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Abstract 
 

The reintroduction of capital punishment in 1976 that ended the four year moratorium on 
executions created by the Supreme Court in 1972 in Furman v. Georgia has permitted 
researchers to employ state level heterogeneity in the use of capital punishment to study deterrent 
effects. However, no scholarly consensus exists as to their magnitude.  A key reason this has 
occurred is that the use of alternative models across studies produces differing estimates of the 
deterrent effect.  Because differences across models are not well motivated by theory, the 
deterrence literature is plagued by model uncertainty.  We argue that the analysis of deterrent 
effects should explicitly recognize the presence of model uncertainty in drawing inferences.  We 
describe methods for addressing model uncertainty and apply them to understand the disparate 
findings between two major studies in the deterrence literature, finding that evidence of deterrent 
effects appears, while not nonexistent, weak. 
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1. Introduction 

 

This paper explores the strength of evidence on the deterrent effect of capital punishment 

with specific attention to recent studies on this question.  Its goals are both methodological and 

substantive.  In terms of methodology, we argue that an important difficulty with studies of 

capital punishment is the failure to address systematically model uncertainty; we offer 

suggestions on how model uncertainty can be addressed.  In terms of substance, we perform a set 

of exercises that show how these methods can be used to address differences between studies. 

Our results help to explicate a significant disagreement in the empirical literature.   

The new wave of research on capital punishment and deterrence is based on the data that 

have become available following the reintroduction of capital punishment in different states 

beginning in 1976, after a four year moratorium on death sentences and executions resulting 

from the US Supreme Court Decision in Furman v. Georgia.2  Not all states reintroduced capital 

punishment at the same time when the decision in Gregg v. Georgia3 lifted the Constitutional 

barrier: they acted at different times to restore capital punishment and have used it at widely 

varying rates ever since.  The resulting natural variation in execution rates across states and time 

forms the empirical basis for these studies. 

This new body of work has failed to produce a consensus on whether deterrent effects are 

present. Dezhbakhsh, Rubin, and Shepherd (2003), Dezhbakhsh and Shepherd (2006), and 

Mocan and Gittings (2001) find strong deterrent effects from the death penalty.  These claims 

have been challenged by Donohue and Wolfers (2005), Berk (2005), and Fagan (2006), who 

argue that the evidence that has been adduced in favor of strong deterrence effects is fragile, in 

that they may be reversed by small changes in model specification. Other studies have argued 

that more substantive differences in the formulation of the deterrence mechanism lead to 

different results.  Katz, Levitt, and Shustorovich (2001), focusing on the fact that executions are 

relatively infrequent, argue that prison mortality rates represent a deterrent whereas capital 

punishment does not.  Other studies find that deterrence effects are heterogeneous, so that 

important properties are masked by imposing a single measure on the statistical analysis.  

                                                 
2408 U.S. 283 (1972). 
3428 U.S. 153 (1976).  
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Shepherd (2005) draws mixed conclusions, suggesting that capital punishment will raise murder 

rates when the number of executions is small, producing what she calls a brutalization effect. 

However, the brutalization effect is dominated by the deterrence effect when the number of 

executions exceeds some empirically identified threshold.  Hjalmarsson (2006) explores whether 

executions have short run local deterrence effects by studying the city level effects using daily 

frequency data; focusing on Texas, she finds little evidence of deterrence.  

The different empirical studies of deterrence have much in common.  They are based on a 

common choice-theoretic version of criminal behavior advanced by Gary Becker and 

implemented in the capital punishment context by Isaac Ehrlich (1975, 1977).  All the studies 

reflect the common idea that criminal behavior reflects a purposeful calculation of its benefits 

and costs.  For the study of murder and capital punishment, a choice-theoretic model leads 

different researchers to employ qualitatively similar factors in understanding how individuals 

assess and update benefits and costs; it is not the case, for example, that one study assumes that 

the propensity to commit a murder is determined by sociological and cultural factors whereas 

another does not.  The new studies are also similar in that they all employ aggregate 

observational data on murder, punishment risks, and rich sets of covariates to evaluate deterrent 

effects.  Despite these commonalities, estimates of deterrence effects vary dramatically and often 

are contradictory. 

Why should studies using relatively similar conceptualizations of individual behavior and 

similar degrees of data aggregation produce disparate conclusions?  A fundamental problem that 

underlies the disparate findings on the deterrent effect of death sentencing is that individual 

studies reflect specific assumptions about the appropriate data, control variables, functional form 

specification, etc. on the part of the researcher. As a result, two researchers each of whom has 

developed a conceptually reasonable and potentially correct “model” (by which we mean a 

collection of assumptions) can reach opposing conclusions.  Typically, these differences in 

assumptions across models cannot be resolved by appeals to theory or to widely-endorsed 

statistical practice, because a priori each may be argued to be sensible in, at least, some 

circumstances.  A posteriori, of course, evidentiary support may favor one model over another.  

But even if the evidentiary support is quite lopsided, it is not the case that one naturally regards 

the probability that one set is true and the other false as either 100% or 0%.  

−

−
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Our goal in this paper is to provide a constructive approach to addressing the model 

uncertainty that is found in the capital punishment literature.  As we see it, the objective of 

deterrence studies is not to identify a best model of the murder process, but to communicate the 

information embodied in a data set on deterrence per se.  How might this be done in practice?  If 

the objective of the exercise is to communicate a single estimate of the deterrent effect of an 

execution (and an associated measure of the uncertainty of the estimate), then this should be 

done with explicit recognition of the model uncertainty present in the analysis.  This leads us to 

employ model averaging methods.   

In model averaging, the researcher treats the “true” model of a phenomenon as unknown. 

The first step in the procedure is the formulation of a space of candidate models. This step 

involves judgment; there is no algorithm for determining what models should be considered.  

Second, each model in the model space is estimated.  Third, these estimated models are 

averaged, where the averaging weights represent the probabilities that each of the models is, in 

fact, the true one.  This procedure in essence makes statistical claims that are conditional on a 

model space rather than on a particular model.  One may take either a frequentist or a Bayesian 

approach to model averaging as its key features involve accounting for model uncertainty and are 

not predicated on a particular statistical philosophy.  Our approach in this paper uses frequentist 

estimates; see Sala-i-Martin, Doppelhofer and Miller (2004), Hansen (2007), and Hjort and 

Claesskens (2003) for discussion of statistical issues. 

The model averaging approach was originally suggested in Leamer (1978) but has only 

recently reappeared in the statistics literature, where Draper (1995) provided a general 

conceptual argument in favor of model averaging.  Also, work by Adrian Raftery (e.g. Raftery, 

Madigan, and Hoeting (1997)) has been fundamental in making the approach operational.  Model 

averaging has appeared in a number of social science settings, notably economics, examples 

include Brock and Durlauf (2001), Sala-i-Martin, Doppelhofer, and Miller (2004), Fernandez, 

Ley and Steel (2001) in studying economic growth determinants, and Brock, Durlauf, and West 

(2003, 2007) and Levin and Williams (2003) for monetary policy evaluation. 

Interestingly, the first wave of capital punishment/deterrence findings was also criticized 

for failing to account for model uncertainty.  Specifically, Ehrlich’s (1975, 1977) results were 

challenged by Baldus and Cole (1975), Bowers and Pierce (1975), Klein, Forst, and Filatov 

(1978), Leamer (1983), McManus (1985) and Passell and Taylor (1977) on the grounds of 

 3



fragility.  Each of these critiques used methods to evaluate whether the results found were 

sensitive to the particular assumptions used in setting up the econometric study, so that different 

assumptions could succeed or fail to produce evidence of deterrence. A 1978 National Research 

Council report reached the general conclusion that “available studies of [capital punishment] 

provide no useful evidence on the deterrent evidence of capital punishment” (Blumstein, Cohen, 

and Nagin (1978), pg. 9.)  

Relative to our approach, Leamer’s (1983) method is of particular interest.  It represents 

an effort to systematically evaluate the interplay of model specification and deterrence findings. 

By contrast, the bulk of studies responding to Ehrlich aimed at identifying alternative 

specifications to Ehrlich’s that suggested no deterrence.  Extreme bounds analysis was used to 

argue that Ehrlich’s findings were not robust to model choice.  Extreme bounds analysis treats a 

parameter estimate as fragile if its sign flips across model specifications.  Our approach avoids 

using this method which, as argued in Brock, Durlauf and West (2003), amounts to a very 

special view of how a policymaker should assess evidence; specifically the approach assumes 

that the policymaker possesses preferences such that if a policy may be counterproductive under 

any of the models that may characterize the data, then the policy should not be adopted.  This 

means that the relative evidentiary support for different models is ignored in the assessment.4  

Ehrlich and Liu (1999) show that a number of propositions that receive essentially unanimous 

assent among economists as valid would be rejected using extreme bounds analysis on a sensible 

data set and group of candidate models.5  Our approach should, therefore, be understood as 

incorporating Leamer’s fundamental insight but extending it in different directions. 

 In exploring the role of model uncertainty in deterrence regressions, we are able to 

provide some adjudication of the disparate results in the literature.  In particular, we will provide 

a variety of ways to understand the relationship between the different conclusions drawn by 

Dezhbakhsh, Rubin and Shepherd (2003) (denoted DRS) and Donohue and Wolfers (2005) 

(denoted DW).  In doing this, we will conclude that the evidentiary support for a deterrence 

effect, in the data set under study and the model space spanned by these two papers, is weak.  

                                                 
4And of course, for large model spaces, chance alone may virtually ensure that there is at least 
one pair of models with opposite implications, so that regardless of the context, no policy change 
is made. 
5See McAleer and Veall (1989) for an earlier criticism of Leamer’s use of extreme bounds 
analysis in evaluating deterrence evidence. 
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This will be true in two complementary senses.  First, model uncertainty renders calculations of 

net lives saved from executions very imprecise.  While our point estimate of net lives saved from 

an additional execution is positive, we find that for approximately ¼ of the models we study, the 

deterrence effect is negative, i.e. more executions are associated with more homicides.  Second, 

the signs of the relevant deterrence variables are in some cases inconsistent with the deterrence 

argument, thereby undermining its logic and leading to the possibility that the equilibrium effects 

of a capital punishment regime can raise the number of homicides. 

 It is important to recognize that our analysis is not designed to address criticisms of 

deterrence studies that focus on simply challenging a particular specification.  For example, we 

do not question the validity of the instruments that are employed by DRS even though their 

validity has been subjected to critique by DW.  The reason for this decision is that we wish to 

understand how model specification choices determine the different findings in the papers.  In 

this sense, we take the behavioral assumptions implicit in the original DRS analysis seriously, 

and ask to what extent their conclusions depend on details of the statistical instantiation of these 

assumptions.  Arguments about instrumental variable validity typically function outside the logic 

of a given model.6  As such, they rely on judgments that are outside the scope of our study.   

This focus also means that we restrict our consideration of model uncertainty to the 

minimum amount needed to encompass DW and DRS.  For example, we accept the DW decision 

to focus on differences between California, Texas and the rest of the United States rather than 

pursue a systematic examination of heterogeneity across all of the states.7  Similarly, where DRS 

and DW coincide, as they do on most issues of measurement we employ their common 

assumptions, even though these may be problematic.  For example, Cook and Ludwig (2006) 

argue that the percentage of suicide rate with guns is a better measure of gun access than NRA 

                                                 
6 In other work with Salvador Navarro and David Rivers, one of us (Durlauf) has found that the 
DRS instruments pass the Stock-Yogo overidentification test. So at least from this dimension, 
the DRS instruments are vindicated.  Of course, this does not address arguments of the type 
made by DW that the instruments are a priori invalid. DW are in fact clear that they do not 
provide a formal test of validity.  Rubin’s (2006) reply to Donohue and Wolfers (2006) addresses 
this criticism but does not address its substance. 
7DW pg. 826 emphasize that their analyses which exclude California and Texas are done in order 
to evaluate robustness.  In our view, the exclusion of Texas is of particular interest because of the 
disproportionate number of executions there, see Berk (2005) and our discussion below.  It is not 
obvious why California should be singled out. We note that theory does not require that the 
parameters for aggregate deterrence regressions are identical across states. 
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membership. Other examples include heterogeneity in the crimes measured as murders and the 

specification of error structure in the panel under study.8 Nor do we address the 

microfoundations of the DRS regression; Durlauf, Navarro, and Rivers (2007) show that there 

are interpretation problems involved in moving from individual crime choice problems to the 

type of regression employed in DRS.  While all of these problems are of interest, and at least 

some may be addressed using model averaging methods9, they are outside the DRS/DW 

comparison.  A more radical expansion of the model space would not allow us to understand the 

differences between the two papers.   

In light of the plethora of criticisms of capital punishment deterrence regressions, why do 

we focus on the disparate results of DRS and DW under alternative statistical specifications? We 

have two reasons. First, we feel it is of interest to demonstrate how one can move beyond 

differences in statistical assumptions and corresponding differences in inferences to uncover the 

information content of a data set given a model space. Second, we feel that model selection 

exercises fail to provide appropriate information for policy evaluation, when they are used to 

determine a single model for analysis; more on this below.  Third, we think it is important to 

understand how empirical findings depend on modeling assumptions of various types.  In our 

view, it is one thing to find that the evidence for a capital punishment deterrent effect depends on 

whether one believes an instrument is valid and quite another to find it depends on what is 

assumed about parameter heterogeneity.  The former is amenable to social science reasoning in a 

way that the latter is not.  And it seems reasonable that a policymaker’s assessment of the 

desirability of a policy can depend on the source of uncertainty about its impact.    

Given the politically charged nature of any claim concerning capital punishment and 

deterrence, it is important to be explicit about what one can and cannot take from our analysis 

when considering capital punishment as a public policy.  Our findings demonstrate that evidence 

for deterrence is weak in the context of a major data set and set of possible models of the murder 

process.  Hence, in our judgment, claims of a strong deterrent effect made on the basis of these 

data and elements of the model set that we study, cannot be sustained and thus should not so be 

                                                 
8 We thank the anonymous referees for raising these issues and for the reference. 
9While we are studying how model averaging can be used to address measurement problems, we 
are not sure about how this would be done. We mention this as we wish to make clear that model 
averaging is a tool, not a panacea.  
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used to bolster a case for capital punishment.   However, nothing in our analysis necessarily 

speaks to the question of the deterrent effects of capital punishment regimes different from those 

which have been historically observed.  Our analysis can only be interpreted as providing 

evidence on capital punishment/murder patterns as occurred under the particular policy regime 

that has existed in the United States since the resumption of capital punishment in 1976 

following the U.S. Supreme Court’s decision in Gregg v. Georgia.10  The empirical question 

under study is whether a particular policy regime, one in which the exercise of capital 

punishment is unusual, has produced deterrence, nothing more.11  We also do not deal with 

broader issues of whether regressions of the type we study can be interpreted as providing causal 

inferences 

Section 2 of this paper outlines our methodology. Section 3 describes the studies by 

Dezhbakhsh, Rubin and Shepherd and Donohue and Wolfers, which will form the basis of our 

empirical analysis.  Section 4 discusses implementation issues.  Section 5 reports results.  

Summary and conclusions appear in Section 6.

 

 

2. Model uncertainty and model averaging: general principles 

 
 
We follow the discussion in Brock, Durlauf and West (2003) to describe our statistical 

framework.  Let δ  denote the measure of the deterrent effect of capital punishment.  A typical 

capital punishment paper is designed to produce statements about this measure conditional on a 

data set D and a statistical specification, i.e. a given model m.  An empirical paper will rarely 

report a set of statements about δ  given a single model, and so one finds reports of estimates of 

δ  for some range of alternative specifications to m.  Examples of such alternatives include 

different choices of control variables, or choices of functional form.  So, in this sense, empirical 

studies typically recognize the presence of model uncertainty.  However, they fail to address it in 

                                                 
10For this reason, the assertion by Mocan and Gittings (2006) that DW’s claim that the current 
death penalty regime has no deterrent effect is at odds with the basic logic of the choice-based 
model of crime is fallacious.   
11 See Fagan (2006) for discussion.  While such issues are obviously important, our focus is 
solely on the model uncertainty question, applied to a statistical framework that has in fact been 
used for causal claims. 
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a systematic fashion.  Explorations of the robustness of particular findings are made in an ad hoc 

way and in a manner in which the model uncertainty is “local” to the baseline model m, i.e. the 

deviations from the baseline are usually modest. 

 How might model uncertainty be treated in a systematic fashion? Relative to our 

description of the “standard” empirical exercise, we argue that evidence on δ  should be reported 

based upon a model space M that is constructed to span plausible alternative models. In other 

words, a researcher needs to explicitly consider what aspects of his model are uncertain, and treat 

different resolutions of this uncertainty as candidate models.  Information about the deterrent 

effect should not be based on the assumption that one or a small, arbitrarily chosen subset of 

these models, are the only ones that should be considered.   

How should one describe evidence on a phenomenon such as deterrence when model 

uncertainty is present?  Some intuition to our approach may be derived from considering the 

question of how to handle disagreements about heterogeneity in the objects studied in a data 

set.12 One of the sources of the different findings in DRS and DW is the choice of data to use. 

DW argue that excluding a single state, such as California or Texas, from the DRS data is a 

major source of the difference in findings (see, also, Berk (2005)).  One can think of this 

disagreement as reflecting a simple form of model uncertainty in that the model space has only 

two elements: a set of data that includes California and Texas and one that does not.  How do we 

propose adjudicating the disagreement?  We argue that one should construct a weighted average 

of the results from each study, where the weights are model probabilities.13  DRS can be 

interpreted as placing a prior probability of 1 on the model with data that includes California and 

Texas whereas a researcher using DW would place a prior probability of 1 on the model without 

California and Texas. (To be clear, DW themselves do not endorse any particular model; rather 

they use it to illustrate the fragility of the claims in DRS.)  Our approach recognizes that each 

model has information that is useful to a researcher. 

More formally, the structure of model averaging may be understood as follows.  Suppose 

one wishes to produce an estimate of some object of interest,δ , which measures the effects of a 

policy. In the context of the capital punishment literature, δ  tends to be the coefficient on the 
                                                 
12These types of disagreements can be formalized using the probabilistic notion of 
exchangeability, see Brock and Durlauf (2001) for discussion. 
13This can be thought of simply as the conditional probability that a given model describes the 
data.  We discuss this at greater length below. 
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execution variable in some deterrence regression.  Conventional statistical methods may be 

thought of as calculating an estimate that is model-specific, m̂δ .  In the model averaging 

approach, one attempts to eliminate conditioning on a specific model.  To do this, one specifies a 

set or space of possible models M.  The true model is, of course, unknown, so from the 

perspective of the researcher, each model will have some probability of being true. These 

probabilities depend on the relative goodness of fit of the different models given available data D 

as well as the prior beliefs of the researcher (something we discuss below); hence each model is 

associated with a posterior probability: ( )m Dµ .  These posterior probabilities allow us to 

average the model-specific estimates to produce an estimate that accounts for the model 

uncertainty, 

 

 ( )ˆ ˆ
M m

m
m Dδ µ= δ∑ . (1) 

 

An associated variance estimate (due to Leamer (1978)) is 

 

 ( ) ( ) ( ) ( )( )2ˆ ˆ
M m

m M m M

var m D var m Dδ µ δ µ δ δ
∈ ∈

= +∑ ∑ ˆ ˆ
M m− . (2) 

 

The estimate ˆ
Mδ  thus accounts for the information contained in each specific model 

about δ  and weights this information according to the likelihood the model is the correct one. 

Brock, Durlauf, and West (2003) argue that the strategy of constructing estimates that are not 

model-dependent is the appropriate one when the objective of the statistical exercise is to 

evaluate alternative policy questions such as whether to implement capital punishment in a state. 

Notice that this approach does not identify the “best” model; instead, it focuses entirely on 

estimating the effect of the policy, i.e. the parameter δ .   

The variance formula (2) is interesting as it illustrates how model uncertainty affects the 

overall uncertainty one should associate with given parameter estimates. The variance of ˆ
Mδ  

consists of two separate parts.  The first, ( ) ( )m̂
m M

m D varµ δ
∈
∑ , is a weighted average of the 
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variances of the estimates of δ  for each model and has the same form as the model average 

estimate of the parameter itself, i.e. (1).  The second term ( )( )2ˆ ˆ
M m

m M

m Dµ δ δ
∈

−∑ does not have 

any analog in (1).  It reflects the variance of the parameter estimates across the models in M ; this 

variance is produced by the fact that the models are themselves different. This term is not 

determined by the model-specific variance estimates and thus captures how model uncertainty 

increases the variance associated with a parameter estimate relative to conventional calculations.  

To see why this second term is interesting, suppose that ( )ˆ 0mvar δ =   m∀ , so that conditional on 

each model, there is no uncertainty about the parameter.  While the component 

( ) ( m̂
m M

m D var )µ δ
∈
∑  will therefore equal 0, it would of course be silly to conclude that the 

overall variance of the parameter estimate is 0, so long as there is any variation in ˆ
mδ .  More 

generally, the cross-model variation in ˆ
Mδ  is a distinct source of uncertainty (as measured by the 

variance) that exists with respect to δ . 

Notice that averaging across models means that a key role is played by the posterior 

model probabilities. Using Bayes’ rule, the posterior probability may be rewritten as 

 

 ( ) ( ) ( )
( ) ( ) (D m m

m D m D m
D

µ µ
µ µ

µ
= ∝ )µ . (3) 

 

The calculation of posterior model probabilities thus depends on two terms. The first, ( )mµ , is 

the prior probability assigned to model . Computing posterior model probabilities requires 

specifying prior beliefs on the probabilities of the elements of the model space 

m

M .  It is common 

in the model averaging literature to assume that all models in M have equal prior probability.  

While this assumption may be criticized, (Brock, Durlauf, and West (2003), Doppelhofer and 

Weeks (2006)), for this context the assumption is a useful benchmark, and we follow it in our 

empirical implementation.   

The second term, (D mµ ) ,  is the probability of data given a model.  This term ensures 

that models with greater evidentiary support receive greater weight in evaluating δ .  An 
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important difference with standard empirical work is that models with relatively weak 

evidentiary support are not ignored, even if they are downweighted.  This represents a difference 

from most empirical work, which concentrates on first selecting a model, and second drawing 

inferences based on a parameter within the model.  Model selection amounts to assigning a 

weight of 1 to a particular model given its superiority with respect to some goodness of fit 

criterion.  This exaggerates the empirical salience of the model and thus can lead to inappropriate 

inferences. 

 
 

3. Dezhbakhsh, Rubin and Shepherd versus Donohue and Wolfers 
 

One of the most prominent papers arguing for the presence of a deterrent effect of capital 

punishment is the (2003) study by Dezhbakhsh, Rubin and Shepherd.  This study is based on 

county-level data for the post-moratorium period (1977-1996); at the time it arguably represented 

the most detailed and disaggregate dataset to have been used to study deterrence and compares 

favorably with other data sets that have subsequently been used. 

The DRS model is standard from the perspective of the choice-theoretic model of crime. 

In the model, the murder rate is a function of three principal deterrence variables: the probability 

of arrest, the probability of receiving a death sentence conditional on being arrested, and the 

probability of being executed conditional on receiving a death sentence. The model includes 

controls for related crime variables including the aggravated assault rate and the robbery rate.  

Demographic variables include information on population subsamples whose population shares 

may be correlated with higher levels of crime: the population proportion of 10-19 year olds and 

20-29 year olds, percentages of blacks, percentages of non-black minorities, population density 

and the male population share. Income variables include real per capita income, real per capita 

income maintenance payments, and real per capita unemployment insurance payments.  Finally, 

the specification includes the percentage of NRA members. These control variables are proxies 

for heterogeneity in murder rates across demographic groups, the opportunity cost of crime 

(proxied by various economic measures), as well as access to weapons.  While one can naturally 

question the mapping between the empirical proxies and the actual determinants of murder, the 
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variable choices reflect the constraints imposed by data availability and are in fact quite 

conventional. Formally, the DRS murder rate regression is 

 

, , , , , ,
0 1 2 3

, , , , , 2 , 6

, , , ,
1 2 3

, , , ,

c s t c s t s t s t

c s t c s t s t s t

c s t c s t

c s t c s t

Murders HomicideArrests DeathSentences Executions
pop Murders HomicideArrests DeathSentences

Assaults Robberies
D

Population Population

δ δ δ δ

γ γ γ

− −

= + + +

+ + + , ,

,
5 , , 6 7, 8, ,

,

c s t

s t
c s t t c t t s t c s tc t

s t

emographics

NRAmembers
economy county time

population , ,γ γ γ γ

+

+ + + + +∑ ∑ η ε+

(4) 

 

The overall deterrence effect of capital punishment can be evaluated by viewing the parameters 

1δ , 2δ , and 3δ . Estimates from DRS and DW use 3δ  to determine the number of lives saved or 

lost from executions; we follow this method.14  Since each of the variables associated with these 

parameters is endogenous, these parameters are estimated using instrumental variables. The three 

deterrence variables are assumed to follow 

 

, , , ,
0 1 2 , 3, , ,

, , , ,

'c s t c s t
s t t tt

c s t c s t

HomicideArrests Murders
PolicePayroll Time

Murders Pop
ψ ψ ψ ψ ε= + + + +∑ c s t  (5) 

 

6, , ,
0 1 2 , 3, , ,1

, , ,

4 , 5, , ,''

s t c s t
s t jj

s t c s t

s t t t c s tt

DeathSentences Murders
JudicialExpense PartisanInfluence

HomicideArrests pop

Admissions Time

θ θ θ θ

θ θ ε

=
= + + +

+ + +

∑

∑

s j t

                                                

(6) 

 

and 

 

 
14 “Net lives saved” is calculated as the number of lives saved as the result of one execution, 
formally, , where ( )3 /100,000 *(1/# )NetLivesSaved population Executionsδ= 3δ  is the 
coefficient on the execution variable. Including (scaled) population allows conversion from the 
per capita murder rate.  Population numbers are from 1996. 
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6, , ,
0 1 2 , 3, , ,1

, , ,

4, , ,'''

s t c s t
s t jj

s t c s t

t t c s tt

Executions Murders
JudicialExpense PartisanInfluence

DeathSentences pop

Time

ξ ξ ξ ξ

ξ ε

=
= + + +

+ +

∑

∑

s j t
 (7) 

 

Instruments resolve the simultaneity between (4) and (5)-(7). We follow DRS and DW in using 

two stage least squares.  Instruments include police payroll, judicial expenditures, six partisan 

influence variables and prison admissions.  As noted above, although one might have some 

concern over the use of these instruments, we take their validity as given while turning our 

attention to specification. The variable  indicates the population in county c, state s, and 

time t, divided by 100,000. 

, ,c s tPop

, ,s j tPartisanInfluence  is measured by the Republican presidential 

candidate’s vote share in the most recent election.  The Republican vote share in the most recent 

election is multiplied by a dummy indicator for the election.  Thus these variables appear 

individually, and associated coefficients are indexed by election j.  Finally, Admissions is the 

prison admission rate. Note that some of the key variables are estimated at the state level (the 

subscript c is omitted in these cases).15  Additional information is available in the original study. 

DRS (p 362-363) present the results from this system of equations given six different 

versions of the variable Executions
DeathSentences

. They consider 3 different measures of execution 

probabilities in the six columns of their Tables 3 and 4; these are 

 

Columns 1 and 4: ,

, 6

s t

s t

Executions
DeathSentences −

 (8) 

 

Columns 2 and 5: , 6

,

s t

s t

Executions
DeathSentences

+  (9) 

 

                                                 
15DRS use a combination of county and state effects to predict county-level murder rates.  We 
will not discuss the merits (or difficulties) of this type of estimation strategy other than to 
comment that it will not impact the model averaging exercise that we are conducting. 
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Columns 1-3 omit observations in which there are no death sentences. Columns 4-6 use a method 

in which the probability is based on the most recent year for which a death sentence occurred. 

Table 7 (p 824) in DW replicates the original results as well as reports their own findings for 

different specifications.  While both papers provide a wide variety of other analyses, we focus on 

this Table from DW both because it provides a useful case to illustrate our primary arguments 

and because it captures the main differences in the findings of the studies. 

Donohue and Wolfers (2005) challenge the DRS findings on the grounds of fragility. 

Specifically, they show that certain modifications to the DRS statistical model can strongly affect 

their findings of a deterrence effect to capital punishment.  First, they constrain the partisan 

influence variables in (5)-(7) so that rather than use six distinct regressors, which allow for each 

election to have a distinct effect on crime, they simply use the sum of the DRS variables as a 

single regressor.  Second, they omit California and Texas from the analysis. These changes cause 

the sign of the estimated deterrent effect to reverse. That is, under this alternative specification, 

each execution is predicted to increase the number of murders.  Table 1 summarizes the different 

assumptions in the two papers. 

The differences between the DRS and DW findings illustrate how model uncertainty 

matters for substantive empirical claims, even when this uncertainty is predicated on a common 

social science theoretical structure.  Each of these papers takes a particular stand on the 

instrumental variables to be employed and the inter-state comparability in the data under study.  

At the same time, both studies use the same choice-theoretic approach to criminal behavior; 

however, the approach does not provide any theoretical guidance on the correct statistical model.  

Because theory fails to identify the appropriate statistical specification, model averaging is thus a 

natural way to proceed.  

 

 

4. Implementation issues 

 

a. data 
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With the exception of one variable based on data from the National Rifle Association, the 

data used in this analysis are publicly available from the FBI’s Uniform Crime Reports, the 

Department of Justice’s Bureau of Justice Statistics (BJS), and the Bureau of the Census.  DW 

(2005), who successfully replicate the results in Dezhbakhsh, Rubin and Shepherd kindly 

provided their data to us and made it publicly available at 

http://bpp.wharton.upenn.edu/jwolfers/DeathPenalty.shtml.  All of our analyses are based on this 

source as Dezhbakhsh, Rubin and Shepherd declined our request for assistance when we were 

unable to replicate their results using data they had earlier supplied to one of us. 

The data are a panel of state and county level data covering the time period from 1977-

1996. The FBI was the source of information on crime and arrest rates.  The BJS was the source 

on police and judicial expenditure which is used to control for variation in the probability of 

being caught and being sentenced, respectively.  To account for variation in execution rates, BJS 

data on the number of executions was used.  The BJS was also the source of data on prison 

populations, prison admittances and number of death sentences. Demographic information, 

including age, sex, race, and geographic size of counties, comes from the US Bureau of the 

Census.  Following DRS, we employ the Republican voting share in the prior presidential 

election as a control for social concern with crime.  Economic information, including income, 

unemployment, income maintenance, and retirement payments, come from the Bureau of 

Economic Analysis. NRA membership rates come directly from the National Rifle Association. 

. 
 

b. model space construction 

 

Conceptually, our approach to reconciling different empirical studies is to regard the  

study-specific models as elements of a larger model space and to ask what inferences one can 

draw when one does not wish to assume that a particular element of the space is the correct 

specification.  How should one think about the model space? Our approach is to use the 

assumptions that differentiate DRS and DW as the basis for model space construction.  In 

essence, we consider the different assumptions of the two papers and consider all possible 

combinations of the assumptions that are internally consistent.  For example, as DRS assume that 
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data from California and Texas are exchangeable with the rest of the country whereas DW 

assume this is not the case, one can augment the initial two models with one where California is 

assumed exchangeable and Texas is not, and vice versa.  Thus model uncertainty with respect to 

exchangeability produces four possible sets of assumptions. Similarly, one can identify different 

IV assumptions that are generated by the differences between DRS and DW.  When different 

exchangeability and IV assumptions are combined, this produces the model space. Notice that 

this approach is conservative in that it does not relax assumptions made by both DRS and DW.     

To implement model averaging using available methods, specifically those developed in 

Raftery, Madigan and Hoeting (1997), we translate the differences between DRS and DW into 

differences in the choice of regressors at different stages of the analysis.  With respect to the 

handling of the partisanship instrumental variables, we do this by creating a set of candidate 

variables: 5 of the DRS variables (Republican vote in previous election multiplied by dummy for 

the previous election) and the DW partisanship variable (sum of the DRS vote variables).16  This 

choice of candidate instruments spans both DW and DRS, since the DRS specification is 

contained in the linear span of our 6 candidate variables.  Thus DRS and DW may be understood 

as making different instrumental variable choices.  In order to model heterogeneity between 

California, Texas and the rest of the United States as a matter of variable inclusion, we proceed 

differently from DW.  Rather than omit these states from the data under study, we construct 

variables that are the products of the deterrence variables and a dummy for California, and 

corresponding variables that are the products of the deterrent variables with a dummy for Texas.  

Note that this approach to dealing with California and Texas is substantively different from DW 

in that the California and Texas data are retained and will affect all model parameter coefficients.  

An advantage of our approach to modeling the DRS and DW differences for instrumental 

variables and Texas/California comparability is that the differences between the two papers can 

be interpreted as reflecting different assumptions about parameter heterogeneity and that further, 

the heterogeneity is modeled by including additional regressors in a baseline regression.  Notice 

that from this perspective, DRS assume greater heterogeneity than DW in the deterrence variable 

equations, whereas DW assume greater heterogeneity in the crime equation. 

Each candidate model is therefore defined as a choice of variables for the system of 

equations (4)-(7).  Different instrumental variables generate different specifications of (5)-(7) 

                                                 
16The DRS variable corresponding to the 1996 election is omitted. 
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and different choices with respect to heterogeneity between California, Texas and the rest of the 

United States generate different specifications of (4). Our model space consists of 12,288 

different specifications.  This figure may be decomposed as follows. In equation 4, we include all 

combinations of California and Texas dummies interacted with the three deterrence variables.  

This produces 6 variables and 64 possible models (  combinations).62 17  Within the instrument 

space, we have six vote variables as specified above as well as variables for police payroll, 

judicial expenses and prison admissions.  In order to achieve identification, we restrict the space 

such that at least four instruments are included, three of which always include the policy, judicial 

and prison admit variables. We also always include the DW variable that encompasses all six of 

the DW variables.  This produces 52 32=  specifications.  By including the DW variable in all 

the specifications, we parallel the way in which uncertainty about heterogeneity with respect to 

California and Texas is modeled as we treat the model uncertainty as surrounding parameter 

heterogeneity and treat the heterogeneity as a question of regressor inclusion.  Thus, for each of 

the 6 dependent variable choices from DRS, we have 32*64=2048 models.  Our grand average 

thus contains the full 12,288.  The reduced IV and exchangeability cases contain 32 and 64 

models respectively. 

 

c. model weight calculation 

 

Model weights are according to the selection of variables and model fit in the second 

stage regressions. Our calculation replicates Raftery (1995) so that 

 

  ( )
1

1 1| exp / exp
2 2

k

k
l

lp M D BIC BIC
=

⎛ ⎞ ⎛≈ − −⎜ ⎟ ⎜
⎝ ⎠ ⎝

∑ ⎞
⎟
⎠

                                                

  (11) 

 
17Our procedure allows the possibility that one of the deterrence variables differs between a state 
(e.g. California) and the rest of the states, whereas the others are not allowed to so vary.  This 
might seem odd in that one would expect heterogeneity to apply to all the deterrence variables or 
none.  We therefore also considered a more ‘limited’ model space in which only 2 sets of 
variables enter the model space.  The 2 variable sets are those that correspond to the 3 deterrence 
variables interacted with one of the state dummies.  Thus, in this version, the space effectively 
includes 2 new ‘elements’, each of which consists of 3 variables.  As the analyses with this 
limited model space did not vary in interesting ways from the analysis with the larger model 
space, we do not report a separate analysis for reasons of space. 
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where BIC is defined as 

 

 ( )2log 1 logpBIC n R p n= − +  (12) 

 

and p is the number of regressors, and 2
pR  is the generalized measure of goodness of fit for 

instrumental variables regressions proposed by Pesaran and Smith (1994). 

 Our model weights are chosen to provide a simple way of aggregating information across 

models.  As such, our exercise is meant to illustrate the information on capital punishment in a 

particular data set and give an indication of how model specification affects that information.  

There is, as far as we know, no formal analyses of model averaging for instrumental variables 

contexts that would provide a formal justification of the weights in terms of a formal Bayesian 

procedure, for example one with diffuse coefficient priors within models, as exists for ordinary 

least squares contexts.  That said, the Pesaran and Smith goodness of fit measures do provide a 

consistent way of comparing choices of instrumental variables across models, and the BIC does 

provide a penalty for model complexity, so we believe the weights are sensible.  We also note 

that we will report some properties of the model-specific estimates that do not use model 

weights; these produce qualitatively similar conclusions.   

 In interpreting our results, it is important to recognize that the distribution of the model 

averaged parameter estimates and associated standard errors cannot be formally equated with the 

sorts of distributions conventionally used to conduct hypothesis testing.  Our focus is instead on 

whether standard error estimates are large compared to parameter estimates. Our rule of thumb in 

the discussion is that a standard error is small when it is less than ½ the absolute value of the 

associated parameter estimate, large otherwise.  This roughly corresponds to the treatment of t-

statistics greater than 2 as statistically significant; see Brock, Durlauf, and West (2003) for 

discussion. 

 

 

5. Results 
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a. averaging 

 

 Recall that DRS report deterrence findings for six different constructions (eq. 8-10) of the 

probability of execution given a death sentence. Table 2 reports model averaged deterrent effects 

for each of these six constructions.  As the Table indicates, there is no consistent message about 

the strength of the deterrent effect from executions. For four of the six categories (columns 2, 4, 

5 and 6), the estimated number of net lives saved is positive, with a standard error of 

approximately the same size or larger than the estimate.  For the other two categories the net 

lives saved estimate is negative, but with large associated standard errors.  This inconsistency 

contrasts with the DRS finding of a statistically significant positive net lives saved estimate for 

each category, with standard errors consistently less than half as large as the estimates.  The 

findings do not mirror the findings of DW in the sense that for some categories, they found that 

alternative assumptions lead to a statistically significant association of additional murders for 

each execution.  But this does not contradict the claim of DW that DRS’s findings are model-

specific.  Our averaging exercise reinforces the DW claim. It demonstrates that their conclusion 

is not an artifact of their having reported a particularly unfavorable alternative specification 

relative to the DRS baseline.  

 Some additional evidence of the lack of firm deterrence evidence may be obtained from a 

consideration of the three deterrence parameters 1δ  (arrest probability), 2δ  (death sentence 

probability given arrest), and 3δ  (probability of execution given death sentence).  In principle, 

the choice-theoretic logic underlying the murder rate regressions implies that each of parameters 

is negative.   Our model-averaged estimates do not show any consistent finding of this type 

across categories.  The signs of the coefficients vary across categories for all three deterrence 

parameters; the coefficient estimates are generally small compared to the standard errors.  

Interestingly, the one exception to the imprecise coefficient estimates occurs for the arrest 

probability coefficient in columns 1-3, but here the coefficient is positive, which would mean 

that more arrests lead to more murders.  Notice that columns 4 and 6, which were the cases 

where we found the strongest evidence that an execution saves net lives, the deterrence 

coefficients 1δ  and 2δ  do not have the expected signs (though each has a large standard error).  

In fact, for none of the six columns do we find a case where all three deterrence variables have 

negative signs. 
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 This absence of a pattern of deterrence coefficient estimates with negative signs not only 

illustrates the weakness of the evidence embodied in the data, but also indicates that overall 

 estimate?  Table 3 integrates the information across the DRS categories in order to 

produc

                                                

effects of capital punishment on net lives saved may differ from the conventional calculation as 

described in footnote 7.  The net lives saved calculations are made based on a transformation of 

the coefficient on the probability of an execution given the death sentence.  But the equilibrium 

effect of capital punishment, as a policy regime, also depends on the effects on homicide of the 

probabilities of arrest and the probabilities of a death sentence.  Positive coefficients imply that 

some aspects of the capital punishment regime raise the homicide rate, so one cannot make 

claims about overall effect of the regime.  While we do not have a clear theory as to why these 

variables could have positive coefficients18, the absence of a causal explanation does little to 

mitigate the failure of the data to provide strong evidence that an overall deterrence effect is 

present.  

How does the information in the various categories combine to produce an overall 

deterrence

e overall estimates of the deterrence variables and the expected number of lives saved.  In 

introducing this additional level of averaging, we use equal weights across the six categories 

rather than construct a new model space and then computing posterior model probabilities; this 

allows the easiest comparisons with Table 2.19  As the Table indicates, the summary deterrence 

statistic, expected number of lives saved per execution, is large relative to most studies, 49, but 

the standard deviation of the estimate is quite high as well, 39.  This suggests that the evidentiary 

support for a deterrence effect is weak when one reduces the different specifications spanned in 

the two papers down to a single calculation.  When one considers individual deterrence 

coefficients, one again finds little evidence of deterrence effects, with large standard errors for 

 
18 One reason for the anomalous sign may be the high reversal rate on death sentences, see 
Liebman, Fagan and West (2000) (68% reversal rate on death sentences).  Only about one death 
sentence in 9 survives to the execution stage.  If those experiencing reversals would have 
received more severe punishment in absence of capital punishment, then the finding can be 
understood. Similarly, if jury behavior is affected by the presence of capital punishment, an issue 
first raised by Andreoni (1995), anomalous results (from the perspective of the deterrence 
theory) can be produced. To be clear, these explanations are speculative-our findings are very 
much a black box. 
19Unequal weighting across categories would have “violated” the DRS and DW decision to treat 
the different ways of measuring the probability of execution given a death sentence as equally 
plausible. 
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each estimate and a positive sign for the overall estimate of 2δ  (death sentence likelihood given 

arrest), which, as emphasized above, is in contradiction to what theory predicts. Again, there 

does not exist a coherent pattern to the underlying deterrence oefficients that is consistent with 

the theoretical basis for the capital punishment effect. 

 As we have discussed, the differences between DRS and DW are generated by 

differences in instrumental variable choices and state

 c

 heterogeneity assumptions.  In order to 

y matter for deterrence claims. The major difference between Table 2 and Table 4 

is foun

understand the roles of these two classes of assumptions, we repeat our averaging exercises 

focusing on two model subsets: one in which all states are used so that the only model 

uncertainty is generated by instrumental variable choice and a second where the original DRS 

instrumental variable structure retained in all models so that the only model uncertainty concerns 

the comparability of California and Texas with the rest of the country.  These results are reported 

in Table 4 and are most usefully compared to Table 2, the model averaging exercises which 

interact the two types of model uncertainty in producing the overall model space.  As this 

comparison indicates, the weakness of evidentiary support for deterrence is preserved across 

both of the smaller model spaces.  For both of our model space subset exercises, the net lives 

saved estimate is negative for columns 1 and 3, just as it is for the corresponding columns in 

Table 2.     

Table 4 indicates that both of the sources of model uncertainty− IV choice and state 

heterogeneit −

d in column 5 of panel b, where the estimated net lives saved is both positive and highly 

statistical significant.  What this means is that even if one fixes the DRS instruments, for this 

measure of Executions
DeathSentences

, model uncertainty associated with the exchangeability of 

deterrence evidence. 

 Overall, the analysis of this section indicates that evidence of a capital punishment 

deterrent effect is overall weak.  As indicated 

California and Texas with the rest of the country does not vitiate the strength of the DRS 

in Table 3, the model averaged estimates of net 

lives saved are very imprecise, with a standard error nearly equal to the point estimate.  When 

one allows for different constructions of Executions
DeathSentences

, as done in Table 2, one even finds 

point estimates suggesting that an additional execution increases the homicide rate, and only 1 of 
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6 estimates is much larger than the asso error.  Further, the model averaged 

point estimates are the opposite of that implied theoretically if the deterrence effect is present.    

While imprecise, our point estimates of net lives saved are often large, for example 49 in 

Table 3 as opposed to 18, the number usually associated with DRS.  In principle, one could argue 

that if a policymaker is risk neutral, the imprecision of the estimate is irrelevant so that ou

ciated standard 

estimates of the deterrence parameters are also very imprecisely estimated, and in many cases 

r 

finding

In this section, we consider how deterrence estimates vary across the model space.  Our 

” line estimates as opposed to understanding 

e properties of particular model estimates.   The density (across the model space) of deterrence 

effects 

S and DW estimates with the elements of the 

model 

 strengthens a deterrence-based case for capital punishment.  But this is not a tenable 

position.  If taken seriously, it implies that any unbiased estimate of a deterrence effect should 

have the same policy implication as any other.  More substantively, we see no reason why a 

policymaker should be risk neutral.  For contexts such as FDA evaluation of a new drug, we 

cannot imagine a serious claim that the uncertainty associated with estimates of side effects is 

irrelevant to a decision in favor of approval.  Similar considerations apply to capital punishment, 

and given the complex moral issues associated with it we believe it natural for a policymaker to 

tradeoff the strength of the deterrence effect against other desiderata.  And the imprecision of our 

estimates implies that there is some probability that executions increase the murder rate, which is 

perfectly compatible with rational behavior on the part of criminals, e.g. witness elimination.  

   

 

b. properties of the density of deterrence effects 

 

discussion so far has focused on identifying “bottom

th

is of additional interest for several reasons.  

The first reason why particular model estimates are interesting is that they can provide 

some insight on the relationship between DRS, DW and the model space that is defined by their 

differing assumptions.   In Table 5 we compare DR

space that provide the largest and smallest estimates of the deterrent effects.  To be 

precise, Column 1 of Table 5 reports the smallest number of net lives saved for any specification 

we have studied, varying across all the models that are used in the Table 3 averages. Column 2 

reports the results for the model with the largest number of net lives saved across all 
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specifications.  Column 3 reports the model with the largest posterior model probability of all 

those considered.  Column 4 reports the DRS specification with the largest net lives saved per 

execution. This corresponds to column 3 of DRS (pages 362-363, Tables 3 and 4). Column 5 

provides a simple average of the DW findings.  Recall from Table 1 that DW provide three 

variations on the 6 specifications of DRS.  We average all 18 of these for the result in Column 5.  

(We average the DW results since their focus was on the fragility of DRS, not promoting a 

particular alternate model.) 

These results help place the differing conclusions of DRS and DW in context. They 

suggest that DRS’s strong claims on deterrence are not the result of data mining per se; there is 

an alternative specification with far greater net lives saved estimates, and the most favorable 

model 

he relevant uncertainty associated with deterrence estimates 

                                                

among the limited set they considered is close, in terms of net lives saved, to the model 

with highest posterior weight of being true.20   Instead, the message of this comparison is that 

DRS’s findings are driven by their having focused on a particular subset of plausible models.  

However, when one expands the space of possible models to include a larger set of plausible 

ones, the evidence for deterrence is greatly weakened.  These additional models contain 

additional information about deterrence.  We would also note that a comparison of Column 1 

with Column 5 illustrates that the DW analysis did not focus on outlier models in the sense that 

Column 1 illustrates a far larger increase in murders from deterrence than the DW average; this 

may also be seen in Figure 2 below. 

 A second reason why the density of deterrence effects across the model space is 

important is that it provides relevant information when a policymaker is risk averse; standard 

errors generally do not fully reflect t

when preferences are not quadratic.  Figure 1 provides a weighted histogram of the net lives 

saved for all the models we have considered.  This includes models for each of the 6 DRS 

categories. The weights are the posterior model probabilities.  Figure 2 provides the 

corresponding histogram when the models are all assigned equal weights.  For both histograms, 

 
20 The model with the greatest posterior is based on the construction of 

Executions
DeathSentences

corresponding to Table 2, Column 5. It includes five of the six interacted 

deterrent variables; the exception is the California dummy interacted with the probability of 
death sentence given arrest. 
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observations are placed into 'bins' along the range illustrated in the Figures.  In the case of the 

weighted histogram, each observation is given a frequency weight (measured along the vertical 

axis) according to its posterior probability. (In the unweighted histogram each model receives 

identical weight of course.)  The Figures indicate the locations in the histograms of the DRS and 

DW model estimates associated with the largest and smallest (negative) number of net lives 

saved across those they considered. 

The Figures illustrate the substantial heterogeneity that is present in the model-specific 

estimates of net lives saved.  It is useful to note that the posterior probabilities for all the models 

in Figure 1 which produce a deterrent effect is 0.72; in Figure 2, the corresponding the 

percent

creases the murder rate 

by 20 o

 

The empirical study of deterrence effects is an example of a problem domain where 

c or otherwise, does not provide strong guidance on how to construct the 

atistical model that maps theory to empirical work.  This openendedness of different theories of 

age of models with positive deterrent effects is also 0.72.  So, in this sense, there is some 

evidentiary support for claims of deterrence.  That said, the histograms reveal substantial 

bunching near the origin.  In comparing the two histograms, the main difference is that there is a 

set of models in the unweighted histogram that are associated with large net lives saved estimates 

which are nearly invisible in the weighted histogram; this is a consequence of the fact that the 

models have very small posterior probabilities. 

Finally, Table 6 provides results on cumulated model probabilities and associated 

deterrence effects; the Table thus provides aggregate statistics based on the histogram in Figure 

1.  As the Table indicates, the probability that an additional execution in

r more is 15% whereas the probability that an additional execution decreases the murder 

rate by 20 or more is 47%.  This reflects the asymmetry in the histogram in Figure 1.  Of 

particular interest are the probabilities for values near 0.  The probabilities for models that are 

associated with net lives saved of 5 and fewer is approximately 1/3.  So, while the DRS estimate 

of 18 is relatively close to (and indeed smaller than) the median of the histogram, 24, there is 

substantial uncertainty about the actual deterrence level. 

   

   

6. Conclusions 

 

theory, economi

st
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th rder rate, to use a phrase of Brock and Durlauf (2001), means that theory cannot be a 

precise guide to statistical specification; model uncertainty is intrinsic to such studies (cf. Fagan 

(2006)).  Given that the goal of such exercises is the measurement of a particular policy effect, 

i.e. the relationship between capital punishment and the murder rate, as opposed to the 

construction of a model of the murder rate per se, model averaging methods are a natural way to 

make empirical claims robust to the details of model specification.  The model averaging 

approach indicates how one can understand and resolve disparate empirical findings.  Our 

application to the analyses of DRS and DW leads us to support the conclusion that DRS claims 

about strong deterrence effects are an artifice of particular model choices.  On the other hand, we 

do not find evidence in support of the suggestion that the death penalty raises the homicide rate, 

which one could take from some of the DW regressions (but which the authors did not). 

 The bottom line of our empirical analysis is that the measure of the number of lives saved 

per execution is large (weighted average estimate of 36) but imprecisely estimated (weighted 

average standard deviation 26).  An analysis of the behavior of deterrence estimates ac

e mu

ross the 

odel m space indicates that while the aggregate probability associated with models that produce a 

deterrent effect is .72, the individual estimates vary widely and include a nontrivial probability 

that there are large increases in homicide associated with executions (probability .15 of 20 or 

more homicides.)  These conclusions may seem frustrating, since they make clear that our 

conclusion is not that there is no deterrent effect present, but rather that inferences on its 

magnitude are so imprecise to make representation of strong claims impossible and also 

irresponsible.  But this should not be surprising.  As noted by Berk (2005), the analysis of capital 

punishment and deterrence is naturally delimited by the infrequency of executions for all but a 

handful of states; in particular, uncertainty about the comparability of Texas to other states 

naturally produces uncertainty about the overall deterrence estimate given the concentration of 

executions in that state.  The deterrence claim may seem somewhat strengthened by the fact that 

the posterior model probabilities for those specifications that produce a positive estimate of net 

lives saved is .72, but in isolation this is a weak piece of evidence since it does not reflect the 

magnitudes of deterrent effects for those models, let alone the magnitudes for those models 

where the estimate of net lives saved is negative.  It is also important to keep in mind that the 

weakness of the evidentiary support for deterrence that emerges in our exercise emerges in a 

context that delimits the model uncertainty in many ways.  For example, while we address the 
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issue of the comparability of California and Texas to the rest of the country, we do not address 

broader issues of the comparability of interstate or intercounty data.  

The substantial uncertainty we find associated with deterrence estimates is naturally of 

importance in moving from positive to normative discussions of the death penalty.  Figures such 

as the expected number of lives saved per execution, or the probability that the deterrence effect 

of cap

to deal 

                                                

ital punishment is positive do not, by themselves, provide guidance as to how a 

policymaker should use these numbers when comparing policy choices.   Should a policymaker 

care whether the conditional probability density under a capital punishment regime is sensitive to 

what seem to be uninteresting assumptions, such as the choice of instrumental variables?  Does a 

policymaker wish to implement capital punishment, knowing that for a set of a priori plausible 

models, the expected number of murders will increase under the policy?  We do not propose 

answers to these questions, but simply observe that these questions are fundamental to the 

assessment of capital punishment as a public policy.  At a minimum, it seems obvious that a 

policymaker’s preferences might contain a risk aversion component that is relevant when 

assessing deterrent effects.   In fact, there are reasons to believe that policymakers might want to 

treat model uncertainty differently from other types of uncertainty when assessing policy effects.  

One reason may be that the policymaker’s preferences embody ambiguity aversion, which means 

that the policymaker has a specific distaste for the least favorable outcome in an uncertain 

environment beyond its role in affecting expected value calculations.  These types of preferences 

may be related to efforts to develop non-Bayesian approaches to decisionmaking.21  For our 

purposes, they suggest that simply computing expected deterrence effects is inadequate.   

Further progress in evaluating deterrence, in our view, therefore requires the 

consideration of questions of criminal policy evaluation in light of the types of information 

limitations we have discussed.  Such an analysis will, to be credible, necessarily have 

 
21This type of work has become important in macroeconomics, see Hansen and Sargent (2007) 
for a brilliant general exposition; Brock, Durlauf and West (2003) and Brock, Durlauf, Nason, 
and Rondina (2007) explore policy evaluation issues. Hansen and Sargent defend the use of 
minimax evaluation on the part of a decisionmaker.  Other proposals include the use of minimax 
regret (Brock, Durlauf, Nason, Rondina (2007)).  As noted by Hansen and Sargent, for example, 
findings in the behavioral economics literature suggest that individual preferences exhibit 
ambiguity aversion with respect to model uncertainty.  When applied to a policymaker, this 
suggests a sensitivity to the least favorable model that is not captured by our model averaging 
estimates. 
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with p

use of the death penalty – and, in that decision, those other considerations are 

 

                                                

olicymaker objective functions that incorporate a richer set of factors than simply 

minimizing the number of murders.22   The difficulties in evaluating policies in the presence of 

efficiency and ethical considerations are considered in Durlauf (2006) and Gaus (2006) among 

other places; the former paper’s analysis of racial profiling has parallels to the capital 

punishment issue.  From the perspective of policy evaluation, the conclusion of National 

Research Council Report (Blumstein, Cohen and Nagin (1978)) thus still seems appropriate: 

 
Our conclusion about the current evidence does not imply that capital punishment 
should or should not be imposed. The deterrent effectiveness of capital 
punishment is only one consideration among many in the decision regarding the 

likely to dominate the inevitable crude estimates of the deterrent effect. (p. 9) 

 
22Sunstein and Vermeule’s (2005) analysis focuses on evaluating capital punishment when it 
leads to a reduction of the murder rate, and does not discuss the appropriate levels of risk or 
ambiguity aversion on the part of the policymaker.  They also largely ignore any competing 
ethical claims on policy choices. 
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Table 1: Dezhbakhsh, Rubin and Shepherd / Donohue and Wolfers Differences 
 
 DRS 

Baseline DW version 1 DW version 2 DW version 3 

PartisanInfluence 6 1 6 6 
Texas data Include Include Exclude Include 
California data Include Include Include Exclude 
 

PartisanInfluence is the Republican vote share in the most recent presidential election.  Where the number ‘6’ 
appears indicates the use of six variables, indicating the share of Republican votes in each of the six elections in the 
dataset.  The number ‘1’ indicates the use of a single variable with the share of vote in the most recent election at the 
time in question. DW version 1 uses a single voting variable instead of six in the first stage regressions, version 2 
omits Texas from the analysis and version 3 omits California. 
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Table 2 
Model Averaged Deterrent Effects  

 
The coefficients in this table are estimated by iterating over the six interaction variables specifying interactions 
between state dummies for TX and CA and the deterrence variables.  The remainder of the DRS controls are used as 
indicated in their paper. 
 

Dependent Variable: Annual Homicides per 100,000 Residents 
  
 (1) (2) (3) (4) (5) (6) 

1.26 1.29 1.27 1.65 -2.68 2.02 Probability of 
Arrest 1( )δ  (0.24) (0.21) (0.24) (8.78) (6.19) (8.70) 

-25.05 -15.14 -36.61 96.81 78.07 137.64 
Probability of 

Death Sentence 
Given Arrest 

2( )δ  

(20.12) (13.84) (21.95) (100.15) (25.13) (120.68) 

0.27 -3.82 1.62 -15.60 -3.30 -18.96 
Probability of 

Execution 
Given Death 
Sentence 3( )δ  

(6.12) (4.16) (4.49) (11.36) (3.12) (12.78) 

  
-0.96 28.36 -10.60 112.75 24.69 136.85 Net Lives 

Saved (41.86) (17.02) (27.17) (177.45) (47.03) (201.05) 

 
 
Controls include the assault rate; the robbery rate; real per capita personal income; real per capita unemployment 
insurance payments; real per capita income maintenance payments; population density; the proportion of the 
population aged 10-19, 20-29; black, white, or other; male or female; state NRA membership; and Two-Stage Least 
Squares estimation. Net lives saved evaluated for a state with the characteristics of the average death penalty state in 
1996. Instruments include state-level police payroll, judicial expenditures, Republican vote shares, and prison 
admissions. 
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Table 3 
 

Deterrence Effects: Full Averaging 
 

  
Dependent Variable: Annual 
Homicides per 100,000 
Residents 
  
  

0.80 Probability of 
Arrest 1( )δ  (4.06) 

39.28 
Probability of 

Death Sentence 
Given Arrest 

2( )δ  

(50.31) 

-6.63 
Probability of 

Execution Given 
Death 

Sentence 3( )δ  
(7.00) 

  
48.51 Net Lives Saved (38.72) 

 
 
Estimation is by two-stage least squares. Controls in the homicide equation include the assault rate; the robbery rate; 
real per capita personal income; real per capita unemployment insurance payments; real per capita income 
maintenance payments; population density; the proportion of the population aged 10-19, 20-29; black, white, or 
other; male or female; state NRA membership. Instruments include state-level police payroll, judicial expenditures, 
Republican vote shares, and prison admissions. Standard errors are in parentheses.  Net lives saved evaluated for a 
state with the characteristics of the average death penalty state in 1996.   Full averaging consists of taking the 
unweighted grand mean over the 6 columns in Table 2.  
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Table 4 
 

Analysis of Model Space Subsets 
 

a. Instrumental Variable Uncertainty 
 

Dependent Variable: Annual Homicides per 100,000 Residents 
  
 (1) (2) (3) (4) (5) (6) 

1.32 1.31 1.33 4.48 0.65 4.93 Probability of 
Arrest 1( )δ  (0.25) (0.21) (0.25) (6.95) (4.48) (7.03) 

-33.25 -16.68 -41.59 105.99 92.92 148.41 
Probability of 

Death Sentence 
Given 

Arrest 2( )δ  

(21.77) (17.13) (21.57) (96.23) (24.52) (115.26) 

4.38 -0.78 4.53 -14.93 -3.75 -18.43 
Probability of 

Execution 
Given Death 
Sentence 3( )δ  

(6.82) (5.28) (4.74) (10.99) (2.89) (12.46) 

  
-30.36 6.60 -31.46 107.99 27.90 133.09 Net Lives 

Saved (66.51) (68.10) (35.47) (156.54) (40.40) (177.61) 

 
Model subspace is constructed through different combinations of the combinations of DW and DRS instruments as 
described in text.  Estimation is by two-stage least squares. Controls in the homicide equation include the assault 
rate; the robbery rate; real per capita personal income; real per capita unemployment insurance payments; real per 
capita income maintenance payments; population density; the proportion of the population aged 10-19, 20-29; black, 
white, or other; male or female; state NRA membership. Instruments include state-level police payroll, judicial 
expenditures, Republican vote shares, and prison admissions. Standard errors are in parentheses.  Net lives saved 
evaluated for a state with the characteristics of the average death penalty state in 1996. 
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b. State Heterogeneity Uncertainty 

 
 
 

Dependent Variable: Annual Homicides per 100,000 Residents 
  
 (1) (2) (3) (4) (5) (6) 

1.11 1.10 1.12 -4.84 -6.56 -4.09 Probability of 
Arrest 1( )δ  (0.12) (0.07) (0.11) (2.66) (2.26) (2.69) 

-24.90 -12.55 -23.83 17.51 60.09 43.86 
Probability of 

Death Sentence 
Given 

Arrest 2( )δ  

(12.78) (8.64) (11.31) (14.77) (10.55) (17.69) 

1.47 -1.63 0.99 -10.61 -6.69 -11.98 
Probability of 

Execution 
Given Death 
Sentence 3( )δ  

(3.85) (2.45) (2.58) (1.70) (0.60) (1.85) 

  
-11.53 10.67 -8.09 75.02 46.93 84.84 Net Lives 

Saved (27.03) (17.20) (18.11) (11.93) (4.21) (12.99) 

 
Model space is constructed through different combinations of the 3 deterrence variables in the first column above 
and the state dummies for TX and CA.  Estimation is by two-stage least squares. Controls in the homicide equation 
include the assault rate; the robbery rate; real per capita personal income; real per capita unemployment insurance 
payments; real per capita income maintenance payments; population density; the proportion of the population aged 
10-19, 20-29; black, white, or other; male or female; state NRA membership. Instruments include state-level police 
payroll, judicial expenditures, Republican vote shares, and prison admissions. Standard errors are in parentheses.  
Net lives saved evaluated for a state with the characteristics of the average death penalty state in 1996.   
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 Table 5. Comparison of Deterrent Effects Estimates 
 

 
Dependent Variable: Annual Homicides per 100,000 Residents 

  
 1 2 3 4 5 

 Smallest 
Deterrent 

Effect 

Largest Deterrent 
Effect 

Largest Posterior 
Model  

Probability 

“Best” 
DRS 

Average 
DW 

Probability of 
Arrest 1( )δ  

1.68 
(0.02) 

19.96 
(0.58) 

-7.66 
(0.68) 

-3.33 
(0.52) 

-4.29 
(0.54) 

Probability of 
Death Sentence 

Given Arrest 2( )δ  

-67.85 
(7.71) 

393.94 
(8.88) 

55.62 
(6.59) 

-32.12 
(16.22) 

-9.03 
(13.40) 

Probability of 
Execution Given 

Death 
Sentence 3( )δ  

14.84 
(1.29) 

-44.58 
(1.27) 

-6.32 
(0.48) 

-7.40 
(0.72) 

-0.57 
(0.72) 

  
Net Lives Saved -121.2 

(9.06) 
364.02 
(8.91) 

51.6 
(3.37) 

52.0 
(5.1) 

0.08 
(5.1) 

Estimation is by two-stage least squares. Controls in the homicide equation include the assault rate; the robbery rate; 
real per capita personal income; real per capita unemployment insurance payments; real per capita income 
maintenance payments; population density; the proportion of the population aged 10-19, 20-29; black, white, or 
other; male or female; state NRA membership. Instruments include state-level police payroll, judicial expenditures, 
Republican vote shares, and prison admissions. Standard errors are in parentheses.  Net lives saved evaluated for a 
state with the characteristics of the average death penalty state in 1996.  Column 1 corresponds to the smallest 
number of lives saves, column 2 to the largest, and column 3 to the model with the largest posterior.  The DRS 
results with the largest number of lives saved is shown in column 4 and the average of the DW results is shown in 
column 5.  The model with the smallest deterrent effect includes all control variables and all CA and TX interaction 
dummies except the CA dummy interacted with the probability of arrest, using the sixth definition for 

Executions
DeathSentences

 defined in the text (Column 6 from Table 2). The largest deterrent effect occurs for the model 

includes all control variables and only the TX interaction with the execution variable, using the first definition  for 
Executions

DeathSentences
above (Column 1 from Table 2).  The model with the greatest posterior includes all variables from 

the full specification except the CA dummy interacted with the probability of death sentence given arrest, and uses 
the fifth definition above (Column 5 from Table 2). 
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Table 6. Cumulated Histogram Probabilities 
 
 
 

Sum of Model Probabilities, with net lives saved 
< -20 < -10 < -5 < -2 < -1 < 0 < 1 < 2 < 5 < 10 < 20 
0.15 0.18 0.20 0.25 0.26 0.28 0.28 0.29 0.32 0.37 0.47 

 
Model probabilities are calculated as specified in the text.  Each model generates a coefficient for probability of 
execution conditional on a death sentence and an associated net lives saved value. Results for this exercise use the 
full model space as specified in the text. Each column indicates the percentage of summed model probabilities for all 
models which produced at least as many net lives saved as indicated in the first row of the column, e.g. the posterior 
probability of those models producing a net increase in deaths greater than 20 for an additional execution is .15 
whereas the posterior probability of those model producing a net decrease in deaths of 20 or greater is .53.  
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Figure 1 
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This Figure is a weighted histogram of the net lives saved for all the models we have considered, including models 
for each of the DRS categories. The weights are the posterior model probabilities.  The DRS and DW lines 
correspond to the individual model from each with the largest and smallest number of lives saved respectively. 
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Figure 2 
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This Figure provides the same histogram as Figure 1 when the models are all assigned equal weights. The DRS and 
DW lines correspond to the individual model from each with the largest and smallest number of lives saved 
respectively. 
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