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Abstract

Despite well-known shortcomings as a risk measure, Value-at-Risk (VaR) is still the industry and regulatory standard for the

calculation of risk capital in banking and insurance. This paper is concerned with the numerical estimation of the VaR for a portfolio

position as a function of different dependence scenarios on the factors of the portfolio. Besides summarizing the most relevant

analytical bounds, including a discussion of their sharpness, we introduce a numerical algorithm which allows for the computation

of reliable (sharp) bounds for the VaR of high-dimensional portfolios with dimensions d possibly in the several hundreds. We show

that additional positive dependence information will typically not improve the upper bound substantially. In contrast higher order

marginal information on the model, when available, may lead to strongly improved bounds. Several examples of practical relevance

show how explicit VaR bounds can be obtained. These bounds can be interpreted as a measure of model uncertainty induced by

possible dependence scenarios.
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1. Introduction

Since the early nineties, Value-at-Risk (VaR) has established

itself as a (if not the) key metric for the calculation of regula-

tory capital within the financial industry. Furthermore, VaR is

increasingly used as a risk management constraint within port-

folio optimization. Whereas books like Jorion (2006) prize

VaR as the industry standard, numerous papers have pointed

out many of the (most obvious) shortcomings of VaR as a risk

measure; see for instance McNeil et al. (2005) and the refer-

ences therein, but also the recent Basel Committee on Banking

Supervision (2012), already referred to as Basel 3.5. A very

informative overview on the use of VaR technology within the

banking industry is Pérignon and Smith (2010). As so often, a

middle-of-the-road point of view is advisable: there is no doubt

that the construction and understanding of the P&L distribution

of a bank’s trading book is of the utmost importance. The latter

includes the availability of data warehouses, independent pric-

ing tools and a complete risk factor mapping. And of course

Corporate Governance decisions may have a major impact on

the P&L, like for instance in the case of strategic decisions. In

that sense, VaR, as a number, is just the peak of the risk man-

agement iceberg. Nonetheless, once the number leaves the IT

system of the CRO, all too often it starts a life of its own and one

often forgets the numerous warnings about its proper interpreta-

tion. Moreover, once several VaRs are involved, the temptation
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is there to calculate functions of them (like adding) forgetting

the considerable model uncertainty underlying such construc-

tions; see Basel Committee on Banking Supervision (2010) for

a regulatory overview on risk aggregation. A typical such ex-

ample is to be found in the realm of Operational Risk as defined

under Basel II and III. Throughout the paper we will use the lat-

ter as a motivating example and consider the organization of an

Operational Risk database in business lines and risk types; for

a background to this and for further references, see for instance

McNeil et al. (2005, Chapter 10). We want to stress however

that the quantitative modeling of Operational Risk is just a mo-

tivating example where the techniques discussed in our paper

can be applied naturally. The results obtained are applicable

much more widely and related questions do occur frequently in

banking and insurance.

To set the scene, consider the calculation of the VaR at a

confidence level α for an aggregate loss random variable L+

having the form

L+ =

d
∑

i=1

Li,

where L1, . . . , Ld, in the case of Operational Risk, correspond to

the loss random variables for given business lines or risk types,

over a fixed time period T . The VaR of the aggregate position

L+, calculated at a probability level α ∈ (0, 1), is the α-quantile

of its distribution, defined as

VaRα(L
+) = F−1

L+ (α) = inf{x ∈ R : FL+ (x) > α}, (1)

where FL+ (x) = P(L+ ≤ x) is the distribution function of L+. As

a statistical quantity and for α typically close to 1, VaRα(L
+) is
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a measure of extreme loss, i.e. P(L+ > VaRα(L
+)) ≤ 1 − α is

typically small.

The current regulatory framework for banking supervision,

referred to as Basel II (becoming Basel III), allows large inter-

national banks to come up with internal models for the calcu-

lation of risk capital. For Operational Risk, under the so-called

Loss Distribution Approach (LDA) within Basel II, financial in-

stitutions are given full freedom concerning the stochastic mod-

eling assumptions used. The resulting risk capital must corre-

spond to a 99.9%-quantile of the aggregated loss data over the

period of a year; we leave out the specific details concerning in-

ternal, external and expert opinion data as they are less relevant

for the results presented in this paper. Using the notation in-

troduced above, the risk capital for the aggregate position L+ is

typically based on VaR0.999(L+). Concerning interdependence

of risks, no specific rules are given beyond the statement that

explicit and implicit correlation assumptions between loss ran-

dom variables used have to be plausible and need to be well

founded; in the case of Operational Risk, see Cope and An-

tonini (2008) and Cope et al. (2009). For the sequel of this

paper, we leave out statistical (parameter) uncertainty.

In order to calculate VaRα(L
+), one needs a joint model for

the random vector (L1, . . . , Ld)′. This would require an exten-

sive d-variate dataset for the past occurred losses, which often

is not available. Typically, only the marginal distribution func-

tions Fi of Li are known or statistically estimated, while the

dependence structure between the Li’s is either completely or

partially unknown. This situation also often occurs in the analy-

sis of credit risk data; here the d could be viewed as the number

of individual obligors, industry or geographic sectors, say.

In standard practice, the total capital charge C to be allo-

cated is derived from the addition of the VaRs at probability

level α = 0.999 for the marginal random losses Li, namely

VaR+α(L+) =

d
∑

i=1

VaRα(Li) =

d
∑

i=1

F−1
i (α).

Indeed, industry typically reports

C = δVaR+α(L+), 0 < δ ≤ 1; (2)

the value of δ is often in the range (0.7, 0.9) and reflects so-

called diversification effects. A capital charge based on (2)

would imply a subadditive regime for VaR, i.e.

VaRα(L
+) = VaRα

















d
∑

i=1

Li

















≤

d
∑

i=1

VaRα(Li) = VaR+α(L+). (3)

The case δ = 1 (no diversification) in (2) can be mathemati-

cally justified by the assumption of perfect positive dependence

(which implies maximal correlation) among marginal risks. In-

deed, under this so-called comonotonic dependence scenario,

VaRα(L
+) = VaR+α(L+); see McNeil et al. (2005, Proposition 6.15).

Practitioners criticize this assumption as not being realistic, and

remark that random losses are not perfectly correlated in view

of their heterogeneous nature. Though the δ = 1 maximal-

correlation scenario is often considered as highly conservative,

the inequality in (3) is typically violated for either very heavy-

tailed losses, very skewed losses, or losses exhibiting special

dependencies. Such situations are no doubt present in Oper-

ational Risk data; see for instance Moscadelli (2004), Panjer

(2006), Shevchenko (2011) and Bolancé et al. (2012). The three

standard classes of examples violating (3) and mentioned above

are to be found in McNeil et al. (2005, Examples 6.7, 6.22).

Based on the above example from the capital charge calcu-

lation of Operational Risk it is clear that there exists consid-

erable model uncertainty underlying the diversification factor

δ, which for practically relevant models could well take values

above the additive case δ = 1. It is exactly this kind of model

uncertainty that the present paper addresses. In the discussion

below, we will now abstract from the motivating Operational

Risk example.

Recently, a number of numerical and analytical techniques

have been developed in order to calculate conservative values

for VaRα(L
+) under different dependence assumptions regard-

ing the loss random variables Li. In this paper we describe these

methodologies and give insight in the worst-case dependence

structure (copula) describing the worst-VaR scenario.

We summarize the main contributions of this paper:

• we introduce an algorithm which allows to calculate sharp

bounds for the VaR of possibly high-dimensional portfo-

lio positions allowing for inhomogeneous portfolios with

dimension d in the several hundreds;

• we show that additional positive dependence information

added on top of the marginal distributions does not im-

prove the VaR bounds substantially;

• we show that additional information on higher dimen-

sional sub-vectors of marginals leads to possibly much

narrower VaR bounds, and

• we give the dependence structures (copulas) leading to

worst-case scenarios.

The main message coming from our paper is that currently

a whole toolkit of analytical and numerical techniques is avail-

able to better understand the aggregation and diversification

properties of non-coherent risk measures such as Value-at-Risk.

We very much hope that our paper is both accessible to the

academic researcher as well as to the more quantitative practi-

tioner. With this goal in mind, we have strived at keeping the

technical details to a minimum, stressing more the algorithmic,

numerical aspects of the results discussed. Of course, we will

direct the reader interested in more mathematical details to the

relevant research papers. We strongly believe that the results

and techniques summarized are sufficiently novel and will ben-

efit the wider financial industry.

With financial/actuarial applications in mind, and without

loss of generality, in almost all the examples contained in the

paper we use power law models for the marginal distributions

of the risks such as the Pareto distribution. In particular, we of-

ten use a Pareto distribution with tail parameter θ = 2 in order to

represent marginal risks with finite mean but infinite variance.
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This choice is pedagogical and does not affect the computa-

tional properties of the methodologies discussed.

In Section 2, we study the case where the marginal distri-

bution functions Fi of Li are fixed while the dependence struc-

ture (copula) between the Li’s is completely unknown. In the

homogeneous case where the risk factors Li are identically dis-

tributed, a simple analytical formula allows to compute the worst-

possible VaR for portfolios of arbitrary dimensions when the

marginal distributions Fi are continuous. For inhomogeneous

portfolios having arbitrary marginals, a new numerical algo-

rithm, see Section 2.2, allows to compute best- and worst-possible

VaR values in arbitrary dimensions; the main limiting factors

are computer memory and numerical accuracy to be obtained.

We test the algorithm in an example with d = 648.

Under the restriction of the dependence structure to posi-

tive dependence, possible improvements of the bounds are dis-

cussed in Section 3. Finally, in Section 4, we consider a more

general case where extra information is known about sub-vectors

of the marginal risks. In the Sub-sections 1.1–1.4 below we

first gather some definitions, notation and basic methodological

tools, together with some key references.

1.1. Fréchet classes

Denote L = (L1, . . . .Ld)′. The Value-at-Risk for the ag-

gregate position L+ = L1 + · · · + Ld is certainly not uniquely

determined by the marginal distributions F1, . . . , Fd of the risks

Li. In fact, there exist infinitely many joint distributions on R
d

which are consistent with the choice of the marginals F1, . . . , Fd.

We denote by F(F1, . . . , Fd) the Fréchet class of all the pos-

sible joint distributions FL on R
d having the given marginals

F1, . . . , Fd. For α ∈ (0, 1), upper and lower bounds for the

Value-at-Risk of L+ are then defined as

VaRα(L
+) = sup {VaRα(L1 + · · · + Ld) : FL ∈ F(F1, . . . , Fd)} ,

(4a)

VaR
α
(L+) = inf {VaRα(L1 + · · · + Ld) : FL ∈ F(F1, . . . , Fd)} .

(4b)

The above definitions directly imply the VaR range for L+ given

by

VaR
α
(L+) ≤ VaRα(L1 + · · · + Ld) ≤ VaRα(L

+). (5)

We refer to the bounds VaRα(L
+) and VaR

α
(L+) as the worst-

possible and, respectively, the best-possible VaR for the posi-

tion L+, at the probability level α. When attained, the upper

and lower bounds in (4) are sharp (best-possible): they cannot

be improved if further dependence information on (L1, . . . , Ld)′

is not available. We call any joint model for (L∗
1
, . . . , L∗

d
)′ with

prescribed marginals F1, . . . , Fd such that

VaRα(L
+) = VaRα(L

∗
1 + · · · + L∗d)

a worst-case dependence or worst-case coupling. Analogously,

any joint model for (L∗
1
, . . . , L∗

d
)′ with the prescribed marginals

such that

VaR
α
(L+) = VaRα(L

∗
1 + · · · + L∗d)

is a best-case dependence or best-case coupling. Of course, the

choice of wording best versus worst is arbitrarily and depends

on the specific application at hand. Problems related to (4)

with moment information have always been relevant in actu-

arial mathematics. One of the early contributors was De Vylder

(1996); see also Hürlimann (2008a,b) for numerous examples

from the realm of insurance.

1.2. Copulas

To make this paper self-contained, we give a brief introduc-

tion to some copula concepts that we will need in the following.

The reader not familiar with the theory of copulas is referred

to Nelsen (2006), McNeil et al. (2005, Chapter 5) and Durante

and Sempi (2010).

A copula C is a d-dimensional distribution function (df) on

[0, 1]d with uniform marginals. Given a copula C and d univari-

ate marginals F1, . . . , Fd, one can always define a df F on R
d

having these marginals by

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), x1, . . . , xd ∈ R. (6)

Sklar’s Theorem states conversely that we can always find a

copula C coupling the marginals Fi of a fixed joint distribution

F through the above expression (6). For continuous marginal

dfs, this copula is unique. Hence Sklar’s Theorem states that

the copula C of a multivariate distribution F contains all the

dependence information of F.

A first example of a copula is the independence copula

Π(u1, . . . , ud) = Πd
i=1ui.

The name of this copula derives from the fact that the risk vector

(L1, . . . , Ld)′ has copulaΠ if and only if its marginal risks Li are

independent. Under independence among the marginal risks,

(6) reads as

F(x1, . . . , xd) = Π(F1(x1), . . . , Fd(xd)) = F1(x1) · . . . · Fd(xd).

Any copula C satisfies the so-called Fréchet bounds

max















d
∑

i=1

ui − d + 1, 0















≤ C(u1, . . . , ud) ≤ min{u1, . . . , ud},

for all u1, . . . , ud ∈ [0, 1]. The sharp upper Fréchet bound

M(u1, . . . , ud) = min{u1, . . . , ud}

is the so-called comonotonic copula, which represents perfect

positive dependence among the risks. In fact, a risk vector

(L1, . . . , Ld)′ has copula M if and only if its marginal risks are

all almost surely (a.s.) increasing functions of a common ran-

dom factor. For a detailed discussion of the concept of comono-

tonicity within quantitative risk management we refer to Dhaene

et al. (2002) and Dhaene et al. (2006); see also McNeil et al.

(2005, Section 6.2.2). The lower Fréchet bound

W(u1, . . . , ud) = [u1 + · · · + ud − d + 1]+

is also sharp. However, it is a well-defined copula only in di-

mension d = 2. In this case, it is called the countermonotonic

copula and represents perfect negative dependence between two
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risks. A risk vector (L1, L2)′ has copula W if and only if its

marginal risks are a.s. decreasing functions of each other.

The upper and lower Fréchet bounds are important for find-

ing optimal couplings in many optimization problems of in-

terest in quantitative risk management. For instance it is well

known that the maximal variance for the sum of risks with given

marginals is attained when the risks are comonotonic, that is

when they have copula C = M. Analogously, the minimal vari-

ance for the sum of two risks with given marginals is attained

when they are countermonotonic, C = W. These results derive

from the classical Hoeffding-Fréchet bounds and can be seen as

particular cases of a more general ordering theorem; see Corol-

lary 3 in Rüschendorf (1983).

1.3. Worst and best VaR

Sklar’s Theorem allows us to reformulate (4) as optimiza-

tion problems over Cd, the set of all d-dimensional copulas:

VaRα(L
+) = sup

{

VaRα(L
C
1 + · · · + LC

d ) : C ∈ Cd

}

, (7a)

VaR
α
(L+) = inf

{

VaRα(L
C
1 + · · · + LC

d ) : C ∈ Cd

}

. (7b)

Here the vector (LC
1
, . . . , LC

d
)′ has the same marginal distri-

butions as (L1, . . . , Ld)′ and copula C. In general, it is difficult

to evaluate the bounds in (4) or in (7) in explicit form, espe-

cially when one has to deal with d ≥ 3 risks. This is related to

the fact that in general Value-at-Risk is non-subadditive. As a

consequence, the comonotonic copula M is in general not a so-

lution to the problem VaRα(L
+) in (7a). Equivalently, the worst-

VaR value VaRα(L
+) in (4) is not attained when all the risks

are perfectly positively dependent. Analogously, the counter-

monotonic copula W is in general not a solution to the problem

VaR
α
(L+) in (7b) for d = 2.

As already stated above, in the comonotonic case C = M,

we have that

VaR+α(L+) = VaRα(L
M
1 +· · ·+LM

d ) =

d
∑

i=1

VaRα(Li) =

d
∑

i=1

F−1
i (α).

(8)

It is not difficult to provide examples of interest in quantitative

risk management where, for a copula C, necessarily C , M, we

have that

VaRα(L
C
1 + · · · + LC

d ) >

d
∑

i=1

VaRα(Li).

For instance, if the random losses L1, . . . , Ld are identically

distributed like a symmetric θ-stable distribution with θ < 1, we

have that

VaRα(L
Π,+) = VaRα(L

Π
1 + · · · + LΠd )

= d1/θ VaRα(L1) > d VaRα(L1) = VaRα(L
M
1 + · · · + LM

d );

see Mainik and Rüschendorf (2010). Other examples in which

independence implies a larger VaR estimate than comonotonic

dependence can be found in Embrechts and Puccetti (2010b,

Section 5.3), Mainik et al. (2013) and Section 2.3 below.

1.4. Complete mixability

When dealing with extremal values for Value-at-Risk, the

ideas of perfect positive and negative dependence, as repre-

sented by the Fréchet bounds M and W, can be deceiving. Han-

dling non-subadditive risk measures requires the knowledge of

alternative dependence concepts; complete mixability turns out

to be such a concept. It turns out to be highly useful towards

the calculation of VaR bounds.

Definition 1. A distribution function F on R is d-completely

mixable (d-CM) if there exist d random variables X1, . . . , Xd,

identically distributed as F, such that

P(X1 + · · · + Xd = c) = 1, (9)

for some constant c ∈ R. Any vector (X1, . . . , Xd)′ satisfying (9)

with Xi ∼ F, 1 ≤ i ≤ d, is called a d-complete mix. If F has

finite first moment µ, then c = µd.

Complete mixability is a concept of negative dependence.

In dimension d = 2 complete mixability implies countermono-

tonicity. Indeed, a risk vector (L1, L2)′ is a 2-complete mix if

and only if L1 = k−L2 a.s, and this implies that its copula is the

lower Fréchet bound W (the converse however does not hold).

In higher dimensions, d ≥ 3, a completely mixable dependence

structure minimizes the variance of the sum of risks with given

marginal distributions. In fact, a risk vector (L1, . . . , Ld)′ with

identically distributed marginals is a d-complete mix if and only

if the variance of the sum of its components is equal to zero.

Not all univariate distributions F are d-CM. As an example, it

is sufficient to take F as the two-point distribution giving prob-

ability mass p > 0 to x = 0 and 1 − p to x = 1. Since the only

way to make L1 + L2 a constant is to choose L2 = 1 − L1, F is

not 2-CM for p , 1/2.

The structure of dependence (copula) corresponding to com-

plete mixability is not so intuitive and, at the moment, does not

have an easy mathematical formulation like in the case of the

Fréchet bounds. We illustrate this with a discrete example. We

choose F to give mass 1/5 to any of the first five integers. A

3-complete mix of F can be represented by the following ma-

trix, in which any row is to be seen as a vector in R
3 having

probability mass 1/5:







































1 5 3

2 3 4

3 1 5

4 4 1

5 2 2







































.

Since the sum of each row in the above matrix is equal to k = 9

(note that the mean of F is equal to 3), F turns out to be 3-

completely mixable. It is useful to compare the above ma-

trix with the one representing comonotonicity among three F-

distributed risks:






































1 1 1

2 2 2

3 3 3

4 4 4

5 5 5







































.
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In this latter case, the variance of the row-wise sums is maxi-

mized. Some other examples of completely mixable distribu-

tions, as well as an insight into the theory of complete mixabil-

ity, are given in Rüschendorf and Uckelmann (2002), Wang and

Wang (2011) and Puccetti et al. (2012). Interesting cases where

the concept of complete mixability plays an important role in

the optimization problems (7) are the homogeneous case where

the Li’s are identically distributed with a continuous distribu-

tion having an unbounded support and an ultimately decreasing

density; see Puccetti and Rüschendorf (2013) .

2. Computing the VaR range with given marginal informa-

tion

In this section, we consider the case when the risk vector

(L1, . . . , Ld)′ has given marginal distribution functions F1, . . . , Fd

while its dependence structure is completely unknown. Re-

cently, some new numerical and analytical tools have been de-

veloped to calculate the VaR range in (5) under these assump-

tions. First, we study the homogeneous case where the marginal

risks are all identically distributed. Then, we will consider the

more general inhomogeneous framework in which the marginal

distributions are allowed to differ.

2.1. Identically distributed marginals

Throughout this section we assume that the marginal risks

Li are all identically distributed as F, that is F1 = · · · = Fd = F.

In the case d = 2, the calculation of the sharp VaR bounds

in (4) reduces to a simple formula if F satisfies some regularity

conditions.

Proposition 2. In the case d = 2 with F1 = F2 = F, let F be

a continuous distribution concentrated on [0,∞) with an ulti-

mately decreasing density on (xF ,∞), for some xF ≥ 0. Then

VaR
α
(L+) = F−1 (α) and VaRα(L

+) = 2F−1

(

1 + α

2

)

,

(10)

for all α ∈ [F(xF), 1).

Remark 3. 1. If xF = 0, e.g. in the case F is Pareto dis-

tributed, that is

F(x) = 1 − (1 + x)−θ, x > 0, (11)

for some tail parameter θ > 0, then the sharp bounds in (10)

hold for any level of probability α ∈ (0, 1).

2. For d = 2, the sharp bounds VaRα(L
+) and VaR

α
(L+) are

known for any type of marginal distributions F1,F2. The

slightly more complicated formulas to compute the bounds

in the general case are given in Rüschendorf (1982, Propo-

sition 1).

For a given α, a worst-case dependence vector (L∗
1
, L∗

2
) such that

VaRα(L
∗
1
+ L∗

2
) = VaRα(L

+) is given by















L∗
2
= L∗

1
a.s., when L1 < F−1(α),

L∗
2
= F−1

(

1 + α − F(L∗
1
)
)

a.s., when L1 ≥ F−1(α).

In Figure 1, left, we show the copula of the risk vector (L∗
1
, L∗

2
)′.

In the right part of the same figure, we show the support of

the risk vector (L∗
1
, L∗

2
)′ when L∗

1
and L∗

2
are both Pareto(2)-

distributed. The support of a random vector X is the smallest

closed set A such that P(X < A) = 0. It is interesting to note

the interdependence of L∗
1

and L∗
2
. In the upper (1 − α) part of

their supports, the marginal risks L∗
1

and L∗
2

are countermono-

tonic. This means that the variance of the sum of the upper

(1− α) parts of their supports is minimized. In the lower α-part

of their supports, the marginal risks L∗
1

and L∗
2

are a.s. identi-

cal and hence comonotonic. This is however not relevant since

the interdependence in this lower part of the joint distribution

can be chosen arbitrarily; see Puccetti and Rüschendorf (2013,

Theorem 2.1).

The case d = 2 is mainly pedagogical. The typical dimen-

sions used in practice may vary from d = 7 or 8 to 56, say,

for the aggregation of Operational Risk factors; see Moscadelli

(2004), but may go up to d in the several hundreds or even

thousands for hierarchical risk aggregation models; see for in-

stance Arbenz et al. (2012). In the case d > 2, the sharp bound

VaRα(L
+) has been obtained only recently in the homogeneous

case under different sets of assumptions. For a distribution

function F, define the dual bound D(s) as

D(s) = inf
t<s/d

d
∫ s−(d−1)t

t
F(x)dx

(s − dt)
, (12)

where F(x) = 1−F(x). The dual bound D(s) in (12) is an upper

bound on the tail function of L+, that is

P(L1 + · · · + Ld > s) ≤ D(s);

see for instance Puccetti and Rüschendorf (2013). This directly

implies that

VaRα(L
+) ≤ D−1(1 − α) = inf{s ∈ R : D(s) > 1 − α}. (13)

The VaR bound D−1(1 − α) is numerically easy to evaluate in-

dependently of the size d of the portfolio (L1, . . . , Ld)′. Under

some extra assumptions, we have that the inequality in (13) be-

comes an equality.

Proposition 4 (Dual bound). In the homogeneous case Fi =

F, 1 ≤ i ≤ d, with d ≥ 3, let F be a continuous distribution

with an unbounded support and an ultimately decreasing den-

sity. Suppose that for any sufficiently large threshold s the in-

fimum in (12) is attained at some a < s/d, that is assume that

D(s) =
d
∫ b

a
F(x)dx

(b − a)
= F(a) + (d − 1)F(b), (14)

where b = s − (d − 1)a, with F−1(1 − D(s)) ≤ a < s/d. Then,

for any sufficiently large threshold α we have that

VaRα(L
+) = D−1(1 − α). (15)

Remark 5. The above proposition is a particular case of Puc-

cetti and Rüschendorf (2013, Theorem 2.5) and goes back to

a conjecture made in Embrechts and Puccetti (2006b). We re-

fer to the former paper and references therein for mathematical

details in addition to the following points:
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1. Under the assumptions of Proposition 4, the infimum in (12)

is attained at a < s/d if and only if the first order condi-

tion (14) holds. In order to calculate VaRα(L
+) it is suffi-

cient to compute the function D(s) by solving numerically

the univariate equation (14) and hence to compute numeri-

cally its inverse D−1 at the level (1 − α). The treatment of

an arbitrary number of identically distributed risks is then

made possible; see Figure 2 and Table 4.

2. For the Pareto distribution (11) with tail parameter θ > 0 we

have that

VaRα(L
+) = D−1(1 − α),

for any α ∈ (0, 1). Portfolios of Pareto distributed risks are

studied in Table 4.

3. The sharpness of the bound D−1(1 − α) in (15) can be stated

under different sets of assumptions for the distribution func-

tion F. To cite a most useful case, sharpness holds for dis-

tributions F having a concave density on the interval (a, b).

This allows for instance to compute the sharp bound VaRα(L
+) =

D−1(1 − α) in case of Gamma and LogNormal distributions;

see Figure 2.

4. The equation (15) typically holds for distributions F and

confidence levels α standardly used in quantitative risk man-

agement, also in the case of heavy tailed, infinite-mean mod-

els.

5. So far, there does not exist a method which allows to com-

pute VaR
α
(L+) analytically for d ≥ 3.

When the distribution F satisfies the assumptions of Propo-

sition 4, a worst-case dependence vector (L∗
1
, . . . , L∗

d
)′ such that

VaRα(L
+) = VaRα(L

∗
1
+ · · · + L∗

d
)′ has been described in Wang

et al. (2013) and Puccetti and Rüschendorf (2013). Here the

concept of complete mixability is crucial. The random vector

(L∗
1
, . . . , L∗

d
)′ satisfies the following two properties:

(a) When one of the L∗
i
’s lies in the interval (a, b), then all the

L∗
i
’s lie in (a, b) and are a d-complete mix, i.e. for all 1 ≤

i ≤ d,

P

(

L∗1 + · · · + L∗d = s
∣

∣

∣

∣

Li ∈ (a, b)

)

= 1;

(b) For all 1 ≤ i ≤ d, we have that

P

(

L j = F−1
a∗

(

(d − 1)Fa∗ (Li)
)

∣

∣

∣

∣

Li ≥ b

)

= 1, for all j , i,

where a∗ = F−1(1 − D(s)) and Fa∗ (x) = (F(x) − F(a∗))/F(a∗).

F(a∗) is the distribution of the random variable Ya∗
d

= (L1|L1 ≥

a∗). The interdependence described by the two properties above

can be summarized as:

if Li ∈ [a∗, a] then L j ≥ b for some j , i,

if Li ∈ (a, b) then
∑d

j=1 L j = VaRα(L
+),

if Li ≥ b then L j ∈ [a∗, a] for all j , i.

The two properties (a) and (b) determine the behavior of

the worst-case dependence only in the upper (1−α) parts of the

marginal supports where Li ≥ a∗, 1 ≤ i ≤ d. Analogous to the

case d = 2, the interdependence coupling in the α lower parts

of the marginal supports can be set arbitrarily.

In Figure 3, left, we show a two-dimensional projection of

the support of the d-variate copula merging the upper (1 − α)

parts of the optimal risks L∗
i
. In practice, only two situations

can occur: either one of the risks is large (above the threshold

b) and all the others are small (below the threshold a), or all the

risks are of medium size (they lie in the interval (a, b)) with their

sum being equal to the threshold VaRα(L
+). This is a negative

dependence scenario analogous to the one underlying Figure 1.

In fact the worst-VaR scenario contains a part where the risks

are d-completely mixable, with the variance of their sum be-

ing equal to zero. In Figure 3, right, the two-dimensional is

illustrated in case F is a Pareto(2) distribution and α = 99.9%.

The interested reader can compare this figure with Figure 3.2 in

Wang and Wang (2011).

For a risk vector (L1, . . . , Ld)′ it is of interest to study the

superadditivity ratio

δα(d) =
VaRα(L

+)

VaR+α(L+)

between the worst-possible VaR and the comonotonic VaR, at

some given level of probability α ∈ (0, 1). The value δα(d)

measures how much VaR can be superadditive as a function

of the dimensionality d of the risk portfolio under study. For

instance, for elliptically distributed risks it is well known that

δα(d) = 1 for any d ≥ 1; see McNeil et al. (2005, Theorem 6.8).

A concept related to δα(d) is the so-called diversification benefit

discussed in Cope et al. (2009); for an earlier introduction of

this concept, see Embrechts et al. (2002, Remark 2).

Using Proposition 4, in Figure 4 and Figure 5, left, we plot

the function δα(d) for a number of different homogeneous port-

folios. In these cases, δα(d) seems to settle down to a limit in d

fairly fast. We denote

δα = lim
d→+∞

δα(d), (16)

whenever this limit exists. For large dimensions d one can then

approximate the worst-possible VaR value as

VaRα(L
+) ≈ δαVaR+α(L+) = dδαVaRα(L1). (17)

The result (17) equivalently means that the VaR of a homoge-

neous risk portfolio can be δα times larger than the VaR under

the assumption of comonotonicity. Below, we report numerical

estimate for the superadditivity constant δα for some homoge-

neous risk portfolios of interest in finance and insurance. For

portfolios of LogNormal(2,1)-distributed risks, we have δ0.99 �

1.49 and δ0.999 � 1.37; see Figure 4, left. For portfolios of

Gamma(3,1)-distributed risks, we have δ0.99 � 1.15 and δ0.999 �

1.11; see Figure 4, right. For portfolios of Pareto(2)-distributed

risks, we have δ0.99 � 2.11 and δ0.999 � 2.03; see Figure 5,

left. In Figure 5, right, one can see how the limiting constant

δα depends on the tail parameter θ of the Pareto marginals: the

smaller the tail parameter θ, the more superadditive the VaR of

the sums of the risks can be. It is also interesting that, in the

7
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Figure 3: Left: one of the identical two-dimensional projections to [α, 1]2 of the support of the d-variate copula merging the upper (1 − α) parts of the optimal risks

L∗
i
. In the figure, we have α = 1−D(s), β = F(a) and β′ = F(b). The grey area represents a completely mixable part. Right: the same as in the left-part of the figure

in the specific case of a portfolio of Pareto(2) distributed random variables and α = 0.999.

examples studied, the superadditivity ratio is larger for smaller

levels of α. A figure analogous to Figure 5 cannot be obtained

analytically for the ratio VaR+α(L+)/VaR
α
(L+); see point 5 in

Remark 5. For non-homogeneous portfolios, the ratios above

can be computed using the algorithm presented in Section 2.2.

Motivated by the figures presented in a preliminary version of

this paper, Puccetti and Rüschendorf (2012a) give an analyti-

cal proof of the limit in (16) under precise mathematical con-

ditions. Other papers studying the superadditivity properties

of risk portfolios are Mainik and Rüschendorf (2010), Mainik

et al. (2013) and Mainik and Rüschendorf (2012).

2.2. The Rearrangement Algorithm for VaR

If one drops the assumption of identically distributed risks,

the bounds given in (10) and (15) cannot be used. For d = 2, the

sharp bounds VaR
α
(L+) and VaRα(L

+) can be calculated eas-

ily, also in the inhomogeneous case, using Rüschendorf (1982,

Proposition 1); see also Puccetti and Rüschendorf (2012b, The-

orem 2.7). In higher dimension d ≥ 3 the computation of the

dual functional D(s) with different marginal distributions may

become numerically cumbersome. The numerical complexity

of the dual bound D(s) typically increases with the number of

blocks of marginals with identical distributions. For instance,

if all the d marginal distributions are different, the computation

of dual bounds is manageable up to small dimension d = 10,

say. An example with d = 8 is illustrated in Embrechts and

Puccetti (2006a). However, it is possible to compute the dual

bound D(s) for relatively large dimensions d if the inhomoge-

neous risks Li can be divided in n sub-groups having homoge-

neous marginals within. In this case, the numerical complexity

of the dual bound D(s) only depends on n, and is independent

of the cardinality of each of the sub-groups of homogeneous

marginals. It is also important to remark that the sharpness of

dual bounds in dimension d ≥ 3 has not been proved for inho-

mogeneous marginals.

For the computation of bounds on distribution functions

Puccetti and Rüschendorf (2012c) introduced a rearrangement

algorithm (RA) working well for dimension d ≤ 30. In this

paper we adapt and greatly improve this RA in order to com-

pute the sharp bounds VaRα(L
+) and VaR

α
(L+) in the inhomo-

geneous case. While the algorithm described in Puccetti and

Rüschendorf (2012c) requires a time-consuming numeric inver-

sion for the computation of VaR bounds, our modified version

does not need any inversion and also decreases the number of

iterations needed to obtain the final estimate by introducing a

new termination condition based on the accuracy of the final

estimate. Our modifications allow to apply the algorithm to

high-dimensional inhomogeneous portfolios, even for dimen-

sions d ≥ 1000, say, which previously were well out of the

range of numerical and analytical methods. Examples using di-

mensionality in the several hundreds are of particular interest

in internal models built by financial institutions in order to ful-

fil the Basel and Solvency regulatory guidelines. An example

where high dimensionality really occurs is to be found in the

hierarchical aggregation model described in Section 5 in Ar-

benz et al. (2012), in use at SCOR, which determines the total

solvency capital requirements of insurance companies using the

standard model of QIS 5 by the European Insurance and Occu-

pational Pensions Authority (EIOPA). We are also aware that

some reinsurance companies have undisclosed internal models

with d-values between 500 and 2000 marginal risks.

The RA can compute the worst and best VaR values in (4)

with excellent accuracy for any set of marginals Fi and large

dimensions d. In the following, we say that two vectors a, b ∈

R
N are oppositely ordered if (a j − ak)(b j − bk) ≤ 0 holds for all

1 ≤ j, k ≤ N. For a (N × d)-matrix X define the operators s(X)

and t(X) as

s(X) = min
1≤i≤N

∑

1≤ j≤d

xi, j, t(X) = max
1≤i≤N

∑

1≤ j≤d

xi, j,

8
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the row-wise minimum, respectively maximum, of the row-

sums of X.

Rearrangement Algorithm (RA) to compute VaRα(L
+).

1. Fix a integer N and the desired level of accuracy ǫ > 0.

2. Define the matrices X
α = (xα

i, j
) and X

α
= (x

α
i, j) as

xα
i, j
= F−1

j

(

α +
(1 − α)(i − 1)

N

)

, x
α
i, j = F−1

j

(

α +
(1 − α)i

N

)

,

(18)

for 1 ≤ i ≤ N, 1 ≤ j ≤ d.

3. Permute randomly the elements in each column of X
α and

X
α
.

4. Iteratively rearrange the j−th column of the matrix X
α so

that it becomes oppositely ordered to the sum of the other

columns, for 1 ≤ j ≤ d. A matrix Y
α is found.

5. Repeat Step 4. until

s(Yα) − s(X
α) < ǫ.

A matrix X
∗ is found.

6. Apply Steps 4.–5. to the matrix X
α

until a matrix X
∗

is

found.

7. Define

s
N
= s(X

∗) and sN = s(X
∗
).

Then we have s
N
≤ sN and in practice we find that

sN

N→∞
≃ s

N

N→∞
≃ VaRα(L

+). (19)

Rearrangement Algorithm (RA) to compute VaR
α
(L
+).

1. Fix a integer N and the desired level of accuracy ǫ > 0.

2. Define the matrices Z
α = (zα

i, j
) and Z

α
= (zαi, j) as

zα
i, j
= F−1

j

(

α(i − 1)

N

)

, z
α
i, j = F−1

j

(

αi

N

)

, (20)

for 1 ≤ i ≤ N, 1 ≤ j ≤ d.

3. Permute randomly the elements in each column of Z
α and

Z
α
.

4. Iteratively rearrange the j−th column of the matrix Z
α so

that it becomes oppositely ordered to the sum of the other

columns, for 1 ≤ j ≤ d. A matrix W
α is found.

5. Repeat Step 4. until

t(Z
α) − t(Wα) < ǫ.

A matrix Z
∗ is found.

6. Apply Steps 4.–5. to the matrix Z
α

until a matrix Z
∗

is

found.

7. Define

t
N
= t(Z

∗) and tN = t(Z
∗
).

Then we have t
N
≤ tN and in practice we find that

tN

N→∞
≃ t

N

N→∞
≃ VaR

α
(L+). (21)

Remark 6. For mathematical details about the RA, we refer

the reader to Puccetti and Rüschendorf (2012c). Here we limit

our attention to the following, more practical points:

1. We call the interval (s
N
, sN) the rearrangement range for

VaRα(L
+). The length (sN − s

N
) of this interval depends on

the dimensionality d of the risk portfolio under study and on

N, the upper-tail discretization parameter. For sufficiently

large N, we also have that s
N
≤ VaRα(L

+). Analogous con-

siderations can be made for the rearrangement range (t
N
, tN)

for VaR
α
(L+). For sufficiently large N we have that tN ≥

VaR
α
(L+).

2. There does not exist an analytic proof that results (19) and (21)

hold for all initial configurations of the algorithm. Robert

Weismantel provided examples with F j = U(0, 1), the uni-

form distribution, in which the sequences (sN − s
N

) and (tN −

t
N

) do not converge to zero. These examples are however

based upon a special choice of the starting matrix of the al-

gorithm. Using the randomization Step 3. we found the

algorithm to provide excellent approximations with moder-

ately large values of N for all marginal distributions typically

used in quantitative risk management. Also using this ran-

domisation step, a proof of convergence of the RA remains

an open problem.

3. In Table 4, we check the accuracy of the RA for some Pareto(2)

risk portfolios for which we know, by Proposition 4, the ex-

act value of VaRα(L
+). This table also highlights the possi-

bly large difference between the comonotonic VaR+α(L+) and

the worst-possible VaRα(L
+). In Table 4 we use different di-

mensions d as well as values of N which represent a good

compromise between computational time used and accuracy

obtained. In order to perform all the computations in the re-

mainder of the paper we use an Apple MacBook Air (2 GHz

Intel Core i7, 8 GB RAM). Computation times can no doubt

be dramatically reduced on a more powerful machine.

4. As a numerical algorithm, the RA can be used with any type

of marginal distributions, including empirical distribution

functions. The figures in Table 4 are obtained for a homoge-

neous portfolio so as to be able to check the accuracy of the

RA via the dual bound in Proposition 4. In general, if the

evaluation of quantile functions F−1
j

in Step 2. is trivial both

the accuracy and the computation time of the RA are not af-

fected by the type of the marginal distributions used. If one

instead has to evaluate the quantile functions by numerical

root finding algorithms, this might be the most demanding

point of the RA from a computational point of view, as we
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show in Section 4.1. We thank Marius Hofert for this com-

ment.

The probabilistic idea behind the RA is easy. For a fixed

α ∈ [0, 1], the j-th columns of the matrices X
α and X

α
defined

in (18) represent two stochastically ordered N-point discretiza-

tions of the (1 − α) upper parts of the supports of the marginal

risk L j. The RA rearranges the columns of X
α into the matrix

X
∗ in order to find the maximal value s

N
such that the compo-

nentwise sum of any row of X
∗ is larger than s

N
. Analogously,

the RA rearranges the columns of X
α

into the matrix X
∗

in or-

der to find the maximal value sN such that the componentwise

sum of any row of X
∗

is larger than sN . For N large enough we

have that s
N
≤ VaRα(L

+) ≃ sN as a consequence of Puccetti and

Rüschendorf (2012c, Theorem 3.1). An analogous mechanism

yields VaR
α
(L+).

We first illustrate the RA in an example with d = 3 Pareto

marginals with identical tail parameters θ = 2; the homoge-

neous case. Then, we set N = 50 and compute VaRα(L
+) for

α = 0.99 via the RA. The initial matrix X
α defined in (18) for

α = 0.99 is shown in Table 1 (A). The j-th column of X
α repre-

sents a 50-point discretization of the upper 1% of the support of

the j-th marginal distribution. In the same (A) part of the table,

we also show the N-dimensional vector of the row-wise sums of

X
α, as well as the d-dimensional vector having as components

the aggregate sums of the columns of X
α.

During the iteration of the algorithm (Steps 3.–5.), the ele-

ments within each column of X
α are re-shuffled until a matrix

X
∗ is found with each column oppositely ordered to the sum

of the others, see Table 1 (B); we re-ordered (B) in ascend-

ing order with respect to the row sums (final column). This

rearrangement procedure of the columns of X
α aims at maxi-

mizing the minimal component of the vector of the row-wise

sums of X
∗. Indeed, note how the minimal component of the

row-wise sums (27.0000) is increased (to 44.7671) when pass-

ing from X
α to X

∗, while the column-wise sums remain un-

changed (the marginals are still the same). Compared to X
α,

the matrix X
∗ represents a different coupling (copula) of the

same marginals in which the variance of the marginal numbers

(rows) is reduced. The minimal component of the vector of the

sums of the rows of X
∗ is s

50
= 44.7671 and represents a lower

bound on VaRα(L
+). Performing an analogous rearrangement

of the column of the matrix X
α

one finds s50 = 46.4111, which

is instead approximately an upper bound on VaRα(L
+). Note

that the estimates s
50

and s50 are actually random due to the

randomization occurring in Step 3. This random uncertainty

becomes negligible for values of N large enough. From the

application of the RA described above for N = 50 one ob-

tains VaRα(L
+) ∈ [44.77, 46.41]. It is sufficient to run the

algorithm with N = 1.0e05 to obtain the first two decimals

of VaRα(L
+) = 45.99 in less than one second. Of course, in

this pedagogical case one could instantly obtain the exact value

VaRα(L
+) = 45.99 from Proposition 4. The power of the RA is

that it can be applied also to inhomogeneous portfolios of risks

and is able to compute numerically also VaR
α
(L+).

It is interesting to see that already for N = 50, the final ma-

trix X
∗ in Table 1 (B) approximates the worst-case dependence

for the sum of continuous homogeneous marginals shown in

Figure 3. In Table 1 (B) we have ordered the final RA-output

matrix in function of the last column. One can now easily check

that basically two structures occur in the rows of X
∗: either

all the components of a row are close to each other, and sum

up to a value which is just above the threshold s
50
= 44.7671

(rows 1–29), or one of them is large and all the others are small

(rows 30–50). Of course, this structural dichotomy becomes

much clearer when N increases and can also be made precise

and proved mathematically; see Section 2.1 above.

2.3. Application to Operational Risk data

As a more realistic example stemming from Operational

Risk, we study a risk portfolio where the marginal losses are

distributed like a Generalized Pareto Distribution (GPD), that

is we assume that

Fi(x) = 1 −

(

1 + ξi
x

βi

)−1/ξi

, x ≥ 0, 1 ≤ i ≤ d. (22)

For a GPD distribution, whenever ξi ≥ 1, E(Li) = ∞, and for

1/2 ≤ ξi < 1, E(Li) < ∞ but var(Li) = ∞. Moscadelli (2004)

contains an analysis of the Basel II data on Operational Risk

coming out of the second Quantitative Impact Study (QIS); see

also Chapter 10 in McNeil et al. (2005) for a discussion and

further references. In this case d = 8 and for the parameters of

the GPD distributions we take the values reported in Moscadelli

(2004) for the losses in eight OR business lines. The values for

the parameters in the different business lines are summarized

in Table 2. Under these marginal assumptions, the risk vector

(L1, . . . , Ld)′ exhibits very heavy-tailed behavior, with six out

of eight losses Li following an infinite mean marginal model.

In the other two cases, where the mean is finite, the loss distri-

butions do not have finite variance. Note that we use the param-

eter values of ξi and βi from Moscadelli (2004) as a matter of

example and do not consider here the remaining extra statistical

issues underlying a full Operational Risk analysis for which we

refer to Frachot et al. (2004), de Fontnouvelle et al. (2005) and

the various references to the Operational Risk literature men-

tioned before.

In Table 3, we give the VaR range (5) as well as the esti-

mates for VaR+α(L+) (VaR under comonotonicity) and VaRα(L
Π,+)

(VaR under independence) versus the confidence level α. VaRα(L
Π,+)

has been computed via the approximation

P(LΠ,+ > x)
x→∞
∼ P

(

max
1≤i≤d

Li > x

)

. (23)

The above formula is valid for iid subexponential random vari-

ables, as explained in Embrechts et al. (1997, Section 1.3.2).

It also holds more generally whenever the underlying random

variables are independent with the heaviest tail being subex-

ponential; see Lemma A3.28 in Embrechts et al. (1997). The

resulting approximation goes under the name the largest loss

approximation and has been used in the Operational Risk lit-

erature; see for instance Böcker and Klüppelberg (2010). In

general, approximations of the type (23) are numerically bad,
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Table 1: (A): The matrix X
α defined in (18) for α = 0.99 and N = 50 (representing comonotonicity among the discrete marginals); (B): The matrix X

∗ derived as

an output of the iterative rearrangement of the columns of X
α. The rows of X

∗ are ordered accordingly to their sums. In this example we consider a discretization

of d = 3 Pateto(2)-distributed risks.
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Business line i ξi βi

Corporate Finance 1 1.19 774

Trading & Sales 2 1.17 254

Retail Banking 3 1.01 233

Commercial Banking 4 1.39 412

Payment & Settlement 5 1.23 107

Agency Services 6 1.22 243

Asset Management 7 0.85 314

Retail Brokerage 8 0.98 124

Table 2: Parameter values for the eight tail GPD-distributed risks follow-

ing Moscadelli (2004). Note that Moscadelli (2004) uses tail GPD marginal

models instead of pure GPD marginals as in (22).

α VaR
α
(L+) VaR+α(L+) VaRα(L

Π,+) VaRα(L
+)

0.99 1.78 × 105 5.14 × 105 7.08 × 105 2.56 × 106

0.995 4.68 × 105 1.22 × 106 1.68 × 106 5.96 × 106

0.999 4.38 × 106 9.33 × 106 1.28 × 107 4.34 × 107

Table 3: Estimates for VaRα(L+) for a random vector of d = 8 GPD-distributed

risks having the parameters in Table 2 and different dependence assumptions,

i.e. (from left to right) best-case dependence, comonotonicity, independence,

worst-case dependence. Each estimate for VaRα(L+) and VaRα(L+) has been

obtained via the RA in about 9 mins using N = 2 × 106 and ǫ = 0.1.

except in the very heavy-tailed case, as we have here. From

a more applied point of view, concerning Operational Risk,

(23) does indeed occur more frequently as such cases like Nick

Leeson (Barings Bank), Jérôme Kerviel (Société Générale) and

Kweku Adoboli (UBS) show. The recent scandal around the

LIBOR-fixing yields another example of the general idea be-

hind (23).

VaR figures in Table 3 clearly show that the VaR estimate

VaR+α(L+) is inadequate to capture the riskiness of the portfolio

as

VaRα(L
Π,+) > VaR+α(L+),

a fact typically occurring when some of the marginal distri-

butions have infinite mean. For practice, the wide VaR range

for values of α typically used, that is α = 0.99, 0.995, 0.999,

should raise some concerns. For the dimension d = 8 in the

Moscadelli example, the RA algorithm produces accurate es-

timate of VaRα(L
+) and VaR

α
(L+) in about 9 mins with N =

2 × 106. The results in these examples imply a considerable

model uncertainty issue underlying VaR calculations for confi-

dence levels close to 1.

3. Positive dependence information

The worst-VaR copulas given in Section 2, Figures 1 and 3,

are often considered as unrealistic due to their minimal vari-

ance parts in which the risks are countermonotonic (for d = 2)

or completely mixable (in the case d ≥ 3). Of course, a posi-

tive dependence structure, as defined below, combined with the

knowledge of the marginal distributions of (L1, . . . , Ld)′ will

tighten the interval of admissible VaRs in (5). However, as-

suming that the risks are positively dependent does not elim-

inate countermonotonicty and completely mixable parts from

the worst-VaR scenarios and does not necessarily lower the es-

timate of VaRα(L
+) by much. This latter point is the object of

this section. We start by introducing a natural concept of posi-

tive dependence.

Definition 7. The risk vector (L1, . . . , Ld)′ is said to be posi-

tively lower orthant dependent (PLOD) if for all (x1, . . . , xd)′ ∈

R
d

P(L1 ≤ x1, . . . , Ld ≤ xd) ≥

d
∏

i=1

P(Xi ≤ xi) =

d
∏

i=1

Fi(xi). (24)

The risk vector (L1, . . . , Ld)′ is said to be positively upper or-

thant dependent (PUOD) if for all (x1, . . . , xd)′ ∈ Rd

P(L1 > x1, . . . , Ld > xd) ≥

d
∏

i=1

P(Xi > xi) =

d
∏

i=1

F i(xi). (25)

Finally, the risk vector (L1, . . . , Ld)′ is said to be positively or-

thant dependent (POD) if it is both PLOD and PUOD.

For d = 2, conditions (24) and (25) are equivalent. However,

this is not the case for d ≥ 3. In higher dimensions the PLOD

and PUOD concepts are distinct; see for instance Nelsen (2006,

Section 5.7). If (L1, . . . , Ld)′ has copula C, condition (24) can

be equivalently expressed as C ≥ Π, the independence copula.

Analogously, condition (25) can be written as C ≥ Π, where C

denotes the joint tail function of a copula C, also referred to as

the survival copula; see Nelsen (2006, Section 2.6). Also note

that POD implies positive correlations, given that the second

moments exist.

Under the addition of a positive dependence restriction, VaR

bounds for the sum of risks have been derived in Theorem 3.1

in Embrechts et al. (2003); see also Embrechts et al. (2005),

Mesfioui and Quessy (2005), Rüschendorf (2005) and Puccetti

and Rüschendorf (2012b). We state this result here in the case

of identical marginals using the same notation as in the so-

called unconstrained case, i.e. with no dependence information.

Proposition 8. In the homogeneous case Fi = F, 1 ≤ i ≤ d, let

F be a distribution with decreasing density on its entire domain.

If the risk vector (L1, . . . , Ld)′ is PLOD then, for any fixed real

threshold s, we have

VaRα(L
+) ≤ dF−1

(

(1 − α)
1
d

)

. (26)

Remark 9. In Embrechts et al. (2005), the bound (26) is given

in a slightly more complicated form for any set of marginal

distributions. In the same reference, an analogous bound for

VaR
α
(L+) is given if the risk vector is assumed to be PUOD.

In the case d = 2 the inequality given in (26) is sharp.

In Figure 6, left, we show the copula of a PLOD risk vector

(L∗
1
, L∗

2
)′ for which VaRα(L

∗
1
+ L∗

2
) = VaRα(L

+). Even if the

structure of dependence of this vector is PLOD, its geometry
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d = 8 N = 1.0e05 avg time: 5 secs

α VaR
α
(L+) (RA range) VaR+α(L+) (exact) VaRα(L

+) (exact) VaRα(L
+) (RA range)

0.99 9.00 − 9.00 72.00 141.67 141.66–141.67

0.995 13.13 − 13.14 105.14 203.66 203.65–203.66

0.999 30.47 − 30.62 244.98 465.29 465.28–465.30

d = 56 N = 1.0e05 avg time: 60 secs

α VaR
α
(L+) (RA range) VaR+α(L+) (exact) VaRα(L

+) (exact) VaRα(L
+) (RA range)

0.99 45.82 − 45.82 504.00 1053.96 1053.80–1054.11

0.995 48.60 − 48.61 735.96 1513.71 1513.49–1513.93

0.999 52.56 − 52.58 1714.88 3453.99 3453.49–3454.48

d = 648 N = 5.0e04 avg time: 40 mins

α VaR
α
(L+) (RA range) VaR+α(L+) (exact) VaRα(L

+) (exact) VaRα(L
+) (RA range)

0.99 530.12 − 530.24 5832.00 12302.00 12269.74-12354.00

0.995 562.33 − 562.50 8516.10 17666.06 17620.45-17739.60

0.999 608.08 − 608.47 19843.56 40303.48 40201.48-40467.92

Table 4: Estimates for VaRα(L+) and VaRα(L+) for random vectors of Pareto(2)-distributed risks. Computation times are for a single interval with ǫ = 10−3.

is not so different if compared to the optimal copula in the un-

constrained case (Figure 1, left). Again, the copula of (L∗
1
, L∗

2
)′

contains a countermonotonic part, in which the risks are a.s.

decreasing functions of each other. Thus, the assumption of

positive dependence does not eliminate the possibility of such

optimal copulas. The reason for this is not to be found in the

concept of VaR but rather raises some questions about the ap-

propriateness of PLOD (PUOD) as a concept of positive (nega-

tive) dependence.

Given the shape of the copula attaining the bound (26) under

additional positive dependence restrictions, one cannot expect

an essential improvement of the VaR bound given in the uncon-

strained case when only the marginals of the Li’s are known.

Indeed, in Figure 6, right, we plot VaRα(L
+) (see (26)) and

VaR+α(L+) (see (8)), for the sum of two Pareto(2) distributions.

The improvement of the bound given by the additional infor-

mation is negligible.

The situation gets more involved in higher dimensions (d ≥

3), as the bound (26) fails to be sharp. The dual bound given

in (15) for the unconstrained case actually turns out to be bet-

ter than (26) with positive dependence information; this can be

seen in Figure 7. This is not so suprising, as the dual bound

given in (15) derives from a different methodology based on

the powerful tool offered by the theory of mass transportation;

see Embrechts and Puccetti (2006b) on this. As a matter of

fact, the bound (26) is not useful for higher dimensions (d ≥ 3)

where the search for a sharp bound with marginal and posi-

tive dependence information is still open. However, we do

not expect much improvement over the dual bounds even for

optimal ones in the positive dependence case. Take for in-

stance the problem of maximizing the covariance of (L1, L2)′

when d = 2 and the marginals F1 and F2 are given. By Ho-

effding’s covariance representation formula, see McNeil et al.

(2005, Lemma 5.2.4), one has

Cov(L1, L2) =

∫

(F(x1, x2) − F1(x1)F2(x2)) dx1 dx2,

where F is the joint distribution of (L1, L2)′. It is clear that here

the PLOD constraint F(x1, x2) ≥ F1(x1)F2(x2) does not help to

improve an upper bound on Cov(L1, L2).

Another example where positive additional information does

not lead to improved bounds is the problem of maximizing the

Expected Shortfall (ES) of a sum of risks with given marginal

distributions. Since the worst ES is attained under comonotonic

dependence, a restriction to PLOD/PUOD dependence will lead

to the same solution. For a definition and more details on the

maximization of ES, see Section 6.1 in McNeil et al. (2005).

4. Higher dimensional dependence information

For a vector (L1, . . . , Ld)′ for which one only knows the

marginal distributions F1, . . . , Fd, we have (5). If one adds

PLOD/PUOD information on top of the knowledge of the marginals,

the worst VaR in (5) is only minimally affected. It is clear that in

practice more dependence information on the vector (L1, . . . , Ld)′

may be available. Such a case would be when specific assump-

tions on sub-vectors of (L1, . . . , Ld)′ are made. One reason for

this could be that the individual risk factors may be grouped in

economically relevant sectors. This would lead to a narrowing

of the range on VaRα(L1 + · · · + Ld) in (5) .

Thus, we consider the case that not only the one-dimensional

marginal distributions of the risk vector are known, but also that

for a class E of sets J ⊂ {1, . . . , d}, the joint marginal distribu-

tions FJ , J ∈ E are fixed. In this case, we get the generalized

Fréchet class

FE = F(FJ , J ∈ E)
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Figure 6: Bivariate copula of the vector (L∗
1
, L∗

2
)′ attaining the worst-VaR bound M−1(1 − α) under additional positive dependence restrictions (left). VaRα(L+) in

the unconstrained case (no info), under additional positive dependence information (PQD), and VaR+α(L+) (see (8)), for the sum of two Pareto(2) marginals (right).

Note that the first two curves are virtually identical.

of all probability measures on R
d having sub-vector models

FJ on R
J , for all J ∈ E. W.l.o.g. we assume that

⋃

J∈E J =

{1, . . . , d}. Thus, we have

FE ⊂ F(F1, . . . , Fd),

that is FE is a sub-class of the class of all possible joint dis-

tributions on (L1, . . . , Ld)′. The knowledge of higher dimen-

sional joint distributions is in general not sufficient to determine

the joint model of (L1, . . . , Ld)′. Nevertheless, having higher

dimensional information restricts the class of possible depen-

dence structures and thus leads to improved upper and lower

bounds for the VaR of the joint portfolio.

In practice, loss event datasets often yield some insight into

bivariate distributions. Therefore we consider, for d even, a

class E of particular interest in actuarial applications: we set

E = {{2 j − 1, 2 j} : j = 1, . . . , d/2}, defining the Fréchet class

FE = F(F12, F34, . . . , Fd−1d).

Hence, in this case, risk estimates on the global position L+

have to be obtained based on distributional information for all

two-dimensional sub-vectors (L2 j−1, L2 j)
′. Other examples of

marginals classes E have been treated in Puccetti and Rüschendorf

(2012b) and Embrechts and Puccetti (2010a).

Our aim is to find bounds for the tail risks

VaR
E

α(L
+) = sup {VaRα(L1 + · · · + Ld) : FL ∈ FE} , (27a)

VaRE
α
(L+) = inf {VaRα(L1 + · · · + Ld) : FL ∈ FE} , (27b)

which improve the corresponding bounds VaRα(L
+) and VaR

α
(L+)

defined in (4). If FL ∈ FE, we have

VaR
α
(L+) ≤ VaRE

α
(L+) ≤ VaRα(L

+) ≤ VaR
E

α(L
+) ≤ VaRα(L

+).

(28)

A reduction method introduced in Puccetti and Rüschendorf

(2012b) allows to find reduced bounds VaR
E

α(L
+) and VaRE

α
(L+)

using Proposition 4 and the RA introduced in Section 2.2. The

reduction method consists of associating to the risk vector (L1, . . . , Ld)′

with FL ∈ FE the random vector (Y1, . . . ,Yn)′ defined by

Y j = L2 j−1 + L2 j, j = 1, . . . , n, (29)

where n = d/2. If we also denote by H j the distribution of

Y j, the risk vector (Y1, . . . ,Yn)′ has fixed marginals H1, . . . ,Hn.

Therefore, it is possible to apply the techniques introduced in

Section 2 to compute the reduced VaR bounds:

VaR
r

α(L
+) = sup {VaRα(Y1 + · · · + Yn) : FY ∈ F(H1, . . . ,Hn)} ,

(30a)

VaRr
α
(L+) = inf {VaRα(Y1 + · · · + Yn) : FY ∈ F(H1, . . . ,Hn)} .

(30b)

Using the key fact that L1 + · · · + Ld = Y1 + · · · + Yn, Proposi-

tion 3.3 in Puccetti and Rüschendorf (2012b) states that

VaR
r

α(L
+) = VaR

E

α(L
+) and VaRr

α
(L+) = VaRE

α
(L+)

for the particular class E introduced above. Therefore, we can

rewrite (28) as

VaR
α
(L+) ≤ VaRr

α
(L+) ≤ VaRα(L

+) ≤ VaR
r

α(L
+) ≤ VaRα(L

+).
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Figure 7: VaRα(L+) in the unconstrained case (no info), under additional positive dependence information (PQD), and VaR+α(L+) (see (8)) for the sum of d = 3 (left)

and d = 5 (right) Pareto(2) marginals.

A reduction method similar to the one described above has also

been given in Puccetti and Rüschendorf (2012b) in the case of a

general marginal system E. The corresponding reduced bounds

VaR
r

α(L
+) and VaRr

α
(L+) however may fail to be sharp.

We illustrate how to calculate the bounds in (30) in three ex-

amples. First we assume the bivariate distributions F2 j−1,2 j, 1 ≤

j ≤ n to be identical and generated by coupling two Pareto

marginals having tail parameter θ > 0 by a Pareto copula with

parameter γ , 0. The bivariate Pareto copula with parameter

γ > 0 is given by

CPa
γ (u, v) = ((1 − u)−1/γ + (1 − v)−1/γ − 1)−γ + u + v − 1.

Under these assumption, the bivariate distribution function F12

is given by

F12(x1, x2) = 1+((1+x1)θ/γ+(1+x2)θ/γ−1)−γ−(1+x1)−θ−(1+x2)−θ,

(31)

while the n = d/2 random variables Y j defined in (29) are iden-

tically distributed as

H(x) = P
(

Y j ≤ x
)

= P (Y1 ≤ x) = P (L1 + L2 ≤ x) , j = 2, . . . , n.

Here, we have that

H(x) =

∫ x

0

F2|x1
(x − x1) dF1(x1), (32)

where we denote by F2|x1
the conditional distribution of (L2|L1 =

x1). For this example, the conditional distribution F2|x1
is avail-

able in closed form and

F2|x1
(x) = 1 − (1 + x1)θ/γ+θ

(

(1 + x)(θ/γ) + (1 + x1)(θ/γ) − 1
)−γ−1

.

Since the risk vector (Y1, . . . ,Yn)′ is homogeneous, we can ap-

ply the dual bound methodology introduced in Proposition 4 to

compute VaR
r

α(L
+) via (30a). In Proposition 4, we simply use

n = d/2 (the number of the Yr’s) instead of d and set F = H.

In Figure 8, we plot the unconstrained sharp VaR bound

VaRα(L
+) and the reduced bound VaR

r

α(L
+) for a random vec-

tor of d = 600 Pareto(2)-distributed risks under the marginal

system described above. In the left figure the parameter of the

Pareto copula is set to γ = 1.5. This implies a strong positive

dependence between consecutive marginals. In the right figure

we assume instead that the marginals are pairwise independent.

The higher dimensional information reduces the conservative

estimate of VaR in both cases, the larger reduction occurring

in the case of the bivariate independence constraints. Recall

that the calculation of the bound VaR
r

α(L
+) in a homogeneous

setting is independent of the dimensionality n of the risk vec-

tor (Y1, . . . ,Yn)′, confirming that the dual bound methodology

is very effective for homogeneous settings. In Table 5 we com-

pare the estimates for VaRα(L1 + · · · + Ld) in the case of a ho-

mogeneous portfolio of Pareto(2) marginals and under different

dependence scenarios.

In order to compute the improved bounds in (30) for inho-

mogeneous portfolios, one has to rely on the RA. We assume

to have a portfolio of d = 2n2 Pareto distributed risks, divided

into n sub-groups of 2n risks. Risks within the same sub-group

are assumed to be homogeneous, but risks in different sub-

groups may have a different Pareto tail parameter. Within the

i-th group, 1 ≤ i ≤ n, we assume that each risk is Pareto(θi)-

distributed and that the bivariate distributions F2 j−1,2 j, 1 ≤ j ≤

n are of the form (31). A vector θ = (θ1, . . . , θn)′ then gives
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Figure 8: VaRα(L+) (see (5)) and VaR
r

α(L+) (see (30a)) for a random vector of d = 600 Pareto(2)-distributed risks with fixed bivariate marginals F2 j−1,2 j generated

by a Pareto copula with γ = 1.5 (left) and by the independence copula (right).

α VaR+α(L+) VaR
r

α(L
+), (A) VaR

r

α(L
+), (B) VaRα(L

+)

0.99 5400.00 8496.13 10309.14 11390.00

0.995 7885.28 12015.04 14788.71 16356.42

0.999 18373.67 26832.20 33710.30 37315.70

Table 5: Estimates for VaRα(L+) for a random vector of d = 600

Pareto(2)-distributed risks under different dependence scenarios: VaR+α(L+)

((L1, . . . , L600)′ has copula C = M); VaR
r

α(L+), (A): the bivariate marginals

F2 j−1,2 j are independent; VaR
r

α(L+), (B): the bivariate marginals F2 j−1,2 j have

Pareto copula with γ = 1.5; VaRα(L+): no dependence assumptions are made.

a full description of the marginals of the risk portfolio. The

copula parameter is set to γ = 1.5 in each of the sub-groups.

In Table 6, we give RA ranges for VaR
r

α(L
+) and VaRr

α
(L+),

as well as for VaRα(L
+) and VaR

α
(L+) for different values of

n, and at the quantile level α = 0.999. In Table 6, compu-

tation times are indicated for the computation of the reduced

bounds VaR
r

α(L
+) and VaRr

α
(L+). These times are in general

larger when compared to the homogeneous case with the num-

ber of marginal distributions d = n2. Indeed, in order to apply

the RA to the marginals H j, one has to compute the quantiles of

the distribution H in (32) which in general is a more time con-

suming operation especially considering that one has to handle

different tail parameters. If one has an efficient procedure to

obtain these latter quantiles, then the RA computation times of

the reduced VaR intervals are approximately the same as in the

homogeneous case with d = n2 marginal distributions.

4.1. Application to Operational Risk data

As an example we consider again the Operational Risk ap-

plication introduced in Section 2.3. Thus, we assume to have

a portfolio of d = 8 GPD distributed risks with the parameters

as in Table 2. The random losses are here divided into 4 sub-

groups of 2 risks. Risks within the same sub-group are assumed

to be independent, i.e. we assume that the bivariate distribu-

tions F12, F34, F56, F78 have copula Π. The subdivisions into

subgroups is arbitrary and it is used here just to illustrate the

narrowing of the worst-case, best-case VaR range. A related

pair-copula construction is given in Hobæk Haff et al. (2010).

In Table 7, we give RA ranges for VaR
r

α(L
+) and VaRr

α
(L+), as

well as for VaRα(L
+) and VaR

α
(L+) for different quantile levels

α. In this case, the computation of high quantiles of the con-

volution of two subexponential distributions is computationally

demanding and a single reduced VaR estimate in Table 7 re-

quires 2.5 hrs.

4.2. Conclusions

To summarize, the same techniques introduced in Section 2,

where one only knows the marginal distributions of the risk

vector (L1, . . . , Ld)′ can be applied to the case where higher di-

mensional information is available. In order to use the reduc-

tion method one only needs to have the conditional distribution

function Fi|x1
available in closed form, for any x1 ∈ R. This

conditional distribution is typically available for bivariate mod-

els derived from continuous marginals and a continuous copula,

but it might be difficult to compute for higher dimensional sub-

groups of marginals.
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VaR
0.999

(L+) VaRr
0.999

(L+) VaR+0.999(L+) VaR
r

0.999(L+) VaR0.999(L+)

n d comp. time (RA range) (RA range) (exact) (RA range) (RA range)

2 8 8 mins 30.47 − 30.62 54.84 − 55.40 158.49 226.09 − 226.10 277.27 − 277.28

5 50 28 mins 30.47 − 30.62 54.87 − 55.44 652.92 1024.35 − 1024.58 1152.64 − 1152.90

18 648 1,8 hrs 339.90 − 339.97 341.09 − 341.22 7373.01 11415.23 − 11446.26 12643.78 − 12678.12

Table 6: Estimates for VaRα(L1 + · · · + Ld) for random vectors of Pareto-distributed risks with different tail parameters. The vector of tail parameters are θ = (2, 3)′

(first portfolio), θ = (2, 2.5, 3, 3.5, 4)′ (second portfolio) and θ = (2, 2.125, . . . , 4, 4.125)′ (third portfolio). Under the additional dependence scenario, the bivariate

marginals F2 j−1,2 j of the risk vector have Pareto copula with γ = 1.5. For the computation of each reduced bound we set N = 5.0e04, ǫ = 10−3.

α VaR
α
(L+) VaRr

α
(L+) VaR+α(L+) VaRα(L

Π,+) VaR
r

α(L
+) VaRα(L

+)

0.99 1.78 × 105 2.26 × 105 5.14 × 105 7.08 × 105 2.06 × 106 2.56 × 106

0.995 4.68 × 105 5.36 × 105 1.22 × 106 1.68 × 106 4.82 × 106 5.96 × 106

0.999 4.38 × 106 4.72 × 106 9.33 × 106 1.28 × 107 3.56 × 107 4.34 × 107

Table 7: Estimates for VaRα(L+) for a random vector of d = 8 GPD-distributed risks having the parameters in Table 2 and different dependence assumptions,

i.e. (from left to right) best-case dependence, best-case under additional information, comonotonicity, independence, worst-case under additional information,

worst-case dependence. Under the additional dependence scenarios, the random losses L2 j−1,2 j of the risk vector are assumed to be independent. Each estimate of

VaRr
α(L+) and VaR

r

α(L+) in this table has been obtained in 2.5 hours via the RA by setting N = 105 and ǫ = 10−1.

Worst-case dependence structures for the problems (27) are

in general not available. However, some approximation results

given in Embrechts and Puccetti (2010a, Section 5) indicate that

they still contain a completely mixable component.

Our final message here is that additional constraints on the

risk vector (L1, . . . , Ld)′ like positive or higher dimensional in-

formation knowledge added on top of the knowledge of the

marginals will not help to avoid completely mixable depen-

dence structures like the one illustrated in Figures 1, 3 and Ta-

ble 1. Completely mixable dependence structures will always

arise from (un)constrained optimisation problems having VaR

as objective function.
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