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Tie-bolt rotors are composed of several disks fastened by tie bolts where contact properties have a great influence on the modal
behavior. In this work, a linear spring-damper element is used to consider the contact stiffness and damping in a tie-bolt rotor. A
tie-bolt rotor model is developed using the beam element and the zero-length contact element. Experimental modal testing is
performed under different preloads of tie bolts. Model updating is carried out to tune the contact parameters using the Particle
Swarm Optimization algorithm. Furthermore, a global eigenvalue evaluation is carried out to demonstrate the impact of the
lumped spring-damper element on the modal results. Results show that a larger pretension reduces the influence of contact
damping on modal parameters. Compared to antisymmetric modes, symmetric modes are more sensitive to the change of
contact damping.

1. Introduction

Tie-bolt rotors are commonly encountered in a wide range of
turbomachinery such as in gas turbines and aero-engines
[1–3]. Laminated rotors represent another kind of tie-bolt
rotors used in induction motors [4–6]. Compared to tra-
ditional forged rotors, tie-bolt rotors are composed of several
disks fastened by one or more tie-bolts that render a con-
venient approach to be manufactured and assembled.
However, the presence of tie bolts affects the dynamics of
combined rotors. For instance, macroslip of adjacent disks
due to loosening of the tie bolt threatens the integrity of the
combined structure [7–9]. Bolt loosening can be regarded as
an excitation that may cause an increasing response [7]. .e
stiffness of the combined structure is reduced, which induces
nonlinear dynamics [8]. A similar jointed configuration has
been used in space structures [10]. Nonlinear dynamics of
tie-bolt rotors are discussed in [11–13].

Understanding the modal response to a varying preload
in a tie-bolt rotor is helpful in analyzing the dynamics of
such structures. To consider the effect of joint connection, it

is necessary to model the stiffness and damping appropri-
ately. .e natural frequency of tie-bolt rotors increases with
an increasing preload. To better describe the physical
phenomenon, the zero-length element and the thin-layer
element are widely used to depict the behavior of the joints
[14]. A detailed literature review is provided in [15]. Using
the zero-length element, we can distinguish between the
lumped element [2, 16] and the contact element [17, 18],
which are widely adopted to examine the influence of the
contact stiffness on the natural frequency. .e thin-layer
element is originally applied in soil-structure interaction
analysis [19]. Material properties of the thin layer are
modified to consider the stiffness of the contact interface
under different preloads [20]. By adopting the thin-layer
elements, we obtain an accurate finite element model using
model updating [21, 22]. .e damping properties have been
investigated by updating the proportional coefficients of the
thin-layer element [14, 23].

.e Greenwood–Williamson (GW) statistical model is
commonly applied to describe the pressure distribution
between contact pairs [24–26]. Compared to the GW model
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that is based on the Hertzian normal contact model for two
elastic spheres, the Jackson–Green (JG) model considers the
plastic deformation [27]. Energy dissipation of the assem-
bled structure is closely related to interface damping.
Considering the hysteresis loop of joints, the Vanalis model
has been adopted to describe the mechanics of microslip and
macroslip [28]. .e Iwan model represents a widely used
constitutive element for the elastic-plastic behavior of joints
[14, 29]. However, the controlling variables of the contact
model, such as the four parameters of the Iwan model, are
usually unknown. As a result, model updating based on
experimental results is required to determine the parameters
of contact models.

Experimental modal testing is commonly performed to
investigate the influence of contact pretension [30], surface
roughness [18], and interference fits [31] on the natural
frequency. Furthermore, the effect of bending moment on
the dynamic behavior has been investigated in [1, 32, 33].
Bolt loosening is a practical issue that can be accomplished
by modal testing [25] as well as a noncontact laser approach
[34]. Bolt loosening induces a perturbation of external force,
and the corresponding response of a tie-bolt rotor has been
analyzed and validated [7].

Most of the previous studies focus on the contact
stiffness of the combined structure, and damping properties
are rarely studied for the tie-bolt rotor. .e influence of
contact stiffness and damping on the modal response has not
been well understood. .is work aims to investigate a global
eigenvalue behavior of a tie-bolt rotor under different
preloads. .e relationship between contact parameters and
modal response is clarified..e rest of the paper is organized
as follows. In Section 2, a tie-bolt rotor model is introduced
by using the beam element and lumped spring-damper
element. Based on the governing equations of the rotor, an
eigenvalue evaluation is illustrated. In Section 3, experi-
mental modal testing is demonstrated. Model updating is
carried out based on the experimental results. Analytical
sensitivity is derived to validate the modal testing. In Section
4, a global eigenvalue evaluation is performed to illustrate
the general influence of contact parameters on the modal
parameters, followed by a discussion of modeling techniques
of the interface in Section 5. .e paper is concluded in
Section 6. .e finite element matrices are collected in
Appendix.

2. Rotor Modeling

From a modeling perspective, the finite element method
(FEM) is the most used tool for rotor dynamics. 3D solid
finite elements render direct virtual prototyping from CAD
data, and at the same time, they can handle unsymmetrical
characteristics, such as blades, with high accuracy. However,
the computational cost is very high, especially for large shaft-
train systems. To circumvent the problem, model reduction
is usually performed for stability analysis [35] or transient
simulations [36]. As a result, in most industrial applications,
the beam element is applied in the standard approach of
rotor dynamics. Nelson’s pioneering work lays a foundation
for the development of the beam element for rotor modeling

[37]..e beammodel, or called the shaft-line model [38], is a
linearized approach where the rotor system is represented by
a series of finite beam elements. .e most significant
modification is the stiffness of the components due to the
assumption of the element. .erefore, the stiffness diameter
should be modified according to industrial experiences or by
adopting the strain energy method.

In this paper, the rotor is fastened by four groups of tie
bolts to connect shaft ends and fasten disks, as displayed in
Figure 1. In the following discussion, the tie bolts connecting
shaft ends are not taken into account. A large preload torque
is applied and kept constant. To demonstrate the influence of
preloads on the modal parameters, we change the tightening
torque of the bolts that connects two disks, and the status of
four contact pairs is altered accordingly.

First of all, we need to determine the stiffness diameter
that is different from the diameter of the rotor. We apply the
strain energy method and calculate the stiffness diameterDi

e

of the rotor segment i according to

Di
e �

32M2le

πEUb
( )0.25

, (1)

where E denotes elasticity modulus, M and Ub are applied
bending moment and the corresponding strain energy, re-
spectively, and le represents the length of the ith rotor part.
.e rotor is discretized into 51 elements along the axis
involving four zero-length contact elements. .erefore, the
rotor has 52 nodes, as plotted in Figure 2. .e mass radius
and the stiffness radius depict the actual geometry of the
rotor and the bending stiffness reduction due to the abrupt
change of diameter.

2.1. BeamRotor Element. A beam element with four degrees
per node is used to develop the rotor model, as displayed in
Figure 3. .erefore, the lateral displacement and the angle at
node n and n + 1 can be expressed as

ren(t) � yen ϕey,n zen ϕez,n[ ],
ren+1(t) � yen+1 ϕey,n+1 zen+1 ϕez,n+1[ ], (2)

where e stands for the element.
.e corresponding displacement of the element is given

by

re � ren ren+1[ ]T ∈ R8×1. (3)

2.2. Contact Element. As displayed in Figures 2 and 4, we
introduce the contact element at nodes 20(21), 24(25), and
28(29) and 32(33)..e stiffness and damping matrices of the
contact element are shown in Appendix. As can be seen, the
stiffness properties are defined by axial stiffness ka as well as
rotational stiffness kc, while rotational damping coefficient
dc denotes the damping of the element. Supposing the axial
and lateral vibration are uncoupled, we do not consider the
influence of the axial stiffness ka. .e influence of preloads
can be denoted by the rotational stiffness kc as well as the
damping dc.
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2.3. Eigenvalue Analysis. Assembling the corresponding
element matrices (see Appendix) yields the equations of
motion of the homogeneous system:

M€r (t) + B0 + Bc + G( ) _r(t) + K0 + Kc( )r(t) � 0, (4)

where M represents the mass matrix, B0 and Bc denote the
damping matrix for the beam element and the contact

element, K0 and Kc are the corresponding stiffness matrix,
and G stands for the gyroscopic matrix. All the matrices of
the dimensions 4N × 4N are symmetric whereN stands for
the total number of the nodes.

We focus on the influence of the coupling element on the
eigenvalue analysis and, therefore, neglect the damping from
the beam element, i.e., B0 � 0. .us, the damping term is
determined only by the zero-length contact element. .e
gyroscopic matrix is also zero because the rotational speed is
zero. .erefore, the equations of motion can be simplified as

M€r (t) + Bc _r(t) + K0 + Kc( )r(t) � 0. (5)

Using the state vector z � r _r( )T ∈ R8N×1, the second-
order ODE can be transformed into a state-space repre-
sentation as

A_z + Bz � 0, (6)

with A �
Bc M

M 0
[ ] andB � K0 + Kc 0

0 −M
[ ].

.e characteristic polynomial to calculate the eigen-
values λe and eigenvector ϑ is written as

λeA + B[ ]ϑ � 0. (7)

Consequently, we obtain the eigenvalues and corre-
sponding eigenvectors depending on the contact stiffness
and damping.

3. Model Updating of the Rotor System

3.1. Modal Testing. Impact testing under free-free boundary
conditions is performed to investigate the influence of
preload on natural frequency and modal damping. Seven
PCB accelerometers (Type 333B30) are used to obtain the
vibration signals, and the axial locations are shown in Ta-
ble 1. .e rotor is suspended by elastic cables at two loca-
tions, see Figure 5.

.e pretension of the tie bolts is controlled by a torque
wrench. For the data acquisition system, a resolution of
0.32Hz has been used with a frequency range from 0 to
2560Hz. A roving hammer impact test using the force
transducer (Type CL-YD-305A) has been carried out five
times per preload case to obtain the modal results. Fre-
quency response functions (FRFs) and coherence diagram of
accelerometers 3 and 6 are displayed in Figure 6, where the
peaks denote five lateral natural frequencies. To obtain the

Tie bolt Disk 2
Disk 1
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Figure 1: Schematic display of the tie-bolt rotor.
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Figure 2: Stiffness radius and mass radius of the tie-bolt rotor.
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corresponding modal parameter (frequency and modal
damping), an experimental modal analysis is carried out.
Natural frequency and modal damping ratio are obtained
using the PolyMAX frequency-domain method in LMS
TestLab.

By performing a series of modal tests with different
preloads, modal frequency and damping for the five bending
modes are summarized in Figures 7 and 8. We observe a
growing frequency and decreasing modal damping versus
preload. .e 3rd and 5th frequencies experience an increase
of 9.0% and 5.4% that are more sensitive to the preload than
other modes. Concerning modal damping, abnormal be-
havior at the preload of 70Nm is due to the interference fit of

the contact interface. Further validation is provided by the
model updating in Section 3.3.

3.2. Model Updating Using Particle Swarm Optimization
(PSO). It is inevitable to experience a disparity between
simulations and experimental results due to the uncertainty of
system parameters. Model updating is a practical tool to tune
the input parameters according to experiments. To obtain an
accurate rotor model, the contact element parameter and the
resulting eigenvalues are adopted to define an input-output
optimization problem. Concerning the tie-bolt rotor model,
the stiffness modification due to diameter distortion is

Table 1: Axial location of the accelerometer.

Sensor no. 1 2 3 4 5 6 7

Axial coordinate (m) 0.05 0.40 0.60 0.91 1.21 1.42 1.76
Node no. (FE) 2 13 17 27 36 41 51

Accelerometer positions: 1~7

1 2
3 4 5

6 7

21
Suspension points: 1 2

Figure 5: Modal testing of the tie-bolt rotor under free-free boundary conditions using 7 accelerometers.
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Figure 6: Frequency response functions and coherence of the tie-bolt rotor with the preload of 110Nm.
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considered using the strain energy method. .erefore, the
variation of natural frequency versus preload is due to the
stiffness of the zero-length contact element. To demonstrate
the influence of contact stiffness on the natural frequency
clearly, we carry out a series of undamped modal analysis.

First of all, we develop an appropriate objective function,
i.e., the 2-norm of a relative error residual:

fobj �
ωm − ωs kc( )

ωm


2, (8)

where ω ∈ R5×1 includes five bending eigenfrequencies,
subindexes m and s denote measured and simulated results,
respectively, and kc represents dimensionless bending
stiffness of the contact element that is the ratio of the
revolute stiffness of the contact element concerning that of
the adjacent beam element.

.e optimization problem can be expressed as

minfobj kc( ),
subject to kc ∈ k

lb

c k
ub

c[ ],
 (9)

where k
lb

c and k
ub

c denote the lower bound and upper bound
of the variable.

To find the optimized stiffness parameters, Particle
Swarm Optimization is adopted to solve the problem. .e
global minimal objective is achieved by using the PSO
algorithm. .e optimized stiffness parameters and the
corresponding residual errors are collected in Figure 9.
.e contact stiffness demonstrates a bilinear behavior that
is due to the interference fit of the contact pairs. A similar
result has been reported in [31]. .e 2nd norm of the
deviations of the relative error for the five eigen-
frequencies is below 4.0%.

3.3. Sensitivity Analysis. Sensitivity analysis is a common
method to choose the most influential inputs for model
updating. In this work, we have only one input parameter,
contact stiffness kc, for model updating. .erefore, sensi-
tivity analysis of the eigenvalues with respect to the contact
stiffness can be used to better understand the trend of the
natural frequency with respect to preloads, as depicted in
Figure 7.

Concerning the undamped system

K kc( ) − λiM( ), ϑi � 0, i � 1, . . . , 5, (10)

the derivative of the eigenvalue λi with respect to the contact
stiffness kc can be expressed as follows [39]:

zλi
zkc

� ϑTi
zK

zkc
− λi

zM

zkc︸�︷︷�︸
�0


ϑi � ϑTi

zK

zkc
ϑi. (11)

.e derivative of the stiffness matrix K with respect to the
contact stiffness kc reads

zK

zkc
�

0

⋱

zK
e
c1

zkc

⋱

zK
e
ci

zkc

⋱

0





, (12)

1000
F

re
q

u
en

cy
 (

H
z)

900

800

700

600

500

400

300

200

100

0
10.0 30.0 50.0 70.0

Torque (Nm)

90.0

9.0%

5.4%

110.0

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Figure 7: Natural frequency versus preload from 10 to 110Nm.

M
o

d
al

 d
am

p
in

g 
ra

ti
o

 (
%

)

1.20

1.00

0.80

0.60

0.40

0.20

0.00
10.0 30.0 50.0 70.0

Torque (Nm)

90.0 110.0

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

1.40

Figure 8: Modal damping versus preload from 10 to 110Nm.

Shock and Vibration 5



where (zKeci/zkc) denotes the derivative of the stiffness
matrix of the ith contact element, which can be calculated
as

zK
e
ci

zkc
�

0 0 0 0 0 0 0 0

0 1 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 −1

0 0 0 0 0 0 0 0

0 −1 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 1





. (13)

Substituting equations (13) and (12) into equation (11)
yields

zλi
zkc

�∑nc
i�1

ϑTci
zK

e
ci

zkc
ϑci, (14)

where nc denotes the number of contact elements.
Due to the symmetry of the rotor system, we only

consider the variables in the y-axis, and equation (14) can be
simplified as

zλi
zkc

�∑nc
i�1

ϕ
e

y,ni+1
− ϕ

e

y,ni
( )2. (15)

.erefore, the eigenvalue with respect to the lumped
contact stiffness can be calculated by the normalized rotating
angle of the contact elements ϕ

e

y,ni+1
and ϕ

e

y,ni
.

.e normalized displacement y and normalized rota-
tional angle Φ for the five bending modes are plotted in
Figure 10. .ere exist abrupt changes of the rotational angle

at four contact nodes 20, 24, 28, and 32. Hence, the sen-
sitivity can be calculated by using the corresponding angle at
four contact pairs. For a clear description, we introduce the
dimensionless sensitivity:

s �
zλi
zkc

·
kc0
λ0
, (16)

where kc0 and λ0 represent the stiffness of the adjacent beam
element and the first eigenvalue, respectively. .e results are
displayed in Figure 11. .e 3rd and 5th eigenvalue are most
influenced by the input variable kc, validating themodal tests
depicted in Figure 7.

4. Global Eigenvalue Analysis

To study the influence of the contact element on modal
parameters, we further perform a global eigenvalue analysis.
Firstly, we introduce two dimensionless parameters to de-
note the stiffness and damping of the contact element:

kc �
kc
k0
,

dc �
dcω0

k0
,

(17)

where k0 denotes the reference stiffness and ω0 is the ref-
erence frequency. According to different preloads on the tie
bolt, we have six optimized stiffness coefficients, as depicted
in Figure 9.

Figure 12 depicts a global eigenvalue for five bending
modes with different preloads. Along the arrow in each plot,
we apply an increasing stiffness that is obtained from model
updating, as shown in Figure 9. We observe a smaller circle
with a growing stiffness. .us, the overall damping of all
modes is reduced by increasing the pretension, which is also
witnessed in Figure 8. For a specific contact stiffness, if we
increase the dimensionless damping dc from zero to infinity,
the curve goes upwards in the clockwise direction. In-
creasing damping tends to stiffen the rotor since the
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Figure 10: Continued.
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imaginary part of the eigenvalue is growing. More impor-
tantly, the modal damping is increasing by increasing the
revolute damping but there is a turning point. Beyond that,
increasing the value yields reduced modal damping. .at
means, the contact element participates less concerning the
modal vibration and, therefore, introduces less damping to
the system.

For a clear comparison, we summarize the global ei-
genvalue of five modes in Figure 13. For symmetric modes,
i.e., modes 1, 3, and 5, themaximal modal damping increases
gradually. However, the corresponding damping of the
contact element decreases from 0.1365 to 0.0333. In contrast,
for antisymmetric modes 2 and 4, the influence of damping
of the contact element is relatively small. .e results show
that symmetric modes entail more participation of the
contact element in the modal analysis compared to anti-
symmetric modes.

5. Discussion

To consider the influence of contact interfaces on the
overall dynamics of connected structures, zero-length el-
ements and thin-layer elements have been widely applied.
In a previous paper [40], the contact stiffness and damping
have been adjusted using the thin-layer element for the tie-
bolt rotor. .e modulus of elasticity is optimized to
minimize the error between simulated and measured fre-
quencies. To consider the influence of the damping
properties, two proportional parameters with respect to the
stiffness matrix are introduced. .e advantage of the thin-
layer element method is a convenient parameter configu-
ration for the finite element model. In particular, for the
connected structure with multiple contact interfaces, the
thin-layer element entails cost-efficient modeling. How-
ever, we have encountered two problems: (i) the mesh size
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Figure 12: Root locus for varying joint stiffness (along the direction of the arrow, the dimensionless stiffness
kc � 0.13, 0.17, 0.18, 0.21, 0.33, and 0.37; the black circle denotes experimental results).
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of the thin-layer element should be much smaller to meet
the meshing requirement for the 3D model, which might
need a large amount of computational time for model
updating; (ii) for commercial simulation tools, the sim-
plified damping model may be inaccurate. For instance,
Rayleigh damping cannot describe the damping properties
caused by contact very well.

Due to the two practical difficulties as discussed in the
previous contribution, we develop the rotor model using the
beam element and the lumped spring-damper element.
Compared to the thin-layer element, some advantages can be
achieved as follows:

(i) .e computational cost is greatly reduced which
makes it possible for global eigenvalue evaluation.

(ii) Analytical sensitivity evaluation of the contact el-
ement concerning the eigenvalue can be obtained
because the coupling relationship is explicitly
expressed.

(iii) Nonlinear properties can be easily incorporated
using the lumped spring-damper elements. For
unbalance response or transient simulation, the
zero-length contact element can be used more
advantageously.

It should be stressed that the results of the current paper
cannot be applied to arbitrary connected structures. .e
main restrictions are as follows:

(i) Static properties using experimental modal testing
have been studied. .e nonlinear phenomenon due
to macroslip and the excitation amplitude is not
discussed.

(ii) Unbalance excitation and centrifugal effects have a
great influence on the contact status that is not taken
into account.

(iii) .e influence of interference fits has been dem-
onstrated in the current paper. However, a further
detailed study should be implemented for
validation.

6. Conclusions

In this paper, the influence of contact stiffness and damping
on modal responses of a tie-bolt rotor has been investigated.
Model updating is carried out to obtain the optimized
stiffness of the contact element using the PSO algorithm. It
reveals that the interference fit entails two different contact
statuses that are distinguished by the turning point at the
preload of 70Nm.

.e sensitivity of the eigenvalue with respect to contact
stiffness is relevant to the rotational angle of contact ele-
ments. From the dimensionless sensitivity plot, we observe
that the 3rd and 5th modes are more sensitive to preload. A
global eigenvalue analysis demonstrates the influence of the
linear stiffness and damping of the contact element on the
modal parameters. A larger stiffness of the contact element
tends to reduce the modal damping that agrees well with the
experimental results. For a specific contact stiffness, there is
a turning point concerning the damping coefficient of the
contact element that yields maximal modal damping.

Nomenclature

B0 and Bc: Damping matrix of beam element and contact
element

Di
e: Equivalent stiffness diameter of rotor element i

dc and dc: Damping of the contact element and
dimensionless damping of the contact element

E: Elasticity modulus
fobj: Objective function for optimization
G: Gyroscopic matrix
I: Inertial moment of the rotor
K0 and Kc: Stiffness matrix of the beam element and the

contact element
kc and kc: Stiffness of the contact element and

dimensionless stiffness of the contact element
ka: Axial stiffness of contact element
k0: Reference stiffness (the stiffness of underlying

beam element)
le: Length of the rotor element

Eigenvalue of modes 1–5

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5
6

5

4

3

2

1

Im
 (
λ

)/
ω

0

dc = 0.0895
–

dc = 0.0252
–

dc = 0.0378
–

dc = 0.0333
–

dc = 0.1365
–

–0.35 –0.3 –0.25 –0.2

Re (λ)/ω0

–0.15 –0.1 –0.05 0

Figure 13: Root locus for varying joint damping (kc � 0.13).
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M: Mass matrix
M: Bending moment
r
e: Coordinate of the rotor element
s: Dimensionless sensitivity
Ub: Strain energy of the rotor under bending

moment
yen andy

e
n+1: Translational displacement at node n and n+1

of rotor element in the y-axis
y: Normalized translational displacement in the

y-axis
z: State vector involving displacement and

velocity vector
λi: Eigenvalue of the ith mode
ϕen andϕ

e
n+1: Rotational displacement at node n and n+1 of

the rotor element
ϕ: Normalized rotational displacement of the

rotor
ϑci: Normalized mode shape of ith mode
ωm andωs: Measured and simulated eigenfrequencies
Ω: Rotational speed of the rotor.

Appendix

Element Matrices for the Rotor Model

MT +Mr( )€r (t) + B0 + Bc + G( )_r(t) + Kr + Kc( )r(t) � F.

(A.1)

(1) Translational mass matrix M
e
T:

M
e
T �

ρAl

420

156 22l 0 0 54 −13l 0 0

22l 4l2 0 0 13l −3l2 0 0

0 0 156 −22l 0 0 54 13l

0 0 −22l 4l2 0 0 −13l −3l2

54 13l 0 0 156 −22l 0 0

−13l −3l2 0 0 −22l 4l2 0 0

0 0 54 −13l 0 0 156 22l

0 0 13l −3l2 0 0 22l 4l2





.

(A.2)

(2) Rotational mass matrix M
e
R:

M
e
R �

ρI

30l

36 3l 0 0 −36 3l 0 0

3l 4l2 0 0 −3l −l2 0 0

0 0 36 −3l 0 0 −36 −3l

0 0 −3l 4l2 0 0 3l −l2

−36 −3l 0 0 36 −3l 0 0

3l −l2 0 0 −3l 4l2 0 0

0 0 −36 3l 0 0 36 3l

0 0 −3l −l2 0 0 3l 4l2





.

(A.3)

(3) Damping matrix of contact element Bec:

B
e
c �

0 0 0 0 0 0 0 0

0 dc 0 0 0 −dc 0 0

0 0 0 0 0 0 0 0

0 0 0 dc 0 0 0 −dc

0 0 0 0 0 0 0 0

0 −dc 0 0 0 dc 0 0

0 0 0 0 0 0 0 0

0 0 0 −dc 0 0 0 dc





. (A.4)

(4) Gyroscopic matrix G
e:

G
e
�
ρIΩ
15l

0 0 −36 3l 0 0 36 3l

0 0 −3l 4l2 0 0 3l −l2

36 3l 0 0 36 −3l 0 0

−3l −4l2 0 0 −3l −l2 0 0

0 0 −36 3l 0 0 −36 −3l

0 0 3l l2 0 0 3l 4l2

−36 −3l 0 0 36 −3l 0 0

−3l l2 0 0 3l −4l2 0 0





.

(A.5)
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(5) Stiffness matrix of beam element Ke0:

K
e
0 �

EI

l3

12 6l 0 0 −12 6l 0 0

6l 4l2 0 0 −6l 2l2 0 0

0 0 12 −6l 0 0 −12 −6l

0 0 −6l 4l2 0 0 6l 2l2

−12 −6l 0 0 12 −6l 0 0

6l 2l2 0 0 −6l 4l2 0 0

0 0 −12 6l 0 0 12 6l

0 0 −6l 2l2 0 0 6l 4l2





.

(A.6)

(6) Stiffness matrix of contact element Kec:

K
e
c �

ka 0 0 0 −ka 0 0 0

0 kc 0 0 0 −kc 0 0

0 0 ka 0 0 0 −ka 0

0 0 0 kc 0 0 0 −kc

−ka 0 0 0 ka 0 0 0

0 −kc 0 0 0 kc 0 0

0 0 −ka 0 0 0 ka 0

0 0 0 −kc 0 0 0 kc





. (A.7)
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