
Model Universes with Spherical Symmetry. 

J .  L. SY~GE (Dublin)(*)  

In honour of Professor Beniamino SEGR]~. 

S u m m a r y . -  Spherically symmetric universes are defined, and spl, erically symmetric solutions 
o] Einstein's  field equations in vacuo are explored in terms o] suitable coordinates. The 
Kruskal  metric is thus obtained in a systematic way, with possibilities of generalisation. 

1.  - I n t r o d u c t i o n .  

The fo rmula  

(1.1) 

where 

(1.2) 

q~ = (1 - -  2m/r )  -~ dr 2 ~- r ~" da 2 - -  (1 - -  2fair)  dt °- , 

da ~ = dO" ~- sin-~O d~ 2 , 

is one of the  mos t  famous  in t he  geucral  t h e o r y  of re la t iv i ty .  I t  was ob ta ined  by  

SCRTCARZSCm_~D in 1916 as the  me t r i c  fo rm for the  g r av i t a t i ona l  field outside a 

sphere of mass  m (in appropr i a t e  units).  The me t r i c  tensor  gi5 conta ined  in (1.1) 

is an  exac t  solution of Eins te in ' s  equa t ion  R ~ j =  0. The locus r =  2m is cal led 

the  <( Schwarzsehild s ingular i ty  ~>. Not  long a f t e r  the  fo rm (1.1) appeared ,  the  quest ion 

was ra ised  as to whe ther  this is a real  s ingular i ty .  The discussion proceeded  spo- 

rad ica l ly  for  some fo r ty  years  un t i l  f inally K~USKAL (1) showed how to r emove  the  

appa ren t  s ingular i ty  b y  a s imple t r an s fo rma t ion  (r, t ) ~ ( u ,  v). K r u s k a l ' s  m e t h o d  

is open to  g methodologica l  cr i t ic ism:  he uses the  (( b a d  ~> coordinates  (r, t) to ob ta in  

the  <~good ~> coordinates  (u, v). I n  the  p resen t  p a p e r  I s t a r t  wi th  <~ good ~> coor- 

d inates  and  inves t iga te  the  v a c u u m  field equat ions  sys temat ica l ly .  

The first s tep is to define wha t  we m e a n  b y  spher ical ly  s y m m e t r i c  space- t ime Vd. 

I t ake  i t  to  be  the  p roduc t  of a un i t  sphere  $2 and  a 2-space U2 in the  sense t h a t  

an even t  (or point)  of V4 corresponds to  an ordered  pa i r  of points ,  one on S2 and  
one on U~. On S~ I t ake  the  usual  po la r  coordinates  (0, ~) and  the  me t r i c  da  2 as 

(*) Entrata in Redazione il 16 marzo 1973. 
(1) ~[. D. KRUSKAL, Phys. Rev., 119 (1960), p. 1743, where references will be found to 

earlier work by others. See also S. MAvRIJ)]~s, L'univers relativiste, Masson (Paris, 1973), 
p. 338. 
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in (1.2). For the metric of V4 I take the sum of the metric of U~ and the metric 
of S~, multiplied by a positive factor which is a function of position in U~. To get 
the correct signature ( + 2 )  for the metric of V~, the metric of Uz must be inde- 
finite. Thus null lines exist in U2: let us take their equations to be u = const, v--~ const. 
All this sums up to the following statement: 

The most general metric form /or spherically symmetric space-time is 

(i.3) q~ -= - - 2 / d u d e  + r~ da ~, 

where f and r are functions of (u, v). 

Note  that ,  in this approach to spherical symmetry, no mention is made of 
centre. Except where f or r vanishes, the signatltre is correct. The minas sign in 
front of the first term is of no p~rticular sigaifieanc% bu~ merely a notational con- 
venience. Note tha t  r is not a coordinate, but some hmetion of the coordinates (u, v); 
it occurs only in the form r 2, and so there is no metrical distinction between positive 
and negative values of r. 

The coordinates (u, 0, ~0, v) m~y be c~lled null coordinates. I t  is convenient to 
have an indieiat notation for them: 

(1.4) x l - ~ u ,  x ~ : O ,  x 3 ~ ,  x d ~ v .  

For brevity I put sin0 ~-s, cos0----e. 
I t  is doubtful whether anyone really understands what a singularity in space- 

time means. One tends to proceed formally, examining for zeros and infinities the 
coefficients in the metric form, and, in particular, the determinant formed from 
them. Thus we are to treat  with respect events at which the functions/(u,  v) and 
r(u, v) vanish or become infinite. But we must not jump to conclusions about such 
events, as the following elementary case shows. 

Consider ~inkowskian space-time with metric form 

(1.5) q5 ~ dx 2 + dy ~. + dz~_  dt 2. 

Transforming the spatial part  to spherical polars relative to x = y---- z ~ 0, we get 

(1.6) q5 _~ d r  ~ + r 2 da~  _ d t  2. 

~aking the transformation 

(1.7) q~ -~ ½(r + t) , v -~ ½(r--t)  , 

we arrive at 

(1.8) q~-~ 4dude  + r2da 2, r ~  u + v .  
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This is a pa r t i cu la r  case of (1.3). I t  would be absu rd  to a t t a ch  impor tance  to the  
locus r : 0 .  There  are  no singulari t ies in ~ i n k o w s k i a n  space-t ime,  and  r =  0 is 

me re l y  a t imel ike  geodesic. 

2.  - S o m e  f o r m u l a e .  

I t  is convea ien t  to wr i te  out  some fo rmulae  for  the  me t r i c  

(2.1) ¢ =  - -2 /dude  + r2da 

as in (1.3), w i thou t  res t r ic t ion  on the  funct ions ](u, v), r(u, v) except  t h a t  ne i ther  

vanishes and  the  indica ted  der iva t ives  exist.  Indices  are as in (1.4), and the  sub- 
scripts  1 arid 4 a t t a c h e d  to  ] and  r indicate  pa r t i a l  de r iva t ives  wi th  respect  to x 1 

and  $~ (equivalent ly ,  u and  v). Note  the  s y m m e t r y  of the  fo rmulae  wi th  respec t  

to in te rchange  of x 1 and  x 4. 

(2.2) 

Metric tensor and its inverse. 

Conneotion. 

(2.3) 

Riemann tensor (~). 

(2.4) 

g14 :  --)¢ , g22= r2~ g~a ~ r~8~  

g14= _] -1  gin= r-~ gin= r-2s-L 

r~ ,  = A f t ,  r &  = r r , / f  , F ~  = rr4s~ll , 

r &  = e / s ,  _r~, = r ,  l r ,  I ' ~ ,  = r ,  l r ,  

IT142 2 : r r l f f  , -iris3 = r r l  S2/~ ' 1~:4 = 14/I" 

-~1414 : - - / 1 4  + I l l 4 / /  , 

"~a131 = S2~1212 

R~,~, = r ( - r .  + r d ,  ll) , 

R1212 = ~ ' ( - -  r11~-  r l / 1 / ~ )  , 

~8434 ~ 82R2424 ° 

(1) In respect to signs, the Riemann tensor and the Ricei tensor are defined us in J. L. 
SeNGi, t~elativity: the General Theory, North-Holland, Amsterdam 1964, pp. 15-17. 

16 - AvtnaZi t~t Ma~ematica 
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Riee i  tensor. 

Rll =2r-~(r~l--rl/~Y), 

(2.5) 
R .  = 2 r - ~ ( r . -  r d U / ) ,  

n .  = / - ~ ( I . - A / U / )  + 2 r . f r  , 

In  te rms of the  Riemann tensor,  the  components  of the Ricei tensor  are as 

follows : 

(2.6) 

Rl4 ~---]-lRl4l~ + 2r-2R12~4 • 

3. - The v a c u u m  field w i th  spherical  s y m m e t r y .  

We are now to solve Einste in 's  fiel4 equations in vacuo,  R~j----0. B y  (2.5) there  
are  four  equat ions:  

/r11-- rl/1 = 0 , 

I t , - -  r , l ,  = 0 , 
(3.1) 

r / / .  + 2 / % ~ - r / : / ~  = o . 

The first two of these tell  us t h a t  

(3.2) ] = 2 B ( x * ) r l  , ] = 2A(x~) r~, 

the functions A and B being arbitrary. We can now write the third of (3.1) in the 

a l te rna t ive  forms 

(3.3) (rB ~- rr, h : 0 , ( rA ~- rrl)a = O, 

and so 

(3.4) r4 = - - B  + G/r , rl = - - A  + )~/r , 

the funct ions J~'(x 4) and G(x 4) being a rb i t ra ry .  Bu t  the  consistency of these two 
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equat ions requires  F r 4 =  Grl. Comparing with (3.2), we have  F / A =  G/B. Here  
the lef t  hand  side is a funct ion  of x ~ only and the r ight  hand  side a funct ion of x 4 

only. Thus a constant  h exists so t h a t  17=  hA, G =  hB, and we have for r the  
consistent  par t ia l  differential  equat ions 

(3.5) r ~ = - - n ( x l ) ( 1 - - k / r )  , r , = - - B ( x ~ ) ( 1 - - h / r ) ;  

if r has been found to satisfy these,  f is given b y  the  equivalent  erxpressions 

(3.6) ] ---- 2A(x ~) r~ = 2B(x 4) r~ = ~ 2AB(1 - -  h/r).  

I t  is easy  to ver i fy  by  direct  e~lculation tha t  (3.5) and (3.6) toge ther  imply  the  
last  of (3.1) : thus  the  problem of the  spherical ly symmetr ic  vacuum field is reduced 

to the  solution of (3.5) and (3.6), the  functions A and B being arb i t rary .  
I f  h = 0, subst i tu t ion f rom (3.5) and (3.6) in (2.4) reduces the ]~iemann tensor  

to zero, so t ha t  space-t ime is fiat. Le t  us then  assume k # 0, and define 

(3.7) g -= r /h ,  ¢(x ~) = A / k ,  D(x 4) = B / k .  

The basic equations become 

(3.8) Z ~ = - - C ( 1 - - Z - ~ )  , Z 4 - ~ - - D ( 1 - - Z - ~ )  , 

and 

(3.9) ] ---- 2k2CZ~ = 2k~DZ1 . 

The indicial no ta t ion  is somewhat  clumsy here,  so le t  us change buck f rom 

($~, x ~) to  (u, v). At  the  same t ime we m a y  combine (3.8) into the  single equat ion 

Z d Z / ( Z - -  1 )  = - -  ¢(u) d u - -  D(v) dv , ( 3 . 1 o )  

while (3.9) reads 

(3.11) / = 2k~e(u)z~ = 2 k ~ D ( v ) g ~ ,  

the  subscripts u, v indicat ing par t ia l  derivatives.  

4. - The essential  funct ional  relationship. 

Let  a real  variable H be re la ted to Z b y  the  differential  equat ion 

(4.1) dH/H = Z d Z / ( Z - -  1) .  
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All solutions of this equation are comprised in the functional relationship 

(4.2) H(Z, b) = b(g--  1) e z ,  

where b is a real constant. Some of thse curves are sketched in l~ig. 1. By (4.2) Z is 
a function of H and b, Z =Z(H,  b), but not always single-va]ued, as is evident 

from Fig. 1. 

H 

b=l 

1 
1 b = ~  

I I I 

2 

1 
b - -  2 

b = - - : l .  

Z 

Fig. 1. - Graphs of the (H, Z) functional relationship. In  the later argument, only the 
curve for b---- 1 is used. 
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I f  we subs t i tu te  f rom (4.1) in (3.10), we get  

(4.3) d H / H  = ~ C(u) d u - - D ( v ) d r  , 

and this tells us t ha t  H is the  product  of a funct ion of u by  a funct ion of v, say 

(4.4) H = U(u) V(v) . 

Then 

(4.5) - -C(u)  = H . / H  = U ' / U ,  - - D ( v )  = H~/H = V ' / V .  

By  (4.1) we have 

(4.6) H , J H  = Z ( Z - -  1)-1Z~, l t+/H = Z ( Z - -  1)-lZ+, 

z .  = z - ~ ( z - 1 ) H j ~ ,  z~ = z - ~ ( z - - 1 ) H ~ / R .  

As for the  met r ic  form (2.1), t h a t  is, 

(4.7) ~ = -  2 / d u d v  + r~da 2, 

we have  by  (3.7) 

(4.8) r ~ = k2Z ~, 

where Z is de te rmined  as a funct ion of H (and b) b y  (4.2) and H is as in (4.4), so 
t ha t  r 2 comes out  as a funct ion of (u, v). Fo r  / we have (3.11), and we can wri te  i t  

in a number  of equivalent  forms as a funct ion of (u, v). I f  we subs t i tu te  for C(u) 

f rom (4.5) and for Z,  f rom (4.6), we get  

(4.9) / ---- - -  2k '  Z-~( Z - -  1) H : H , / H  ~. 

Then the metr ic  (4.7) reads 

(4.10) q5 = k2[4Z-I(Z - 1 )H~t t~H-2dudv  + Z2da2] . 

There  are two points of in teres t  to  note  here.  Firs t ,  the  constant  k which is 

responsible for the  curva tu re  of our space-time, occurs only in the form k S, so t h a t  
the  sign of k does not  affect the  metr ic .  Second, k 2 appears  as a fac tor  mul t iplying 

quadrat ic  form, and we m a y  p u t  k ~ = 1  wi thout  loss of genera l i ty ;  i t  mere ly  
amotmts  to  ~ change of units,  or, equivalent ly ,  to mul t ip ly ing all p roper  t imes by  
the  same constant  factor.  

Le t  us then  pu t  k 2 = 1 ,  so t h a t  hencefor th  the  metr ic  reads 

(4.11) ~b = - - 2 / d u d v  + ~ d a  ~, 
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where 

(4.12) / =-- 2Z<(Z --  I)H.11j~[-~. 

To sum up:  The most general vacuum/ield with spherical symmetry is constructed 

as/ot~ows: 

i) Choose two ]unctions U(u), V(v) and dc]ine t t  as i~ (&4). 

ii) Choose a constant b and de/ine Z as a/unct ion o/ t t  (and hence o/ u and v) 
by inverting the /unetional equation (4.2). 

iii) Express / by (4.12) as a /unction o/ u and v. 

Although the  constant  b came in na tu ra l ly  as a constant  of integration for the 

differential  equat ion (47.1), i t  appears r edundan t  ill the  sense t h a t  i t  can be absorbed 
into 11. Aecordir, gly I shall  in fu tu re  take  b = 1, so t h a t  the (11, Z) relat ionship 
(4.2) is now simply 

(4.~3) H = ( z - - ~ ) ~  ~, d ~ / d Z  = z e £  

The graph is now the curve labelled b = 1 ,  and i t  is impor t an t  to note  lha t  it  

m a y  be thought  of as having two branches.  In  t h e  positive branch  Z runs f rom 0 
to + c~, and H f rom - -1  to  ~- c~. I a  the  negative branch  Z rllns f rom - - c ~  to 0, 
and g from 0 to --I. Note the important inequality 

(4.14) //>--i. 

5. - The  K r u s k a l  f o r m .  

Following the  above  scheme, let  us choose 

(5.1) U(u) : u ,  V(v) : v .  

Then by  (4.4) 

(5.2) H : u v ,  H,H~ ~ H .  

By (4.13) Z is to be de te rmined  as a funct ion of uv by the  equat ion 

(5.3) (Z- -  1) e z = u v .  

But  now an impor tan t  quest ion arises: which branch o/ the (H, Z) curve are we to 
use? Let  us examine e~eh in turn .  Bu t  first note  tha t ,  for ei ther,  (4.12) gives 

(5.4) / =- 2Z-~(Z- I)/H .... 2Z -~ e --z. 
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Note also that, since the field equations R~ ~0 ha~e been sutisfied, it follows 
from (2.6) that there is essentially only one surviving components of the Riemann 
tensor, n~mely /~2~. In terms of i~ we have (since k-~1~ r ~-Z) 

(5.5) 

Substituting ] from (5.4) in (2.4), we get 

(5.6) R1224 = Z  -~ e - z .  

Z =  0, 

V 

H : u v = O ~  Z-----1 

~ u v  O, Z 1 u 

Fig. 2. - The relevant domain for Kruskal I. The arrows indicate consistent past-future 
directions; they migh~ all be reversed. 
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I t  is convenient  to  display the  coordinates (u, v) as rec tangular  Cartesian co- 
ordinates  in a plane. The null  lines ia  U~ then  appear  us the  s t ra ight  lines ~ = const, 

v----coast. These nnll  lines axe null  geodesics in U~ and also in Vd. B u t  of course 
t h e y  do not  represent  all na i l  geodesics in Vd~we m a y  call t h e m radial nullgeodesies,  

I f  we use the  positive branch  of the  (H, Z) curve,  we have  

(5.7) H-~- uv>- - l  . 

Thus the  domain D in which we are to operate  is the  p a r t  of the  (u, v) plane which 

contains the  origin and is bounded  b y  the  two branches  of the  hyperbo la  uv -~--1 
(Fig. 2). This is the  Kruskal universe. I t  looks a l i t t le  different,  being t u rn e d  
th rough  45 °, because he pre fe r red  to use (uq-v, u--v) where I have  used (u, v). 
The arrows in Fig. 2 indicate  consistent pas t - fu ture  directions; these are not  deter-  

mined b y  the  metr ic  and might  be reversed.  The (( Schwarzsehild s ingular i ty  }> is 
represen ted  b y  the  coordinate  axes of q~ and v, and on them H ----0, Z = 1 .  How 

smooth are Z and / on those axes? :By differentiat ing (5.3) and (5.4) with respect  
to ~ and v, we find t ha t  der ivat ives  of all orders exist.  I f  the  problem of spherical 

t t  --~ u v ~ -- 1] 

Z=0, /=+/ 

H - = u v = O ,  Z = - -  

/ = + o o  

0 

Fig. 3. - The relevant domain for Kruskal II, which is the field of a particle of negative 
mass. The arrows indicate consistent past-future directions; they might all be reversed. 
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s y m m e t r y  had  been  a t t acked  originally in this way, i t  would never  have occurred 

to anyone to th ink  of a s ingular i ty  here.  This does not  mean  t h a t  the  Kruskal ,  
universe is wi thout  i ts mysteries ,  bu t  these are associated with the  hyperbola ,  
u v = - - l ,  no t  with  the  coordinate  axes u v = O .  

What  shall we find if we use the  negative branch  of the  (H, Z) curve  ? For  i t  

we have  

(5.8) - - 1  < H =  u v <  0 .  

Thus the  domain D in which we can opera te  is bounded  b y  one branch of the  

hyperbola  uv = - - 1  and b y  a pa i r  of coordinate  axes as shown in Fig. 3. There  
are of course two such domains, bu t  i t  suffices to consider the  one shown, namely  
the  one for which u <  0, v > 0. As in Fig. 2, the  arrows indicate  consistent  past- 

fu tu re  directions, and might  be reversed.  Note  tha t ,  whereas in the  Kruska l  universe,  
the  singularit ies u v - - - - -  1 were spaeelike, now uv = -  l is timelike, while the  axes 

are null .  
For  reference  purposes,  I shall call  the  Kruska l  universe /£1 and this o ther  

universe K2. I shall now show t h a t  K~ is something famil iar  bu t  usual ly re jec ted  

in physics. The simplest th ing to  do is to  resor t  to those coordinates which have 
caused so much confusion in regard  to the  Sehwarzschild singulari ty.  We have 

(5.9) 

Define v by  

(5.10) 

then 

(5.10) 

F r o m  (5.9) and (5.11) 

vdu  + udv  = d E  : H Z ( Z - - 1 ) - l d Z  , 

dv/v + du/u = Z ( Z - - 1 ) - l  dZ . 

v = l n ( - v / u ) ;  

dr~v-- d~lu = dv.  

(5.12) 4 du dv/H : Z~(Z - -  I) -~ dZ ~ - -  dv ~. 

By  (5.4) the first pa r t  of the metr ic  form is 

(5.13) - -  2]  d u d v  : 4 Z  -1  e - Z  d u d v  = Z -1  e - Z H [ Z 2 ( Z - -  1) -2dZ 2 _  dT2] 

= z - ~ ( z  - 1 ) [ z 2 ( z  - -  1 )  -~ d z  ~ - d ~  ~] 

---- ( 1  - -  Z - z )  - ~ d Z  ~ - -  ( 1  - -  Z - z  ) d ~  ~ . 

The complete metr ic  form is t h e n  

(5.14) • = (1 - - Z - 1 ) - ~ d Z  2 + Z2da 2 -  (1 - - Z  -1) d~ 2. 
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Comparing this with the familiar Schw~rzschild metric (1.1), we recognisc that  
this K2 universe is simple the ]ield of a point-particle o/negative mass, since in (5.14) 
Z is negative. 

To sum up: h~ving chosen the functions U and V as in (5.1), we get the Krusk~l 
universe K~ by using the positi~-e bra.nch of the (H, Z) curve, ~nd the field K2 of 
a negative mass by ¢~sing the negative br~neh. I t  is interesting to note that, although 
the constant l~ introduced after (3.4), might have seemed to be a mass-factor 
(positive or negative)~ this constant did not in fact distinguish between the two 
universes. In (4.10) i~ appeared only in the fm'm k ~ and was eliminated by change 
of scale. 

6. - Further  deve lopments .  

In the metric (4.10) the two functions U(n) and V(v) were arbitrary. To get 
the universes K1 and K 2 those functions were chosen as in (5.1). By using other 
functions, can we create other spherically symmetric universes worthy of steady? 

Let us collect the essential formulae from Sect. 4: 

H = U(u) 7 ( v ) ,  H = ( z - -  1) J ,  

(6.1) qP = - - 2 f d u d v  ~- ZZda ~, 

] : - - 2 Z - I ( Z - - 1 ) H ~ H ~ H  -2. 

The exploration of any such universe call for the following steps: 

i) Find the relevant (u, v) domain under the condition H~>--I. 

ii) Decide which branch of the (H', Z) curve to use, taking b----1 in Fig. 1. 

iii) Examine the behaviour of the arlene pgrameter on the lines u----eonst, 
v ~-con.st, these being radial null geodesics. 

iv) Examine the behaviour of proper time on timetike r~dial geodesics. 

v) Extend iii) to all null geodesics in V~. 

vi) Extend iv) to all timelike geodesics in V~. 

In dealing with geodesics, it is best not use the T"s of (2.3). We have the 
Lagrangian 

(6.2) L ~--2/u'v '-]-  Z2(0'2-~ sin20q/2) , 

where the primes indicate derivatives with respect to an ~ffine parameter for 
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null  geodesic and wi th  respect  to proper  t ime  for  a t imel ike geodesic. Confilfing 
a t t en t ion  to radial  geodesics, we have the  simple Lagrangian 

(6 .3)  L = - -  2 / u ' v ' ,  

and the equation~ of motion 

(6.4) ( /v ') ' -- /~u'v '  = 0 ,  (/u') '-- /~u'v'  =O , 

with the  integra.1 

(6 .5)  2 l u ' v '  = ~ ,  

where s = 0 for a null  geodesic, s = 1 for a t imel ike  geodesic. 
The line v =con.s t  is a radial  null  geodesic. The first of (6.4) is satisfied and 

the second gives 

(6.6) /u '  = f u n c t i o n  of v .  

Hence,  if dw is an e lement  of an affine pa ramete r ,  

(6.7) dw = C(v) /(u, v ) d u ,  

and w is obta ined as an in tegral  which m a y  converge or diverge as the  l imits of 

in tegra t io~ t e n d  to  infini ty or to  a bounda ry  of the  domain D in the  (u, v) plane. 

In  (6.7) the  fuuct ion  C(v) is a rb i t ra ry .  
As an i l lus t ra t ion of at  least  the  first steps, consider the universe for  which 

U(u)  = e ~, V (v )  = e', 1 t  = e~+ o, (6 .8)  

so t ha t  

(6.9) 

Since H is posit ive for all finite values of (u, v), the  l imi ta t ion H > - - I  does 
not  opera te ;  the  domain D is the  whole of the (u, v) plane. We have to choose the  
posi t ive branch  of the  (H, Z) curve  in Fig. 1, and moreover  only the  upper  par t ,  for 
which H > 0, Z > 1. =Now Z is given us a funct ion  of (u-J-v) b y  the  equa t ion  

(6.10) 

and, by  (4.12), 

(6.11) 

e:++ = (Z  - -  1) e z ,  

/ = - 2 z - 1 ( z - 1 ) .  

L e t  us now move  along t he  radial  null  geodesic v = c o n s t ,  and apply  (6.7) to  see 

how the  affine p a r a m e t e r  changes. F r o m  (6.10) we have  

(6.12) eu+'d~ =:Zez d z  , du - - Z ( Z - - 1 ) - l d Z  , 
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and so, by  (6.7), (6.11) and  (6.12), 

(6.13) dw = - -  2C(v) d Z .  

Since an affine p a r a m e t e r  is a lways unde te rmined  to wi th in  a l inear  t r ans fo rmat ion ,  

we m a y  wr i te  

( 6 . 1 4 )  w ---- Z .  

Proceeding t hen  f rom u --=--co to u = ~- co, we see t h a t  w increases monoton-  

ical ly  f rom u n i t y  to ~- co. The universe  is i ncomple te  in the  sense tha t ,  in coming 

f rom u = ~ co to a n y  finite va lue  of u, w increases b y  a finite amoun t .  The same 

is t r u e  for  u = c o n s t .  

7.  - C a n o n i c a l  n u l l  c o o r d i n a t e s .  

The resul ts  of the  preceding  section m a y  appea r  somewha t  vacuous,  since all 

t h a t  was done was to push  the  s ingular i ty  to inf ini ty b y  the  monoton ic  t ransfor -  

ma t i on  (6.8). However ,  before  t h a t  was done, a useful  fo rmula  (6.7) was ob ta ined  

for  the  affine p a r a m e t e r  on a nul l  line v = coast ,  wi th  of course a s imilar  fo rmula  
for a nul l  l ine ~ = const.  

Le t  us look a t  the  choice of coordinates  in V4. As for (0, ~), t h e y  are the  usual  

polar  angles on a sphere,  and  we know how to t r a n s f o r m  t h e m ;  all such sys tems of 
polar  coordinates  are equal ly  good. 

B u t  in the  case of (~, v), all  t h a t  was demanded  was t h a t  the  null  lines in U~ 

should have  the  equat ions  @ ---- const,  v ---- const. Given the  null  lines as geometr ica l  

objects,  t h a t  leaves considerable  f reedom in the  choice of (u, v). I shall  now suggest 

a way  in which canonical  coordinates  (u, v) m a y  be assigned. 

Assume in U2 the  existence of two famil ies  of nul l  lines, M and N. Assume 

f a r t h e r  t h a t  no two m e m b e r s  of M intersect ,  and  no two m e m b e r s  of N intersect .  

Bu t  each m e m b e r  of M intersects  all  m e m b e r s  of N, and  each m e m b e r  of N inter-  

sects all m em ber s  of M. These proper t ies  m a y  only hold locally,  b u t  for expos i tory  

purposes  t hey  will be  assumed in general .  
Le t  Mo be a m e m b e r  of M and 2Vo a m e m b e r  of iV. Le t  Mo and 2/o in tersec t  a t  P .  

Le t  u be an affine p a r a m e t e r  on Mo and v an affine p a r a m e t e r  on No, chosen so t h a t  

u ----v ----0 a t  P .  To a n y  po in t  Q on U~ assign coordinates  (u, v) as follows. Through  

Q draw the  null  lines, Mq, NQ, of the  two families.  Then N~ intersects  Mo at  a 

poin t  to which a coordinate  u has a l ready  been assigned and  MQ intersects  N0 at  

a poin t  to  which a coordinate  v has a l r eady  been  assigned (Fig. 4). Le t  us assign 
to Q those coordinates  (u, v). I t  is clear  t h a t  the  null  lines in M and N have  the  
equat ions v = coast ,  u = const.  I shall  call these canonical null coordinates. Their  
ass ignment  is of course not  unique:  first, we have  chosen Mo and 1Vo f rom the  
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respec t ive  families,  and,  second, an affine p a r a m e t e r  is a lways u n d e t e r m i n e d  to 

wi th in  ~ l inear  t r ans fo rmat ion .  Bu t  this  seems to  be  as fa r  as we can go to  define 

canonical  coordinates .  

P 

Q 
MQ 

Mo 

Fig. 4. - Canonical null coordinates in U 2. 

L e t  us now turn  to the  fo rmulae  (6.1), no t ing  in pa r t i cu l a r  t h a t  

(7.1) / /~ -  U(u) F(v). 

I shall  now show t h a t  i/ (u, v) are eanonieal coordinates as above, the functions U(u), 
V(v) cannot be arbitrarily chosen, bq~t are determined to within a ]ew arbitrary constants. 
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Consider the  null  line Mo; u is an affine p a r a m e t e r  on it, and  v ----0 on it. Thus 

in (6.7) dw = du, and so f(u, 0) is independen t  of u. Using the  same a rgumen t  

for No, we see t h a t  the  funct ion ](u, v) mus t  be such t h a t  

(7.2) f(u, O) = C ,  

where C and D are constants .  

Now b y  (6.1), wi th  H as in (7.1), 

(7.3) 

/(O, v) = D ,  

/(u, v) = - - 2 z - l ( z - -  1)HuHjt~ ~ 

= - -  2 z - l ( z - -  1) U' V'/H 

- -  2 Z  - l e  - z U ' V '  

where U'--=dU/du, V / = d V / d v .  Here  we have used the  (H, Z) re la t ionship 

(7.4)  t / =  ( g  - -  1) e ~. 

Let  us decide to use the  pos i t ive  or nega t ive  branch .  Then (7.4) has a unique 

inverse  

(7 .5)  g = z ( / ~ ) .  

Define 

(7.6) P(u) = U(u) V(O), Q(v) - -  U(O) V(v) .  

Then  

(7.7) Z = Z(P) on v = 0 ,  Z = Z(Q) on u : 0 ,  

and  hence b y  (7.2) and (7.3) 

(7.8) - -  2[Z(P) exp (Z(P)) ]-I[V'(O)/V(O)] dP/du = C,  

and ano ther  equa t ion  wi th  P, C replaced b y  Q, D. On car ry ing  out  the  integrat ions,  

we have  the  following resul t :  

I] we use canonical null coordinates (u, v) in the 2-space U2, so that u and v are 

amine parameters on the null geodesics v = 0 and u =-0 respectively, with u = v----0 

at the origin, and if  we assign values to the constants 

(7.9) U(0), V(0), U'(O), V'(O), C, D,  
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then the ]unctions U(u), V(v) in (7.1) are determined by the ]ormulae 

(7.1o) 

V(u)V(O) 

- 2[v'(o)/v(o)] f [Z(x)exp (z(x))]-i dx = Cu, 
~(o)v(o) 

-2[~'(o)/~;(o)] 
y(o)v(+) 

f [z(~)e~p (z(~))]-ld~ = D r ,  
vlo)V(o) 

the ]unction Z being as i~ (7.5). 


