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Abstract. The paper describes a new graphical model transformation language 
MOLA. The basic idea of MOLA is to merge traditional structured program-
ming as a control structure with pattern-based transformation rules. The key 
language element is a graphical loop concept. The main goal of MOLA is to de-
scribe model transformations in a natural and easy readable way.  

1   Introduction 

The Model Driven Architecture (MDA) initiative treats models as proper artifacts 
during software development process and model-to-model transformations as a proper 
part of this process. Therefore there is a growing need for model transformation lan-
guages and tools that would be highly acceptable by users. Though model transforma-
tions would be built by a relatively small community of advanced users, the prerequi-
site for broad acceptance of transformations by system developers is their easy read-
ability and customizability.  
Model transformation languages to a great degree are a new type of languages when 
compared to design and programming languages. The only sound assumption here is 
that all models in the MDA process (either UML-based models or other) should be 
based on metamodels conforming to MOF 2.0 standards.   
The need for standardization in the area of model transformation languages led to the 
MOF 2.0 Query/Views/Transformations (QVT) request for Proposals (RFP)[1] from 
OMG.  
To a great degree the success of the MDA initiative and of QVT in particular will 
depend on the availability of a concrete syntax for model-to-model transformations 
that is able to express non-trivial transformations in a clear and compact format that 
would be useful for industrial production of business software [2]. 
QVT submissions by several consortiums have been made [3, 4, 5], but all of them 
are far from a final version of a model transformation language. Currently the most 
advanced proposal seems to be [3]. Several serious proposals for transformation lan-
guages have been provided outside the OMG activities. The most interesting and 
complete of them seem to be UMLX [6] and GReAT [7]. 
According to our view, and many others [2], model transformations should be defined 
graphically, but should combine the graphical form with text where appropriate. 
Graphical forms of transformations have the advantage of being able to represent 
mappings between patterns in source and target models in a direct way. This is the 
motivation behind visual languages such as UMLX, GReAT and the others proposed 



in the QVT submissions. Unfortunately, the currently proposed visual notations make 
it  quite difficult to understand a transformation. 
The common setting for all transformation languages is such that the model to be 
transformed (source model) is supplied as a set of class and association instances 
conforming to the source metamodel. The result of transformation is the target 
model - the set of instances conforming to the target metamodel. Therefore the 
transformation has to operate on instance sets specified by a class diagram (actually, 
the subset of class notation, which is supported by MOF). 
Approaches that use graphical notation of model transformations draw on the theo-
retical work on graph transformations. Hence it follows that most of these transforma-
tion languages define transformations as sets of related rules. Each rule has a pattern 
and action part, where the pattern has to been found (matched) in the existing instance 
set and the actions specify the modifications related to the matched subset of in-
stances. This schema is used in all of the abovementioned graphical transformation 
languages. Languages really differ in the strength of pattern definition mechanisms 
and control structures governing the execution order of rules [8]. 
It should be mentioned that an early pioneer in the area (well before the MDA era) is 
the PROGRES language [9]. This semi-graphical language offered pattern-based 
graph rewrite rules applicable to “models” described by schemas (actually, metamod-
els). The execution of rules is governed by the traditional structured control constructs 
– sequence, branch and loop, though in the form of Dijkstra’s guarded commands. 
The current MDA-related graphical transformation languages – UMLX and GreAT 
use relatively sophisticated pattern definition mechanisms with cardinality specifica-
tions (slightly more elaborated in GreAT). The control structure in UMLX is com-
pletely based on recursive invocations of rules. The control structure of GreAT is 
based on hierarchical dataflow-like diagrams, where the only missing control struc-
ture is an explicit notation for loops (loops are hidden in patterns). The proposal [3] 
also offers elaborated patterns, which are combined with a good support for recursive 
control structures. Since the PROGRES project is now inactive, there currently is no 
transformation language based on traditional control structures. 
This paper proposes a new transformation language MOLA (MOdel transformation 
LAnguage). The prime goal of MOLA is to provide an easy readable graphical trans-
formation language by combining traditional structured programming in a graphical 
form (a sort of “structured flowcharts”) with rules based on relatively simple patterns. 
This goal is achieved by introducing a natural graphical loop concept, augmented by 
an explicit loop variable. The loop elements can easily be combined with rule pat-
terns. Other structured control elements are introduced in a similar way. In the result, 
most of typical model transformation algorithms, which are inherently more iterative 
than recursive, can be specified in a natural way. The paper demonstrates this on the 
traditional MDA class-to-database transformation example and on the statechart flat-
tening example – an especially convincing one. Some extensions of MOLA are also 
sketched. 



2   Basic constructs of MOLA  

This section presents a brief overview of basic constructs of MOLA. The MOLA 
language is a procedural graphical language, with control structures taken from tradi-
tional structured programming. The elements specific to model transformations can 
easily be combined with traditional language elements such as assignment statements. 
A program in MOLA is sequence of graphical statements, linked by dashed arrows: 

 
A statement can be an assignment or a rule – an elementary instance transforma-

tion statement, however the most used statement type in MOLA is a loop. There are 
two types of loops, which will be depicted in the following way:  

 (the first type) or  (the second type). 
A loop body always contains one or more sequences of graphical statements. Each 

body sequence starts with a loop head statement declaring the loop variable for this 
sequence. In MOLA the loop variable represents an instance of the given class. In 
order to distinguish it from other class instances defining its context, the loop variable 

is shown with a bold frame: 
c:Class

. The loop head statement, besides the 
loop variable, typically contains also instance selection conditions, which constrain 
the environment of a valid loop variable instance. The UML object (instance specifi-
cation) notation is used both for the loop variable and its environment description – it 
expresses the fact that any valid instance from the instance set of the given class in the 
source model must be used as a loop variable value during the loop execution. 
The semantics of both types of loops differ in the following way. A type one loop is 
executed once for each valid instance from the instance set – but the instance set itself 
may be modified (extended) during the loop execution. The type two loop continues 
execution while there is at least one valid variable instance in the instance set (conse-
quently, the same loop variable instance may be processed several times). In an anal-
ogy to some existing set and list processing languages, it is natural to call type one 
loops FOREACH loops and type two loops - WHILE loops in MOLA. 
Another important statement type is the rule – the specification of an elementary in-
stance transformation. A rule contains the pattern specification – a set of elements 
representing class instances and association instances (links), built in accordance with 
the metamodel. In addition, the rule contains the action specification – what new class 
instances are to be built, what associations (links) drawn, what instances are to be 
deleted, what attributes are to be assigned value etc. Its semantics is obvious – locate 
a pattern instance in the source model and perform the specified actions. When a rule 
has to be applied – it is determined by the loop whose body contains the rule. A rule 
can be combined with the loop head  – a loop head can also contain actions, which are 
performed for each valid loop variable instance. 
All MOLA statements, except loops, are graphically enclosed in grey rounded rectan-

gles: . 



Further, more precise definitions of MOLA syntax and semantics will be given on 
toy examples. 
Let us assume that a toy metamodel visible in Fig.1 is used. 

A
attrA1:Integer
attrA2:String

B
attrB:String

W
attrW:String

roleA

roleB 0..1
 *

roleA

roleW

 0..1  *

 
Fig.1. Metamodel for the toy example 

  Then a MOLA program, which sets the attribute attrA1 to 1 for those instances of 
the class A that are linked to at least one instance of class B, is shown in Fig. 2. The 
loop (FOREACH type) contains two statements – the loop head and a trivial rule 
which sets the value of attribute attrA1 in the loop variable. First, some comments on 
the loop head statement. The selection condition consisting of an instance of B linked 
by the only available association (roleB) to the loop variable (a:A) requires that at 
least one such instance of B must exist for a given instance of  A to be a valid loop 
variable instance. We want to emphasize that an association with no constraints at-
tached in the loop head (or in a rule pattern) always means – there exists at least one 
instance (link) of such an association. The loop head in MOLA is also a kind of pat-
tern.  
The second statement in the loop references the same instance of A – the loop vari-
able, this is shown by prefixing the instance name by the @ character.   

:B

:B

@a:A
attrA1:=1

 a:A

 a:A
attrA1:=0

@a:A
attrA1:=attrA1+1

roleB

roleB

 
Fig.2. Program finding A’s linked to a B     Fig.3. Program counting B’s linked to an A  

The second program example (in Fig.3) finds how many instances of B are linked 
to each instance of  A.  
This example demonstrates a natural use of nested loops. The outer loop (with the 
loop variable a:A) is executed for every instance of A. The loop head sets also the 
initial value of the attribute attrA1. The nested loop, which is executed for those in-
stances of B which are linked to the current A, performs the counting.  
The next more complicated task is to build an instance of  W for each B which is 
linked to an A, link it by association (roleW) to the A and assign to its string parameter 



(attrW) the concatenation of string parameters in the corresponding instances of A and 
B. Fig. 4 shows the corresponding MOLA program. 
The same nested loops as in the previous example are used. But here the inner loop 
head is also a rule with more complicated action – building an instance of  W, linking 
it to the current loop variable instance of the outer loop and setting the required value 
of attrW.   

 a1:A

 b:B

@a1:A

:W
attrW:=@a1.attrA2+b.attrB

roleB

roleA

roleW

#result

 
Fig.4. Program building W for each B 

The new elements – instances and links are shown with dotted lines (and in red 
color) in MOLA. The expression for attrW references the attribute values from other 
instances – they are qualified by the corresponding instance names. The association 
linking the instance of W to the instance of B is a special one – it is the so called 
mapping association (not specified in the metamodel), which is typically used in 
MDA-related transformations for setting the context for next subordinate transforma-
tions and for tracing instances between models (therefore it normally links elements 
from different metamodels). Role names of mapping associations are prefixed by the 
# character in MOLA. Certainly, in this trivial example we could do well without this 
association. 
Two more basic constructs should be explained here. The first one is the NOT con-
straint on associations in patterns – both in loop heads and ordinary rules. It expresses 
the negation of the condition specified by the association – there must be no instance 
with specified properties linked by the given link. Fig. 5 shows an example where an 
instance of W is built for those A which have no B attached. 

 a:A

:W

:B  a:A
{attrA2="persistent"}

:W
roleA

roleW

roleB
{NOT}

roleA
roleW

 
Fig.5. NOT constraint    Fig.6. Attribute constraint 

Another one is attribute constraints. Fig. 6 shows an example where an instance of  
W is built for those A where the attribute attrA2 has the specified value. The Boolean 
expression in braces in general is that from OCL (explicit qualified references to other 
instances in the pattern could also be used). 
There are some more elements of MOLA which are not used in the examples of this 
paper and therefore will not be explained in detail. Besides the attributes defined in 



the metamodel, instances may have “temporary” computed attributes which can be 
used as variables for storing values during the computation. These temporary attrib-
utes are defined and cleared by means of special statements. Similarly, there may be 
temporary associations. There is also one more control structure – an equivalent of the 
if-then-else (or case) statement. There is also a subprogram concept in MOLA and 
the subprogram call statement, where the parameters can be references to instances 
used in the calling program (typically, to loop variables) or simple values. The called 
subprogram has access to the source model and can add or modify elements in the 
target model. 

3   UML Class Model to Relational Model Example in MOLA 

Further description of MOLA will be given on the basis of the “standard bench-
mark example” for model transformation languages – the UML class model to rela-
tional database model transformation example. This example has been used for most 
of model transformation language proposals (see e.g., [3, 4, 6, 10]). However, no two 
papers use exactly the same specification of the example. Here we have chosen the 
version used by A. Kleppe and J. Warmer in their MDA book [10]. 
 The source is a simplified class diagram built according to the metamodel in Fig. 7 (it 
is a small subset of the actual UML metamodel). Any class which is present in the 
source model has to be transformed into a database table. Any class attribute has to be 
converted into a table column. Attribute types are assumed to be simple data types – 
the problem of  “flattening” the class-typed attributes is not considered in this version. 
We assume here that type names in class diagram and SQL coincide (in reality it is 
not exactly so!). 

ClassDataType

Classifier
name:String

Association

TypedElement
name:String

AssociationEnd
lower:LowerBound
upper:UpperBound
composition:Boolean

Attribute 

Feature
visibility:VisibilityKind

typed

type  *

 1

 association
 end  1
2

 class

 feature 1

 *

otherEnd  0..1

 
Fig.7. Simplified class metamodel 

Each converted table has an “artificial” primary key column with the type integer. 
The treatment of associations is quite realistic. One-one or one-to-many associations 
result into a foreign key and a column for it in the appropriate table (for one-one – at 
both ends). A many-to-many association is converted into a special table consisting 
only of foreign key columns (and having no primary key). Each foreign key refer-
ences the corresponding primary key.  



We should remind that according to UML semantics, in the metamodel the type asso-
ciation from an Association End leads the Class at that end, but class association – to 
Class at the opposite end. 
The resulting database description must correspond to a simplified SQL metamodel 
given in Fig. 8.  

Table
name:String

Key
name:String

Column
name:String
nullable:Boolean

ForeignKey
name:String

SQLDataType
name:String

 table
 column 1

 *

 key

 column

 0..1

 1..*  column

foreign

 1..*

 *

referencedKey

 *

 1

primary

 1
 0..1

 type

 *

 1 table

foreign

 1

 *

 
Fig.8. Simplified relational database metamodel 

The metamodels and transformation specification are exactly as in [10] except that 
some inconsistencies and elements unused in the given task are removed. 

at:Attribute

dt:DataType

int:SQLDataType
{name="integer"}

:SQLDataType
{name=dt.name}

t:Table

col:Column
name:=at.name
nullable:=true

pkCol:Column
name:=@cl.name+"ID"
nullable:=false

pk:Key
name:=@cl.name+"ID"

t:Table
name:=@cl.name

@cl:Class

@cl:Class

 cl:Class

 type

 feature

#keyForCl

#keyColForCl
 column

 table

primary

primary
 column

 table
 column

 type

#colForAttr

type

#tableForCl

#tableForCl

 
Fig.9. Class to database transformation (part 1) 

 



Fig. 9 and 10 show the complete transformation program in MOLA. The part 1 (Fig. 
9) implements the required class transformations, but part 2 – the transformation of 
associations into foreign keys and appropriate columns. 

fk:ForeignKey
name:=e.name

fk:ForeignKey
name:=e.name

pk:KeyendCl:Class

e:AssociationEnd
{upper=1}

fkCol:Column
name:=e.name
nullable:=false

othEndCl:Class t:Table

int:SQLDataType
{name="integer"}

pk:KeyendCl:Class

t:Table

fkCol:Column
name:=e.name
nullable:=false

int:SQLDataType
{name="integer"}

e:AssociationEnd

e1:AssociationEnd
{upper=1}

e1:AssociationEnd
{upper=1}

@as:Association

@as:Association

as:Association

as:Association astb:Table
name:=as.name

 class

 type

 type

end

end

 end

#keyForCl

#tableForCl

 end {NOT}

#keyForCl

#tableForAssoc

#fkForEnd

referencedKey

foreign

 column

 table

foreign

 column
 table

#colForEnd

 type

#tableForAssoc

#fkForEnd

referencedKey

foreign

 column

 table
foreign

 column
 table

#colForEnd

 type

 
Fig.10. Class to database transformation (part 2) 

A complete program in MOLA starts with the UML start symbol and ends with 
end symbol. In between there are statements connected by arrows; in the given pro-
gram – three top level loops (one for class instances and two for associations). All 
loops are of FOREACH type.  



Now some more detailed comments for this program. The first loop is executed once 
for each class in the source set and in each loop execution the corresponding database 
elements – the table, the primary key and the column for it are built. The mapping 
association #tableForCl is used in the condition for the inner loop – to ensure that the 
correct Table instance is taken. This loop is executed once for each attribute and 
builds a column for each. Here it is assumed that SQL data types (as instances of the 
corresponding class) are pre-built and the appropriate one can always be selected.  
The second and third loops in totality are executed for each association instance – the 
second loop for those instances that have multiplicity 0..1 or 1..1 at least at one end 
and the third one for those which are many-to-many. This is achieved by adding mu-
tually exclusive selection conditions to both loop variable definitions. These condi-
tions are given in a graphical form. The first one uses the already mentioned in sec-
tion 2 fact that an association in a condition (pattern) requires the existence of the 
given instance. The other condition uses the {NOT} constraint attached to the asso-
ciation – no such instance can exist. Then both loops have an inner loop - for both 
ends (even in the first case there may be two “one-ends”). Both inner loops use map-
ping associations built by previous rules (#keyForCl, #tableForCl) in their conditions. 
The type for “foreign columns” is integer – as well as that for “primary columns”. 
An alternative form of control structure for processing associations could be one loop 
with an if-then-else statement in the body (Fig. 11). 

. . . . . .

as:Association

@as:Association

e1:AssociationEnd
{upper=1}

e1:AssociationEnd
{upper=1}

@as:Association

 end  end {NOT}

 
Fig.11. Loop with an if-then-else statement 

One more alternative representation could be to make the Fig. 10 a transformation 
of its own (e.g., TransformAssociations) and add the call statement TransformAsso-
ciations (this time without parameters) to the bottom of Fig. 9. However, there is no 
great need in this since the whole transformation actually fits in one A4 page. 

4   Statechart Flattening Example  

This section presents another example – the flattening of a UML statechart. This 
example was first used in [7] to demonstrate the GReAT transformation language. 
Due to space limits, we use a version where the statechart can contain only composite 
states with one region (OR-states in terms of [7]). Composite states may contain any 



type of states, with an arbitrary nesting level. Such a statechart must be transformed 
into an equivalent “flat” statechart (which contains only simple states). The informal 
flattening algorithm is well known (most probably, formulated by D. Harel [11]). A 
version of this example with much simplified problem statement is present also in [3].  
The simplified metamodel of the “full” (hierarchical) statechart is depicted in Fig. 12. 
There are some constraints to the metamodel specifying what is a valid statechart. 
There are “normal” transitions for which the event name is nonempty and “special” 
ones with empty event. These empty transitions have a special role for state structur-
ing. Each composite state must contain exactly one initial state (an instance of Init) 
and may have several final states. There must be exactly one empty transition from 
the initial state of a composite state (leading to the “default” internal state). The same 
way, there must be exactly one empty transition from the composite state itself  - the 
default exit. This exit is used when a contained final state is reached. Otherwise, tran-
sitions may freely cross composite state boundaries and all other transitions must be 
named. Named transitions from a composite state have a special meaning (the “inter-
rupting” events), they actually mean an equally named transition from any contained 
“normal” state – not initial or final. This is the most used semantics of composite 
states (there are some variations).  

SimpleState Init FinCompositeState

State
name:String

Transition
event: String [0..1]

in
dst *
 1

out
src *
 1

container

contents

 0..1

 1..*

 
Fig.12. Metamodel of hierarchical statechart 

All states have names – but those for initial and final states actually are not used. 
Names are unique only within a composite state (it acts as a namespace) and at the top 
level.  
The traditional flattening algorithm is formulated in a recursive way. Take a topmost 
composite state (i.e., not contained in another composite state). There are three ways 
how transitions related to this state must be modified: 

1. Transitions entering the composite state itself must be redirected to the state to 
which the empty transition from its initial state leads. 

2. Transitions leading to a final state of this composite state must be redirected to 
the state to which the empty transition from the composite state leads. 

3. Named transitions from the composite state must be converted into a set of 
equally named transitions from all its “normal” states (with the same destina-
tion) 

Then the name of the composite state must be prefixed to all its contained normal 
states and the composite state must be removed (together with its initial and final 
states and involved empty transitions). All this must be repeated until only simple 
states (and top level initial/final ones) remain. 



A simple analysis of this algorithm shows that the redirection of transitions may be 
done independently of the composite state removal – you can apply the three redirec-
tion rules until all transitions start/end at simple states (or top initial/final). The set of 
simple states is not modified during the process – only their names are modified. 
Namely this modified algorithm is implemented in the MOLA program in Fig. 13. It 
contains two top level loops – the first one performs the transition redirection and the 
second – the removal of composite states.  
Both top level loops are WHILE-type – especially, in the first loop a transition may 
be processed several times until its source and destination states reach their final posi-
tion. A closer analysis shows that the second loop actually could be of FOREACH 
type, but the original algorithm suggests WHILE. The program performs an update – 
source and target models coincide. 
The first loop contains three loop head statements – all specify the instance 
t:Transition as a loop variable, but with different selection conditions. According to 
the semantics of MOLA, any Transition instance satisfying one of the conditions (one 
at a time!) is taken and the corresponding rule is applied (note that the conditions are 
not mutually exclusive). All this is performed until none of the conditions apply – 
then all transitions have their final positions. The first two rules contain a dashed line 
– the association (link) removal symbol. The link is used in the selection condition, 
but then removed by the rule. The third path through the loop contains the instance 
removal symbol. 
Namely the use of several lop heads per loop is a strength of MOLA – this way in-
herently recursive algorithms can be implemented by loops. 
The second loop – the removal of composite states also has a recursive nature to a 
certain degree – it implements the so-called transitive closure with respect to finding 
the deepest constituents (simple states) and computing their names accordingly to the 
path of descent.  
It shows that transitive closure can be implemented in MOLA in a natural way (even 
the FOREACH loop could be used for this). The other constructs in this loop are 
“traditional” – except, may be, the fact that several instances may be deleted by a rule 
in MOLA.  

 



2

:CompositeState

:Fin

t:Transition
{event=notEmpty}

c:CompositeState

ss:State

ss:State

ds:State

tc:CompositeState
name

c:CompositeState

f:Fin

nt:Transition
{event=isEmpty}

nt:Transition
event=EMPTY

:CompositeState

:Init

ds:State

ds:State

:Init
intr:Transition

{event=isEmpty}

ctr:Transition
{event=isEmpty}

@c:CompositeState

@ds:State

@t:Transition

@tc:CompositeState

@tc:CompositeState

@tc:CompositeState

@f:Fin

@tc:CompositeState

:State
name := @tc.name+"-"+name

@tc:CompSt

:Transition
event :=B.event

t:Transition
event=notEmpty

ss:State

t:Transition
{event=notEmpty}

contents

dst

contents

contents

src

src

dst

contents
src

src

contents

src

container
{NOT}

src

dst

src

contents

dst dst

contents

dst

dst
src

dst

contents

 
Fig.13. Statechart flattening 

 



5   Extended Patterns in MOLA 

The rule in the previous example for computing the name of a state contained in a 
composite state to be removed actually is the simplest case of a typical transformation 
paradigm – the transitive closure. Experiments show that transitive closure in all cases 
can be implemented in MOLA. However, not always it is so straightforward as in Fig. 
13, sometimes temporary associations and attributes and nested loops are required for 
this task. A typical example is the class to database transformation as specified in [3, 
6], where the “flattening” of class-typed attributes must be performed – if the type of 
an attribute is a class, the attributes of this class must be processed and so on. If an 
attribute with a primitive data type is found in this process, a column with this type is 
added to the table corresponding to the original (“root”) class. The name of the col-
umn is the concatenation of all attribute names along the path from the root class to 
the attribute. It is easy to see that all such paths must be traversed. 
Since the transitive closure is a typical paradigm in MDA-related tasks, an extension 
of MOLA has been developed for a natural description of this and similar tasks. This 
extension uses a more powerful – the looping pattern, by which computation of any 
transitive closure can be implemented in one rule. This feature has been described in 
details in [12], here we present only the above-mentioned example with some com-
ments.  
Fig.14 shows one statement in extended MOLA which is both a FOREACH loop over 
Class instances and a rule with an extended pattern. In contrast to patterns in basic 
MOLA, this pattern matches to unlimited number of instances in the source model. 
Most of the associations in this pattern are directed (using the UML navigability 
mark). The semantics of this pattern is best to be understood in a procedural way. 
Starting from a valid instance of loop variable (selected by the undirected part of the 
pattern – one association), a temporary instance tree is being built, following the di-
rected associations. 

a2.type.oclIsTypeOf(
PrimitiveDataType)

a:Attribute
?prefix :=cl.?prefix+name+'-'

t:PrimitiveDataType

tb:Tablecl:Class
?prefix :="c-"

a2:Attribute
?prefix :=c2.?prefix+name

c2:Class
?prefix := PRED.?prefix

col:Column
name := a2.?prefix
type :=t.name

:SQLDataType
{name=t.name}

type
{OPT}

type

#tableForCl

 feature {ALL}

#colForAttr

 1

 1

 table

 column

type
 feature {ALL}

type {OPT}

 
Fig.14. Transitive closure by extended pattern 

 



Associations in this pattern use two new qualifiers – ALL and OPT. The first one 
says the instance tree has to contain all possible valid links of this kind (a fan-out oc-
curs), but the second one – that the link is not mandatory for the source instance to be 
included in the tree (an association without qualifier is mandatory in MOLA). The 
white square icons in c2 and a2 specify that for these pattern elements instance copies 
are built in the tree (but not the original source model instances used) – it is easy to 
see that in order to obtain all paths from the root class to primitively-typed attributes 
namely such copying is required. Another new pattern syntax element is the UML 
multiobject notation for some elements – to emphasize that a fan-out occurs at these 
places during the pattern match. The looping part of the pattern – the elements c2 and 
a2 actually are traversed as many times during the matching (tree building) process as 
there are valid candidates in the source model. The rule uses the temporary attribute 
?prefix (with the type String), whose scope is only this rule. The values of this attrib-
ute are computed during the building of the match tree (for each of its node) – it is 
easy to see that the expressions follow the building process (the special PRED quali-
fier means any predecessor). For this extended pattern the building action also gener-
ates many instances of Column – one for each instance of a2 in the tree (it is a copy!) 
which satisfies the building condition in OCL.  
Extended patterns have more applications, however their strength most clearly ap-
pears on complicated transitive closures like the one in Fig. 14. 

6   Conclusions 

MOLA has been tested on most of MDA-related examples – besides the ones in the 
paper, the class to Enterprise Java transformation from [10], the complete UML state-
chart flattening, business process to BPEL transformation and others. In all cases, a 
natural representation of the informal algorithms has been achieved, using mainly the 
MOLA loop feature. This provides convincing arguments for a practical functional 
completeness of the language for various model to model transformations in MDA 
area. Though it depends on readers’ mindset, the “structured flowchart” style in 
MOLA seems to be more readable and also frequently more compact than the pure 
recursive style used e.g., in [6]. Though recursive calls are supported in MOLA, this 
is not the intended style in this language. For some more complicated transformation 
steps the extended MOLA patterns briefly sketched in section 5 fit in well. 
The implementation of MOLA in a model transformation tool also seems not to be 
difficult. The patterns in basic MOLA are quite simple and don’t require sophisticated 
matching algorithms. Due to the structured procedural style the implementation is 
expected to be quite efficient. All this makes MOLA a good candidate for practically 
usable model transformation language.  
Currently all the experiments with MOLA, including pictures for this paper, are per-
formed by means of the modeling tool GRADE [13, 14], in the development of which 
authors have participated.  
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