
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

MODEL VERIFICATION AND VALIDATION

John S. Carson, II

Brooks-PRI Automation
1355 Terrell Mill Road

Building 1482, Suite 200
Marietta, GA 30067, U.S.A.

ABSTRACT

In this paper we outline practical techniques and guidelines
for verifying and validating simulation models. The goal
of verification and validation is a model that is accurate
when used to predict the performance of the real-world
system that it represents, or to predict the difference in per-
formance between two scenarios or two model configura-
tions. The process of verifying and validating a model
should also lead to improving a model’s credibility with
decision makers. We provide examples of a number of
typical situations where model developers may make inap-
propriate or inaccurate assumptions, and offer guidelines
and techniques for carrying out verification and validation.

1 WHAT IS VERIFICATION
AND VALIDATION?

Models are used to predict or compare the future perform-
ance of a new system, a modified system, or an existing
system under new conditions. When models are used for
comparison purposes, the comparison is usually made to a
baseline model representing an existing system, to some-
one’s conception of how a new or modified system will
work (i.e., to a baseline design), or to current real-world
system performance. In any of these cases we want to
know that the model has sufficient accuracy. Sufficient
accuracy means that the model can be used as a substitute
for the real system for the purposes of experimentation and
analysis (assuming that it were possible to experiment with
the actual system).

After the first phases of a modeling project – the kickoff
meeting, the functional specifications document, and initial
model development – the model developer enters into a se-
ries of activities called debugging, verification, model re-
view and validation. In fact, writing and seeking approval of
the functional specifications document lays the foundation
for verification and validation; this is where all modeling as-
sumptions and data requirements are laid out for the project
team to review, modify if necessary and approve.

In practice, a model developer intermixes debugging,

verification and validation tasks and exercises with model
development in a complex and iterative process. We sepa-
rate them conceptually for explanatory purposes and in the
hope that in practice verification and especially validation
do not receive less time and effort than their due.

1.1 Definitions

Debugging occurs when a model developer has a known
“bug” in the model and uses various techniques to deter-
mine the cause and fix it.

Verification occurs when the model developer exer-
cises an apparently correct model for the specific purpose
of finding and fixing modeling errors. It refers to the proc-
esses and techniques that the model developer uses to as-
sure that his or her model is correct and matches any
agreed-upon specifications and assumptions.

Validation occurs when the model developer and people
knowledgeable of the real system or new/modified design
jointly work to review and evaluate how a model works. It
refers to the processes and techniques that the model devel-
oper, model customer and decision makers jointly use to as-
sure that the model represents the real system (or proposed
real system) to a sufficient level of accuracy.

The verification and validation phases often detect
bugs that require further debugging, or incorrect assump-
tions that require significant model modifications and then
further model re-verification and re-validation.

It should also be noted that no model is ever 100%
verified or validated. Validation is not an absolute. Any
model is a representation of a system, and the model’s be-
havior is at best an approximation to the system’s behavior.
When we (loosely) say that a model has been verified or
validated, we mean that we have explicitly carried out a
series of tasks to verify and validate our model to the de-
gree necessary for our purposes. Such V&V is always a
matter of judgment to a large extent.

Carson

Model credibility refers to the decision maker’s confi-
dence in the model. One goal of the V&V process is to
gain this credibility.

1.2 Responsibility, Attitude, Aptitude

In modeling projects for the industrial and service sectors,
all except the largest projects typically are carried out by
one, or sometimes two, model developers. Although there
are others on the modeling team – engineers, process own-
ers, operators and supervisors, decision makers and manag-
ers, vendors, designers, and systems integrators – the model
developer has the primary responsibility to assure that the
model is accurate, and to correct deficiencies as they are
found during the verification and validation process.

On occasion I have found an attitude among some
model developers that an in-depth investigation and review
of their model is viewed as a review of their job perform-
ance, or worse, an attack upon them. In fact, a third party
review is often essential to have reasonable assurance of
model accuracy. In professional simulation consulting
groups, it should be common practice for a more senior,
experienced model developer to review in detail models
developed by the newer model developers. In this and
other ways, the model developer’s attitude plays a critical
role in the quality of the model verification and validation
exercise.

It has also been my experience that some model de-
velopers, especially newer and more inexperienced ones,
find the V&V process difficult because it requires a change
in mind-set and attitude from that required when develop-
ing a model. As the well-known statistician George Box
has said: “All models are wrong. Some are useful.” So
while verifying models, it is good advice to keep the first
part of Box’s quotation in mind, in order to maximize the
likelihood of the second part becoming true – and to keep a
sense of humor and perspective about one’s own creative
(model building) activities and the all-too-human tendency
to overlook errors in one’s own work. For large and com-
plex models, the model building process becomes
challenging and intense, engendering a sense of
“protective” ownership in the model – good in itself but
sometimes counteracting the need for thorough model
testing. “Engineers ... are not superhuman. They make
mistakes in their assumptions, in their calculations, in their
conclusions. That they make mistakes is forgivable; that
they catch them is imperative. Thus it is the essence of
modern engineering not only to be able to check one’s own
work but also to have one’s work checked and to be able to
check the work of others.” (Petroski, 1992)

Indeed, it is useful if a model developer approaches
debugging, model checking and model verification with
the assumption that their model is wrong, even after all ob-
vious bugs are fixed – and that their job is similar to a me-
dieval inquisitor. Simply because there’s no apparent evi-
dence that you have done anything wrong (made a
modeling error) does not mean that you are innocent (the
model is valid). It’s guilty until proven innocent! It’s your
job to find any weak points, to get to the bottom of any
problems, to “stress test” the model, to break it – and to
find the problems and fix them.

At all costs avoid the “student syndrome”: If it’s late at
night, and it runs to completion, and it’s due the next
morning, print out the results and turn them in. (My
apologies to all the excellent students I’ve had over the
years – this is not you!). This could also be called the
“one run looks OK, so the model is correct” syndrome.

Other perspectives on verification and validation can
be found in all past Proceedings of the Winter Simulation
Conference in the Introductory Tutorials track and often in
other tracks. We mention the most recent articles: Law
and McComas (2001), Sargent (2001), and Schmeiser
(2001). Simulation textbooks that discuss verification and
validation include Banks et al (2001) and Law and Kelton
(2000).

2 CATEGORIES OF MODELING ERRORS

Modeling errors may be grouped into the following catego-
ries:

• Project Management Errors
• Data and Data Model Errors
• Logic Model Errors
• Experimentation Errors

 We discuss each of these in the following sections.

2.1 Project Management Errors

These errors revolve around project management and re-
lated communication issues. A simulation model involves
a team: the model developer(s), the customer or end-user,
and often-times equipment vendors, other consultants or
engineering and design firms. The customer side may in-
clude engineers, maintenance personnel and other support
staff, as well as line staff (operators and supervisors). The
customer side should always include managers and deci-
sion makers.

It is critical for project success to have all the key per-
sonnel involved from the beginning of the project.

Example 1: At the kickoff meeting, only the engineer
designated as the key person was present. At a subsequent
review meeting, other people were present. On reviewing
key model assumptions, some of the other personnel dis-
agreed with assumptions. As the assumptions involved the
areas in which they worked, their opinion was accepted by
the group. Unfortunately this led to some project delay as
the modified assumptions had to be incorporated into the
model.

Carson

Example 2: A manager who had not been present at
earlier meetings came to a model review meeting. He dis-
agreed with some key assumptions that had previously
been made, and subsequent discussion with the group con-
cluded that he was correct on some points. As a result, the
model developer (whether internal or an outside consult-
ant) had to spend unexpected time making significant
changes to the model, resulting in project delay and/or ad-
ditional project costs.

The moral is simple: Get all people involved from the
beginning. Get all to agree to and “sign-off” on the
model’s assumptions. Get all to agree to the objectives of
the study, and to agree to at least an initial list of questions
to be addressed. Make it clear which questions or areas
cannot be addressed because of the model’s scope or level
of detail. In the kickoff meeting and functional specifica-
tion document, emphasize the importance of accurate data
for resulting model accuracy and validity.

2.2 Data Errors and Data Modeling Errors

Data errors are errors in the input data itself, in the form of
the data, or the completeness of the data. Data modeling
errors refer to errors in how the data is used in the model, a
typical one being to assume an inappropriate statistical dis-
tribution for random data.

Some typical sources of data errors include:

• Only summary data is available, when what is

needed are individual values. For example, a ma-
chine’s nominal processing rate is all that is read-
ily available, but in reality processing times vary
for numerous reasons.

• Data may be grouped but individual values are
again not available. For example, total number of
downtimes and repairs per shift for all machines is
collected but not actual running times and repair
times for each machine.

• Records may show when a machine is down, but
may not give the cause or reason. For example, a
machine that is not needed for 4 days may not be
repaired for 3 days, but this does not mean that 3+
days is a typical time-to-repair.

• For equipment that fails, one value called machine
efficiency is available when what is needed is
some measure of individual times-to-failure and
time-to-repair. Knowing only that a machine is
94% efficient (or available or productive) does not
tell you whether times-to-failure and times-to-
repair are long or short. Longer TTF and TTR,
while resulting in the same individual machine ef-
ficiency as shorter ones, may result in much dif-
ferent system performance.

• The customer says that all kinds of data are avail-
able. It turns out that the available data corre-
sponds to simulation outputs – items such as
throughput, response time to a special order, over-
all system response time – and not to simulation
input data.

Some typical data modeling errors include:

• Using a mean when actual values vary randomly.
• Using a mean when actual values vary by some

attribute (such as processing times that vary by
part type).

• Using a statistical distribution simply because a
time varies when variability is due to known
causes
− Example: processing time at a machine or

station varies greatly for each part type. Parts
arrive in batches all of the same type. For a
given type, processing time is virtually con-
stant.

• Modeling machine failures inappropriately:
− In some cases, number of cycles between

failure, or busy (running) time to failure, is
more appropriate than clock-time-to-failure.

− When detailed data is not available but the
cause of failure (or product jam or other stop-
page) is due to tool wear-out or any other
fairly regular event, using an exponential dis-
tribution may not be appropriate.

− When detailed data is not available, assuming
a normal or uniform or triangular distribution
(or any other symmetric distribution), simply
because of familiarity, for time-to-failure is
usually totally inappropriate and invalid.

− Adjusting the processing rate to account for
the failure rate (and ignoring the up/down
machine states associated with actual fail-
ures) is almost always inappropriate and re-
sults in an invalid model.

• Assuming statistical independence when it is not
appropriate
− Example: For an order fulfillment center that

had both very large orders (many line items,
large quantities) and small orders (often one
item), orders were modeled by two random
variables: number of line items and quantity
for each line item. A statistical distribution
was chosen for each, but any dependence was
ignored.

For this last example – order data – it is usually the

case that using actual data when it is available is better
than some statistical summary of the data. When needed
for experimental purposes, larger order files for a given pe-
riod (such as one day) can be obtained by combining or-
ders from multiple days or by random sampling from a

Carson

given file of orders. With such data there is often a com-
plex correlation between number of line items on an order
and quantities. Simply put, it is likely that large customers
order large quantities of many different items, and small
customers just the opposite; and it may be most likely that
an order for one item has a quantity of one. Therefore,
sampling independently for number of line items and the
quantity of each line item typically leads to an order profile
much different from the actual one. (The statistical ap-
proach may be adequate for order data depending on it na-
ture and provided the data is stratified. That is, character-
ize large, medium and small orders separately; within each
grouping of similar orders, the two variables mentioned
may provide an adequate representation of the given order
profile.)

2.3 Logic Modeling Errors

Logic modeling errors refer to errors in the model’s speci-
fication or implementation in the simulation language.

Some errors are language-dependent or common to
languages with similar concepts and implementations. For
example, in Schriber et al (2001), Jim Henriksen says:
“Faulty indexing is the number one source of computation
errors in GPSS models.” This comment potentially applies
to any simulation language that uses variable arrays and
arrayed entities to facilitate modeling of parallel activities
and processes. While this type of error is not likely to oc-
cur in smaller models, it is not uncommon in larger, more
complex models. It points to the need for a model devel-
oper to aspire to become an expert in his or her chosen
simulation software.

Many logic modeling errors fall into the category of
poor or wrong assumptions, often brought on through
faulty project management.
 Example 3: In a model review meeting where the end
customer was present for the first time, the animation
showed an order picker with one tote moving down a pick
aisle. The first comment from the Director of Engineering
was “It doesn’t work that way.” It quickly became clear
that a picker typically pushes along 3 to 4 totes, picking
into all simultaneously. The problem lay with the engi-
neering firm that outsourced the simulation model devel-
opment; they had “made assumptions” without observing
closely enough the workings of the actual system and con-
veyed faulty assumptions to the model developers (who
were not able to have any contact with or observation of
the end customer’s distribution center).

A broader and often overlooked source of potential er-
rors is due to a poor model design or a poor approach to one
aspect of the model. Many modern simulation languages
allow a great deal of flexibility in how any given situation
may be modeled. This is good in that it increases the power
and scope of the tool, allowing for accurate modeling of un-
usual and unique situations, but it provides a challenge to
newer, more inexperienced model developers. It is also true
that the approach taught for the simple models used in many
simulation classes (including vendor’s introductory classes!)
may not be easily “scalable” to large real-life models.

For example, in most process interaction simulation
languages, the natural approach to modeling a limited re-
source is that of an “active object, passive server”; this
leads naturally to a “push” philosophy for managing jobs
or tasks flowing through the system. The active object
may be called an entity, transaction, or load (depending on
the simulation product being used); the passive server may
be called a resource, facility or storage. In some modeling
situations, an “active server” approach may be more ap-
propriate in the sense that it leads to code or logic that is
easier to develop, debug, verify and modify.
 Example 4: In a job shop model using a “pull” phi-
losophy, a new model developer used the natural “active
object, passive server” approach that she had learned in an
introductory class. The active object was a part being pro-
duced; the passive server was a processing machine or
workstation. This made it difficult to implement the de-
sired “pull” control strategy at workstations as well as the
integration of work-in-process buffers into the control
strategy. In fact, an “active object, passive server” ap-
proach leads naturally to a “push” philosophy. With the
suggestions of a more experienced modeler, the new mod-
eler changed her approach and found it much easier and
more straightforward to implement the desired control
strategy. This ease and straightforwardness carried over to
the debugging and verification phases.
 Example 5: In a model of an automated guided vehi-
cle system for a semiconductor plant, a model developer
took an initial approach that resulted in vehicle control
logic being dispersed throughout the model. This initial
approach made it difficult to communicate the logic to an-
other team member as well as to verify its correctness. A
person more experienced in the simulation product being
used pointed out that there were at least two other ap-
proaches to modeling the control logic that put all the vehi-
cle control logic and decision making into one compact
procedure. This alternate approach was based on an “ac-
tive server” where the server represented the control soft-
ware system which was notified of relevant vehicle events
and responded appropriately with vehicle commands. The
new approach resulted in compact vehicle code that was
easier to develop and verify. In fact, the new approach
made it possible for the controls software team to review
the simulation code representing their controls. (Even
though the controls programmers had not been trained in
the simulation software, their general programming experi-
ence made it easy for them to read the simulation code for
vehicle control and verify its correctness – because it had
been written in the compact manner described above, and
secondly because some limited programmer’s documenta-
tion such as variable definitions was provided.)

Carson

2.4 Experimentation Errors

Some common errors during the experimentation and
analysis phase of a project include:

• Not understanding the need for statistical analysis
• Too few runs
• Not understanding statistical sampling error
• Failure to do an adequate warmup determination

for steady-state analyses
• Misinterpretation of confidence intervals

These and similar errors are discussed in detail in
Schmeiser (2001). Although these errors are typically not
included in a discussion of verification and validation, they
may lead to a model not being useful and indeed to “gar-
bage in – gospel out” (anonymous, date unknown).

3 A SIMPLE FRAMEWORK FOR
VERIFICATION AND VALIDATION

The simplest and the most obvious techniques are usually
the best. First, they are more likely to be understood and
used. Second, they are often overlooked, but when used
often uncover model defects.

Here is a suggested framework for verification and
validation:

1. Test the model for face validity.
2. Test the model over a range of input parameters.
3. Where applicable, compare model predictions to

past performance of the actual system or to a base-
line model representing an existing system. When
designing a new system, compare implemented
model behavior to assumptions and specifications.

 First, test the model for face validity. For a given sce-
nario, examine all the model’s output measures of per-
formance and ask “are they reasonable?”. Examine as
many outputs as possible. (See Section 4 for a detailed
discussion of relevant output measures.)
 Second, run the model over the widest range of input
parameters that are likely to be varied during the course of
experimentation. Consider this a “stress test”. Examine
trends in common measures of performance, such as
throughput, when some input is changed; usually at least
the direction if not the magnitude of change is known.
Look for outliers in system performance – outputs that are
way out of line with trends or expectations. Examine the
runs that produced those results in detail.

When some setting of a model’s inputs allows the
model to match an existing system, then (and only then) a
scientific validation is at least theoretically possible, and
becomes possible in practice if the right data can be col-
lected. In this situation, if at all possible:

1. Collect input data and corresponding system per-

formance measures for some period of time.
2. Run the model with the given input data.
3. Compare model performance to real-world per-

formance over the given period of time.
4. If one set of data (input and outputs) are available,

compare on a reasonableness basis. If two or
more sets are available, use statistical techniques
such as confidence intervals to compare the dif-
ference in model performance and real-system
performance.

When designing a new system, a completely scientific

validation is not possible simply because a real-system
does not exist as a basis for comparison. In this situation,
it is essential that system designers examine and verify
model behavior at the micro-level. This includes how the
model responds to extreme as well as normal situations.
Since many questions that may be addressed during ex-
perimentation may depend on how well a model incorpo-
rates cause and effect, it is essential that the system design
as implemented in the model be verified at this level. This
includes not only its physical design, but at least as impor-
tant, any control schemes, operational rules and policies,
and labor and other human interventions.

4 MEASURES OF PERFORMANCE FOR V & V

It is often stated that a model should be built for a specified
purpose or set of objectives, and even though validated for
the original objectives, the model may or may not be valid
for another purpose or set of objectives. My view differs a
bit. It is my belief that a model, once its validity is proven
to everyone’s satisfaction for one purpose, should be valid
for any other purpose within its scope and level of detail.

If the model, because of its scope and level of detail,
can measure what’s needed, then a validated model should
be valid when the purpose or objective changes. A model
that is valid should be valid for any purpose or objective
that can be met by a measure of performance which the
model can capture. A model may not be capable of ad-
dressing a new objective, but that is most likely to be be-
cause of the original model’s limited scope or lack of detail
in some area, not because it was developed with another
purpose in mind.

In the initial phase of any modeling project, the model
developer, decision makers, systems experts and other in-
volved parties need to agree on, among other things:

1. The objectives of the study.
2. The questions to be addressed in order to meet the

objectives.

Carson

3. The measures of performance that will be used to
answer the questions of interest.

4. The model’s scope and level of detail for various
subsystems, keeping the objectives and questions
in mind so that the model will be capable of ad-
dressing those objectives and answering those
questions

Typical measures of performance for industrial models

include the primary measures such as throughput, system
cycle or response time, and work in process. In addition, a
number of secondary or explanatory measures may be of
interest, such as resource utilization, size of local buffers,
and throughputs for subsystems or particular part types.

It is usually not possible to identify ahead of time all
possible output measures of performance that might poten-
tially be of interest. Here’s a typical scenario during the ex-
perimentation phase. Example: A model configuration that
was expected to perform well in fact does not perform well.
The typical primary measure mentioned earlier identify a
departure from expectations. Explanations are required but
are not immediately obvious or forthcoming; the cause or
causes are hidden or veiled. After investigation, watching
the animation, examining time lines of key variables, and
some thought, an hypothesis is developed for the reason for
the departure from expectation. Someone says, “Prove it!”.
To prove it, it turns out that some new measures of subsys-
tem performance are needed, so they are added to the model,
runs are made and the hypothesis is confirmed or contra-
dicted by the new measures. If contradicted, the process re-
peats. During the process, insights are gained and our un-
derstanding of system dynamics increases.

Some points learned from this example: Primary
measures tell us what happened, but often secondary or
auxiliary measures are needed to confirm insights and pro-
vide explanations of why they happened. This leads to a
second point: secondary measures are often the most useful
in detecting model shortcomings and invalid logic. A
model is not valid until all of its subsystems are valid.

In addition, global measures of performance often
mask serious errors in a model. It is essential to verify and
validate a wide range of model output measures. We rec-
ommend that “local” as well as global measures be cap-
tured and examined. Depending on the model, “local”
might mean statistics on individual resources, buffers and
subsystems or statistics on individual part types.

Example 6: A manufacturer of printed circuit boards
asked our consulting group to review a model that had
been developed by a previous employee and had not been
used for two years. We found that the model had been set
up to run for 31 days and printed a custom report at the end
of 31 days on overall production throughput for broad
classes of boards but not for individual board types. Close
examination of the inputs revealed that one board type rep-
resenting roughly 1% of desired total production took at
least 30 days to get to its last production step. (This was
due to longer testing times than other board types as well
as to batching requirements for certain heat treatments.)
Therefore in runs of 31 days, few or sometimes none of
these boards completed production. Looking at overall
global measures of performance obscured this fact; exam-
ining detailed statistics on individual part types revealed
this (and other) modeling and potential experimentation
errors.

5 SOME SUGGESTED TECHNIQUES

Here we provide a list of V&V techniques that may prove
useful in certain types of models:

• Force rare events and extreme cases so that model

behavior responding to these events can be tested.
• Identify output values that indicate a modeling er-

ror or suspicious behavior.
• Identify internal system conditions that indicate a

modeling error. Write “if …” statements to test
for these conditions and report them to a message
or log file.

• Make lots of runs. Before beginning the formal
experimentation, do extensive model testing by
making runs over a wide range of input parameter
settings. Conduct a “trend” analysis to see if typi-
cal outputs (e.g., throughput) at least go in the ex-
pected direction (up or down) when some input is
increased (e.g., machine speeds or number of
workers).

• In vehicle models (including models in which op-
erators walk from task to task), check for vehicle
lockup (or inordinate human “idle” time). Vehi-
cle lockup can occur due to faulty control logic.

• Use timelines to view current statistics (not sum-
mary statistics). These include items such as cur-
rent work-in-process and other queue sizes, re-
sources being used, and number of active
vehicles. Such timelines can quickly reveal major
modeling errors that lead to some resource not be-
ing used for a lengthy period of time.

• Use timelines to view current work-in-process in
all major subsystems. Count entities into and out
of each subsystem to be sure all are accounted for.
(I have seen models where entities get “lost” in
the model.)

• Use the animation intelligently. It is excellent for
verifying model behavior on the micro-level over
short time frames.

• Examine a wide variety of output measures
− primary measures such as throughput
− more than the primary measures
! “local” measures for individual resources

(machines or workstations or vehicles)

Carson

! measures for each type of “object” (e.g.,
by part type, not just overall parts)

− examine for reasonableness, which means to
detect those that are clearly out of line.

6 SUMMARY

Verification and validation are essential phases in the
model development process for any simulation project.
Use of the simple techniques outlined in this paper can as-
sist you in avoiding major and serious modeling errors.

REFERENCES

Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol.
2001. Discrete-Event System Simulation, third edition,
Prentice-Hall, Upper Saddle River, N. J.

Law, A. M. and W. D. Kelton. 2000. Simulation Modeling
and Analysis, third edition, McGraw-Hill, New York.

Law, A. M. and M. G. McComas. 2001. How to Build
Valid and Credible Simulation Models. In Proceed-
ings of the 2001 Winter Simulation Conference, ed. B.
A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Ro-
hrer, 22-29. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Petroski, Henry. 1992. To Engineer Is Human: The Role of
Failure in Successful Design. New York: St. Martin’s
Press, 1985. London: Macmillan, 1986. Tokyo: Ka-
jima Institute Press, 1988 (Japanese translation). New
York: Vintage Books (paperback).

Sargent, R. G. 2001. Some Approaches and Paradigms for
Verifying and Validating Simulation Models. In Pro-
ceedings of the 2001 Winter Simulation Conference,
ed. B. A. Peters, J. S. Smith, D. J. Medeiros, and M.
W. Rohrer, 106-114. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers.

Schmeiser, B. W. 2001. Some Myths and Common Errors
in Simulation Experiments. In Proceedings of the
2001 Winter Simulation Conference, ed. B. A. Peters,
J. S. Smith, D. J. Medeiros, and M. W. Rohrer, 39-46.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Schriber, T. J., S. Cox, J. O. Henriksen, P. Lorenz, J. Reit-
man, and I. Ståhl. 2001. GPSS Turns 40: Selected Per-
spectives. In Proceedings of the 2001 Winter Simula-
tion Conference, ed. B. A. Peters, J. S. Smith, D. J.
Medeiros, and M. W. Rohrer, 565-576. Piscataway,
New Jersey: Institute of Electrical and Electronics En-
gineers.

AUTHOR BIOGRAPHY

JOHN S. CARSON II is the Consulting Technical Man-
ager for the AutoMod Group of Brooks-PRI Automation,
Planning & Logistics Solutions division. He has over 25
years experience in simulation in a wide range of applica-
tion areas, including manufacturing, material handling,
warehousing and distribution, transportation, ports and
shipping, and health care systems. With the AutoMod
Group for 8 years, previously he was President and founder
of Carson/Banks & Associates, an independent simulation
consulting firm. Before that, he taught simulation and op-
erations research at Georgia Tech and was an independent
consultant. He also taught at the University of Florida and
the University of Wisconsin. He is the co-author of two
university level textbooks including the widely used Dis-
crete-Event Systems Simulation (third edition, 2001). He
holds a Ph.D. in Industrial Engineering and Operations Re-
search from the University of Wisconsin-Madison, and is a
senior member of IIE and INFORMS. His e-mail address
is <John.Carson@brooks-pri.com>.

