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selection gain is expected. We empirically investigated 

genome-based prediction of grain yield, plant height and 

thousand kernel weight within and across four selection 

cycles of a hybrid rye breeding program. Prediction per-

formance was assessed using genomic and pedigree-based 

best linear unbiased prediction (GBLUP and PBLUP). 

A total of 1040 S2 lines were genotyped with 16 k SNPs 

and each year testcrosses of 260 S2 lines were phenotyped 

in seven or eight locations. The performance gap between 

GBLUP and PBLUP increased significantly for all traits 

when model calibration was performed on aggregated data 

from several cycles. Prediction accuracies obtained from 

cross-validation were in the order of 0.70 for all traits when 

data from all cycles (NCS = 832) were used for model train-

ing and exceeded within-cycle accuracies in all cases. As 

long as selection cycles are connected by a sufficient num-

ber of common ancestors and prediction accuracy has not 

reached a plateau when increasing sample size, aggregat-

ing data from several preceding cycles is recommended 

for predicting genetic values in subsequent cycles despite 

decreasing relatedness over time.

Introduction

Rye (Secale cereale L.) is a small grain cereal used for 

food, feed and in growing demands also for ethanol and 

biomethane production (Geiger and Miedaner 2009). Due 

to its ability to tolerate adverse growing conditions such 

as severe cold, drought or hostile soils rye is highly valu-

able for expanding cereal production to a wide range of 

agro-climatic conditions (Schlegel 2014). In contrast to 

other small grain cereals such as wheat, barley and oats, 

genetic progress in the cross-pollinated species rye is gen-

erated in selection schemes combining development of 
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elite lines as hybrid components and population improve-

ment through recurrent selection (Geiger 2007; Tomerius 

and Geiger 2001; Wilde 1996). Within each of two popula-

tions, the seed and the pollen parent pool, inbred lines are 

developed from crosses of elite parents with subsequent 

selfing, and selection candidates are evaluated for their 

combining ability as testcrosses. In the seed parent pool, 

promising selection candidates need to be transferred to a 

reliable cytoplasmic male sterility system before they can 

be crossed to a tester from the opposite pool. In the pol-

len parent pool, inbred lines need to carry efficient fertil-

ity restoration genes. As a consequence of high inbreeding 

depression, rye inbred lines are only selfed for a limited 

number of generations and exhibit substantial residual 

heterozygosity, compared to crops with an established 

doubled-haploid system as maize or barley. Because rye is 

mainly cultivated as a winter cereal, generation intervals 

are long and the development of hybrid components takes 

many years. Therefore, one major focus of rye breed-

ing research lies on utilizing genomic tools to accelerate 

breeding progress.

The molecular toolbox of rye has constantly grown and 

enabled genome enhanced breeding during the last years. 

High-density genotyping platforms such as the Rye5k array 

(Haseneyer et al. 2011) and a custom 16k Infinium iSelect 

HD BeadChip (Illumina®) are available. A comprehen-

sive expressed sequence tag (EST) resource was generated 

(Haseneyer et al. 2011) and whole genome sequencing is 

currently in progress (Bauer et al. 2015). While marker-

assisted backcrossing as well as selection for individual 

genes with diagnostic markers have become routine appli-

cations, the efficiency of whole-genome based prediction 

(GP) in rye breeding populations still needs to be evaluated.

A key objective of GP is the accurate prediction of the 

genetic value of yet unphenotyped lines based on their 

DNA profile. In population improvement, essentially two 

prediction scenarios arise: (1) within breeding cycles, i.e., 

prediction of genetic values of progeny derived from the 

same or related crosses within the breeding cycle in which 

model training is performed and (2) across breeding cycles, 

i.e., prediction of consecutive generations of progeny gen-

erated from crosses with variable levels of relatedness to 

current genetic material. Various studies have reported 

prediction performance that encourages the implementa-

tion of genome-based prediction in breeding programs. In 

a wide range of crops, prediction accuracies ranged from 

intermediate to high (Lin et al. 2014; Zhao et al. 2015). 

Many of these studies were conducted on large biparen-

tal populations (Krchov et al. 2015), highly unbalanced 

historical data sets (Sallam et al. 2015) or closed popula-

tions employed in recurrent selection (Li et al. 2015) and 

their results are not directly transferable to advanced-

cycle breeding populations as these populations have very 

different family structures, effective population size, allele 

frequency spectra, linkage disequilibrium and quality of 

phenotypes.

First promising results for genome-based prediction 

have been attained for rye by Bernal-Vasquez et al. (2014). 

They reported prediction accuracies obtained from cross-

validation within selection cycles and years. These esti-

mates must be considered as upper bound because of close 

familial relatedness and shared environmental conditions 

between the calibration and the validation data sets. It is 

the prediction of the genotypic value of selection candi-

dates of the next cycles, from which the strongest impact 

of genome-based prediction can be expected. A study per-

formed on data from two consecutive breeding cycles in 

sugar beet (Beta vulgaris L.) showed that across-cycle pre-

diction accuracy depended on the trait under study and the 

authors pointed out that within-cycle prediction accuracy 

was not suited as indicator for the performance of across-

cycle prediction (Hofheinz et al. 2012). For maize (Zea 

mays L.), prediction accuracies across subsequent cycles 

of selection were only slightly reduced for grain yield and 

dry matter content, compared to accuracies obtained with 

cross-validation within the same cycle when effects arising 

from population structure and choice of tester were mod-

eled appropriately (Albrecht et al. 2014). In a study on 

five breeding cycles of bread wheat, Michel et al. (2016) 

reported a substantial decrease of prediction accuracy for 

three traits when predicting across instead of within selec-

tion cycles.

To investigate the factors influencing across-cycle pre-

diction accuracy, we built a unique data set comprising 

high-precision phenotypes and high-density genotypes rep-

resenting multiple interconnected rye breeding populations. 

We focused on three main objectives, (1) to comparatively 

assess the prediction performance of pedigree-based and 

genomic best linear unbiased prediction within and across 

breeding cycles, (2) to gain insight into the main compo-

nents driving prediction performance across subsequent 

breeding cycles, and (3) to develop recommendations for 

model training to obtain maximum across-cycle prediction 

accuracies.

Methods

Genetic material

The genetic material used in this study consists of four 

data sets of advanced-cycle inbred lines (S2) from subse-

quent cycles (Cycle 1 to Cycle 4) of a commercial hybrid 

rye breeding program. The four data sets comprised a total 

of 1416 S2 lines for which up to ten generations of pedi-

gree information was available. To represent each selection 
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cycle by the same number of progenies, 260 S2 lines were 

randomly chosen from each of the four data sets, resulting 

in 1040 S2 inbred lines and all subsequent representations 

of results are based on these 1040 S2 lines representing 

progenies from 430 crosses of 203 parental lines. Genetic 

relatedness between the four data sets is given through a 

minimum of eight and a maximum of 21 common parental 

lines (Figure S1). On average, two inbred lines (min = 1, 

max = 24) were derived per cross, with 400 crosses yield-

ing five or fewer inbred lines. To obtain testcross seed, 

each S2 line was crossed to two out of eight F1 pollen-ster-

ile testers (T1–T8, see Table S1) showing different levels 

of relatedness. Testers represent a gametic sample of the 

complementary heterotic seed parent pool. Plant materials 

described in this study are proprietary to KWS LOCHOW 

GMBH.

Phenotypic data analysis

Testcrosses of S2 lines were evaluated in seven or eight 

locations in the years 2009–2012, with several trial loca-

tions in Germany and one location in Poland. Within loca-

tions and separately for each tester, testcrosses were allo-

cated to a series of trials laid out as α-lattice designs with 

two replicates on 5.5 m2 plots, connected by four elite 

hybrid checks. A general representation of the allocation of 

testers and locations within each of the four breeding cycles 

is given in Table S1. Locations and testers were confounded 

in Cycle 3, whereas the two testers shared one to two com-

mon locations in the other three cycles. In the following, 

the combination of location and tester is denoted location.

tester. Testcross performance was evaluated for the traits 

grain dry matter yield (GDY, dt ha−1), plant height (PHT, 

cm), and thousand kernel weight (TKW, g), with TKW 

measured in all trials with one replication only. Phenotypic 

data were analyzed following a two-stage approach. In the 

first stage, adjusted entry means for genotypes (testcrosses 

of S2 lines) were calculated separately for each location and 

for each of the two testers by standard lattice analysis (Utz 

2004). In the second stage, best linear unbiased estimates 

(BLUEs) of genotypes were calculated across testers and 

locations based on adjusted entry means obtained from the 

first stage using a mixed model including genotype as fixed 

effect and location.tester and genotype × location.tester 

interaction as random effects. Adjusted means from the first 

stage were weighted as described in method 1 of Möhring 

and Piepho (2009). Outlier detection was performed by 

consecutively detecting and removing outliers on the basis 

of maximum deviate residuals according to Grubbs (1950). 

For estimation of variance components the same models 

were used as for the calculation of adjusted means, except 

that genotypes were treated as random effects. Broad sense 

heritabilities (h2) were calculated on a progeny-mean basis 

as described in method 1 of Estaghvirou et al. (2013). Cal-

culations were performed using R (R Core Team 2015) or 

ASReml R (Butler et al. 2009).

Genotyping

S2 lines were genotyped using a custom Rye 16 k Infinium 

iSelect HD BeadChip (Illumina, San Diego, CA, USA). 

Only high-quality SNPs with a GenTrain score ≥0.7 and 

a call rate ≥0.9 were used. SNPs with a minor allele fre-

quency (MAF) < 0.01 or >10 % missing values were dis-

carded, resulting in 10,416 useful SNPs. For 5607 SNPs 

the genetic map position was available (Figure S2A). 

Missing values of mapped SNPs were imputed based on 

flanking markers using Beagle (Browning and Brown-

ing 2009) and missing values of unmapped SNPs by sam-

pling from marginal allele distributions using the synbreed 

R package (Wimmer et al. 2012). Linkage disequilibrium 

(LD) between marker pairs was calculated for genetically 

mapped markers as r2 (Hill and Robertson 1968).

Prediction methods

To predict the testcross performance of S2 lines we applied 

pedigree (PBLUP) and genomic (GBLUP) best linear unbi-

ased prediction which differ in the variance–covariance 

structure used to model random testcross effects. The two 

models can be written as

where y is the vector of adjusted means from the second 

stage of the phenotypic analysis, β is a vector of fixed 

effects containing four factor levels for selection cycle, 

X and Z are incidence matrices, assigning the adjusted 

means to fixed and random effects, respectively. In the 

PBLUP model t is the vector of random testcross effects, 

assumed to be normally distributed with t ∼ N(0, Kσ 2
t
). K 

denotes the matrix of expected kinship coefficients calcu-

lated on the basis of pedigree information, with σ 2
t
 being 

the testcross variance pertaining to the PBLUP model. 

Residuals e are assumed to be independent and normally 

distributed with e ∼ N(0, Iσ 2
p
), where I denotes an iden-

tity matrix and σ
2
p
 the residual variance. The expected 

kinship matrix (K) was calculated as K = 0.5A, where 

A denotes the additive genetic relationship matrix calcu-

lated according to standard procedures (Lynch and Walsh 

1998) implemented in the synbreed R package (Wim-

mer et al. 2012). Assuming a single seed descent selfing 

scheme, the dimensionality of the respective A matrix can 

be reduced by omitting the selfing steps when building the 

A matrix and modeling the diagonal element of individual 

PBLUP : y = Xβ + Zt + e

GBLUP : y = Xβ + Zu + e



2046 Theor Appl Genet (2016) 129:2043–2053

1 3

i using Aii =
∑x

S=0

(

1

2

)S

+ Agh

(

1

2

)x+1

, with Aii being 

the diagonal element of A for individual i, x the number 

of selfing generations, and Agh being twice the kinship 

coefficient between the parents (g and h) of individual i 

in generation S0, i.e., before selfing. For S2 lines derived 

from S1 plants we set x = 1. In the GBLUP model, random 

testcross effects u are assumed to be normally distributed 

with u ∼ N(0, Uσ 2
u
). U denotes the realized kinship matrix 

calculated on the basis of the marker data (Habier et al. 

2007), with σ 2
u
 being the testcross variance pertaining to the 

GBLUP model. Residuals e are assumed to be independent 

and normally distributed with e ∼ N(0, Iσ 2
m
), where σ 2

m
 is 

the residual variance.

Cross-validation schemes and prediction accuracies

Prediction accuracies were estimated applying different 

cross-validation scenarios (CV1-3, Fig. 1). Within-cycle 

(CV1) prediction accuracies were calculated by applying 

ten times replicated fivefold CV with random sampling 

using 80 % of the lines of a given cycle as calibration set 

(CS) and 20 % as validation set (VS) (Albrecht et al. 2011; 

Wimmer et al. 2012). In the across-cycle scenario (CV2), 

prediction accuracies were estimated using lines from 

one or multiple cycles as calibration set and lines from a 

different cycle as validation set. Three different scenarios 

were possible for CV2: in CV2.1 the calibration set was 

sampled from one, in CV2.2 from two, and in CV2.3 from 

three cycles. The third scenario (CV3) included randomly 

sampled lines from all four cycles in the calibration set 

except those lines included in the corresponding valida-

tion set. To allow a direct comparison of prediction accura-

cies, the allocation of genotypes to the validation sets was 

the same for all CV scenarios. When lines from multiple 

cycles constituted the calibration set, the same number of 

lines was sampled from each cycle. To evaluate the effect 

of sample size on prediction accuracy when aggregating 

data from multiple cycles, calibration set size in CV2.3 

and CV3 was varied with NCS = 208, 416, 624, and 832 

(the latter only in CV3). CV2 and CV3 scenarios include 

all possible forward, as well as backward predictions in 

time. Variance components of PBLUP and GBLUP mod-

els were estimated by REML for each calibration set. For 

each CV scenario, prediction accuracy in validation set v 

was obtained by r
Q̂Gv

= ρ
Q̂Pv√

h2
v

, where ρ
Q̂Pv

 denotes the pre-

dictive ability calculated as Pearson correlation coefficient 

between predicted (Q̂) and observed (P) testcross values 

and h2
v
 the broad sense heritability for the respective trait 

and selection cycle from which validation set v was sam-

pled (Dekkers 2007). To assess pairwise differences in 

accuracies between prediction models, a paired t-test was 

applied after Fisher’s Z transformation.

Analysis of germplasm

The relatedness of S2 lines in the calibration and vali-

dation set was analyzed for CV1 and for each of the 12 

possible CV2.1 scenarios based on the average maxi-

mum realized kinship coefficient (Umax) (Saatchi et al. 

2011) derived from marker information. We calculated 

Umax,i = max(Uij) with Uij being the realized kinship coef-

ficient between line i and line j for i ∈ VS and j ∈ CS . 

Averaging over S2 lines in the validation set resulted in a 

mean Ūmax value for the respective combinations of cali-

bration and validation set. To detect hidden population 

substructure within breeding cycles, we performed a prin-

cipal coordinate analysis (Gower 1966) based on Rogers’ 

distance (Rogers 1972) using the marker genotypes of the 

S2 lines.

Results

Germplasm structure

The 5607 mapped SNP markers were equally distributed 

across the genome with SNP numbers varying between 

Fig. 1  Cross-validation (CV) scenarios. CV1 within-cycle CV with 

lines in calibration and validation from the same breeding cycle (grey 

boxes). Eighty percent of the lines from one cycle were used for cali-

bration and twenty percent for validation. CV2 across-cycle CV, where 

the calibration set comprised lines from other cycles than the valida-

tion set. CV2 calibration sets consisted of lines from one (CV2.1), two 

(CV2.2) or three (CV2.3) cycles (different shades of blue) with equal 

numbers of S2 lines from each cycle. CV3 joint across- and within-

cycle CV, where lines from all four cycles constituted the calibration 

set (blue and grey boxes), and lines from one of the cycles (grey) con-

stituted the validation set. Lines from the validation set were not repre-

sented in the calibration set (color figure online)
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457 on chromosome 7R to 1091 on chromosome 5R (Fig-

ure S2A). LD decayed rapidly with 68 % of the marker 

pairs showing r2 ≤ 0.2 within 1 cM (Figure S2B). As rye 

is an outcrossing species with low ancestral LD, a rapid 

decline of LD was expected in this data set of S2 lines 

derived from many crosses of at least partially unrelated 

parents. Heatmaps of the expected (K) and realized (U) 

kinship coefficients of the 1040 S2 lines are given in Fig-

ure S3. Within each cycle, family substructures are visible, 

but the principal coordinate analysis based on marker data 

indicated no major population substructure except for one 

large family in Cycle 1 (Figure S2C and D). Ūmax coeffi-

cients within cycles ranged from 0.27 to 0.29 and were sub-

stantially larger than Ūmax coefficients of the across-cycle 

scenarios ranging from 0.13 to 0.17.

Phenotypic analyses

Testcross means for all traits differed significantly (p < 0.01) 

between breeding cycles (Table 1). For all traits and cycles, 

genotypic and genotype × location.tester (σ2
g×l) variance 

components were highly significant (p < 0.01) and estimates 

of σ
2
g×l were always smaller than the genotypic variance 

component. Trait heritabilities (h2) on a progeny-mean basis 

were intermediate to high (Table 1). In Cycle 3, trait herita-

bilities were consistently lower compared to the other cycles.

Within-cycle prediction accuracies

In CV1, calibration and validation sets originate from the 

same selection cycle, were crossed to the same two test-

ers, and were evaluated in the same year. Within-cycle 

prediction accuracies for GDY obtained with PBLUP and 

GBLUP are shown in Fig. 2. GBLUP consistently outper-

formed PBLUP for all three traits. Averaged over the four 

cycles, mean prediction accuracies of GBLUP and PBLUP 

were highest for GDY (0.68 and 0.61), followed by TKW 

(0.63 and 0.52) and PHT (0.63 and 0.46). For GDY, the rel-

ative advantage of GBLUP over PBLUP was only marginal 

in Cycles 2 and 3. In contrast to Cycle 1 these two cycles 

comprised no large biparental family and had a higher aver-

age level of relatedness than Cycle 4.

Across-cycle prediction accuracies

Single-cycle calibration sets

In CV2.1, the calibration and validation sets originate from 

different selection cycles, were crossed to different testers, 

and were evaluated in different years (Table S1). Averaged 

across the six possible single-cycle forward predictions in 

CV2.1 with sample size NCS = 208, accuracies amounted 

to r̄
Q̂G

= 0.50 for GBLUP compared to r̄
Q̂G

= 0.35 for 

PBLUP. For PHT and TKW across-cycle prediction based 

on pedigree information was not possible with average for-

ward prediction accuracies of 0.06 and 0.13, respectively. 

Genome-based prediction, on the other hand, yielded inter-

mediate prediction accuracies of 0.35 for PHT and 0.40 

for TKW. In all cases, genome-based prediction accuracies 

across cycles were smaller than within cycles except for 

TKW where some predictions involving Cycle 4 as cali-

bration or validation set yielded slightly higher accuracies 

across than within cycles (Fig. 3).

The effect of relatedness of the calibration and valida-

tion set in the 12 possible single-cycle CV2.1 scenarios was 

assessed by calculating the Pearson correlation between 

Ūmax coefficients and the corresponding across-cycle pre-

diction accuracies (Fig. 4). For GDY, a significant posi-

tive correlation (p < 0.01) was observed but it was mainly 

driven by the low relatedness and prediction accuracies of 

Cycle 1 and Cycle 4. For traits PHT and TKW correlations 

were not significant.

Multiple-cycle calibration sets

To investigate the effect of combining lines from multiple 

cycles in the calibration set on prediction accuracies, we 

compared GBLUP model training based on calibration 

Table 1  Testcross means with standard errors (S.E.), broad sense heritabilities (h2) and variance components for grain dry matter yield (GDY), 

plant height (PHT) and thousand kernel weight (TKW) for four breeding cycles and N = 260 entries per cycle, respectively

a For number of locations, testers and year see Table S1
b Genotypic variance component
c Genotype × location.tester interaction variance component

Cyclea GDY PHT TKW

Mean ± S.E. h2
σg

2 b
σ

2
g×l

c Mean ± S.E. h2
σg

2
σ

2
g×l Mean ± S.E. h2

σg
2

σ
2
g×l

1 90.8 ± 0.19 0.86 14.59 7.59 130.4 ± 0.26 0.91 35.73 11.75 36.4 ± 0.11 0.90 4.76 0.89

2 78.3 ± 0.23 0.86 15.77 3.77 126.7 ± 0.29 0.94 46.61 7.71 33.1 ± 0.11 0.80 6.71 4.31

3 81.6 ± 0.20 0.77 18.47 16.14 109.5 ± 0.28 0.89 38.09 23.10 37.0 ± 0.11 0.76 4.88 2.95

4 91.5 ± 0.23 0.83 22.96 16.51 124.3 ± 0.21 0.94 26.23 5.04 34.6 ± 0.10 0.87 4.85 2.09
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sets sampled from one, two or three cycles with a constant 

calibration set size of NCS = 208. Mean prediction accu-

racies increased slightly for all three traits when sampling 

was performed from multiple cycles compared to sampling 

from one cycle only (Figure S5). PBLUP accuracies were 

substantially lower (values for CV2.1 see Figure S4 and for 

CV2.3 see Fig. 5) and showed a similar trend as GBLUP 

accuracies when predicting with multiple-cycle calibration 

sets.

A major advantage of combining data from multi-

ple cycles for training the prediction model lies in the 

increased sample size of the aggregated calibration set as 

compared to data from the most recent preceding cycle 

only. By increasing the calibration set size from NCS = 208 

to 416 and 624 in CV2.3, we observed a clear positive 

trend of mean GBLUP prediction accuracies for all three 

traits (Fig. 5). At maximum sample size, average prediction 

accuracies increased to 0.54 for GDY, 0.55 for TKW and 

0.47 for PHT. These accuracies were significantly higher 

(p < 0.01) compared to average accuracies obtained with 

single-cycle CV2.1 scenarios and similar as (GDY and 

PHT) or higher than (TKW) the best of the 12 single-cycle 

CV2.1 predictions given in Fig. 3. PBLUP predictions ben-

efitted only slightly (TKW) or not at all (GDY, PHT) from 

the increase in sample size of the calibration set.

The effect of combining within- and across-cycle data 

for model calibration is shown in Table 2. While CV2.3 

scenarios with NCS = 624 could not reach average within-

cycle accuracies for any of the three traits, prediction accu-

racies in CV3 outperformed those of CV1 with NCS = 624 

and even more so using the maximum possible population 

size NCS = 832.

Discussion

Evaluation of the potential of genome-wide prediction in 

plant breeding programs requires data sets that account for 

the specific properties of the employed selection schemes 

and populations. The data set employed here represents 

four advanced-cycle breeding populations of small effective 

population size with similar allele frequency spectra and 

extent of linkage disequilibrium. As the required time from 

recombination to the first performance test is five years, 

none of the four selection cycles comprised direct descend-

ants of lines tested in earlier cycles. In contrast to recurrent 

selection on closed populations where pedigree relation-

ships are reduced by half each generation, the relatedness 

of subsequent advanced-cycle plant populations depends on 

decisions made by the breeder with respect to the number 

of common parents and the influx of new genetic material. 

Fig. 2  Within-cycle (CV1) prediction accuracies of four breeding 

cycles for a grain dry matter yield (GDY), b plant height (PHT) and 

c thousand kernel weight (TKW) obtained with PBLUP (left) and 

GBLUP (right). Boxplots show the median (horizontal line), mean 

(×), upper and lower quartile, and whiskers (vertical bars) of 10 × 5 

fold cross-validation with random sampling and a constant calibration 

(N = 208) and validation set (N = 52) size. Points above and below 

the whiskers indicate values ±1.5 times the interquartile range
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Thus, the relative advantage of genome- over pedigree-

based prediction methods is difficult to assess theoretically 

and needs to be investigated with experimental data.

Pedigree- and genome-based prediction across cycles

We showed that the performance gap between GBLUP and 

PBLUP increased significantly for all three traits when 

model training was performed on aggregated data from 

several selection cycles, indicating that accuracy of predic-

tion will increase as information accumulates over time. 

For GDY, both prediction models (PBLUP and GBLUP) 

yielded intermediate prediction accuracies within and 

across cycles. As the average family size was rather small 

for many crosses, the moderate difference between PBLUP 

and GBLUP accuracies for GDY was not surprising. When 

decreasing the number of markers in the GBLUP model 

from 10,416 to 500, prediction accuracies were quite sta-

ble for GDY (data not shown) indicating that genome-

wide relatedness and not so much marker-trait associa-

tions in specific genomic regions had a strong influence 

on prediction accuracy of this trait. This was supported by 

a significant correlation between the level of relatedness 

of the validation and calibration set with the correspond-

ing across-cycle prediction accuracies for GDY in CV2.1 

(Fig. 4).

For the two traits PHT and TKW, PBLUP and GBLUP 

prediction accuracies were intermediate to high within 

cycles but pedigree-based prediction averaged close to zero 

across cycles. We hypothesize that family-specific QTL 

with large or intermediate effects are segregating for the 

two traits. To support this hypothesis we compared marker 

effects estimated for the three traits in the full set of 1040 

S2 lines using the Bayesian model BayesCπ (Habier et al. 

2011) (Figure S6). For PHT and TKW more and larger 

marker-trait associations were detected than for GDY. We 

Fig. 3  Within-(CV1, diagonal elements) and across-(CV2.1 off-

diagonal elements) cycle prediction accuracies for a grain dry mat-

ter yield (GDY), b plant height (PHT) and c thousand kernel weight 

(TKW) from GBLUP performing 10 × 5 fold cross-validation with 

constant calibration (N = 208) and validation set (N = 52) sizes. 

Upper (lower) triangular matrices constitute the forward (backward) 

across-cycle prediction direction

Fig. 4  Across-cycle (CV2.1) prediction accuracies for grain dry mat-

ter yield (GDY) from GBLUP plotted against the average maximum 

kinship Ūmax (r, p < 0.01). Shaded triangles indicate cycles in cali-

bration/validation set and forward/backward ( ) prediction direc-

tion. Results are shown for all possible pairwise cycle combinations, 

with one cycle forming the calibration (N = 208) and one cycle the 

validation set (N = 52), respectively
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assume that pedigree-based prediction could model these 

effects within cycles based on close familial relation-

ships, while this was not possible across cycles with more 

distantly related genetic material. On the other hand, the 

GBLUP model could capture some of these larger effects 

through LD that persisted in the across-cycle scenarios. 

Our hypothesis of different genetic architecture of GDY 

and PHT is supported by a study on genome-based predic-

tion in a biparental rye population derived from two elite 

parents (Wang et al. 2014) where QTL based prediction 

of PHT performed quite similar to genome-wide predic-

tion while for GDY there was a large difference in predic-

tion accuracy between the two approaches. Findings from 

QTL analyses point in the same direction (Miedaner et al. 

2012). As genomic data will accumulate over time it will 

be attractive to use these data not only for prediction of 

genetic values but also for inference on marker effects. The 

discussion on which statistical methods are appropriate for 

inference on marker effects has just started (Kemper et al. 

2015; Kumar et al. 2016) and warrants further research.

When aggregating data across selection cycles, GBLUP 

prediction accuracy increased while PBLUP performance 

remained constant or increased only slightly (TKW). By 

increasing the sample size of the calibration set and mod-

eling marker effects over several testers and years through 

data aggregation, not only an increase in mean prediction 

accuracy was achieved but also a slight reduction in pre-

diction variance (Figure S5). Uncertainty of prediction is 

an important factor in optimization of breeding schemes 

but is often neglected in the discussion on the potential of 

genome-based selection. We conclude that the reduced var-

iance of prediction is a further argument in favor of model 

training across several selection cycles.

Fig. 5  Across-cycle (CV2.3) 

prediction accuracies for grain 

dry matter yield (GDY), plant 

height (PHT), and thousand 

kernel weight (TKW) obtained 

with PBLUP and GBLUP 

with lines from three cycles 

forming the calibration set. 

Boxplots show the median 

(horizontal line), mean (×), 

upper and lower quartile, and 

whiskers (vertical bars) from 

10 × 5 fold cross-validation 

with random sampling and 

increasing calibration set sizes 

of N = 208, 416 and 624 lines 

at constant validation set sizes 

of N = 52. For each pair of 

boxplots the left shows PBLUP 

and the right GBLUP. Points 

above and below the whiskers 

indicate values ± 1.5 times the 

interquartile range

Table 2  Effect of calibration set (CS) sample size on prediction 

accuracies of GBLUP in the joint across- and within-cycle (CV3) 

scenario with lines from four cycles in the calibration set

Results for grain dry matter yield (GDY), plant height (PHT) and 

thousand kernel weight (TKW) were obtained by performing 10 × 5 

fold cross-validation with constant validation set sizes (N = 52)

CS sample size GDY PHT TKW

208 0.60 0.52 0.56

416 0.64 0.60 0.64

624 0.68 0.65 0.68

832 0.70 0.69 0.70
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Factors influencing the accuracy of genome-based 

prediction across cycles

In across-cycle scenarios, the average maximum kinship 

of calibration and validation sets was about half that of 

within-cycle scenarios. As expected, a decrease in accu-

racy was found for CV2 compared to CV1 for both pre-

diction models (PBLUP and GBLUP). When the breeding 

program advances, it can be assumed that selection cycles 

share fewer common ancestors. This was the case here with 

8 (11) common parents of crosses for Cycle 4 and Cycle 1 

(Cycle 4 and Cycle 2) compared to 18–21 common par-

ents for the other pairwise combinations. This decrease in 

common ancestors over time was reflected in reduced kin-

ship and significantly reduced accuracy when predicting 

lines from Cycle 4 with a model trained in Cycle 1. How-

ever, the relationship between average maximum kinship 

(Ūmax) and prediction accuracy was intermediate for GDY 

(p < 0.01) and not significant for the other traits. This is in 

contrast to other studies where a strong linear relationship 

between average maximum kinship and prediction accu-

racy was found (Albrecht et al. 2014; Habier et al. 2010). 

In plant populations with influx of unrelated material, the 

average maximum kinship must be interpreted with cau-

tion as a predictor for accuracy even for complex traits like 

GDY. If the calibration set comprises a few entries that are 

highly related to many entries of the validation set, this will 

lead to high average maximum kinship but not necessarily 

to high prediction accuracy.

In several studies a decrease in prediction accuracy was 

reported when unrelated lines were added to the calibration 

set. These studies generally involved structured populations 

such as different animal breeds (e.g., Lund et al. 2014), dif-

ferent plant breeding programs (Lorenz and Smith 2015) or 

large biparental families (Riedelsheimer et al. 2013). In this 

study, we did not observe a decrease in prediction accu-

racy when aggregating data from several cycles which is 

expected from theory because unrelated or distantly related 

lines contribute almost nothing to prediction performance 

(de los Campos et al. 2013). Thus, we conclude that as long 

as selection cycles are connected by a sufficient number of 

common ancestors and prediction accuracy has not reached 

a plateau with respect to increases in sample size, aggregat-

ing data from several selection cycles is advisable for pre-

dicting the phenotypes of subsequent selection candidates 

despite decreasing relatedness over time. The set-up of 

optimum experimental designs to reach sufficient connec-

tivity between breeding cycles for genome-based selection 

requires further research.

To separate the effect of increased precision of SNP 

effects due to i) larger sample size of the calibration set 

and ii) replication of alleles over years and testers, CV2 

was performed with constant (NCS = 208) and cumulated 

sample size of the calibration set (NCS = 416, NCS = 624). 

Mean prediction accuracies were very similar when sam-

pling the same number of lines from one, two or three 

cycles, respectively. This indicates that the increase in 

prediction accuracy over cycles was mainly driven by an 

increase in sample size of the calibration set and that esti-

mating marker effects based on testcrosses with more test-

ers and evaluated in more years was of minor importance. 

With the given data it was not possible to separate the 

effects of across-cycle relatedness, genotype × year and 

genotype × tester interaction on prediction accuracy. We 

hypothesize that when averaging across two single-cross 

testers, specific combining ability effects can be assumed 

to be negligible. In addition, all S2 lines were evaluated 

in seven to eight locations in each year yielding very high 

progeny-mean heritabilities. Thus, we assume that geno-

type × location interactions within cycles could account 

to a large extent also for genotype × year interactions. 

The high precision of phenotypic data in our study might 

explain some of the discrepancies to studies on genome-

based prediction in self-pollinating crops where merging 

data sets from subsequent progeny sets was rarely advanta-

geous (e.g., Sallam et al. 2015). In self-pollinating crops, 

populations employed in model training frequently repre-

sent highly unbalanced historical data sets with many lines 

phenotypically evaluated at low intensity enhancing predic-

tion accuracy only marginally.

The effect of sample size and replication on GBLUP 

prediction accuracy was investigated in a simulation study 

by Lorenz (2013) and a high degree of flexibility in the 

allocation of the two factors was observed. For experi-

mental plant populations of small effective population size 

it was also shown that prediction accuracy could not be 

increased beyond a certain level despite increases in sample 

size (Albrecht et al. 2011; Jan et al. 2016). In this study, 

GBLUP predictive ability for GDY increased steadily till a 

sample size of about 800 S2 lines was reached (Figure S7). 

Thus, our data provide an excellent base for investigating 

the effect of allocation of resources for maximizing selec-

tion gain from genome-based selection per unit time and 

budget.

Implementation of genome-based prediction in hybrid 

rye breeding

Mean prediction accuracies found in this study were 

greater 0.47 for all traits when aggregating data across 

three independent cycles (NCS = 624, CV2.3) and could 

be increased to 0.69–0.70 in CV3 (NCS = 832). Based on 

these results we conclude that genome-based prediction 

will be an important instrument in hybrid rye breeding 

to increase selection gain. How to implement genome-

based prediction with maximum efficiency requires further 
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research. The data employed here were taken from the first 

stage of a multi-stage selection scheme with strong priority 

on precision phenotypes and risk prevention in first selec-

tion steps (Wilde 1996). Such a selection scheme leads 

to slightly lower expected selection gains and to lower 

variance in gains in comparison to scenarios with higher 

selection but lower testing intensity. Implementation of 

genome-based prediction will require breeders to revisit 

their decisions on optimal allocation of resources. It can 

open new opportunities such as (1) to reduce cycle length 

from actual five years to four or even three years, (2) to 

change from phenotypic selection to more accurate indices 

combining both genomic and phenotypic information, and 

(3) to make full use of the genetic variance segregating in a 

selection scheme based on early testing of partially inbred 

families. On the other hand including genome-based pre-

diction will require a more sophisticated management and 

design of crosses and familial structures than selection on 

phenotypes alone. A thorough investigation of resource 

allocation to phenotyping and genotyping is mandatory 

to maximize short- and long-term gain from selection. 

Insights derived from this study provide an excellent start-

ing point for optimization of breeding schemes integrat-

ing genome-based prediction in hybrid rye breeding. The 

magnitude of prediction accuracies found is encouraging, 

suggesting that genomic prediction in rye is a worthwhile 

endeavor.

Conclusion

We assessed the prediction performance of pedigree- and 

genome-based prediction within and across four breeding 

cycles of a hybrid rye program and found that the rela-

tive advantage of GBLUP over PBLUP increased signifi-

cantly when model training was performed on aggregated 

data from several selection cycles. We conclude that as 

long as selection cycles are connected by a sufficient num-

ber of common ancestors and prediction accuracy has not 

reached a plateau with respect to increases in sample size, 

aggregating data from several preceding cycles is advis-

able for predicting phenotypes of selection candidates 

despite decreasing relatedness over time. Implementation 

of genome-based prediction will open new opportunities 

such as reducing selection cycle length and making full use 

of the genetic variance in each cycle. On the other hand, it 

will require a more sophisticated management and design 

of crosses and familial structures than selection on pheno-

types alone. As genomic and phenotypic data will accumu-

late over time they will not only be useful for prediction 

of phenotypes but also for inferences on marker effects and 

genomic regions contributing to expression of quantitative 

traits.
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