
Model Transformation – the Heart and Soul of
Model-Driven Software Development

Shane Sendall and Wojtek Kozaczynski

Swiss Federal Institute of Technology in Lausanne (EPFL)
Software Engineering Laboratory

1015 Lausanne EPFL, Switzerland1
sendall@acm.org

Microsoft, Prescriptive Architecture Guidance Group

Redmond, WA, USA
wojtek@microsoft.com

The motivation behind model-driven software development is to move the
focus of work from programming to solution modeling. The model-driven
approach has a potential to increase development productivity and quality by
describing important aspects of a solution with more human-friendly
abstractions and by generating common application fragments with templates.
For this vision to become reality, software development tools need to automate
the many tasks of model construction and transformation, including
construction and transformation of models that can be round-trip engineered
into code. In this article, we briefly examine different approaches to model
transformation and offer recommendations on the desirable characteristics of a
language for describing model transformations. In doing so, we are hoping to
offer a measuring stick for judging the quality of future model transformation
technologies.

One of the best ways to combat complexity of software development is through the
use of abstraction, problem decomposition, and separation of concerns. The practice
of software modeling has become a major way of implementing these principles.
Model-driven approaches to systems development move the focus from third-
generation programming language (3GL) code to models (in particular models
expressed in UML and its profiles). The objective of model-driven development is to
increase productivity and reduce time-to-market by enabling development at a higher
level of abstraction and by using concepts closer to the problem domain at hand,
rather than the ones offered by programming languages. The key challenge of model-
driven development is in transforming these higher-level models to so-called
platform-specific models that can be used to generate code.

Over the last few years, the software development industry has gone through the

process of standardizing visual modeling notations. The Unified Modeling Language

1 From August 2003, Shane’s address will be: Software Modeling and Verification Lab.,

University of Geneva, CH-1211 Geneva 4, Switzerland.

mailto:Shane.Sendall@epfl.ch
mailto:wkozaczynski@earthlink.net

2 Shane Sendall and Wojtek Kozaczynski

(UML) [Omg03a] is the product of this effort, and it unifies scores of notations that
were proposed in the ‘80s and ‘90s. The language has gained significant industry
support and became an Object Management Group (OMG) standard in 1997. The
majority of software modeling techniques and approaches use UML, and the language
and its profiles have been associated with the model-driven development vision.

UML gives numerous options to developers for specifying software systems. A

UML model can graphically depict the structure and/or behavior of the system under
discussion from a certain viewpoint and at a certain level of abstraction. This is
desirable as one can typically better manage the complexities of a system description
through the use of multiple models, where each captures a different aspect of the
solution. Models can also be refined and decomposed into other models. Thus, models
can be utilized not only in a horizontal manner (to describe different system aspects),
but also in a vertical manner (to be refined from higher to lower levels of abstraction).

Working with multiple, interrelated models that describe a software system require

significant effort to ensure their overall consistency. It follows that automating the
task of model consistency checking and synchronization would greatly improve the
productivity of developers and the quality of the models. In addition to vertical and
horizontal model synchronization, the burden of other activities, like the ones listed
below, could be significantly reduced through automation:
− Refinement: The development of an application can be logically viewed as

combination of many steps taking one from requirements to realization. For
example, a specification of a component can be refined to include a state machine
describing state transitions resulting from receiving messages on its ports.

− Reverse Engineering Models: Going from concrete models to more abstract ones
can be useful for modelers who wish to work and/or communicate at a higher level
of abstraction. For example, complex interactions between many components may
be abstracted into aggregate interactions between component layers.

− Generating New Views: The generation of different views from existing models
can be useful for concentrating on a particular concern of the system where non-
pertinent information (to the concern) is filtered out. For example, components that
do not use remote communication can be filtered out as non-distributable
components.

− Applying Software Patterns: The need to apply architectural and design patterns as
well as class-level idioms arises often during software development. For example,
one may want to change local component communication to remote
communication which will require coordinated changes to all components that
depend on it. Note that the application of a pattern in many cases is a refinement
step, and thus can be seen as overlapping with the first point.

− Refactoring Models: The accumulation of changes to a model can make it complex
and difficult to maintain. A way to improve the form of a model is to refactor it.
Refactoring a model involves changing its structure while preserving its behavior.
Refactoration is usually achieved by the application of refactoring patterns and has
been given a separate bullet here because it has achieved quite some interest
recently. An example of refactoring could be the splitting of parts of a complex
component into separate components.

Model Transformation – the Heart and Soul of
Model-Driven Software Development 3

Many of these activities can be performed as automated processes, which take one

or more source models as input and produce one or more target models as output,
following a set of transformation rules. We refer to this process as model
transformation.

For the model-driven software development vision to become reality, tools must be

able to support the automation of model transformations. Development tools should
not only offer the possibility of applying predefined model transformations on
demand, but should also offer a language that allows (advanced) users to define their
own model transformations and then execute them on demand. Beyond
transformation execution automation, it would also be desirable that tools could make
suggestions as to which model transformations could be appropriately applied in a
given context, but this aspect is out of the scope of this article.

In this article, we analyze current approaches to model transformation, but we

concentrate on desirable characteristics of a model transformation language. Such a
language can be used by modeling and design tools to automate tasks like patterns
application, refinement or refactoring. Tools that implemented a language with the
described characteristics would not only support the Model-Driven Development
paradigm, but more importantly, could significantly improve development
productivity and quality.

Classifying Approaches to Model Transformation

Performing a model transformation, taking one or more models as input and
producing one or more models as output, requires a clear understanding of the
abstract syntax and the semantics of both the source and target. A common technique
for defining the abstract syntax of models and the inter-relationships between model
elements is meta-modeling. Practice has shown that for visual modeling languages
there are a number of advantages in basing a tool’s implementation upon the meta-
model of the language. A number of tools exist which allow one to define a domain-
specific visual language by the specification of a meta-model, e.g., [Dome, GME,
MetaEdit+, ParadigmP]. UML is also specified in terms of a meta-model, which is
implemented (at least partially) by a large number of tools, e.g., [Objecteering,
RationalRose, RationalXDE, Together].

These tools, in general, offer the user one of three different architectural

approaches for defining transformations2: the direct model manipulation approach, the
intermediate representation approach, or the transformation language support
approach.

2 This classification was inspired by [Wksp-DSVL], which classifies approaches that generate

code from models.

4 Shane Sendall and Wojtek Kozaczynski

� Direct Model Manipulation (sometimes referred to as Pull) – the tools
offer users access to an internal model representation and the ability to
manipulate the representation using a set of procedural APIs.

� Intermediate Representation – the tool can export the model in a standard
form, typically XML. An external tool can then take the exported model
and transform it.

� Transformation Language Support – the tool offers a language that
provides a set of constructs or mechanisms for explicitly expressing,
composing and applying transformations.

A tool that offers one (or more) of these three approaches provides a means to

define model transformations. In what follows, we highlight some of the advantages
and limitations of the different approaches.

An advantage of the direct manipulation approach is that the language used to

access and manipulate the exposed APIs is either a common language like VB or Java
or a proprietary variant of a common language, and the developers need little or no
extra training to write transformations. Furthermore, developers are generally more
comfortable with encoding complicated (transformation) algorithms in procedural
languages. Examples are Rational Rose [RationalRose] that offers a version of VB
with a set of APIs to manipulate models and Rational XDE [RationalXDE] that
exposes an extensive set of APIs to its model server that can be used from Java, VB
or C#. A disadvantage of using this approach is that the API usually restricts the kind
of transformations that can be performed. Also, since the programming languages are
“general-purpose”, they lack suitable high-level abstractions for specifying
transformations. As a consequence, encoding transformations can be time-consuming,
cumbersome, and the transformation algorithms may be difficult to maintain. One
proposal that promises to raise the level of abstraction of operations on UML models
is UML’s action language [Omg03a]. The language has been proposed as a way to
procedurally define UML transformations [MB02, SPH+01] and is a special-purpose
language for manipulating UML models. However, due to its “general-purpose”
context, the UML action language still suffers, albeit less chronically, from a lack of
high-level abstractions for dealing with model transformations like, for example,
transformation composition.

With respect to the intermediate representation approach, many UML tools offer

the facility to export and import models to/from XMI. XMI is an XML-based
standard for interchange of UML models [Omg03a]. Because a model is externalized
into XML, it is possible to use existing XML tools, such as XSLT [XSLT], to perform
model transformations. Some researchers have also proposed the use of the
XMI.difference clause defined by XMI [Wag01], however this latter type of approach
offers significantly less expressive power compared to XSLT-based approaches. Even
though XSLT was defined for the specific purpose of describing transformations, it is
nevertheless tightly coupled to the XML that it manipulates. As a consequence, it
requires experience and considerable effort to define even simple model
transformations in XSLT. To address this problem, MTrans proposes a language that
is placed on top of XSLT to describe model transformations [PZB02], where XSLT is

Model Transformation – the Heart and Soul of
Model-Driven Software Development 5

generated from an MTrans description. A drawback of MTrans is that even though the
idea is indeed very promising, the proposed language possesses a number of the
idiosyncrasies of XSLT, e.g., a restrictive functional style. Another disadvantage of
the intermediate representation approach is that transformations are performed in
batch mode. There are two important consequences of that. One is that
transformations are hard to perform in an interactive dialog with the user. The other
one is that the tool still needs to reactively manage the synchronization between
models after changes. For example, a long and complex transformation performed
outside of the tools may be rejected due to the violation of cross-model integrity
constraints.

Transformation language support, as the name suggests, provides a domain-

specific language for describing model transformations and, by consequence, offers
the most potential of the three approaches. Within this context, there are many
languages that can be used to specify and execute model transformations, some of
which offer visual constructs. These languages are either declarative, procedural, or a
combination of both. Below are a few examples.

The work described in [Mil02] proposes a graphical language for describing model

transformations that is principally procedural in nature but also offers some
declarative features. The proposed approach offers a UML object diagram as notation
for developing the mapping specification. The notation has been extended, using
UML’s stereotype extensibility mechanism, with constructs for conditional, repetitive,
parameterized, and polymorphic model element creation. These concepts,
theoretically, allow one to generate any kind of model as a result of transformation.
The use of a graphical notation for defining the mapping specification is likely to
make the approach more accessible to users (especially when you compare it to the
equivalent C++ code), even though the graphical form makes heavy use of
stereotypes and uses common UML elements, such as, packages, in ways that are not
typically seen in UML-based languages. The approach is supported by a tool that
generates C++ code from the mapping specification. A limitation of the proposed
approach is its underlying assumption that the selection of source model elements for
the transformation can be easily expressed in a general-purpose programming
language, i.e., C++. If one were faced with complex selection criteria, it would be
very likely that these selection conditions would become complex and hard to
maintain. In fact, it would be at least useful to offer a language that is tailored for such
a purpose, such as, UML’s Object Constraint Language (OCL) [Omg03a, WK98].

A commercial example of a specialized transformation language is the Rational
XDE's pattern mechanism [RationalXDE]. XDE transformations are defined as model
templates called Patterns. A pattern may contain parameters and also may contain
arbitrary procedural code written in Java, VB or C#, which is invoked by a set of pre-
defined call-backs. At the time of application, the pattern engine binds pattern
parameters with arguments either automatically or assisted by the user and expands
the pattern into the target model. If a procedure is associated with a callback, the
pattern engine passes a handle of the model to the procedure, which effectively means

6 Shane Sendall and Wojtek Kozaczynski

that the user can make arbitrary "manual" changes. The key drawback of the XDE's
pattern engine is that it provides a limited capability to compose patterns.

Another technique is to treat UML models as graphs. Much work has been
performed on graph grammars and graph transformation systems. Graph
transformations are realized by the application of transformation rules, which are
rewriting rules for graphs. A transformation rule consists of a graph to match,
commonly referred to as LHS, and a replacement graph, commonly referred to as
RHS. If a match is found for the LHS graph, then the rule is fired, which results in the
matched sub-graph of the graph under transformation being replaced by the RHS
graph. The PROgrammed GRaph REplacement System (PROGRES) [SWZ97]
exemplified the means not only to specify transformation rules but also to define the
sequencing of these rules (described using imperative constructs). This feature of
PROGRES sets it apart from many of the other graph transformation approaches.

 Unfortunately, PROGRES provides no direct support for UML. The Fujaba
environment, a specialized successor to PROGRES, provides round-trip engineering
support for UML and Java [KNN+00]. Unfortunately, it is not clear how Fujaba could
be generalized for UML-to-UML transformations, as it uses graph transformations for
the purpose of visual programming.

Another graph transformation system for domain-specific model transformations is
the Graph Rewriting and Transformation Language (GReAT for short) [AKS03].
Similarly to PROGRES, it separates the language for describing transformation rules
from the language for describing rule ordering. In GReAT, metamodels for the source
and target models are used to establish the vocabulary of the LHS and RHS and to
ensure that the transformation produces a well-formed target model. Surprisingly,
GReAT’s rule language defines LHS, RHS and a set of explicit transformation actions
in a single graph. Even though it is not ambiguous to the tool’s interpreter, it
unfortunately makes rule comprehension more difficult. GReAT’s rule composition
language has a visual form that resembles a circuit diagram. It offers a number of
operators for sequencing rules, non-deterministic ordering of rules, rule composition,
recursion, and conditional branching. Even though the rule composition language
offers quite some expressive power, using it in the specification of complex
transformation composition strategies and algorithmic heavy analyses would require
quite some training in the language. In general, it is very difficult to use a visual
language to write complicated algorithms3.

Another technique exemplified by the transformation framework based on Maude,
a logic-based programming language [CDE+01], is described in [Whi02]. Maude
code consists of a set of equations and rewrite rules. The Maude execution engine
applies these rules to transform a given term. The UML abstract syntax is provided to
the Maude engine as a set of theories, and from this, transformation rules can be
defined as rewrite rules, which work in a similar way to the graph transformation
approach. Although the work is a good step in the right direction, writing rules in a
logic language like Maude is not simple. For example, the way that parameters are

3 This is confirmed by the lack of popular general-purpose programming languages that have a

visual notation.

Model Transformation – the Heart and Soul of
Model-Driven Software Development 7

bound to source or target model elements is not intuitive to inexperienced users, as
variables can become any element necessary to satisfy the rule, existing or otherwise.
Consequently, readability and understandability of the description may be an initial
hurdle if a logic programming language is used.

The work described in [SPG+03] offers a pragmatic way to address some of the
shortcomings of graph-based transformation languages. It offers a visual language
similar to GReAT, however, it uses the philosophy that many of the complicated
algorithms in model transformation are easier to realize in a general-purpose
programming language such as C# and Java. The proposed approach places the model
transformation language on top of the programming language, in much the same way
that an integrated development environment (IDE) such as Visual Studio, offers a
visual GUI builder on top of the application code. This aspect of VMT has both
advantages and disadvantages. An advantage is the availability of a set of abstractions
that are fine-tuned for UML-to-UML transformations and the accessibility and
expressive power of a general-purpose programming language. A disadvantage is that
the user is required to work in multiple languages that have different levels of
abstractions. VMT also has features beyond those present in GReAT. VMT’s
language for rule specification offers not only a metamodel-level view of the LHS and
RHS, but also a model-level view, which makes it easier for users that are not familiar
with the details of the UML metamodel. The rule specification language also makes a
clear separation between the LHS and RHS, which means rule comprehension easier.

Desirable Characteristics of a Model Transformation Language

Building upon the discussion in the previous section, in this section, we propose a set
of characteristics that we believe are desirable for a model transformation language to
possess in general.

The languages that we surveyed in the previous section vary from principally

visual notations to text only notations, from highly declarative to fully imperative, and
from containing a small set of general language constructs to a large number of
specialized language constructs. What then is the optimal kind of language for
expressing model transformations?

If a language is to have general utility and acceptance, then it should have full

expressive power for the chosen purpose and it should be implementable in an
efficient way. Even if we were to limit the language to UML-to-UML transformation,
we would still require a fully expressive language. This is because UML can be used
in an almost unlimited number of ways4, and it seems unlikely that we could predict
the kinds of analyses and strategies that would be needed for UML-to-UML

4 To gauge how many ways UML can be used, one only needs to contemplate the number of

potential domains of usage and the number of different possible purposes with which UML
can be used in each domain.

8 Shane Sendall and Wojtek Kozaczynski

transformations in general. As a consequence, the transformation language would
probably need to be Turing-complete.

Expressive power is only one important aspect of a transformation language.

Usability is another equally important aspect. The usability of a language is a difficult
subject to conquer because it depends not only on the purpose of the language but also
on the preferences and backgrounds of its users, which is subjective by definition.

There are a number of factors that need to be addressed and balanced in a

language. It should be easy-to-understand, yet precise and unambiguous. It should be
concise and easy-to-modify, yet complete.

A declarative language offers an implicit interpretation such that one can take

advantage of a set of underlying mechanisms to formulate the desired specification.
For example, in the graph transformation approach, the algorithm for LHS graph
matching is implicit and does not need to be expressed as part of the specification. On
the other hand, an imperative language makes every step of the algorithm explicit. For
example, procedural languages are imperative and they use procedures as abstraction
mechanisms to encapsulate sets of instructions. As a consequence of the underlying
and implicit mechanisms, a declarative language is typically more concise than a
comparable imperative language. Nevertheless, there is a trade-off between
conciseness and comprehension, where, if a specification has too many implicit and
complicated concepts, it may be more difficult to understand than a more explicit, yet
verbose, specification. As such, the key to the design of a transformation language is a
set of key abstractions for transformation that are intuitive and cover the largest
possible range of situations.

Many of the rules for mapping source model elements to target model elements can

be made implicit and can be defined in a similar manner to the way that people
communicate. As such, a declarative language can facilitate this aspect. For example,
the intuitive interpretation of a certain schema may imply a depth-first traversal of the
specification hierarchy. In this case, it would be desirable to make this implicit in the
language. Nevertheless, in many of the approaches that we surveyed in previous
section, imperative operators are commonly used in transformation composition,
because this aspect of transformation description is more suited to an imperative
interpretation.

The accessibility and acceptance of a language also depends on its form. One of

the appealing features of UML is that it uses a graphical form. Graphical
representations of models have proved popular because there are perceived cognitive
gains compared to fully textual representations. In the context of a transformation
language, specifying the structure of the input selection of a transformation using
visual means is an appealing prospect. In any case, a graphical description is best
complemented with textual parts, because in certain situations the use of text in the
description is both more concise and easier to comprehend than an equivalent
graphical representation.

Model Transformation – the Heart and Soul of
Model-Driven Software Development 9

With a large repository of model transformation descriptions at ones disposal, it
follows that it may be desirable to combine existing transformations to build new,
composite ones, since it is sometimes easier to compose components rather than build
something from basic particles. Furthermore, in some cases it may be easier to build a
transformation piecemeal by describing parts of the transformation first and then
bringing together the parts to form the whole. Most of the approaches that we
reviewed in the previous section offered language support for transformation
composition and reuse.

Assuming that the transformation is correctly specified by the author and correctly

interpreted by the tool, we would usually expect the transformation to produce a
meaningful result. However, a transformation is typically only meaningfully applied
against certain configurations of models. Thus, it would be desirable in many cases to
describe the condition under which the transformation produces a meaningful result,
which can then be enforced at execution time.

The following statement summarizes the desirable and recommended

characteristics for a model transformation.

It is recommendable for a model transformation language which supports model-
driven software development to:

1. be executable;
2. be implementable in an efficient way;
3. be fully expressive, yet unambiguous, for transformations that modify

existing models (add, change or delete model elements) as well as create
completely new models;

4. facilitate developer productivity with precise, concise and clear
descriptions:

o the language should clearly differentiate the description of the
source model selection rules from the rules for producing the
target model;

o the language should offer graphical constructs in the cases that
the concepts represented are more concise and intuitive in
graphical form compared to a textual one;

o the language should be declarative by making implicit any
concepts or mechanisms that can be intuitively interpreted from
the context;

5. provide a means to combine transformations to form composite ones,
offering at least operators for sequencing, conditional selection and
repetition of transformations; and

6. provide a means to define the conditions under which the transformation
is allowed to execute.

10 Shane Sendall and Wojtek Kozaczynski

Standardizing Model Transformations

Despite its poor initial definition, the concepts of the OMG's Model Driven
Architecture (MDA for short) [OMG01a] are gaining interest. MDA is a framework
for model-driven software development that defines three steps for going from high-
level design to software realization [KWB03]:
Step 1: A model of the software system is constructed that is independent of any
implementation technology, e.g. independent of J2EE, .NET, etc. This type of model
is referred to as a Platform Independent Model (PIM).
Step 2: A PIM is transformed into one or more Platform Specific Models (PSMs),
using a particular mapping strategy. A PSM specifies a system using implementation
constructs that are available in one specific implementation technology, e.g., .NET
platform, etc.
Step 3: The PSMs are transformed into code.

It is clear that to realize the MDA vision, one needs to be able to describe the
transformation between PIM and different PSMs and then have tools transform the
PIM based upon the description provided to it. Hence, we believe that MDA and its
related activities will be the main stimulus for standardizing model transformation
languages and there are early examples of that.

Even though the details of MDA are still being refined, there are already a number of
tools that claim support for the MDA framework, e.g., [ArcStyler, OptimalJ].

Also, the OMG’s Common Warehouse Metamodel (CWM) Specification [Omg01b]
defines a generic way to describe white-box and black-box transformations (see
chapter 13 of the specification). In CWM, black-box transformations associate source
and target elements without describing how one is obtained from the other. The
white-box transformations describe the fine-grained links between source and target
elements by way of an explicit element called a Transformation, which is associated
to another element called a ProcedureExpresssion. A ProcedureExpression defines the
transformation operation; it can be expressed in any language capable of taking the
source element and producing the target element(s). Thus, CWM does not offer any
actual mechanisms or languages for performing the transformation; it is instead used
to describe the existence of a mapping.

To fill this gap, OMG has posted a Request for Proposal called MOF 2.0

Query/Views/Transformations RFP [Omg02a], which has been answered by eight
different initial submissions. The successful final submission will potentially add the
much needed keystone to OMG’s MDA vision, and it will need to address the
characteristics that we identified in the previous section.

Model Transformation – the Heart and Soul of
Model-Driven Software Development 11

Conclusion

For software tools to become truly useful in aiding developers, they need to be able to
automate the everyday tasks of users. With the potential impact of model-driven
approaches on software development practices, tools will need to better automate the
construction and evolution of software models. Currently, the best way to go about
this goal is for tools to offer an executable model transformation language that allows
one to automate model creation, development and maintenance activities. In this
article, we proposed some desirable characteristics that this language should possess.
In doing so, we offered a measuring stick for judging the quality of future model
transformation technologies.

Acknowledgements

Shane’s activities were sponsored by the FIDJI project n° MEN/IST/01/001,
Luxembourg. Also, Shane would like to thank Olivier Biberstein and the FIDJI team
at Luxembourg University of Applied Science.

References

[AKS03] A. Agrawal, G. Karsai, and F. Shi; “A UML-based Graph Transformation
Approach for Implementing Domain-Specific Model Transformations”.
International Journal on Software and Systems Modeling, (Submitted), 2003.

[ArcStyler] ArcStyler Web Site, Interactive Objects Software, 2002.
 http://www.io-software.com/index_as.html

[CDE+01] M. Clavel, F. Durän, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J.
Quesda; “Maude: Specification and Programming in Rewriting Logic”.
Theoretical Computer Science, 2001.

[Dome] DOmain Modeling Environment (DOME) Official Web Site, Honeywell
International Inc., 2002.

 http://www.htc.honeywell.com/dome/
[GME] GME 2000 and MetaGME 2000, Institute for Software Integrated Systems,

Vanderbilt University, 2002. Available at http://www.isis.vanderbilt.edu
[KNN+00] H. Köhler, U. Nickel, J. Niere, and A. Zündorf; “Integrating UML Diagrams

for Production Control Systems”. Proceeding of the International Conference
on Software Engineering (ICSE200), Ireland, 2000.

[KWB03] A. Kleppe, J. Warmer, and W. Bast; “MDA Explained: the Practice and
Promise of Model-Driven Architecture”. Addison-Wesley, 2003.

[MetaEdit+] MetaEdit+ Workbench Web Site, MetaCase Consulting, 2002.
http://www.metacase.com

[Mil02] D. Milicev; “Domain Mapping Using Extended UML Object Diagrams”.
IEEE Software, pp. 90-97, March/April 2002.

[Objecteering] Objecteering/UML Web Site, Objecteering Software SA, 2002.
http://www.objecteering.com/us/index.php

12 Shane Sendall and Wojtek Kozaczynski

[Omg01a] OMG Architecture Board ORMSC; “Model Driven Architecture (MDA)”.
July 9, 2001 (draft). http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01

[Omg01b] OMG CWM Partners; “Common Warehouse Metamodel (CWM)
Specification”, Feb. 2001

 http://www.cwmforum.org/spec.htm
[Omg02a] OMG TC; “MOF 2.0 Query/Views/Transformations RFP”, 2002.
 http://cgi.omg.org/cgi-bin/doc?ad/02-04-10
[Omg03a] OMG Unified Modeling Language Revision Task Force; “OMG Unified

Modeling Language Specification”. Version 1.5, March 2003.
http://www.omg.org/technology/documents/formal/uml.htm

[OptimalJ] OptimalJ Web Site, Compuware Corporation, 2002.
 http://www.compuware.com/products/optimalj/
[ParadigmP] Paradigm Plus Web Site, Computer Associates (a product of the former

Platinum Technology), 2002. http://ca.com/products
[PZB02] M. Peltier, F. Ziserman, and J. Bézivin; “On Levels of Model

Transformation”. In Proceeding of XML Europe 2000; Paris, France; 12-16
June 2000.

[RationalRose] Rational Rose Web Site, Rational Software Corporation, 2003.
http://www.rational.com/products/rose/index.jsp

[RationalXDE] Rational XDE Web Site, Rational Software Corporation, 2003.
http://www.rational.com/products/xde/index.jsp

[SPG+03] S. Sendall, G. Perrouin, N. Guelfi, and O. Biberstein; “Supporting Model-to-
Model Transformations: The VMT Approach”. Workshop on Model Driven
Architecture: Foundations and Applications; Holland, 2003.

[SWZ97] A. Schürr, A. Winter and A. Zündorf; “The Progres Approach: Language and
environment”. In Chapter13 of G. Rozenberg, Handbook of graph grammars
and computing by graph transformation: volume I foundations, World
Scientific Publishing, 1997.

[Together] Together ControlCenter Web Site, TogetherSoft Corporation, 2002.
http://www.togethersoft.com/products/controlcenter/index.jsp

[Wag01] A. Wagner; “A Pragmatic Approach to Rule-Based Transformations within
UML using XMI.difference”. WITUML: Workshop on Integration and
Transformation of UML models (held at ETAPS 2001), 2001.

[Whi02] J. Whittle; “Transformations and Software Modeling Language: Automating
Transformations in UML”. Jézéquel, Hußmann & Cook (Eds.): Proceedings
of UML 2002 - The Unified Modeling Language, 5th International
Conference, Dresden, Germany. Lecture Notes in Computer Science no.
2460, pp. 227-242, Springer, 2002.

[WK98] J. Warmer and A. Kleppe; “The Object Constraint Language: Precise
Modeling With UML”. Addison-Wesley 1998.

[Wksp-DSVL] Workshop on Domain Specific Visual Languages; “Results Poster”. Held at
OOPSLA 2001 (organizers: Tolvanen, Gray, Kelly and Lyytinen)

 http://www.isis.vanderbilt.edu/oopsla2k1/Presentations/
ResultsOOPSLA-DSVL-2001.ppt

[XSLT] W3C; “XSL Transformations version 1.0”. URL: http://www.w3.org/TR/xslt.

