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ABSTRACT 

In this paper we outline practical techniques and guidelines 
for verifying and validating simulation models.  The goal 
of verification and validation is a model that is accurate 
when used to predict the performance of the real-world 
system that it represents, or to predict the difference in per-
formance between two scenarios or two model configura-
tions.  The process of verifying and validating a model 
should also lead to improving a model’s credibility with 
decision makers.  We provide examples of a number of 
typical situations where model developers may make inap-
propriate or inaccurate assumptions, and offer guidelines 
and techniques for carrying out verification and validation.  

1 WHAT IS VERIFICATION  
AND VALIDATION? 

Models are used to predict or compare the future perform-
ance of a new system, a modified system, or an existing 
system under new conditions.  When models are used for 
comparison purposes, the comparison is usually made to a 
baseline model representing an existing system, to some-
one’s conception of how a new or modified system will 
work (i.e., to a baseline design), or to current real-world 
system performance.  In any of  these cases we want to 
know that the model has sufficient accuracy.  Sufficient 
accuracy means that the model can be used as a substitute 
for the real system for the purposes of experimentation and 
analysis (assuming that it were possible to experiment with 
the actual system). 

After the first phases of a modeling project – the kickoff 
meeting, the functional specifications document, and initial 
model development – the model developer enters into a se-
ries of activities called debugging, verification, model re-
view and validation.  In fact, writing and seeking approval of 
the functional specifications document lays the foundation 
for verification and validation; this is where all modeling as-
sumptions and data requirements are laid out for the project 
team to review, modify if necessary and approve. 

 

In practice, a model developer intermixes debugging, 

verification and validation tasks and exercises with model 
development in a complex and iterative process.  We sepa-
rate them conceptually for explanatory purposes and in the 
hope that in practice verification and especially validation 
do not receive less time and effort than their due. 

1.1 Definitions 

Debugging occurs when a model developer has a known 
“bug” in the model and uses various techniques to deter-
mine the cause and fix it. 

Verification occurs when the model developer exer-
cises an apparently correct model for the specific purpose 
of finding and fixing modeling errors.  It refers to the proc-
esses and techniques that the model developer uses to as-
sure that his or her model is correct and matches any 
agreed-upon specifications and assumptions. 

Validation occurs when the model developer and people 
knowledgeable of the real system or new/modified design 
jointly work to review and evaluate how a model works.  It 
refers to the processes and techniques that the model devel-
oper, model customer and decision makers jointly use to as-
sure that the model represents the real system (or proposed 
real system) to a sufficient level of accuracy. 

The verification and validation phases often detect 
bugs that require further debugging, or incorrect assump-
tions that require significant model modifications and then 
further model re-verification and re-validation. 

It should also be noted that no model is ever 100% 
verified or validated.  Validation is not an absolute.  Any 
model is a representation of a system, and the model’s be-
havior is at best an approximation to the system’s behavior.  
When we (loosely) say that a model has been verified or 
validated, we mean that we have explicitly carried out a 
series of tasks to verify and validate our model to the de-
gree necessary for our purposes.  Such V&V is always a 
matter of judgment to a large extent. 
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Model credibility refers to the decision maker’s confi-
dence in the model.  One goal of the V&V process is to 
gain this credibility. 

1.2 Responsibility, Attitude, Aptitude 

In modeling projects for the industrial and service sectors, 
all except the largest projects typically are carried out by 
one, or sometimes two, model developers.  Although there 
are others on the modeling team – engineers, process own-
ers, operators and supervisors, decision makers and manag-
ers, vendors, designers, and systems integrators – the model 
developer has the primary responsibility to assure that the 
model is accurate, and to correct deficiencies as they are 
found during the verification and validation process.   

On occasion I have found an attitude among some 
model developers that an in-depth investigation and review 
of their model is viewed as a review of their job perform-
ance, or worse, an attack upon them.  In fact, a third party 
review is often essential to have reasonable assurance of 
model accuracy.  In professional simulation consulting 
groups, it should be common practice for a more senior, 
experienced model developer to review in detail models 
developed by the newer model developers.  In this and 
other ways, the model developer’s attitude plays a critical 
role in the quality of the model verification and validation 
exercise. 

It has also been my experience that some model de-
velopers, especially newer and more inexperienced ones, 
find the V&V process difficult because it requires a change 
in mind-set and attitude from that required when develop-
ing a model.  As the well-known statistician George Box 
has said: “All models are wrong.  Some are useful.”  So 
while verifying models, it is good advice to keep the first 
part of Box’s quotation in mind, in order to maximize the 
likelihood of the second part becoming true – and to keep a 
sense of humor and perspective about one’s own creative 
(model building) activities and the all-too-human tendency 
to overlook errors in one’s own work.  For large and com-
plex models, the model building process becomes 
challenging and intense, engendering a sense of 
“protective” ownership in the model – good in itself but 
sometimes counteracting the need for thorough model 
testing.  “Engineers ... are not superhuman. They make 
mistakes in their assumptions, in their calculations, in their 
conclusions.  That they make mistakes is forgivable; that 
they catch them is imperative.  Thus it is the essence of 
modern engineering not only to be able to check one’s own 
work but also to have one’s work checked and to be able to 
check the work of others.” (Petroski, 1992) 

Indeed, it is useful if a model developer approaches 
debugging, model checking and model verification with 
the assumption that their model is wrong, even after all ob-
vious bugs are fixed – and that their job is similar to a me-
dieval inquisitor.  Simply because there’s no apparent evi-
dence that you have done anything wrong (made a 
modeling error) does not mean that you are innocent (the 
model is valid).  It’s guilty until proven innocent!  It’s your 
job to find any weak points, to get to the bottom of any 
problems, to “stress test” the model, to break it – and to 
find the problems and fix them. 

At all costs avoid the “student syndrome”: If it’s late at 
night, and it runs to completion, and it’s due the next 
morning, print out the results and turn them in.  (My 
apologies to all the excellent students I’ve had over the 
years – this is not you!).   This could also be called the 
“one run looks OK, so the model is correct” syndrome. 

Other perspectives on verification and validation can 
be found in all past Proceedings of the Winter Simulation 
Conference in the Introductory Tutorials track and often in 
other tracks.  We mention the most recent articles:  Law 
and McComas (2001), Sargent (2001), and Schmeiser 
(2001).  Simulation textbooks that discuss verification and 
validation include Banks et al (2001) and Law and Kelton 
(2000). 

2 CATEGORIES OF MODELING ERRORS 

Modeling errors may be grouped into the following catego-
ries: 

 
• Project Management Errors 
• Data and Data Model Errors 
• Logic Model Errors 
• Experimentation Errors 
 

 We discuss each of these in the following sections. 

2.1 Project Management Errors 

These errors revolve around project management and re-
lated communication issues.  A simulation model involves 
a team: the model developer(s), the customer or end-user, 
and often-times equipment vendors, other consultants or 
engineering and design firms.  The customer side may in-
clude engineers, maintenance personnel and other support 
staff, as well as line staff (operators and supervisors).  The 
customer side should always include managers and deci-
sion makers.   

It is critical for project success to have all the key per-
sonnel involved from the beginning of the project. 

Example 1: At the kickoff meeting, only the engineer 
designated as the key person was present.  At a subsequent 
review meeting, other people were present.  On reviewing 
key model assumptions, some of the other personnel dis-
agreed with assumptions.  As the assumptions involved the 
areas in which they worked, their opinion was accepted by  
the group.  Unfortunately this led to some project delay as 
the modified assumptions had to be incorporated into the 
model. 
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Example 2: A manager who had not been present at 
earlier meetings came to a model review meeting.  He dis-
agreed with some key assumptions that had previously 
been made, and subsequent discussion with the group con-
cluded that he was correct on some points.  As a result, the 
model developer (whether internal or an outside consult-
ant) had to spend unexpected time making significant 
changes to the model, resulting in project delay and/or ad-
ditional project costs. 

The moral is simple:  Get all people involved from the 
beginning.  Get all to agree to and “sign-off” on the 
model’s assumptions.  Get all to agree to the objectives of 
the study, and to agree to at least an initial list of questions 
to be addressed.  Make it clear which questions or areas 
cannot be addressed because of the model’s scope or level 
of detail.  In the kickoff meeting and functional specifica-
tion document, emphasize the importance of accurate data 
for resulting model accuracy and validity. 

2.2 Data Errors and Data Modeling Errors 

Data errors are errors in the input data itself, in the form of 
the data, or the completeness of the data.  Data modeling 
errors refer to errors in how the data is used in the model, a 
typical one being to assume an inappropriate statistical dis-
tribution for random data. 

Some typical sources of data errors include: 
 
• Only summary data is available, when what is 

needed are individual values.  For example, a ma-
chine’s nominal processing rate is all that is read-
ily available, but in reality processing times vary 
for numerous reasons. 

• Data may be grouped but individual values are 
again not available.  For example, total number of 
downtimes and repairs per shift for all machines is 
collected but not actual running times and repair 
times for each machine. 

• Records may show when a machine is down, but 
may not give the cause or reason.  For example, a 
machine that is not needed for 4 days may not be 
repaired for 3 days, but this does not mean that 3+ 
days is a typical time-to-repair. 

• For equipment that fails, one value called machine 
efficiency is available when what is needed is 
some measure of individual times-to-failure and 
time-to-repair.  Knowing only that a machine is 
94% efficient (or available or productive) does not 
tell you whether times-to-failure and times-to-
repair are long or short.  Longer TTF and TTR, 
while resulting in the same individual machine ef-
ficiency as shorter ones, may result in much dif-
ferent system performance. 

• The customer says that all kinds of data are avail-
able.  It turns out that the available data corre-
sponds to simulation outputs – items such as 
throughput, response time to a special order, over-
all system response time – and not to simulation 
input data. 

 
Some typical data modeling errors include: 
 
• Using a mean when actual values vary randomly. 
• Using a mean when actual values vary by some 

attribute (such as processing times that vary by 
part type). 

• Using a statistical distribution simply because a 
time varies when variability is due to known 
causes 
− Example: processing time at a machine or 

station varies greatly for each part type.  Parts 
arrive in batches all of the same type.  For a 
given type, processing time is virtually con-
stant. 

• Modeling machine failures inappropriately: 
− In some cases, number of cycles between 

failure, or busy (running) time to failure, is 
more appropriate than clock-time-to-failure. 

− When detailed data is not available but the 
cause of failure (or product jam or other stop-
page) is due to tool wear-out or any other 
fairly regular event, using an exponential dis-
tribution may not be appropriate. 

− When detailed data is not available, assuming 
a normal or uniform or triangular distribution 
(or any other symmetric distribution), simply 
because of familiarity, for time-to-failure is 
usually totally inappropriate and invalid. 

− Adjusting the processing rate to account for 
the failure rate (and ignoring the up/down 
machine states associated with actual fail-
ures) is almost always inappropriate and re-
sults in an invalid model. 

• Assuming statistical independence when it is not 
appropriate 
− Example: For an order fulfillment center that 

had both very large orders (many line items, 
large quantities) and small orders (often one 
item), orders were modeled by two random 
variables: number of line items and quantity 
for each line item.  A statistical distribution 
was chosen for each, but any dependence was 
ignored. 

 
For this last example – order data – it is usually the 

case that using actual data when it is available is better 
than some statistical summary of the data.  When needed 
for experimental purposes, larger order files for a given pe-
riod (such as one day) can be obtained by combining or-
ders from multiple days or by random sampling from a 
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given file of orders.  With such data there is often a com-
plex correlation between number of line items on an order 
and quantities.  Simply put, it is likely that large customers 
order large quantities of many different items, and small 
customers just the opposite; and it may be most likely that 
an order for one item has a quantity of one.  Therefore, 
sampling independently for number of line items and the 
quantity of each line item typically leads to an order profile 
much different from the actual one.  (The statistical ap-
proach may be adequate for order data depending on it na-
ture and provided the data is stratified.  That is, character-
ize large, medium and small orders separately; within each 
grouping of similar orders, the two variables mentioned 
may provide an adequate representation of the given order 
profile.) 

2.3 Logic Modeling Errors 

Logic modeling errors refer to errors in the model’s speci-
fication or implementation in the simulation language. 

Some errors are language-dependent or common to 
languages with similar concepts and implementations.  For 
example, in Schriber et al (2001), Jim Henriksen says: 
“Faulty indexing is the number one source of computation 
errors in GPSS models.”  This comment potentially applies 
to any simulation language that uses variable arrays and 
arrayed entities to facilitate modeling of parallel activities 
and processes.  While this type of error is not likely to oc-
cur in smaller models, it is not uncommon in larger, more 
complex models.  It points to the need for a model devel-
oper to aspire to become an expert in his or her chosen 
simulation software. 

Many logic modeling errors fall into the category of 
poor or wrong assumptions, often brought on through 
faulty project management.   
 Example 3: In a model review meeting where the end 
customer was present for the first time, the animation 
showed an order picker with one tote moving down a pick 
aisle.  The first comment from the Director of Engineering 
was “It doesn’t work that way.”  It quickly became clear 
that a picker typically pushes along 3 to 4 totes, picking 
into all simultaneously.  The problem lay with the engi-
neering firm that outsourced the simulation model devel-
opment; they had “made assumptions” without observing 
closely enough the workings of the actual system and con-
veyed faulty assumptions to the model developers (who 
were not able to have any contact with or observation of 
the end customer’s distribution center). 

A broader and often overlooked source of potential er-
rors is due to a poor model design or a poor approach to one 
aspect of the model.  Many modern simulation languages 
allow a great deal of flexibility in how any given situation 
may be modeled.  This is good in that it increases the power 
and scope of the tool, allowing for accurate modeling of un-
usual and unique situations,  but it provides a challenge to 
newer, more inexperienced model developers.  It is also true 
that the approach taught for the simple models used in many 
simulation classes (including vendor’s introductory classes!) 
may not be easily “scalable” to large real-life models. 

For example, in most process interaction simulation 
languages, the natural approach to modeling a limited re-
source is that of an “active object, passive server”; this 
leads naturally to a “push” philosophy for managing jobs 
or tasks flowing through the system.    The active object 
may be called an entity, transaction, or load (depending on 
the simulation product being used); the passive server may 
be called a resource, facility or storage.  In some modeling 
situations, an “active server” approach may be more ap-
propriate in the sense that it leads to code or logic that is 
easier to develop, debug, verify and modify. 
 Example 4:  In a job shop model using a “pull” phi-
losophy, a new model developer used the natural “active 
object, passive server” approach that she had learned in an 
introductory class.  The active object was a part being pro-
duced; the passive server was a processing machine or 
workstation.  This made it difficult to implement the de-
sired “pull” control strategy at workstations as well as the 
integration of work-in-process buffers into the control 
strategy.  In fact, an “active object, passive server” ap-
proach leads naturally to a “push” philosophy.  With the 
suggestions of a more experienced modeler, the new mod-
eler changed her approach and found it much easier and 
more straightforward to implement the desired control 
strategy.  This ease and straightforwardness carried over to 
the debugging and verification phases. 
 Example 5:   In a model of an automated guided vehi-
cle system for a semiconductor plant, a model developer 
took an initial approach that resulted in vehicle control 
logic being dispersed throughout the model.  This initial 
approach made it difficult to communicate the logic to an-
other team member as well as to verify its correctness.  A 
person more experienced in the simulation product being 
used pointed out that there were at least two other ap-
proaches to modeling the control logic that put all the vehi-
cle control logic and decision making into one compact 
procedure.  This alternate approach was based on an “ac-
tive server” where the server represented the control soft-
ware system which was notified of relevant vehicle events 
and responded appropriately with vehicle commands.  The 
new approach resulted in compact vehicle code that was 
easier to develop and verify.  In fact, the new approach 
made it possible for the controls software team to review 
the simulation code representing their controls.  (Even 
though the controls programmers had not been trained in 
the simulation software, their general programming experi-
ence made it easy for them to read the simulation code for 
vehicle control and verify its correctness – because it had 
been written in the compact manner described above, and 
secondly because some limited programmer’s documenta-
tion such as variable definitions was provided.) 
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2.4 Experimentation Errors 

Some common errors during the experimentation and 
analysis phase of a project include: 

 
• Not understanding the need for statistical analysis 
• Too few runs 
• Not understanding statistical sampling error 
• Failure to do an adequate warmup determination 

for steady-state analyses 
• Misinterpretation of confidence intervals 

 
These and similar errors are discussed in detail in 
Schmeiser (2001).  Although these errors are typically not 
included in a discussion of verification and validation, they 
may lead to a model not being useful and indeed to “gar-
bage in – gospel out” (anonymous, date unknown). 

3 A SIMPLE FRAMEWORK FOR 
VERIFICATION AND VALIDATION 

The simplest and the most obvious techniques are usually 
the best.  First, they are more likely to be understood and 
used.  Second, they are often overlooked, but when used 
often uncover model defects. 

Here is a suggested framework for verification and 
validation: 

 
1. Test the model for face validity. 
2. Test the model over a range of input parameters. 
3. Where applicable, compare model predictions to 

past performance of the actual system or to a base-
line model representing an existing system.  When 
designing a new system, compare implemented 
model behavior to assumptions and specifications. 

 
 First, test the model for face validity.  For a given sce-
nario, examine all the model’s output measures of per-
formance and ask “are they reasonable?”.  Examine as 
many outputs as possible.  (See Section 4 for a detailed 
discussion of relevant output measures.) 
 Second, run the model over the widest range of input 
parameters that are likely to be varied during the course of 
experimentation.  Consider this a “stress test”.  Examine 
trends in common measures of performance, such as 
throughput, when some input is changed; usually at least 
the direction if not the magnitude of change is known.  
Look for outliers in system performance – outputs that are 
way out of line with trends or expectations.  Examine the 
runs that produced those results in detail. 

When some setting of a model’s inputs allows the 
model to match an existing system, then (and only then) a 
scientific validation is at least theoretically possible, and 
becomes possible in practice if the right data can be col-
lected.  In this situation, if at all possible: 

 
1. Collect input data and corresponding system per-

formance measures for some period of time. 
2. Run the model with the given input data. 
3. Compare model performance to real-world per-

formance over the given period of time. 
4. If one set of data (input and outputs) are available, 

compare on a reasonableness basis.  If two or 
more sets are available, use statistical techniques 
such as confidence intervals to compare the dif-
ference in model performance and real-system 
performance. 

 
When designing a new system, a completely scientific 

validation is not possible simply because a real-system 
does not exist as a basis for comparison.  In this situation, 
it is essential that system designers examine and verify 
model behavior at the micro-level.  This includes how the 
model responds to extreme as well as normal situations.  
Since many questions that may be addressed during ex-
perimentation may depend on how well a model incorpo-
rates cause and effect, it is essential that the system design 
as implemented in the model be verified at this level.  This 
includes not only its physical design, but at least as impor-
tant, any control schemes, operational rules and policies, 
and labor and other human interventions. 

4 MEASURES OF PERFORMANCE FOR V & V 

It is often stated that a model should be built for a specified 
purpose or set of objectives, and even though validated for 
the original objectives, the model may or may not be valid 
for another purpose or set of objectives.  My view differs a 
bit.  It is my belief that a model, once its validity is proven 
to everyone’s satisfaction for one purpose, should be valid 
for any other purpose within its scope and level of detail. 

If the model, because of its scope and level of detail, 
can measure what’s needed, then a validated model should 
be valid when the purpose or objective changes. A model 
that is valid should be valid for any purpose or objective 
that can be met by a measure of performance which the 
model can capture.  A model may not be capable of ad-
dressing a new objective, but that is most likely to be be-
cause of the original model’s limited scope or lack of detail 
in some area, not because it was developed with another 
purpose in mind. 

In the initial phase of any modeling project, the model 
developer, decision makers, systems experts and other in-
volved parties need to agree on, among other things: 

 
1. The objectives of the study. 
2. The questions to be addressed in order to meet the 

objectives. 
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3. The measures of performance that will be used to 
answer the questions of interest. 

4. The model’s scope and level of detail for various 
subsystems, keeping the objectives and questions 
in mind so that the model will be capable of ad-
dressing those objectives and answering those 
questions 

 
Typical measures of performance for industrial models 

include the primary measures such as throughput, system 
cycle or response time, and work in process.  In addition, a 
number of secondary or explanatory measures may be of 
interest, such as resource utilization, size of local buffers, 
and throughputs for subsystems or particular part types. 

It is usually not possible to identify ahead of time all 
possible output measures of performance that might poten-
tially be of interest.  Here’s a typical scenario during the ex-
perimentation phase.  Example:  A model configuration that 
was expected to perform well in fact does not perform well.  
The typical primary measure mentioned earlier identify a 
departure from expectations.  Explanations are required but 
are not immediately obvious or forthcoming; the cause or 
causes are hidden or veiled.  After investigation, watching 
the animation, examining time lines of key variables, and 
some thought, an hypothesis is developed for the reason for 
the departure from expectation.  Someone says, “Prove it!”.  
To prove it, it turns out that some new measures of subsys-
tem performance are needed, so they are added to the model, 
runs are made and the hypothesis is confirmed or contra-
dicted by the new measures.  If contradicted, the process re-
peats.  During the process, insights are gained and our un-
derstanding of system dynamics increases. 

Some points learned from this example:  Primary 
measures tell us what happened, but often secondary or 
auxiliary measures are needed to confirm insights and pro-
vide explanations of why they happened.  This leads to a 
second point: secondary measures are often the most useful 
in detecting model shortcomings and invalid logic.  A 
model is not valid until all of its subsystems are valid. 

In addition, global measures of performance often 
mask serious errors in a model.  It is essential to verify and 
validate a wide range of model output measures.  We rec-
ommend that “local” as well as global measures be cap-
tured and examined.  Depending on the model, “local” 
might mean statistics on individual resources, buffers and 
subsystems or statistics on individual part types. 

Example 6:  A manufacturer of printed circuit boards 
asked our consulting group to review a model that had 
been developed by a previous employee and had not been 
used for two years.  We found that the model had been set 
up to run for 31 days and printed a custom report at the end 
of 31 days on overall production throughput for broad 
classes of boards but not for individual board types.  Close 
examination of the inputs revealed that one board type rep-
resenting roughly 1% of desired total production took at 
least 30 days to get to its last production step.  (This was 
due to longer testing times than other board types as well 
as to batching requirements for certain heat treatments.)  
Therefore in runs of 31 days, few or sometimes none of 
these boards completed production.  Looking at overall 
global measures of performance obscured this fact; exam-
ining detailed statistics on individual part types revealed 
this (and other) modeling and potential experimentation 
errors. 

5 SOME SUGGESTED TECHNIQUES 

Here we provide a list of V&V techniques that may prove 
useful in certain types of models: 

 
• Force rare events and extreme cases so that model 

behavior responding to these events can be tested. 
• Identify output values that indicate a modeling er-

ror or suspicious behavior. 
• Identify internal system conditions that indicate a 

modeling error.  Write “if …” statements to test 
for these conditions and report them to a message 
or log file. 

• Make lots of runs.  Before beginning the formal 
experimentation, do extensive model testing by 
making runs over a wide range of input parameter 
settings.  Conduct a “trend” analysis to see if typi-
cal outputs (e.g., throughput) at least go in the ex-
pected direction (up or down) when some input is 
increased (e.g., machine speeds or number of 
workers). 

• In vehicle models (including models in which op-
erators walk from task to task), check for vehicle 
lockup (or inordinate human “idle” time).  Vehi-
cle lockup can occur due to faulty control logic. 

• Use timelines to view current statistics (not sum-
mary statistics).  These include items such as cur-
rent work-in-process and other queue sizes, re-
sources being used, and number of active 
vehicles.  Such timelines can quickly reveal major 
modeling errors that lead to some resource not be-
ing used for a lengthy period of time. 

• Use timelines to view current work-in-process in 
all major subsystems.  Count entities into and out 
of each subsystem to be sure all are accounted for.  
(I have seen models where entities get “lost” in 
the model.) 

• Use the animation intelligently.  It is excellent for 
verifying model behavior on the micro-level over 
short time frames. 

• Examine a wide variety of output measures 
− primary measures such as throughput 
− more than the primary measures 
! “local” measures for individual resources 

(machines or workstations or vehicles) 
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! measures for each type of “object” (e.g., 
by part type, not just overall parts) 

− examine for reasonableness, which means to 
detect those that are clearly out of line. 

6 SUMMARY 

Verification and validation are essential phases in the 
model development process for any simulation project.  
Use of the simple techniques outlined in this paper can as-
sist you in avoiding major and serious modeling errors. 
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