZ-CABALLERO (2007) The

INGENIAS methodology for advanced surveillance systems
modelling, Lecture Notes in Computer Science, 4528, 541–550.

GASCUEÑA, J.M. and A. FERNÁNDEZ-CABALLERO (2011a) Agent-
oriented modeling and development of a person-following mobile
robot, Expert Systems with Applications, 28, 4280–4290.

GASCUEÑA, J.M. and A. FERNÁNDEZ-CABALLERO (2011b) On the
Use of Agent Technology in Intelligent, Multi-Sensory and
Distributed Surveillance, The Knowledge Engineering Review
26, 191–208.

GASCUEÑA, J.M., A. FERNÁNDEZ-CABALLERO and F. GARIJO (2010)
Using ICARO-T framework for reactive agent-based mobile
robots, Advances in Soft Computing, 70, 91–101.

GASCUEÑA, J.M., A. FERNÁNDEZ-CABALLERO, E. NAVARRO,
J. SERRANO-CUERDA and F. CANO (2011a) Agent-based
development of multisensory monitoring systems, Lecture Notes

in Computer Science, 6686, 451–460.
GASCUEÑA, J.M., E. NAVARRO and A. FERNÁNDEZ-CABALLERO

(2011b). Agent-oriented VigilAgent methodology for model-
driven development of multi-robot surveillance systems, in IEEE

International Conference on Robotics and Automation, Workshop
on Agent Technology in Robotics and Automation, Shanghai,
China. Available at http://stinger.wpi.edu/icra11/Submissions/
ICRA11 AT GascuenaNavarroFernandez.pdf

GASCUEÑA, J.M., A. FERNÁNDEZ-CABALLERO, M.T. LÓPEZ and A.
DELGADO (2011c) Knowledge modeling through computational
agents: application to surveillance systems, Expert Systems: The

Journal of Knowledge Engineering, 28, 306–323.
GASCUEÑA, J.M., E. NAVARRO and A. FERNÁNDEZ-CABALLERO

(2011d) VigilAgent for the development of agent-based multi-
robot surveillance systems, Lectures Notes in Computer Science
6685, 200–210.

GASCUEÑA, J.M., E. NAVARRO and A. FERNÁNDEZ-CABALLERO

(2012) Model-driven engineering techniques for the development
of multi-agent systems, Engineering Applications of Artificial

Intelligence 25, 159–173.
GÓMEZ-SANZ, J.J. (2008) INGENIAS agent framework

development guide version 1.0. Technical Report, Universidad
Complutense de Madrid. Available at http://grasia.fdi.ucm.es/
main/myfiles/guida.pdf

GÓMEZ-SANZ, J.J., R. FUENTES, J. PAVÓN and I. GARCÍA-MAGARIÑO

(2008) INGENIAS development kit: a visual multi-agent system
development environment, in Proceedings of the 7th International

Conference on Autonomous Agents and Multiagent Systems,
Portugal: Estoril, 1675–1676.

GRONBACK, R. (2009) Eclipse Modeling Project. A Domain-specific
Language Toolkit. Boston: MA: Addison-Wesley.

HAERING, N., P. VENETIANER and A. LIPTON (2008) The evolution of
video surveillance: an overview,Machine Vision and Applications,
19, 279–290.

HAHN, C., C. MADRIGAL-MORA and K. FISCHER (2009) A platform-
independent metamodel for multiagent systems, Autonomous

Agent and Multi-Agent Systems, 18, 239–266.
JOUAULT, F., F. ALLILAIRE, J. BEZIVIN and I. KURTEV (2008) ATL:

a model transformation tool, Science of Computer Programming,
72, 31–39.

KARDAS, G., E. EKINCI, B. AFSAR, O. DIKENELLI and
N. TOPALOGLU (2009) Modeling tools for platform specific design
of multi-agent systems, Lecture Notes in Artificial Intelligence,
5774, 202–207.

KLEPPE, A., J. WARMER and W. BAST (2003) MDA Explained: The
Model Driven ArchitectureTM: Practice and Promise. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc..

KUMAR, P., A. MITTAL and P. KUMAR (2008) Study of robust and
intelligent surveillance in visible and multimodal framework,
Informatica, 32, 63–77.

MORANDINI, M., L. PENSERINI and A. PERINI (2008). Modelling
self-adaptivity: a goal oriented approach, in Proceedings of the

2nd IEEE International Conference on Self-Adaptive and Self-

organizing Systems, Isola di San Servolo (Venice), Italy, 469–470.
MORANDINI, M., C. NGUYEN, L. PENSERINI, A. PERINI and A. SUSI

(2011) Tropos modeling, code generation and testing with the
Taom4e tool, in Proceedings of the 5th International i* Workshop,
Trento, Italy, 172–174.

NAVARRO, E. (2007) ATRIUM architecture traced from
requirements by applying a unified methodology. Ph.D.
Dissertation, Computing System Department, University of
Castilla-La Mancha.

OMG (2008) Object management group: meta object facility (MOF)
2.0 query/view/transformation specification, version 1.0. OMG
document number formal/2008-04-03. Available at http://
www.omg.org/spec/QVT/1.0/PDF.

OMG (2011) MOFScript v1.4.0. http://www.omg.org/spec/QVT/
1.0/PDF

PADGHAM, L. and M. WINIKOFF (2004) Developing Intelligent
Agents Systems: A Practical Guide. New York: John Wiley
& Sons.

PADGHAM, L., J. THANGARAJAH and M. WINIKOFF (2008)
Prometheus design tool, in Proceedings of the Twenty-third AAAI

Conference on Artificial Intelligence, Chicago, IL, 1882–1883.
PARDILLO, J., J. MAZÓN and J. TRUJILLO (2010) Extending OCL for

OLAP querying on conceptual multidimensional models of data
warehouses, Information Sciences, 180, 584–601.

PATRICIO, M., F. CASTANEDO, A. BERLANGA, O. PÉREZ, J. GARCÍA

and J. MOLINA (2008) Computational intelligence in visual sensor
networks: improving video processing systems, Studies in

Computational Intelligence, 96, 351–377.
PAVÓN, J., J. J. GÓMEZ-SANZ and R. FUENTES (2005) The

INGENIAS methodology and tools, in Agent-Oriented
Methodologies, (pp. 236–276). Hershey, PA: Idea Group
Publishing.

PAVÓN, J., J. J. GÓMEZ-SANZ and R. FUENTES (2006) Model driven
development of multi-agent systems, Lecture Notes in Computer

Science, 4066, 284–298.
PAVÓN, J., J. GÓMEZ-SANZ, A. FERNÁNDEZ-CABALLERO and J.

VALENCIA-JIMÉNEZ (2007) Development of intelligent multi-
sensor surveillance systems with agents, Robotics and Autonomous

Systems, 55, 892–903.
QVT (2012) IKV++ Technologies Home. Available at http://www.

ikv.de
RÄTY, T. (2010) Survey on contemporary remote surveillance

systems for public safety, IEEE Transactions on Systems, Man,

and Cybernetics - Part C: Applications and Reviews 40, 493–515.
RIVAS-CASADO, A., R. MARTÍNEZ-TOMÁS and A. FERNÁNDEZ-

CABALLERO (2011) Multiagent system for knowledge-based event
recognition and composition, Expert Systems: The Journal of

Knowledge Engineering, 28, 488–501.
SCHMIDT, D. (2006) Guest editor’s introduction: model-driven

engineering, Computer, 39, 25–31.
SPANOUDAKIS, N. (2009) The agent systems engineering methodology

(ASEME). Ph.D. Dissertation, Université Paris Descartes.
STEINBERG, D., F. BUDINSKY, M. PATERNOSTRO and E. MERKS

(2009) Eclipse Modeling Framework, 2nd edn, Boston, MA:
Addison-Wesley.

© 2013 Wiley Publishing Ltd Expert Systems, July 2014, Vol. 31, No. 3 211

http://stinger.wpi.edu/icra11/Submissions/ICRA11 AT GascuenaNavarroFernandez.pdf
http://stinger.wpi.edu/icra11/Submissions/ICRA11 AT GascuenaNavarroFernandez.pdf
http://grasia.fdi.ucm.es/main/myfiles/guida.pdf
http://grasia.fdi.ucm.es/main/myfiles/guida.pdf
http://www.omg.org/spec/QVT/1.0/PDF
http://www.omg.org/spec/QVT/1.0/PDF
http://www.omg.org/spec/QVT/1.0/PDF
http://www.omg.org/spec/QVT/1.0/PDF
http://www.ikv.de
http://www.ikv.de


STERLING, L. and K. TAVETER (2009) The Art of Agent-oriented
Modeling. Cambridge, MA: The MIT Press.

TIDWELL, D. (2008) XSLT, 2nd Edn, Sebastopol, CA: O’Reilly
Media, Inc..

VOGEL, L. (2009) Java Emitter Template (JET) – Tutorial. Available
at http://www.vogella.de/articles/EclipseJET/article.html

WARWAS, S. and C. HAHN (2009) The dsml4mas development
environment, in Proceedings of the 8th Conference on Autonomous

Agents and Multi-agent Systems, Hungary: Budapest 1379–1380.
WILLIANS, I. (2009). Beginning XSLT and XPath: Transforming

XML Documents and Data, Indianapolis, IN: Wiley Publishing,
Inc..

WINIKOFF, M. (2005) Jack intelligent agents: an industrial strength
platform, in Multi-agent Programming Languages, Platforms
and Applications, (pp 175–193). New York: Springer.

The authors

José Manuel Gascueña

JoséM. Gascueña received his MSc in Computer Science from
the University of Castilla–La Mancha at the Superior
Polytechnic School of Albacete, Spain, in 2004. In 2006, he
received a scholarship from the Spanish Junta de Comunidades
de Castilla–LaMancha. In 2010, he received his PhD from the
University of Castilla–La Mancha in applying multi-
agent systems technology in the computer vision area. His
research interests are in software agents and multi-agent
systems, monitoring and activity interpretation systems and
coordination and communication protocols to assist in decision
making process using agent technologies.

Elena Navarro

Elena Navarro is an associate professor of Computer Science at
the University of Castilla–La Mancha (Spain). Prior to this
position, she worked as a researcher at the Informatics
Laboratory of the Agricultural University of Athens (Greece)
collaborating in the CHOROCHRONOS project funded by
the Training and Mobility of Researchers program of the
European Union. Previously, she served as a staff member of
the Regional Government of Murcia, at the Instituto Murciano
de Investigación y Desarrollo Agrario y Alimentario,
collaborating in the INTERREG II project funded by the

European Union. During her master degree studies, she was a
holder of several research scholarships funded by the Regional
Government of Castilla–La Mancha and the National
Government of Spain. She received her bachelor degree and
PhD at the University of Castilla–La Mancha and her master
degrees at theUniversity ofMurcia (Spain) andRey JuanCarlos
University (Spain). She is currently an active collaborator
of the LoUISE group of theUniversity of Castilla–LaMancha.
Her current research interests are requirements engineering,
software architectures, model-driven development and agent-
oriented software development.

Antonio Fernández-Caballero

Antonio Fernández-Caballero received his master in
Computer Science from the Technical University of Madrid,
Spain, in 1993, and his PhD from the Department of
Artificial Intelligence of the National University for
Distance Education, Spain, in 2001. He is a full professor
with the Department of Computer Science at the University
of Castilla–La Mancha, Spain. He is the director of the
n&aIS (natural and artificial Interaction Systems) research
group at the Albacete Research Institute of Informatics.
His research interests are in image processing, cognitive
vision, neural networks and intelligent agents. Antonio
Fernández-Caballero is an associate editor of the Pattern
Recognition Letters journal. He has authored more than
200 peer-reviewed papers.

Rafael Martínez-Tomás

RafaelMartínez-Tomás received his degree in Physics from the
University of Valencia, Spain, in 1983, and received his PhD
from the Department of Artificial Intelligence of the National
University for Distance Education, Spain, in 2000. Since
2001, he is an associate professor with the Department of
Artificial Intelligence of the National University for Distance
Education, Spain. His research interests are in knowledge
engineering, knowledge-based systems, semantic web and
semantic technologies and semantic recognition of human
behaviour, publishing research papers related to these areas in
various international journals and in major international
conferences.

© 2013 Wiley Publishing Ltd212 Expert Systems, July 2014, Vol. 31, No. 3

http://www.vogella.de/articles/EclipseJET/article.html

