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Abstract

To validate an estimated model and to have a good understanding of its

reliability is a central aspect of System Identi�cation� This contribution

discusses these aspects in the light of model error models that are explicit

descriptions of the model error� A model error model is implicitly present

in most model validation methods� so the concept is more of a represen�

tation form than a set of new techniques� Traditional model validation

is essentially a test of whether the con�dence region of the model error

model contains the zero model� However� the model error model allows

a better visualization of the possible de�ciencies of the nominal model�

Based on such information� the nominal model may very well be accepted

even if the model error model does not contain the zero model� Con�

versely� it will be illustrated that the model error model may give good

reason � because of if its more precise infomation �to reject a nominal

model� that has passed a conventional model validation test�

� Introduction

Much of the renewed interest in system identi�cation actually concerns model
validation� Approaches with unknown but bounded disturbances� stochastic
embedding� control oriented model validation� H��identi�cation� etc�� typically
have the ambition to provide more valid� and reliable� models for� say� control
design�

We shall in this contribution discuss what we term model error models in
this light� There are �ve aspects of this concept that will be stressed�

�� Model error models allow an alternative interpretation of standard model
validation 	residual analysis
 tests

�� Model error models allow better visualization of the result of residual
analysis for dynamical systems
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�� Model error models allow safe use of nominal models that themselves have
been falsi�ed


� Model error models allow a combination of simple nominal models eval�
uated within a potentially 	much
 more complex set of candidate system
descriptions

�� Model error models put a �nger on a perhaps neglected aspect of experi�
ment design� Experiment design for model invalidation�

The �rst two aspects are demagogical in nature� and technically trivial�
The third one could prove quite useful in model applications like control

design� The model error model takes care of both unmodeled dynamics and
uncertainty� and as long as the robust control design can live with these� there
is no need to burden the nominal model with more complexity� The nature of
this aspect is that the nominal model and the error model together constitute
an unfalsi�ed model� even if this is never made explicit�

The fourth aspect is a deviation from basic scienti�c principles� like Occam�s
razor� to accept the simplest possible model that has not been falsi�ed by ex�
perimental data� Therfore it clearly needs more discussion and a debate on this
would be welcome� The reason for aspect four can be illustrated as follows� Sup�
pose the intended model application is control design� The model builder shall
deliver a set of possible system descriptions� based on measured input�output
data� The control designer constructs a regulator that gives acceptable behavior
when applied to all these models� The delivered model set should preferably be
small� at the same time as the model builder should feel con�dent 	at some level

that when the control design will give good behavior when tested on the real
system� The ongoing discussion on identi�cation for control� control oriented
model validation� etc�� indeed concerns the problem how to achieve this�

Now� the classical statistical approach to deliver such model sets is of the
following kind�

Under the hypothesis that the true system can be described as a
third order linear system � and I have not been convinced by the
data that this is not the case � it can with ���� � con�dence be
found in the delivered set�

Notice the double standards applied in this statement� The con�dence level
can be given at an impressive level� essentially matching the �hard bounds�
cherished by the robust control community� On the other hand� the message
also hinges upon the statement in italics� where we have demanded convincing
evidence 	perhaps at a �� or �� � level
 to accept a more complex reality�
There is still a substantial possibility � or risk � that are more complex model is
required to describe the system� so delivering just the nominal third order model
with its con�dence region does not give full security for the model builder that
the control design task will succeed� To deal with this in a formal way would
require sophisticated decision theory� We shall in this paper suggest how model
error models can handle it in a more informal way� Among other things� we
can deal with unmodeled dynamics in terms of non�linearities rather than just
being neglected linear dynamics�

The �fth aspect� experiment design for model invalidation� concerns issues in
experiment design that are not so often stressed� but are closely linked with item
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four above� Experiment design usually deals with the question of maximizing the
accuracy of certain model aspects� This might be in con�ict with another aspect
of the design� namely to display unknown or unexpected sides of the system
properties� This is what helps constructing a powerful model error model�

The paper is organized so that a brief summary of essential issues in System
Identi�cation is given in Section �� Aspects of model quality in connection
with control design are treated in Section �� while typical approaches to model
validation are outlined in Section 
� The essential split into model error and
disturbance is commented upon in Section �� and two interpretations of standard
model validation techniques are given in Sections � and �� The four �rst aspects
on model error modeling� listed above� are dealt with in Section �� and the �fth
one is further commented upon in Section ��

� System Identi�cation For Control

�Identi�cation for Control� is a term that has been coined rather recently� and
it has been accompanied by quite a substantial literature� See� e�g�� the special
issues ���� and ����� as well as one or more special sessions on this topic at each
CDC and ACC in the ���s�

However� it must be pointed out that the control application aspect of Sys�
tem Identi�cation has been present ever since the birth of the subject� The
fundamental paper ��� lines up all the relevant concepts of estimation of param�
eters in dynamical systems 	although applied just to ARMAX models in that
paper
� with the clear intention to use the estimated model for control� This is
also stressed in ����

The traditional statistical framework of ��� set the stage for the major part of
the subsequent development of System Identi�cation� This framework suggests
that you estimate models of increasing complexity until a validation test does
not falsify the model� Part of such a test is typically a whiteness test of the
model residuals� Under the assumption that the residuals indeed are white�
the statistical uncertainty 	the distribution
 of the parameter estimates can
be computed using standard procedures� If the hypothesis of whiteness is not
rejected� it is reasonable to accept 	i�e� not reject
 not only the model but also
the uncertainty measure of its parameters�

This traditional framework has been questioned in other parts of the control
community� most notably in the early ���s� e�g�� ����� in connection with robust
control design� The criticism has three main aspect�

�� The framework with disturbances described as stationary white noise is
unrealistic� �Real�life� disturbances are more complex� This leads to the
�worst�case�� �unknown�but�bounded� and �set�membership� approaches�
see� e�g�� ���� ����� ����� ����� and �����

�� Traditional System Identi�cation does not consider dynamic uncertainties
	e�g� ���� the most popular system identi�cation methods assume that
all uncertainty is in the form of additive noise�� quoted from the abstract
of�����
 This has led to an error model with explicit disturbances and
dynamic errors� suggested and discussed in� e�g�� ����� ���� ����� and �����

�� The delivered nominal� estimated model always contains a dynamic model
error �bias error� in addition to the statistical uncertainty of the parame	
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ters �variance error�� A number of techniques have been developed to take
this fact into account� among them the stochastic embedding approach� See
���� for an excellent survey of such approaches�

Let us make a few comments on these items�

�� The point is well taken� since indeed actual disturbances may be non�
stationary� have �deterministic� components� etc� However it is important
to point out 	see ����
 that as long as the disturbances w	t
 have the
property that

lim
N��

�

N

NX
t��

w	t
u	t � �
 � � 	�


the 	asymptotic
 model is not a�ected by the actual form of w	t
� We
could phrase 	�
 as �the disturbance is uncorrelated with the input� but
no probabilistic interpretation needs to be made for this� It is simply a
statement about the two sequences w and u� It is true that �worst�case�
disturbances 	when Nature is allowed to select the disturbance after It has
seen the input
 will typically not be subject to 	�
� but it is questionable
if such a signal is a �disturbance� and not a model error� see e�g�� ����

�� This statement� I think� is partly a misunderstanding� The traditional
approach� as we saw� takes the model�s con�dence intervals seriously� and
really delivers a set of possible dynamic models to the user� Perhaps it is
item � that is the target of the criticism�

�� This is an issue that we shall discuss further in this contribution� We
may note that that it has not been made clear whether proper uncertainty
regions of a properly validated model� based on properly informative data�
do not include both the bias and variance errors�

Experiment design in System Identi�cation is focused on selecting input
properties and includes the possibility of letting the input be generated 	partly

as output feedback� Also this subject has seen a renewed interest in connection
with identi�cation for control� The idea then is to let the experiment excite
the control�relevant dynamics of the plant� possibly in conjuction with a data
pre�lter to enhance the model �t in certain frequency ranges� Since it might
not be known a priori what the �control�relevant dynamics� is� iterative schemes
might be required� e�g� ���� ���� The close connection to adaptive control� �
�
then also becomes obvious�

� Model Quality� Occam�s Razor� and Control

Design

We now assume that the identi�ed model is to be used for control design� We
can then picture the interplay between identi�cation and control as a game
between the model builder 	MB
 and the control designer 	CD
�

�� The MB delivers a set of models to the CD� The rationale he is using to
compute this set is immaterial� be it worst case noise models� classical
con�dence regions or whatever�






�� The CD will now have to construct a regulator that gives acceptable closed
loop behavior for all models in the set�

�� If the designed regulator performs well for all models in the set� but fails
when applied to the true system� the MB looses face�


� The CD may also �nd his task to be impossible 	maybe he looses face
then
� He then turns back to the MB and asks for a smaller set in certain
respects 	�I cannot have such a big uncertainty around ���� rad sec�
�
The MB may or may not be able accommodate this request without col�
lecting more data� If more data are required� it�s the task of the MB to
design the experiment that delivers the new model set�

In this perspective Model Quality is a combination and a compromise between

� Having small model sets so that task number �
 may be more easily solved

� Having large model sets so as to increase the chance that the real life test
of the design will succeed�

The MB can play it safe by delivering large� conservative sets to the CD� His
pride should however forbid that� and make him deliver model sets with higher
quality according the the de�nition just made�

By the way� it would be interesting to see more extensive tests of the model
quality in this sense� using the many di�erent approaches to model estimation�
Will the traditional approach with properly validated models handle also model
errors and �bad� disturbance behavior 	subject to 	�
� though
! Do the worst
case models have bad quality� being too conservative! And so on� This is the
proof of the pudding�

The traditional statistical approach to estimation follows Occam�s razor� Use
the simplest possible description that is not in con�ict with known facts� We
should thus try and order the model structures of interest in increasing com�
plexity� For dynamical systems this could typically be �rst linear models in
increasing order and then adding non�linearities of di�erent kinds� Prior knowl�
edge� as well as desired control design techniques� will play an important role
in this ordering� We would then select that model� together with is estimated
uncertainty region� that is the �rst one� within the chosen ordering� not to be
falsi�ed by the validation tests�

Model quality for control design as de�ned above does not fully comply with
this line of thought� Suppose that we test for a non�linearity by estimating
some parameters in a non�linear structure� If the con�dence region for these pa�
rameters contain zero� we should reject the hypothesis of a non�linear system�
according to Occam�s Razor� since no convincing evidence of this more compli�
cated structure has been given� On the other hand� if the MB wants to play it
safe in the game and be honest to the CD� he might very well include a possible
non�linearity� �I cannot tell for sure that there are no non�linear e�ects� but in
any case� they should not the larger than so�and�so��

A similar situation is at hand when the estimation is based on data of limited
information value 	poorly exciting� or a short record
� For example� if the input
consists of two sinusoids� and there are no harmonics in the output� a second
order linear model will always pass the validation tests� According to Occam�s
razor� this model is also what should be delivered to the user� However� for
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control design it is clear that such a model must be delivered with a disclaimer
about it properties at other frequencies than those excited� This is actually
a case of principal interest� since the unfalsi�ed second order model will itself
come with uncertainty regions in the frequency domain that do not reveal the
lack of information outside the excited area� Only when the model order is
increased� this will be clear�

� Two Typical Model Validation Tests

We are now in the situation that we are given a nominal model "G along with a
validation data set

ZN � fu	�
� y	�
� � � � � u	N
� y	N
g 	�


y and u being the output and the input of the system� We would like to devise
a test by which we may falsify the model using the data� that is to say that it is
not possible� reasonable or acceptable to assume that the validation data have
been generated by the nominal model� If the model is not falsi�ed� we say that
the model has passed the model validation test�

Now what tests are feasible! It is natural to evaluate a model by its capabil�
ity to reproduce the input�output behavior on new data sets� We thus compute
the residuals � from the nominal model "G as

�	t
 � y	t
� "G	q
u	t
 	�


	The nominal model need not all all be linear� but we use the above notation for
simplicity� We may also include all possible pre�ltering by proper preprocessing
of ZN �


��� Classical residual correlation analysis

One of the most basic tests� ���� is to compute the correlation between the
regressors� in our case the past inputs� and the residuals�

"rN 	�
 �
�

N

NX
t��

u	t� �
�	t
 	



It is customary to plot these estimates as a function of � and compare with their
standard deviations to check if they are signi�cantly di�erent from zero� If not�
we have not traced any signi�cant in�uence of u in �� so we cannot say that
the model "G has not picked up all the in�uence of u on y� 	Note the double
negation� we are not saying that � "G has picked up all ����
� It is convenient to
form

�	t
 �
�
u	t� �
 � � � u	t�M


�T
	�


hMN �

�
��
"rN 	�


���
"rN 	M


�
�	 �

�

N

NX
t��

�	t
�	t
 	�


�



Under the assumption that � is white noise with variance �� h has a normal
distribution with zero mean and variance ��NRN � where

RN �
�

N

NX
t��

�	t
�T 	t
 	�


so

	MN �
�

�N
k

NX
t��

�	t
�	t
kR��
N

	�


will in this case have a 
� distribution� and the familiar 
��test

	MN � � 	�


is based on this� Note that other kind of dependences can be tested quite
analogously by letting �	t
 be other� nonlinear� functions of past inputs�

�	t
 � f	ut
 	��


��� Control oriented model validation

The philosophy listed under item � in Section � proposes the following relation�
ship 	in a somewhat simpli�ed version


�	t
 � #	q
u	t
 $ w	t
� k#k� � ��� kwk� � �� 	��


and the nominal model "G �passes� the test 	and is delivered together with ��
and ��
 if there exists a linear system # with norm less than �� and a signal
w with L��norm less than �� that solves 	��
 for the given �� u� No further
requirement is put on w� See� e�g�� ���� ����� ��
�� �����

As a special case� when �� � �� we obtain the validation test for the
�unknown�but�MSE�bounded� approach� and if kwk� is changed to kwk� we
have the more standard unknown�but�bounded 	worst case� set membership

model characterization�

One might ask where the thresholds � come from in the two cases� In a
sense� this has to rely upon prior information about the noise source� The �rst
test� 	�
 is �self�contained�� in the sense that it corresponds to a hypothesis test
that � is white noise� and then � corresponds to a certain con�dence level for
the test

	 A Fundamental Split of the Residuals

It is very useful to consider two sources for the model residual �� One source
that originates from the input u	t
 and one that doesn�t� With the assumption
that these two sources are additive we could write 	The model error model


�	t
 � %f	ut
 $ w	t
 	��


The assumption that the contribution from w is additive is non�trivial and
restrictive� but we shall not be concerned about that now� Note that the dis�
tinction between the contributions to � is fundamental and has nothing to do
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with any probabilistic framework� We have not said anything about w	t
� ex�
cept that it would not change� if we changed the input u	t
� We refer to 	��
 as
the separation of the model residuals into Model Error and Disturbances�

We may further specialize the the case of a linear model error #�

%f	ut
 � #	q
u	t
 	��


as in 	��
� Note though� that in 	��
� there is no assumption about w� other
than it has bounded norm�

Describing w as �the part of � that wouldn�t change if we changed the input�
is not a scienti�cally precise statement� The traditional way of specifying this is
to introduce a probabilistic framework and require u and w to be independent
in the mathematically well de�ned sense of the word� In practical work� one will
however be content with tests of the kind 	�
� The standard test 	�
 is clearly
devised to test if %f in 	��
 is zero�

For control use of the model it is important that w in 	��
 has this inde�
pendence property if "G and %f are delivered to the user along with uncertainty
bounds� and some measure of a bound on w� Without this property� there is
nothing that would prevent us from� say� interpreting the model error

�	t
 � ��
u	t
� with ju	t
j � �

as a disturbance error

�	t
 � w	t
� jw	t
j � ��


This could clearly have a devastating e�ect on the control design� In other
words� the independence paradigm eliminates the built�in ambiguity in 	��
�


 Model Validation as Set Membership Identi�

�cation

The model validation tests can also be seen as set membership identi�cation
methods in the sense that we may ask� for the given data set ZN � which models
within a certain class would pass the test� This set of unfalsi�ed models would
be the result of the validation process� and could be delivered to the user� The
interpretation would be that any model in this set could have generated the data�
and that thus a control design must give reasonable behavior for all models in
this set� Let us now further discuss what sets are de�ned in the di�erent cases�

To more clearly display the basic ideas we shall here work with models of
FIR structure� i�e�� we ask which models of the kind

"G	q
u	t
 �

NX
t��

gku	t� k
 � 
T�	t
 	�



will pass the test� � is de�ned by 	�
� The validation measures above will then
be given the argument 
 as in �	t� 

 and 	MN 	

 to emphasize the dependence�
See also �����
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��� Uncorrelated residuals and inputs

Suppose now we use the standard correlation test 	�
� Let "
N be the standard
LS estimate using the validation data� Simple calculations give

�

N

NX
t��

�	t� 

�	t
 �
�

N

NX
t��

	�	t� 

� �	t� "
N 

�	t


� �
�

N

NX
t��

�	t
�T 	t
	
 � "
N 


� �RN 	
 � "
N 
 	��


where the �rst step follows from the de�nition of the LS estimate� We then �nd
that

	MN 	

 � 	
 � "
N

TRNR

��

N RN 	
 � "
N 


� 	
 � "
N

TRN 	
 � "
N 
 	��


Inserting this in 	MN � � gives that the set of non�falsi�ed models is given by

	
 � "
N 
TRN 	
 � "
N 
 � � 	��


Note the connection between this result and traditional con�dence ellipsoids�
In a probabilistic setting� the covariance matrix of the LS estimate "
N is pro�
portional to R��N 	see e�g� ��
�
� This means that 	��
 describes those models 

that are within a standard con�dence area from the LSE� The level of con�dence
depends on ��

We note also� in passing� that if nominal model "G also is a FIR model of
the same order� it will pass the test if and only if it belongs to the con�dence
region of the estimate based on the validation data� The test 	�
 does not make

explicit use of the estimate "
N � but the interpretation is intuitively appealing
and can be applied in more generality� A reasonable validation test is to split
the data record� estimate separate models of the same structure on each part�
and accept the model structure if the two models lie in each others� con�dence
regions� For this to be e&cient� the input properties should be di�erent in the
two data parts�

��� Control oriented model validation

The model validation test 	��
 has been suggested for control oriented model
validation� In this context is has also been customary to compute the set of
unfalsi�ed models� parameterized by �� and ��� This is quite a formidable
computational task� but results in a curve in the ����� plane� below which
the set of unfalsi�ed models is empty� ����� See �gure �� The shaded area
corresponds to �possible� model descriptions� but it is normally interesting to
consider just the models on the boundary�

One of the end�points is easy to deal with� If �� � �� all errors are to be
explained from the disturbance w� For the L��norm kwk� it is readily shown�
e�g� ����� that

�

N

NX
t��

��	t� 

 � �� 	��


�



a
1

a
2

Figure �� Shaded area� Models that pass the test that they can explain data
with a model error less than �� and an additive disturbance less than ���

if and only if

	
 � "
N 
TRN 	
 � "
N 
 � �� �
�

N

NX
t��

��	t� "
N 
 	��


This shows that the ���axis is crossed at ���LSE��t 	�estimated noise vari�
ance
 and the lowermost model is the LS model computed for the validation
data�

Similarly� with an ��norm on w in 	��
� the models on the ���axis in �gure
� correspond to the traditional unknown	but	bounded set of models� e�g�� ����
����� ����� �����

� Model Validation As Model Error Modeling

It is immediate that the classical test 	�
 also can be interpreted in in terms of
a model error model

�	t
 � �T 	t
� $ w	t
 	��


	compare 	��
� 	��

�
The LS estimate of � is given by

"�N � R��N
�

N

NX
t��

�	t
�	t
 	��


with covariance matrix "�R��N � where "� is an estimate of the variance of w� This
means that a standard 
� test whether the true � is zero� has the form

"�T 	"�R��N 
��"� � �� 	��


��



or 	cf 	�



�

NX
t��

�	t
�	t
�TR��N
�

"�
RNR

��

N �

NX
t��

�	t
�	t
� �
N

"�
	MN � �� 	��


That is� the standard 
��test can equivalently be described as testing whether
the model error model 	��
 gives an estimate that is signi�cantly di�erent from
zero� Yet another interpretation is that the test corresponds to checking whether
the improvement in model �t 	in terms of a prediction error criterion
 is signi��
cant when the extra model 	��
 is appended� This gives the link to the classical
model order hypothesis tests� ����

As long as we just perform a yes no test on the model residuals it is imma�
terial how we phrase the interpretation of the test� However� in case we have
some opinion that certain model errors are more serious than others� it may be
useful to think of the 
��test 	�
 as a statement of the character of the model
error� This is what we turn to now�


 Direct Model Error Modeling

��� FIR Model Error Models� Visualizing the Result of

Residual Analysis�

The classical residual analysis test for dynamical systems� included in most
software packages� is obtained by 	

�	�
� Normally the result is also visualized
by plotting "rN 	�
 as a function of � �

It is clear that this test corresponds to a FIR model error model

�	t
 �

MX
k��

b	k
u	t� k
 $ w	t
 	�



With this said� it is also clear that� at least from a control user�s point of view it
would be more natural to visualize the result in terms of this model�s properties�
like its impulse response or its frequency response�

We illustrate this in a few plots� We have simulated a system 	same as in
Example ��� in ��
�
 and estimated a second order ARX model� The model
with its ��� con�dence region 	very thin
 is shown in Figure �� The model is
also shown together with the true system� which reveals that the true system
is not at all to be found within the con�dence region� The reason is that the
model order is too low� in combination with a fairly poor excitation at high
frequencies�

The result of conventional residual analysis is shown in Figure �� The cross
correlations for �� lags are computed� Visual inspection of this plot shows that
the model is falsi�ed by the data� but the character of the de�ciencies is not
clear� We interpret the calculations of the test as a corresponding ���th order
FIR model� and display its impulse response and frequency response in Figure

�

Here� we see more clearly the character of the model errors� In particular the
frequency function plot makes it clear that there are signi�cant errors around
��� � � rad s�

��
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Figure �� Left�Bode plot of the second order ARX model with ��� con�dence
intervals� Right� The true system together with the model�
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Figure �� Residual analysis of the second order ARX model with ��� con�dence
intervals� Upper plot shows the auto�correlation of the residuals and the lower
plot shows the cross�correlations
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Figure 
� Above� The impulse response of the ��th order FIR error model� Be�
low� Its frequency response Bode plot	amplitude only
� Dotted lines correspond
to ��� con�dence limits around zero� i�e� anything outside these is a signi�cant
deviation from zero� In the lower plot the threshold is of course one�sided

To display this even more clearly� we propose the visualization according to
Figure �� The model error model is represented in the frequency domain� with
its uncertainty regions around itself shaded� At the top �gure the model error
model and its uncertainty region is added to the nominal model� 	The addition
is of course applied to the complex�valued frequency functions�
 This is shown
as a shaded region� and would correspond to the model set to be delivered to the
user� The nominal model is shown as a dashed line� In this case we also include
the true system� We see that the delivered model set contains an accurate
description of the system�

In the linear case� plots of the kind of Figure � will be our preferred way of
presenting the nominal model� and its sidekick� the model error model� They
work together to provide a suitable representation of the information in the
collected data�

��� General Linear Black Box Model Error Models�

The model error model concept gives us more freedom in investigating the resid�
uals than the classical residual correlation test� A more general linear model�
like� e�g�� the Box�Jenkins model

�	t
 �
b� $ b�q

�� $ � � � bnq
�n

� $ f�q�� $ � � �$ fnq�n
u	t
 $

� $ c�q
�� $ � � �$ cmq

�m

� $ d�q�� $ � � �$ dmq�m
w	t
 	��


could improve the estimate of the error model� since a more sophisticated model
of the disturbance is used�

In connection with this� it should be noted that if the nominal model contains
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Figure �� Upper plot� Nominal second order ARX model 	dashed line
 as well as
nominal model $ model error model with uncertainty region� The true system
is marked with a solid line� 	The nominal model plus model error model is not
marked as a separate curve� just the corresponding uncertainty region�
 Lower
plot� The model error model 	��th order FIR model
 and its uncertainty region�

a noise model

y	t
 � "G	q
u	t
 $ "H	q
e	t
 	��


it is natural to build the error model

�	t
 � y	t
� "G	q
u	t


�	t
 � %G	q
u	t
 $ w	t


from the pre�ltered data

�F 	t
 � "H��	q
�	t
� uF 	t
 � "H��	q
u	t
 	��


�F 	t
 � %G	q
uF 	t
 $ w	t
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Instead of parametric linear models� we may apply spectral analysis to try
and extract any linear in�uence of u on �� ����� In any case� there is a close rela�
tionship between the Blackman�Tukey spectral analysis estimate of this transfer
function and the one obtained by a FIR�model�

��� Non	linear Model Error Models

In the literature� most model error discussions as well as the identi�cation	for	
control approaches are dealt with in a setting where �the true system� is a
high order linear model� and the models are of lower order� That brings us to
error models of the kind 	��
� In practical use� it is of course more common

�




that the model errors are ignored non�linearities rather than unmodeled linear
dynamics� From a model error perspective� this simply means that we should
test non�linear models�

�	t
 � %f	ut
 $ w	t
 	��


In the absence of speci�c� suspected non�linearities� it is reasonable to test non�
linear black boxes like neural network NNFIR model� cf �����

�	t
 � g	u	t
� u	t� �
� � � � � u	t�M $ �
� �
 $ w	t
 	��


The number of lagged inputs can be chosen relatively small here� like M � �
or so� To appreciate the size of any estimated non�linearity 	in particular for
control applications
 it is natural to use the sup�norm

kg	u	t
� u	t� �
� � � � � u	t�M $ �
� "�
k� � sup
u����� �uM

jg	u�� u�� � � � � uM � "�
j�

u�
�
$ � � �$ u�M

	��


Then also determine the worst cases value of this norm in a properly chosen
con�dence regions for the estimate "��

kgk �
X
����

kg	u	t
� u	t� �
� � � � � u	t�M $ �
� "�
k� 	��


��� How to Use the Model Error Model

The model error modeling approach to model validation and model set delivery
can be summarized as follows

�� Select beforehand a model error model structure that is versatile enough to
handle a variety of model errors� and possibly also adjusted for suspected
problems in the system at hand� and for errors that would be especially
damaging for the intended model application� More about this in the next
subsection�

�� Estimate nominal models in preferred order of increasing complexity� De�
termine the corresponding model error model with its con�dence regions�

�� If the model error model contains the zero model� the nominal model has
	essentially
 passed a traditional model validation test� Then deliver the
model with the uncertainty region given by the model error model� This
is in con�ict with the classical use of model validation and in con�ict
with Occam�s razor� The reason why not to use the nominal model�s own
con�dence region is explained below�


� Even if the model error model is signi�cantly di�erent from zero� we may
choose to stay with the nominal model� and take it plus the model error
model and its uncertainty region as the estimated model set� The reasons
for doing this may be that the errors 	with regard to their frequency
function� or to the norm 	��

� even if statistically signi�cant� are deemed
harmless for the intended 	control
 application�

��



�� It is not the intention to treat the nominal model plus the model error
model as a new and better nominal model� In this case one should reesti�
mate a more complex nominal model�

Let us comment speci�cally on item �� The point is to use the more complex
model error model�s uncertainty region� even when the simpler nominal model
has not been falsi�ed� That this might be wise is illustrated in Figures ���
�� and ��� To push the issue� think of system identi�cation using an input
consisting of two sinusoids� Under this input � provided the output contains
no harmonics � it is impossible to invalidate a second order linear model� Its
own uncertainty 	which is computed under the assumption that the true system
indeed is of second order
 cannot be used as a realistic description of what
possible systems may have generated the data� The model error model thus
also acts like a safeguard for poorly informative data�

��
 How to Choose the Model Error Model

The remaining question now is� How shall we choose the model error model�
Unfortunately� this section is bound to be a disappointment� since there will be
no unique� scienti�cally sound way of selecting the error model structure� This
is a re�ection of the well know dilemma that we can never verify models and
hypotheses� only falsify them�

This means that the structure of the model error model must be chosen on
ad hoc grounds� based on experience and also on prior information about the
system� and the intended application� We may list a few items to consider�

� The model error model structure must be so rich that the estimated model
error model itself should not be falsi�ed from data

� It should be considerably richer than the nominal model�

� It should re�ect suspected or possible properties of the system

� � � � in particular those that could be damaging for the intended model
application

As a default structure� in case no speci�c information is at hand we may
suggest

�	t
 �
��X
t��

b	k
u	t� k
 $ gNN	u	t
� u	t� �
� � � � � u	t� �
� �
 	��


$
� $ c�q

�� $ � � � c�q
��

� $ d�q�� $ � � �$ d�q��
w	t


where gNN as a Neural Network black�box non�linear model� We stress that the
error model should be built in two steps� so that �rst the linear part is extracted�
before the Neural Network model is applied� This will remove the ambiguity of
how to split the �rst two terms�
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��� Example

Let us illustrate the discussion with the following example� We simulate the
fourth order system

y	t
 �
q�� $ ���q��

�� ���q�� $ ��
�q�� � ����q�� $ ������q��
u	t
 $ w	t
 	�



The input u is a PRBS signal with clock period �� To protect ourselves from the
criticism of naive use of stationary stochastic processes as disturbance models we
pick w to be the signal registered at the Charles F� Richter Seismological Labo�
ratory 	east�west accelerations
 during the Santa Cruz Mountain Earthquake in
����� 	This signal has been made available by The MathWorks� Inc�
 The signal
is hardly a realization of stationary stochastic process� but it seems reasonable
to assume that is is �independent� of the PRBS input in our simulation� The
level has been adjusted so that the output SNR in the data is about �� Figure
� shows the noise�free output as well as the signal w� We estimate a second
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Figure �� Upper plot� the noise�free part of the output in 	�

� Lower plot� The
noise term w 	actually an earthquake signal


order Output Error model from the data� The traditional way of presenting the
model is shown in Figures � and �� We see that although the residuals seem to
pass the correlation test 	lower part of Figure �
� the con�dence region of the
frequency function of the second order model does not contain the true system�
Figure � shows the Model Error way of presenting the result of the residual
analysis� The model error model used here is a Box�Jenkins model with �� FIR
parameters and � parameters each in the numerator and denominator� Clearly�
the information from the model error model is accurate�

Now� the fact that Figure � gives bad information� is not so serious as one
may think at �rst sight� The residual analysis test is not passed� since the
whiteness test of the residual fails� and hence the con�dence regions in the
lower plot of Figure � are not reliable�
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Figure �� Bode plot of the second order output error model with ��� con�dence
intervals� The true system is also shown�
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Figure �� Residual analysis of the second order output error model with ���
con�dence intervals� Upper plot shows the auto�correlation of the residuals and
the lower plot shows the cross�correlations
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Figure �� Upper plot� Nominal second order OE model 	dashed line
 as well as
nominal model $ model error model with uncertainty region� The true system
is marked with a solid line� Lower plot� The model error model 	Box�Jenkins
type
 and its uncertainty region�

We therefore try a second order Box�Jenkins model instead� The correspond�
ing plots are given in Figures ������ We see here that with a more reliable noise
pre�lter� the correlation between residuals and past inputs is on the verge of
being signi�cant� but the model is not rejected by a 
� test at any reasonable
level� It is quite di&cult to see from the lower plot of Figure �� if there are any
de�ciancies in the nominal model� The model error model in the lower plot of
Figure �� displays this information in a much more intuitive way� and we see
also that the true system lies within the model set delivered in the upper plot�
Since we have a noise model also in the Box�Jenkins estimate� we have used
that� as suggested in 	��
 to build the error model based on the model error
and input pre�ltered by the inverse noise model�

There is one more important comment to be made�

� Even though the lower plot of Figure �� shows that the nominal second
order model is falsi�ed� the qualitative information may still tell us that
we may safe work with the simple nominal second order model� as long
as the control design does not rely critically on the behavior above ���
rad sec�

� Experiment Design for Model Invalidation

The topic of experiment design for system identi�cation has typically focused
on how to obtain models of optimal accuracy within certain model structures�
However� one should note that from this respect� optimal inputs could prove to
be very bad in other respects� For example� an optimal input for identifying a
second order linear system could very well consist of two sinusoids� With such
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Figure ��� Bode plot of the second order Box�Jenkins model with ��� con�dence
intervals� The true system is also shown�
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Figure ��� Residual analysis of the second order Box�Jenkins model with ���
con�dence intervals� Upper plot shows the auto�correlation of the residuals and
the lower plot shows the cross�correlations
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Figure ��� Upper plot� Nominal second order Box�Jenkins model 	dashed line

as well as nominal model $ model error model with uncertainty region� The
true system is marked with a solid line� Lower plot� The model error model
	Box�Jenkins type
 and its uncertainty region�

an input it is impossible to falsify a second order linear model� so the optimal
design really relies upon the correctness of prior information�

Similarly� an optimal input with optimal crest factor for a linear system is a
binary signal� Such an input is incapable of �nding a static non�linearity at the
input of the system 	Hammerstein non�linearity
�

We would therefore need to develop experiment design for model invalidation�
In the current framework it corresponds to experiment design for powerful model
error models� This is not the place to go deeper into this issue� but let us point to
one useful possibility� periodic inputs� A periodic input regularly takes us back
to the same point in the regressor space� and thereby allows us to distinguish
disturbance contributions from model errors� That is� we will get a certain help
in the fundamental� but di&cult split 	��
�

Assume that the model error model %f in 	��
 is stable and the input u is
periodic with period P � and that transients can be neglected� Then the split
in 	��
 is de�ned as separating � into its� with period P � periodic part and
the rest� 	Note that this is a non�probabilistic way of catching the concept of
independence between u and w�
 We could obtain

"%f	t
 �
�

M

MX
k��

�	t$ kP 
 	��


	M being the number of periods
 as a simple estimate of the error model� and
correspondingly an estimate of the size of the disturbances�

Periodic inputs have some additional advantages 	as well as a few disadvan�
tages
� but from a model validation perspective� the quick model error model
	��
 is the most important one� This is a topic that should be further pursued�
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�� Conclusions

We have pointed to a few ways of using an explicit model error model as a
tool in model validation and for determining what set of possible system de�
scriptions shall be delivered to the user� We have stressed that the model error
model is more of a conceptual issue than a technical one� Many of the involved
calculations are closely related to standard ones performed in model validation�
The examples have illustrated that the explicit model error model gives more
freedom in picking up both errors and uncertainties that may be hidden in
traditional approaches� and is well suited� e�g�� for control design�
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