Model Universes with Spherical Symmetry.
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In honour of Professor Beniamino SEGRE.

Summary. — Spherically symmetric universes are defined, and spherically symmetric solutions
of Binstein’s field equations in vacuo are explored in terms of suilable coordinates. The
Kruskal metric is thus oblained in a systematic way, with possibilities of gemeralisation.

1. — Introduction.

The formula

(1.1) D= (1—2m[r)" dr* 4 r*de®— (1 —2m/r)di?,
where _
(1.2) do? = df? + sin%0 de?,

is one of the most famous in the general theory of relativity. It was obtained by
SCHWARZSCHILD in 1916 as the metric form for the gravitational field outside a
sphere of mass m (in appropriate units). The metric tensor g,; contained in (1.1)
is an exact solution of Einstein’s equation R;;=0. The locus #=2m is called
the «Schwarzschild singularity ». Not long after the form (1.1) appeared, the question
was raised as to whether this is a real singularity. The discussion proceeded spo-
radically for some forty years until finally KRUSKAL (1) showed how to remove the
apparent singularity by a simple transformation (r,t) — (%, v). Kruskal’s method
is open to a methodological eriticism: he uses the «bad » coordinates (r, t) to obtain
the «good » coordinates (4, v). In the present paper I start with « good» coor-
dinates and investigate the vacuum field equations systematically.

The first step is to define what we mean by spherically symmetric space-time V.
I take it to be the product of a unit sphere S, and a 2-space U, in the sense that
an event (or point) of ¥, corresponds to an ordered pair of points, one on S, and
one on U,. On §, I take the usual polar coordinates (0, ¢) and the metric do® as

(*} Entrata in Redazione il 16 marzo 1973.

(1) M. D. Krusgar, Phys. Rev., 119 (1960), p. 1743, where references will be found to
carlier work by others. See also S. Mavripks, L'univers relativiste, Masson (Paris, 1973),
p. 338.
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in (1.2). For the metric of V, I take the sum of the metric of U, and the metric
of §,, multiplied by a positive factor which is a funection of position in U,. To get
the correct signature (- 2) for the metric of V,, the metric of U, must be inde-
finite. Thus nulllines exist in U,: let us take their equations to be #==const, v=const.
All this sums up to the following statement:

The most general metric form for spherically symmetric space-time is
(1.3) D= —2fdudv + r*do?,

where f and v are functions of (u, v).

Note that, in this approach to spherical symmetry, no mention is made of a
centre. Except where f or r vanishes, the signature is correct. The minus sign in
front of the first term is of no particular significance, but merely a notational con-
venience. Note that r is not a coordinate, but some funetion of the coordinates (u, v);
it occurs only in the form 72, and so there is no metrical distinction between positive
and negative values of 7.

The coordinates (u,0, ¢, v) may be called null coordinates. It is convenient to
have an indicial notation for them:

(1.4) =, =40, 3= =0,
)

For brevity I put sinf =g, cosd =e¢.

It is doubtful whether anyone really understands what a singularity in space-
time means. One tends to proceed formally, examining for zeros and infinities the
coefficients in the metric form, and, in particular, the determinant formed from
them. Thus we are to treat with respect events at which the functions f(w, v) and
r(u, v) vanish or become infinite. But we must not jump to conclusions about such
events, as the following elementary case shows.

Consider Minkowskian space-time with metric form

(1.5) D = dx® I dy? + d=*—dt2.
Transforming the spatial part to spherical polars relative to #=y=2=0, we get
(1.6) @D = dr® - r*do?—dta.

Making the transformation

(1.7) u=430r+1), o=3}r—1),
we arrive ab

(1.8) D=4dudv + r*de?, r=u-+v,
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This is a particular case of (1.3). It would be absurd to attach importance to the
locus » =0. There are no singularities in Minkowskian space-time, and »=0 is
merely a timelike geodesic.

2. —~ Some formulae,
It is convenient to write out some formulae for the metric
{2.1) b= —2fdudv + r2*do

a8 in (1.3), without restriction on the functions f(u, v), r(u, v) except that neither
vanishes and the indieated derivatives exist. Indices are as in (1.4), and the sub-
scripts 1 and 4 attached to f and r indicate partial derivatives with respect to !
and x4 (equivalently, « and v). Note the symmetry of the formulae with respect
to interchange of a' and .

Metric tensor and its inverse.

Gu=—/, G2z = 1% G35 = 128%
(2.2)
git= —f-1, g =12, go =252,
Connection.
I =Hhif, Iy, =rrff, Iy =1rry8%f,
I =—sc, I}, =mnfr, I3, =ryr,
(2.3)
f§3=0/3a I’:1:rl/7'7 P334:"'4/7'!

‘F;z =rnff, I'::a =rr8¥f, F:4 = faff .

Riemann tensor (1),

Bogps = 12821+ 2r7y/f) ; Ry = 8§Bigye, Bigp=r(—ru-+n fl/’.f) s
(2.4) By = —82By Ry =171,
Ruy=—Fu+hL1idf Ry =r(—7au+1afaff) . Rasga =8 "Rogq .

(*) In respect to signs, the Riemann tensor and the Ricei tensor are defined as in J. L.
SYNGE, Relativity: the General Theory, North-Holland, Amsterdam 1964, pp. 15-17.

16 — Annali di Matematica
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Ricet tensor.

Ry =2rYry—nhiff)

Boy =—1—=2f"Mrryy +1174) Byy =Ry, ,
(2.5)

Ry =2r"Yra—rsfaff)

Bi =1 fa—hlff) + 2rufr,

In terms of the Riemann tensor, the components of the Ricei tensor are as
follows:

By =—212R,,
By =—172572Ry5p5— 21 R4 Ry =s°R, ,
By =—2r %R,

By =— Ry + 21 2R, 5, .

3. — The vacuum field with spherical symmetry.

We are now to solve Einstein’s field equations in vacuo, B,;=0. By (2.5) there
are four equations:

frio—mrf =0,

fraa—74fs =0,

f+ 201+ ) =0,

ffra+ 2f*Pa—rf1fs =0
The first two of these tell us that

(8.2) f=2B(@Yr, [=24(x"r,,

the functions A and B being arbitrary. We can now write the third of (3.1) in the
alternative forms

(3.3) (rB +rry)y =0, (rd +1r1)s =0,
and so
(3.4) ry=—DB-+ Gr, r=—A4 4+ F/r,

the funetions F(x') and G{z%) being arbitrary. But the consistency of these two
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equations requires Fr,==6r,. Comparing with (3.2), we have F[A=¢G[B. Here
the left hand gide is a funetion of z* only and the right hand side a function of 24
only. Thus a constant % exists so that F =kA, G =FkB, and we have for r the
consistent partial differential equations

(8.5) r=—A@Y1—k/r), r,=—B@)1—kr);
if 7 has been found to satisfy these, f is given by the equivalent expressions
(3.6) f=24(s%)r, = 2B(x4) r = —24B(1—kjr) .

It is easy to verify by direct caleulation that (3.5) and (3.6) together imply the
last of (3.1): thus the problem of the spherically symmetrie vacuum field is reduced
to the solution of (3.5) and (3.6), the functions 4 and B being arbitrary.

If k=0, substitution from (3.5) and (3.6) in (2.4) reduces the Riemann tensor
to zero, so that space-time is flat. Let us then assume k40, and define

(8.7) Z=vlk, OaY)=Ak, D@)=Bk.

The basic equations become

(3.8} Z,=—0(1—Z, Zy=—D(1—Z"Y),
and
(3.9) f=2k*CZ,=2k*DZ, .

The indicial notation is somewhat elumsy here, so let us change back from
(2%, %) to {u, v). At the same time we may combine (3.8) into the single equation

(3.10) ZAaZ|(Z—1) = —C(uw)du— D(v)dv,
while (3.9) reads

(3.11) f=2k2C(u) Z, = 2k2D(0) Z, ,

the subseripts #, v indicating partial derivatives.

4. — The essential functional relationship.

Let a real variable H be related to Z by the differential equation

(4.1) dH/H = ZdZ|(% —1) .
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All solutions of this equation are comprised in the functional relationship
(4.2) H(Z,b) =bZ—1)¢é",

where b is a real constant. Some of thse curves are sketched in Fig. 1. By (4.2) Z is
a function of H and b, Z =Z(H,b), but not always single-valued, as is evident
from Fig. 1.

bO] et

Fig. 1. —~ Graphs of the (H, Z) functional relationship. In the later argument, only the
curve for b =1 is used.
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If we substitute from (4.1) in (3.10), we get
(4.3) dH|H = — C(u)du— D(v)dv ,

and this tells us that H is the product of a function of » by a function of v, say

(4.4) H=Uw)V®).
Then
(4.5) —Cw)=HH=U|U, —Do)=H/H=V"V.

By (4.1) we have

(4.6) H,H =2(Z—1)4., H[H=2Z-1)Z,,
Zu=Z-YZ—1)H,JH, Z,=Z I—1)H,H.

As for the metric form (2.1), that is,

(4.7) D =—2fdudv 4 r*ds?,
we have by (3.7)
(4.8) r? =k*2?,

where Z is determined as a function of H (and b) by (4.2) and H is as in (4.4), 50
that 2 comes out as a function of (%, v). For f we have (3.11), and we can write it
in a number of equivalent forms as a function of (u,v). If we substitute for C(u)
from (4.5) and for Z, from (4.6), we get

(4.9) f=—2KZ-YZ—1)H H,H?,
Then the metric (4.7) reads
(4.10) D = k421 (Z —1)H H, H-2dudv + Z?*do?] .

There are two points of interest to note here, First, the constant k which is
responsible for the curvature of our space-time, occurs only in the form k2, so that
the sign of & does not affect the metric. Second, %2 appears as a factor multiplying
a quadratic form, and we may put k? =1 without loss of generality; it merely
amounts to a change of units, or, equivalently, to multiplying all proper times by
the same constant factor.

Let us then put k* =1, so that henceforth the metric reads

(4.11) = —2fdudv + Z*do?,
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where
(4.12) f=-2Z"YZ—1)H,H H-2,
To sum up: The most general vacuum field with spherical symmelry is constructed
as follows:
i) Choose two functions Ulw), V(o) ond define H as in (4.4).

ii) Choose a constant b and define Z as o function of H (and hence of u and v)
by inverting the. functional equation (4.2).

iil) Eaxpress f by (4.12) as & function of 4 and v.

Although the constant b eame in naturally as a constant of integration for the
differential equation (4.1), it appears redundant in the sense that it can be absorbed
into H. Accordingly I shall in future take b =1, so that the (H, Z) relationship
(4.2) is now simply

(4.13) H=(Z—1)¢, dH|AZ =Z .

The graph is now the curve labelled b =1, and it is important to note that it
may be thought of as having two branches. In the positive branch Z runs from 0
to 4+ oo, and H from —1 to -+ co. In the negative braneh Z runs from —oo to 0,
and H from 0 to —1. Note the important inequality

(4.14) H>—1.

5. — The Kruskal form.

Following the above scheme, let us choose

(5.1) Ulw) =wu, Vi) =v.
Then by (4.4)
(5.2) H =uv, HH,=H .

By (4.13) Z is to be determined as a function of uv by the equation
(5.3) (Z—1)6% =uv.

But now an important question arises: which bramch of the (H, Z) curve are we to
use? Let us examine each in turn. But first note that, for either, (4.12) gives

(5.4) f=—2Z"YZ—1)[H =—2Z"1¢2,
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Note also that, since the field equations R, =0 have been satisfied, it follows
from (2.6) that there is essentially only one surviving components of the Riemann
tensor, namely Ep,,,. In terms of it we have (since k=1, r =7)

(5.5) Ry =222 R, 50, Ryppy =— 2f1Z%8% R, 5y .
Substituting f from (5.4) in (2.4), we get

{65.6) Rigoy =272 672,

v

H = yp=—1
Z =0,

AN

Fig. 2. — The relevant domain for Kruskal I. The arrows indicate consistent past-future
directions; they might all be reversed.
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It is convenient to display the coordinates (u, v) as rectangular Cartesian co-
ordinates in a plane. The null lines in U, then appear as the straight lines % = const,
v =const. These null lines are null geodesics in U, and also in V,. But of course
they do not represent all null geodesies in V,—we may call them radial null geodesics,

If we use the positive branch of the (H, Z) ecurve, we have

(6.7) He=yv>—1.

Thus the domain D in which we are to operate is the part of the (u,v) plane which
contains the origin and is bounded by the two branches of the nyperbola wy =—1
(Fig. 2). This is the Kruskal universe. It looks a little different, being turned
through 45° because he preferred to use (44 v, u—v) where I have used (u, v).
The arrows in Fig. 2 indicate consistent past-future directions; these are not deter-
mined by the metric and might be reversed. The « Schwarzschild singularity » is
represented by the coordinate axes of % and v, and on them H =0, Z =1. How
smooth are Z and f on those axes? By differentiating (5.3) and (5.4) with respect
to % and », we find that derivatives of all orders exist. If the problem of spherical

H:’N/’UZO’ Z s e 00
f=+ o0

Fig. 3. — The relevant domain for Kruskal II, which is the field of a particle of negative
mass. The arrows indicate consistent pagt-future directions; they might all be reversed.
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symmetry had been attacked originally in this way, it would never have occurred
to anyone to think of a singularity here. This does not mean that the Kruskal,
universe is without its mysteries, but these are associated with the hyperbola,
uv = —1, not with the coordinate axes uwv=0.

What shall we find if we use the negative branch of the (H, Z) curve? For it
we have

(5.8) —1lgH=uv<0.

Thus the domain D in which we can operate is bounded by one branch of the
hyperbola wv=—1 and by a pair of coordinate axes as shown in Fig. 3. There
are of course two such domains, but it suffices to consider the one shown, namely
the one for which #<C0, »>0. As in Fig. 2, the arrows indicate consistent past-
future directions, and might be reversed. Note that, whereas in the Kruskal universe,
the singularities v =—1 were spacelike, now wv = —1 is timelike, while the axes
are null.

For reference purposes, I shall eall the Kruskal universe K, and this other
universe K,. I shall now show that K, is something familiar but usually rejected
in physies. The simplest thing to do is to resort to those coordinates which have
caused so much confusion in regard to the Schwarzschild singularity. We have

(5.9) vdu +udv=dH =HZ(Z—1)"'dZ ,
dvjv + dufu = Z(Z —1)-'dZ .

Define = by

(5.10) T=1In{—o/u);

then

(5.10) dvjv—dufu=dr.

From (5.9) and (5.11)

(5.12) ddudv/H = Z¥Z — 1)-2dZ* —dz°.

By (b.4) the first part of the metrie form is

(5.13) —2ofdudv =4ZYe~Zdudv = Z ‘e ZH[Z*Z —1)"2dZ* — d7*]
=Z"YZ—1)[ZXZ—1)"%aZ* — d+*]
=(1—Z"Y Y4z —(1—Z Y ar

The complete metric form is then

(5.14) @ = (1—Z-1)-1dZ2 - Z2do* — (1 — Z-1) da2.
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Comparing this with the familiar Schwarzschild metric (1.1), we recognise that
this K, universe is simple the field of a point-particle of negative mass, since in (5.14)
Z 18 negative.

To sum up: having chosen the functions U and V as in (5.1), we get the Kruskal
universe K, by using the positive branch of the (H, Z) curve, and the field K, of
a negative mass by using the negative branch. It is interesting to note that, although
the constant k, introduced after (3.4), might have seemed to be a mass-factor
(positive or negative), this constant did not in fact distinguish between the two
universes. In (4.10) it appeared only in the form %2 and was eliminated by change
of scale.

6. — Further developments.

In the metric (4.10) the two functions U(w) and V(v) were arbitrary. To get
the universes K, and K, those functions were chosen as in (5.1). By using other
functions, can we create other spherically symmetric universes worthy of study?

Let us collect the essential formulae from Sect. 4:

H=UwV@®), H=(Z—1)d

(6.1) @ =—2fdudy - Z*do?,
f =—2Z-YZ—1)H,H,H-*

The exploration of any such universe call for the following steps:
i) Find the relevant (w, v) domain under the condition H>—1.
ii) Decide which branch of the (H, Z) curve to use, taking =1 in Fig. 1.

iii) Examine the behaviour of the affine parameter on the lines u = const,
v =const, these heing radial null geodesics.

iv) Examine the behaviour of proper time on timelike radial geodesics.
v) Extend iii) to all null geodesics in V.

vi) Extend iv) to all timelike geodesics in V.

In dealing with geodesics, it is best not use the I's of (2.3). We have the
Lagrangian

(6.2) L =—2fu'v' + 220’2 + sin20g'?) ,

where the primes indicate derivatives with respect to an affine parameter for a
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null geodesic and with respect to proper time for a timelike geodesic. Confining
attention to radial geodesics, we have the sirople Lagrangian

(6.3) L =—2fu'v,

and the equations of motion

(6.4) {(fo'y —fuuw'v =0, (fu'Y —fu'v' =0,
with the integral
(6.5) 2fu'v' =e,

where ¢ =0 for a null geodesic, ¢ =1 for a timelike geodesic.
The line v =const is a radial null geodesic. The first of (6.4) is satisfied and
the second gives

(6.6) fu' =function of v.
Hence, if dw is an element of an affine parameter,
(6.7) dw = 0(v) f(u, v)du ,

and w is obtained as an integral which may converge or diverge as the limits of
integration tend to infinity or to a boundary of the domain D in the (u, v) plane.
In (6.7) the function C(v) is arbitrary.

Ag an illustration of at least the first steps, consider the universe for which

(6.8) Ulu) =e~, V(v) =, H = gvtr,
so that
(6.9) H,—H,=H.

Since H is positive for all finite values of (w,v), the limitation H>-—1 does
not operate; the domain D is the whole of the (u, v) plane. We have to chooge the
positive branch of the (H, Z) curve in Fig. 1, and moreover only the upper part, for
which H >0, Z>1. Now Z is given as a function of (»-4-v) by the equation

(6.10) evtr =(Z —1)é%,
and, by (4.12),
(6.11) f=—22YZ—1).

Let us now move along the radial null geodesic » = const, and apply (6.7) to see
how the affine parameter changes. From (6.10) we have

(6.12) oo du =747,  dw=Z(Z—1)1dZ ,
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and so, by (6.7), (6.11) and (6.12),
(6.13) dw =—20(v)dZ .

Sinee an affine parameter is always undetermined to within a linear transformation,
we may write

(6.14) w=21.

Proceeding then from # =—oo to u =} oo, we see that w increases monoton-
ically from unity to 4 co. The universe is incomplete in the sense that, in coming
from % =— oo to any finite value of %, w increases by a finite amount. The same
is true for # = const.

7. — Canonical null coordinates.

The results of the preceding section may appear somewhat vacuous, since all
that was done was to push the singularity to infinity by the monotonic transfor-
mation (6.8). However, before that was done, a useful formula (6.7) was obtained
for the affine parameter on a null line v =const, with of course a similar formula
for a null line % = const.

Let us look at the choice of coordinates in V,. As for (8, ¢), they are the usual
polar angles on a sphere, and we know how to transform them; all such systems of
polar coordinates are equally good.

But in the case of (u, v), all that was demanded was that the null lines in U,
should have the equations % = const, ¥ =const. Given the null lines as geometrical
obects, that leaves considerable freedom in the choice of (u, #). I shall now suggest
a way in which canonical coordinates (#, v) may be assigned.

Assume in U, the existence of two families of null lines, M and N. Assume
further that no two members of M intersect, and no two members of N intersect.
But each member of M intersects all members of N, and each member of N inter-
sects all members of M. These properties may only hold locally, but for expository
purposes they will be assumed in general,

Let M, be a member of M and N, a member of N. Let M, and N, intersect at P.
Let % be an affine parameter on M, and v an affine parameter on Ny, chosen so that
#%=v =0 at P. To any point @ on U, assign coordinates (u, v) as follows. Through
Q draw the null lines, M,, N, of the two families. Then ¥, intersects M, at &
point to which a coordinate # has already been assigned and M, intersects N, at
a point to which a coordinate v has already been assigned (Fig. 4). Let us assign
to @ those coordinates (u, v). It is clear that the null lines in M and N have the
equations v =const, 4 =const. I shall call these canonical null coordinates. Their
assignment is of course not unique: first, we have chosen M, and N, from the
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respective families, and, second, an affine parameter is always undetermined to
within a linear transformation. But this seems to be as far as we can go to define
canonical coordinates.

No
Ny
AQ
M,
v
P
 ga M,
u

Tig. 4. — Canonical null coordinates in U,.

Let us now turn to the formulae (6.1), noting in particular that
(7.1) H=UwV(v).

1 shall now show that if (u, v) are canonical coordinates as above, the functions U(u),
V(v) cannot be arbitrarily chosen, but are determined to within a few arbitrary constanis.
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Consider the null line M,; % is an affine parameter on it, and v =0 on it. Thus
in (6.7) dw=du, and so f(u, 0) is independent of u. Using the same argument
for N,, we see that the funection f(u, v) must be such that

(7-2) f(u, 0) :O’ f(O, ?J):D’

where ¢ and D are constants.
Now by (6.1), with H as in (7.1),

(7.3) f(u, v) =—2Z-Z —1)H,H,[H*
——27-YZ—1)U'V'|H
—=—92Z-12U' V",

where U'=dUjdu, V/ =dV[dv. Here we have used the (H, Z) relationship
(7.4) H=(Z—1)é.

Tet us decide to use the positive or negative branch. Then (7.4) has a unique
inverse

(7.5) Z=7ZH).

Define

(7.6) Plw) =TUwV(©), Q) =T0)V(@).

Then

(7.7) Z=ZP) onv=0, Z=Z@) onu=0,

and hence by (7.2) and (7.3)
(7.8) —2[Z(P) exp (Z(P)) 7 [V'(0)/V(0)]dP[du= C,

and another equation with P, C replaced by @, D. On carrying out the integrations,
we have the following result:

If we use camonical null coordinates (u, v) in the 2-space U,, so that w and v are
affine parameters on the null geodesics v=0 and u=0 respectively, with u=v=0
at the origin, and if we assign values to the constants

(7.9) U@, v, U(0), V{0, 0,D,
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then the functions Ulu), V(v) in (7.1) are determined by the formulae

vuv(0)
—2[V(0)/V(0)] f [Z(#) exp (Z(2)) ] dw = Ou,
v)7(0)

(7.10)

v)v(w)
—2[U(0)}U(0)] f [Z(z) exp (Z(w)) | dow = Dv

Ulo) V(o)

the function Z being as in (7.3).




