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Model- vs. data-based approaches applied to fault

diagnosis in potable water supply networks

M. À. Cugueró-Escofet, J. Quevedo, C. Alippi, M. Roveri, V. Puig, D. García

and F. Trovò
ABSTRACT
The problem of fault diagnosis in potable water supply networks is addressed in this paper. Two

different fault diagnosis approaches are proposed to deal with this problem. The first one is based on

a model-based approach exploiting a priori information regarding physical/temporal relations existing

among the measured variables in the monitored system, providing fault detection and isolation

capabilities by means of the residuals generated using these measured variables and their

estimations. This a priori information is provided by the topology and the physical relations between

the elements constituting the system. Alternatively, the second approach relies on a data-driven

solution meant to exploit the spatial and temporal relationships present in the acquired data streams

in order to detect and isolate faults. Relationships between data streams are modelled using

sequences of linear dynamic time-invariant models, whose estimated coefficients are used to feed a

hidden Markov model. Afterwards, a cognitive method based on a functional graph representation of

the system isolates the fault when existing. Finally, a performance comparison between these two

approaches is carried out using the Barcelona water supply network, showing successful and

complementary results which suggest the integrated usage in order to improve the results achieved

by each one separately.
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INTRODUCTION
Water networks are complex large-scale systems needing

highly sophisticated supervisory and control schemes in

order to satisfy a certain degree of performance when

unfavourable faulty conditions are occurring. To deal with

this problem, the use of a fault detection and isolation

(FDI) system capable of detecting and isolating these faults

(or events) is highly desirable, aiming to help the operators

to identify which is the actual event occurring in the water

network. The FDI problem applied to water networks has

been extensively studied from various perspectives and at

different levels (see, e.g., Lees ; Colombo & Karney

; Misiunas et al. ). On the one hand, at the district

metered area (DMA) level, many FDI approaches have
addressed the problem of leak/burst detection and isolation

(see, e.g., Mounce et al. , ; Mounce & Boxall ;

Wu et al. ; Bicik et al. ; Palau et al. ; Perez

et al. , ; Xia et al. ; Romano et al. , a,

b; Sanchez-Fernandez et al. ; Veldman de Roo

et al. ), where different approaches are applied. Sensor

data validation and reconstruction when exploiting the tem-

poral redundancy of the sensor measurements is also

addressed in several works (see, e.g., Prescott & Ulanicki

; Filion et al. ; Quevedo et al. ; Eliades & Poly-

carpou ; Farley et al. ; Cugueró-Escofet et al. ).

The problem of water quality monitoring concerning con-

tamination event detection has also been extensively
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addressed (see, e.g., Eliades & Polycarpou ). Moreover,

regarding DMA monitoring (either for leaks or water qual-

ity), there is also a related problem involving optimal

sensor placement in order to maximize the performance of

the FDI algorithms applied. This problem has been studied

separately both for leak detection and location (see, e.g.,

Ostfeld & Salomons ; Krause et al. ; Pérez et al.

; Wu ; Casillas et al. ; Cugueró-Escofet et al.

) and quality monitoring (see, e.g., Eliades & Polycarpou

). On the other hand, at the water supply level (i.e., the

network connecting the water potabilization plants with the

water distribution tanks) less research has been carried out

(see, e.g., Ragot & Maquin ; Quevedo et al. ). The

water supply networks, also referred to as trunk main sys-

tems, are regional networks used to supply water to the

cities and villages of a certain region. This kind of network

can be analysed using a flow-driven model, that is, using

mass balance linear relations, alternatively to water distri-

bution networks, which are generally modelled using

pressure-driven models implying non-linear non-explicit

relations. The use of mass balance relations for modelling

regional water supply networks is appropriate because an

actuator is typically installed in each pipe, which establishes

its flow. Of course, the energy balances could also be formu-

lated in this case, but this would add extra complexity which

is actually not needed since the goal is to establish analytical

redundancy relations (ARRs) between flow sensors. This is

the case, e.g., in Quevedo et al. (), where the problem

of sensor data validation and reconstruction (which is

addressed for DMA networks in Quevedo et al. ()

exploiting the temporal redundancy of the sensor measure-

ments) has been extended to water supply networks,

considering combined temporal/spatial redundancy

models. In Ragot & Maquin (), a model-based FDI

approach is applied to the Nancy water network, a city in

the north-eastern French department of Meurthe-et-Moselle,

in order to detect faults in the sensors. The present paper

also moves towards the FDI application to a water supply

network by proposing two different fault diagnosis

approaches: a model-based approach using a priori infor-

mation of the system, i.e., the physical relation between its

elements, and a data-driven approach, which is able to

exploit a priori information about the network topology to

perform fault diagnosis but does not require any additional
om http://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
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information about the physical models of the water supply

network. According to the literature, model-based

approaches rely on the concept of analytical redundancy

(Blanke et al. ), which is based on the use of software

sensors, i.e., models using available sensor historic records

in order to estimate the desired sensor measurement, as an

alternative to hardware-based approaches, which rely on

the use of extra hardware sensors. Although hardware

redundancy is desirable in critical elements, the use of the

latter in large-scale water networks may be dramatically

expensive because of the installation, calibration and main-

tenance actions to be performed on the system when

considering this approach.

The fault diagnosis problem in critical infrastructure sys-

tems, such as potable water supply networks (PWSNs),

involve the answers to some common questions formulated

in general fault diagnosis problems, such as if there is a fault

affecting the system (fault detection stage) or which is the

actual faulty element in this system (fault isolation stage).

Also, sometimes it is important to know the magnitude of

the fault occurring in order to decide the importance of

this fault and the corresponding actions to be taken. The

novelty of this paper is not only to compare two well-

accepted and promising general purpose fault diagnosis

methods (one model-based, the other data-based), but also

to determine the main features of each method and which

is the best way to combine them in order to optimize the

overall performance at both fault detection and fault iso-

lation stages, when considering PWSNs as is the case

here. Specifically, the Barcelona PWSN is used as the case

study in this work. In ideal situations, the use of a model

obtained from the physical relations, as considered in the

first approach, should lead to the optimal solution. How-

ever, it may be noted that analytical models may be

affected by several system practical issues, such as the poten-

tial uncertainty on the model parameters (e.g., actual tank

surface), the difficulty of having an on-line well-calibrated

model due to frequent network topology changes (caused

by, e.g., new elements like tanks added or blocked pipes

resulting from maintenance operations) and common

changes in the consumers’ demand behaviour, which are

hard to determine in real-time operation. Hence, a data-

based approach, as suggested in the second method, is

also a useful and effective alternative to the use of analytical
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models obtained from physical/temporal relations existing

in the network.

The structure of the paper is as follows: the next section

presents both the FDI model-based method combining both

spatial and time series (TS) models, and the data-based

approach based on a cognitive fault diagnosis system (CFDS)

method exploiting hidden Markov models (HMMs). The

case study, based on the Barcelona PWSN, is presented next.

This is followed by a section in which fault isolation results

obtained by each methodology are presented, compared and

discussed. Finally, conclusions and ongoingwork are outlined.
FAULT DIAGNOSIS METHODOLOGY

In this work, two different well-accepted general purpose

fault diagnosis methodologies are used to address the FDI

problem in PWSNs. The first approach is based on checking

the consistency between the observed and the nominal

system behaviour by means of a set of physical/temporal

parity relations (PTPR), which relates the measured system

variables under normal (faultless) operation assumption of

the monitored system. The novelty of the PTPR approach

presented here relies on the combined usage of TS residuals

with physical residuals, by means of a classical FDI residual-

based approach which generally considers only physical

parity relations. An inconsistency is detected when ARRs

derived from models do not match the measurements, gen-

erating a non-null residual. Then, the fault diagnosis

mechanism is activated in order to isolate the possible
Figure 1 | FDI block diagram.

://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
fault by matching the residuals against the fault signature

matrix (see, e.g., Puig et al. ). The proposed FDI

scheme is shown in Figure 1, where ui(k) is the i-th

measured system input, xi(k) is the i-th measured system

output, x̂i(k) is the i-th predicted system output, ri(k) is the

i-th system residual of the complete set of nr residuals and

s(k) is the corresponding fault signature at time instant k.

Further details on this general fault diagnosis scheme are

given later in this section.

The second approach relies on the CFDS method

presented in Alippi et al. (), that is able to exploit spatial

and temporal relationships among measured system vari-

ables. The considered CFDS, which does not require any a

priori information about the physical model of the network,

is based on a two-layer hierarchical architecture to detect

and isolate faults. In the first layer, a change-detection test

(CDT) based on HMMs (see, e.g., Alippi et al. ) is able

to detect a fault occurring in the system by checking the vari-

ations in the relationship between couples of data streams,

while, in the second layer, a cognitive method based on a

functional graph representation of the system is able to iso-

late the fault occurring. Here, we are proposing a modified

version of the original CFDS, specifically crafted for this

application, where the available topological information of

the water network is integrated into the data-driven

approach. For instance, Figure 2(a) represents all the

relationships which may exists among data coming from

the Can Guey subsystem (see section ‘Case study’) induced

by the water flow physical phenomenon. This initial depen-

dency graph in Figure 2(a) is reduced by taking into account



Figure 2 | CFDS method dependency graphs of Can Guey subsystem.
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the correlation analysis and the final outcome of the Can

Guey subsystem (Figure 2(b)).

The methodologies presented here aim to detect and iso-

late faults of different kinds appearing in PWSNs, as

discussed later in the section ‘Fault scenarios’. These may

well represent actual common hydraulic faults occurring

and jeopardizing the performance of water networks, e.g.,

leaks, bursts or sensor communication faults, as further

detailed in the same section. Generally, in order to apply

these methodologies, the set of considered faults to be

addressed should be defined beforehand. This allows to gen-

erate the set of relations or data-based models able to detect

and isolate the set of specified faults.
Method I: fault diagnosis based on PTPR

Residual generation

The fault diagnosis method presented in this section evalu-

ates the nominal residual ri(k) obtained from the

difference between the system measurements and the

model prediction, considering the model for the i-th subsys-

tem expressed in input–output regressor form as follows:

ri(k) ¼ xi(k)� x̂i(k) ¼ xi(k)� ϕTi (k)θi (1)

where θi are the nominal parameters obtained using a train-

ing dataset, xi(k), i ∈ {1, . . . , N} is the sensor measurement
om http://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
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at time instant k, N ∈ N is the number of considered sen-

sors, x̂i(k) is the model prediction at time instant k and

ϕi(k) is the regressor vector of dimensions nθi × 1, including

inputs (ui(k), ui(k� 1), ui(k� 2), . . . ) and outputs

(yi(k), yi(k� 1), yi(k� 2), . . . ). Considering the uncertainty

(e.g., modelling errors, noise) the detection test involves

checking the condition

ri(k) ∈ [τi, �τi] (2)

where τi is the detection threshold. This detection threshold

can be determined using statistical methods (Basseville &

Nikiforov ) or set-membership approaches (Puig ).

When using a set-membership approach the noise is

assumed to be unknown but bounded, with a priori known

bound. Then, the threshold can be obtained by propagating

the uncertainty to the residual computation. In the case of

statistical methods, the noise is assumed to follow a

normal distribution with known mean value μi and standard

deviation σi (Ding ). Then, the threshold of the i-th

residual can be determined as follows: τi ¼ μi þ 3σi, includ-

ing the 99.7% of the values of a normal distribution

according to the 3-sigma rule. On the other hand, when

using a set-membership approach, the noise is assumed to

be unknown but bounded, with a priori known bound.

Then, the threshold can be obtained by propagating the

uncertainty to the residual computation (Puig ). Using

either one or the other approach, the threshold in Equation

(2) is determined to include the values of the whole residual
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distribution in the faultless situation and, hence, it may be

used for fault detection purposes. This threshold is also

useful to provide prediction interval bounds for the data

forecasting process, so test condition (2) can be equivalently

expressed as follows:

xi(k) ∈ [x̂i(k), �̂xi(k)] (3)

where �̂xi(k) ¼ x̂i(k)þ τi and xi(k) ¼ x̂i(k)� τi, respectively.

Spatial consistency residuals. The PTPR method is based on

establishing mass balance equations for the water network

constitutive elements. As an example, the mass balance

expression for the i-th tank can be stated by means of the

following discrete-time difference equation:

yi(kþ 1) ¼ yi(k)þ Δt
Ai

(qini (k)� qouti (k)) (4)

where yi(k) is the tank level, Ai is the cylindrical tank sur-

face, qini (k) is the manipulated inflow and qouti (k) is the

outflow, which may include manipulated tank outflow and

consumer demands, both given in m3/s.

Similarly, in the water supply network nodes, the mass

balance may be expressed as the static equation

X
i

qini (k) ¼
X
i

qouti (k) (5)

where, similarly to Equation (4), qini (k) and qouti (k) corre-

spond to the inflow and outflow of the i-th subnet node,

also given in m3/s.

TS residuals. Additional residuals can be obtained consider-

ing that level in tanks and flow in demand sectors have a

daily repetitive behaviour which can be modelled using a

TS model. TS models take advantage of the temporal redun-

dancy of the measured variables. A widely used method for

signal forecasting is the Holt-Winters (HW) triple exponen-

tial smoothing approach (Winters ; Makridakis et al.

). This method, which is in wide use because of its sim-

plicity and performance, may be presented in several

different versions, e.g., additive or damped trend, additive

or multiplicative seasonality, single or multiple seasonality.

Here the additive single seasonality version is considered,
://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
which may be implemented as shown next for a forecasting

horizon ‘:

x̂ts(k) ¼ R̂(k� ‘)þ ‘Ĝ(k� ‘)þ Ŝ(k� L) (6)

where x̂ts(k) is the TS model forecasted value, R̂ is the esti-

mate of the deseasonalized level (i.e., removing the

seasonal effect Ŝ(k� L� ‘)), Ĝ is the estimate of the trend

and Ŝ is the estimate of the seasonal component, which

may be respectively stated as follows:

R̂(k� ‘) ¼ α(x(k� ‘)� Ŝ(k� ‘� L))

þ (1� α)(R̂(k� ‘� 1)

þ Ĝ(k� ‘� 1)) 0< α < 1

(7)

Ĝ(k� ‘) ¼ β(R̂(k� ‘)� R̂(k� ‘� 1))

þ (1� β)Ĝ(k� ‘� 1) 0< β < 1
(8)

Ŝ(k� ‘) ¼ γ(x(k� ‘)� R̂(k� ‘))

þ (1� γ)Ŝ(k� ‘� L) 0< γ < 1
(9)

where L is the season (i.e., daily here) periodicity, α, β and γ

are the HW parameters (level, trend and season smoothing

factors, respectively) and x is the measured value (i.e. ym,

qinm or qoutm , depending on the TS model considered).

Hence, analysing the historic records of the measured

values in a certain sensor, a HW model is derived and

used to validate the current data acquired by this device.
FDI scheme

The FDI methodology (Figure 1) is based on determining the

actual fault signature s(k) ¼ [s1(k), s2(k), . . . snr (k)] of the

system for nr different residuals, as a result of the fault detec-

tion phase (see the section ‘Residual generation’) as follows:

si(k) ¼ 0, if ri(k)j j< τi (no fault)
1, if ri(k)j j � τi (fault)

�
(10)

where τi is the threshold associated with the i-th residual. The

actual fault signature is compared against the theoretical fault
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signature matrix (FSM) Σ that binary codifies the influence of

each fault in the set of considered faults f1, f2, . . . fnf on every

residual in the set of considered residuals r1, r2, . . . rnr . This

matrix has as many rows as residuals and as many columns

as considered faults. If Σij ¼ 1, the j-th fault appears in the

expression of the i-th residual; otherwise Σij ¼ 0. Assuming

classical FDI fault hypotheses, i.e., single faults and no-

compensation (exoneration), fault isolation consists in look-

ing for a column of Σ matching the actual fault signature

s(k). More details about the algorithm implementation of

this FDI scheme, including how to manage the temporal

aspects of the binarized residuals, can be found in Meseguer

et al. () and Puig & Blesa ().

Method II: fault diagnosis system based on the

cognitive approach

The considered CFDS method is based on the ability to

characterize the functional dependencies among the

streams of acquired data, where each functional dependency

models the temporal and spatial relationships between

couples of data streams. The main characteristics of the

CFDS are the ability to work without any a priori infor-

mation about the physical models of the system and the

possibility to isolate the potential faults by exploiting a func-

tional graph representation of the system. Details about the

considered CFDS can be found in Alippi et al. (). In this
Figure 3 | General architecture of the considered CFDS method.

om http://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf

022
applicative scenario, we considered the possibility to include

the a priori information about the topology of the water

supply network. In fact, the physical phenomenon of the

water flow induces a causality among the respective

acquired data streams, allowing those relationships in

which this causality principle does not hold to be discarded.

The overall system architecture is presented in Figure 3,

in which it may be observed how once the parameter vectors

have been estimated from data, they are used in the learning

phase to create the dependency graph and learn the nominal

state of the process. During the operational phase, newly

estimated functional relationship parameter vectors are

used to evaluate their statistical likelihood with respect to

the learned nominal state through the HMM-CDT. Each

relationship is evaluated over time using a HMM-based

CDT. When a change in the estimated parameters (i.e., a

fault) is detected, the cognitive fault diagnosis module is acti-

vated in order to extract information about it, e.g., the time

instant when the fault is produced and the fault location.

In more detail, let xi be the i-th stream over the N

sources of data within the considered sensors network. Let

g(i,j), i, j ∈ {1, . . . , N} be the functional relationship (in

terms of transfer function) between the i-th and the j-th

sensor. All the functional relationships present in the

acquired data can be modelled as a dependency graph G,
where the nodes of this graph represent the N sensors of

the network, while the arcs between nodes represent the
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functional relationships. We emphasize that generally, in

real-world situations, not all the relationships are meaning-

ful, since there might be nonexistent or very weak

relationships between two streams of data. To address this

issue, we only consider those relationships not contradicting

the causality provided by the physical phenomenon and,

subsequently, we resort to the use of the analysis of the

linear correlation between xi and xj to define a level of

dependency associated with g(i,j). More specifically, to

remove weakly correlated streams of data, those data

streams with cross-correlation peak absolute value below a

certain threshold ξmin, with 0 � ξmin � 1, have been removed

(e.g., ξmin can be set to 0.5 or larger, depending on the net-

work complexity, to keep only highly correlated data

streams). This led to the definition of a reduced dependency

graph G ¼ {V , E}, where V and E are the set of nodes repre-

senting the N network sensors and the set of arcs

representing relationships characterized by higher corre-

lation (i.e., cross-correlation above ξmin), respectively.

Figures 2(b) and 4 show examples of the reduced depen-

dency graph for Can Guey and Orioles systems, respectively.

Functional relationships g(i,j) in G are modelled either by

a linear time-invariant (LTI) dynamic systemor by a sequence

of LTI dynamic systems following the HMM hypothesis (i.e.,

the Markov memoryless property of stochastic processes).

Among the wide range of LTI dynamic systems, we focus

on single-input single-output (SISO) models such as

autoregressive with exogenous input (ARX) models, autore-

gressive moving average with exogenous input (ARMAX)

models or output error (OE) models (Ljung ) in their pre-

dictive form, i.e., gθ(i,j) parametrized in θ ∈ Rp. Here, θ

represents the parameter vector of the considered predictive

models, while p represents the cardinality of θ.
Figure 4 | Example of a reduced dependency graph with three sensors (i.e., x1, x2 and x3)

and three relationships (i.e., g(1,2) , g(1,3) and g(2,3)).

://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
Assuming that the data generating process satisfies the

exponential stability for closed loop and following the

hypotheses on gθ(i,j) stated in Ljung (), the theoretical

results in Ljung () grant that:

ffiffiffiffiffiffiffi
NT

p
P
�
1
2(θ̂ � θ�)∼ N (0, Ip) when NT ! ∞, (11)

where P ∈ R p×p is the covariance matrix of the estimated

parameter θ̂ of the model, NT is the length of the training

set used to estimate θ̂ with the least square method, θ� is

the optimal configuration of the parameters within the

chosen model family and Ip is the identity matrix. From

Equation (11) it may be stated that, given NT sufficiently

large, the distribution of the estimates θ̂s follows a multi-

variate Gaussian with mean vector θ� and covariance

matrix P. This theoretical result led us to consider HMMs

ruled by a mixture of Gaussians (GMM) to model the statisti-

cal behaviour of estimated parameters θ̂ over time. In more

detail, the HMM is defined as:

H ¼ {n, F , A, π}, (12)

where n is the number of states, F ¼ {p1, . . . , pn} is the set of

probability density functions (PDFs) associated with each

state, A ∈ [0, 1]n×n is the state transition probability matrix

and π ∈ [0, 1]n is the initial state distribution vector. It is

worth noting that Equation (11) allows us to model the

PDF associated with the nominal state by using a GMM. Let

pi(θ̂jΦi) ¼
XKi

k¼1

wk,iN (θ̂jμk,i, Σk,i) (13)

be the GMM associated with the i-th state, where Ki is the

number of Gaussian mixtures for the i-th state, wk,i is the

weight for state i and Gaussian mixture k,

Φi ¼ [μ1,i, . . . , μki ,i, Σ1,i, . . . , Σki ,i] (14)

with μk,i and Σk,i the mean vector and the covariance matrix

for state i and Gaussian mixture k, respectively.

The analysis of the evolution over time of estimated

parameters θ̂s by means of a HMM is the core mechanism

of the HMM-based CDT. More specifically, for each
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g(i,j) ∈ V , the sequence of θ̂s are estimated by overlapping

windows of NT observations. The HMM H(i,j), associated

with relationship g(i,j), is trained on the estimated par-

ameters computed from the first T0 observations, i.e., the

training dataset. Then, after the training phase, the HMM-

based CDT keeps on estimating the parameter θ̂ by overlap-

ping windows of data, and let θ̂s be the parameter

estimated on the s-th window. The log-likelihood of the

HMM is as follows:

l(i,j)(s) ¼ P(θ̂s�ωþ1, . . . , θ̂sjH(i,j)) (15)

where ω is the considered log-likelihood window length.

This value indicates how likely the sequence of parameters

θ̂s�ωþ1, . . . , θ̂s has been generated by H(i,j). When l(i,j)
decreases below an automatically defined threshold (i.e.,

the minimum value assumed by the log-likelihood in train-

ing or validation scaled by a user-defined coefficient factor),

a change in the relationship g(i,j) is detected. In other

words, the goal of the HMM-based CDT is to inspect vari-

ations in the distribution of the estimated parameters θ̂s

over time with regard to that learned during the initial

training (performed on data up to T0). Whenever, the

trained HMM is no more able to explain the statistical be-

haviour of recently estimated parameters, the likelihood

decreases and a change in the relationship is detected.

This is the purpose of a CDT, whose mechanisms aim to

detect discrepancies with regard to an (autonomously

defined) nominal state. Other solutions, e.g., recursive

ARX estimation, cannot be applied for change detection

purposes since they are meant to track the system over

time (hence adapting to variations over time) and are not

able to inspect for variations. Details about the HMM-

based CDT can be found in Algorithm 1 of Alippi et al.

() and in Alippi et al. ().

Once a change in one of the HMM-based CDTs is

detected, the cognitive fault diagnosis layer is activated to

isolate the fault within the system. The basic idea of this cog-

nitive isolation mechanism is as follows: when a fault affects

a sensor, all the relationships connected to that sensor

should be affected by this change. Hence, by looking at

the likelihood of all the relationships in V, we are able to

identify the sensor of the system that has been affected by

the fault, and thus to isolate it. Details about the cognitive
om http://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
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level presented here can also be found in Algorithm 2 of

Alippi et al. ().
CASE STUDY

Barcelona PWSN

The Barcelona PWSN (Figures 5 and 6), considered as a

case study here, is distributed in 23 different districts cover-

ing 424 km2 area and providing water to about three million

end users. Due to the geographical topology of Barcelona

and its surroundings, the water network in the metropolitan

area is structured in 113 pressure floors. This allows two

management levels to be established: the supply network

and, at a smaller detail level, the distribution network that

is divided in DMAs. The first level is in charge of the right

choice of water sources that supply water to the system at

each moment (quality and quantity of the water supply)

and of the bulk water transferences. On the other hand,

the second level is responsible for delivering water from

the reservoirs to the end consumers, optimizing the pressure

profiles in order to minimize losses due to leakage. This

paper is mainly focused on the supply level. Water managed

by this supply network is obtained from both surface and

underground sources, including Ter (surface source) and

Llobregat (both surface and underground source) as the

most important ones in terms of usage and capacity. The

water supplied by these sources is distributed through a net-

work of around 4,645 km of pipes to 218 DMAs or demand

sectors. The current AGBAR Control Centre has a tele-con-

trol system for the network management. The supervisory

control system installed in the Control Centre is in charge

of optimally controlling the whole network by taking into

account operational restrictions and consumer demands,

including about 400 controlled/monitored points, 63 storage

tanks, 84 pumps and 46 valves. Looking at Figure 5, it can

be noted that the Barcelona supply network is constituted

by multiple similar tank subsystems which behave alike.

Since considering the whole network would not allow the

models and results obtained to be analysed in detail, the

results presented in this paper are focused on the analysis

of a single tank subsystem and a three-tank subsystem

(Orioles and Can Guey in Figure 6). Similar results are



Figure 5 | Barcelona PWSN detail, including Orioles and Can Guey subsystems (arrows).
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also achieved when considering alternative tank subsystems

in the same PWSN, since they follow the same structure.

Regarding data management, the Barcelona telecontrol

system receives real-time data mainly from the available

flow meters, usually installed in the DMAs supply

points, so their readings closely fit the actual DMAs water

demand.

In this paper, the two fault diagnosis methods introduced

in previous sections are tested using a simulation of the Bar-

celona PWSN. This simulation uses a model calibrated and

validated with real data provided by the company managing

the network. This model has been accepted by the company

as a good representation of the actual water network behav-

iour, and is used for its operational control (Pascual et al.

), e.g., optimizing water production and transport costs,

guaranteeing a minimum volume in the tanks for eventual
://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
emergencies and smoothing operations of the actuators to

extend the life of the equipment. These objectives may be

configured with the graphical user interface (GUI) of this

simulator (Figure 7), which is developed with MATLAB/

SIMULINK, a widely used numerical computing and pro-

gramming platform in many research institutions and

industrial enterprises, which makes it a convenient prototyp-

ing and development framework. Existing hydraulic well-

known simulators such as EPANET (Rossman ) are

pressure-driven, i.e., are not able to simulate the mass bal-

ance of the supply network (needed here) without

providing additional physical parameters of this network.

These additional physical details may not always be available

or sufficiently accurate and are actually not needed for the

mass balance computation used here, but for the pressure

simulations. In contrast, the supply network simulator used



Figure 6 | Orioles and Can Guey subsystems within Barcelona PWSN.
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here utilizes topology and limited network element details

(such as tank surfaces) and historic records of sensor

measurements TS in order to provide the required mass bal-

ance information needed. Furthermore, this supply network

simulator has been provided with additional ad hoc features

useful for a different range of applications, such as for testing

the control system (based on model predictive control) or a

fault module, in order to simulate different kinds of hydraulic

faults in different elements of the network, which are not

available in more standard hydraulic simulators such

EPANET. Specifically, the fault module allows providing

synthetic scenarios of the network under study and designing

and testing new control schemes and FDI approaches such

as the ones presented here. In Figure 7, the whole network

SIMULINK model is contained in the Network block, and

is composed of different elements (blocks), such as tanks,

nodes, pumps, valves and demands. Each demand of this

supply network is actually a DMA of hundreds to thousands

of users. Also, each actuator may integrate several pumps or

valves working in parallel.
om http://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
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Without loss of generality, the results presented here are

focused on two subsystems within the Barcelona water

supply network (Figure 5), known as Orioles (Figure 8)

and Can Guey (Figure 9), in order to illustrate the perform-

ance of the fault diagnosis methodologies presented. This

part of the network includes the following elements:

• Tanks: d175LOR, d200CGY, d268CGY, d361CGY

• Actuators with flow sensors: iOrioles, iCanGuey1d2,

iCanGuey2, iCanGuey3

• Demands with flow sensors: c175LOR, c200CGY,

c268CGY, c361CGY

• Level sensors: xd175LOR, xd200CGY, xd268CGY,

xd361CGY
Residual definition

In Figures 8 and 9, qin, qout and y are the incoming tank flow,

consumer demand and tank level, respectively, and qinm ,

qoutm and ym are the corresponding measured values. The

corresponding discrete-time model equations, including the

considered faults, are as follows:

• Tank (level):

y(kþ 1) ¼ y(k)þ Δt
A

qin(k)� qout(k)½ � (16)

• Pump (flow):

qin(k) ¼ Γp(k)qp(k)þ fp(k) (17)

• Tank level sensor:

ym(k) ¼ Γym (k)y(k)þ fym (k) (18)

• Pump flow sensor:

qinm (k) ¼ Γqinm (k)qin(k)þ fqinm (k) (19)

• Demand sector flow sensor:

qoutm (k) ¼ Γqoutm (k)qout(k)þ fqoutm (k) (20)



Figure 7 | MATLAB/SIMULINK Barcelona supply network simulator GUI.

Figure 8 | Orioles subsystem.
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where y(k) is the actual tank level, ym(k) is the measured tank

level, qout(k) is the actual demandflow, qoutm (k) is themeasured

demandflow,qin(k) is theactual input tankflow,qp(k) is the set-

point pumpflow, qinm (k) is themeasured inputflow,Γc(k) is the

multiplicative fault signal component related to element c,
://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
fc(k) ¼ βc(k)χc(k) is the additive fault signal component related

to element c, with β(k) time profile and χ(k) behaviour, Δt is the

sampling time and A is the cylindrical tank surface.

Spatial consistency residuals can be obtained using the

mass flow model (Equation (16)) and the sensor measure-

ments (Equations (17)–(20)) in a non-faulty situation. In

particular, the following residual ri,1 may be obtained using

the tank model (Equation (16)) for the i-th tank subsystem

using measured variables

ri,1(k) ¼ ymi (k)� ŷsci (k) (21)

with

ŷsci (k) ¼ ymi (k� 1)þ Δt
Ai

qinmi
(k� 1)� qoutmi

(k� 1)
h i

(22)



Figure 9 | Can Guey subsystem.
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where ŷsci is the tank level spatial consistency estimation,

Ai is the cylindrical tank surface, qinmi
is the manipulated

measured inflow and qoutmi
is the measured outflow, both

given in m3/s.

Furthermore, for each input and output with periodic

behaviour of the i-th tank subsystem, a TS HW model can

be derived and the following ARRs may be obtained:

• Tank (level) TS:

ŷtsi (k) ¼ g(ymi (k� 1), . . . , ymi (k� L)) (23)

• Demand sector flow TS:

q̂outtsi (k) ¼ h(qoutmi
(k� 1), . . . , qoutmi

(k� L)) (24)

• Pump flow TS:

q̂intsi
(k) ¼ l(qinmi

(k� 1), . . . , qinmi
(k� L)) (25)

where g,h and l are theHWTS expressions (Equations (6)–(9))

for the tank level sensor, sector demand sensor and pumpflow

sensor, respectively, for data exhibiting a periodicity of L

samples.

Using the TS models (Equations (23)–(25)), the follow-

ing residuals are obtained:

ri,2(k) ¼ ymi (k)� ŷtsi (k) (26)

ri,3(k) ¼ qoutmi
(k)� q̂outtsi (k) (27)
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ri,4(k) ¼ qinmi
(k)� q̂intsi

(k) (28)

It may be noted that TS residuals in Equations (26)–

(28) can only be applied for those sensors presenting per-

iodic behaviour. This is applicable to all the faulty

elements considered in this work and also to the major

part of the elements of the network, but still there are

some which are not expected to evolve periodically (e.g.,

pump stations not directly serving water to a demand

sector). Hence, in order to apply PTPR fault isolation

methodology using TS residuals, elements involved

should be previously checked for periodic behaviour. As

a counterpart, TS residuals may be computed with infor-

mation provided by a single sensor, which may be

advantageous in certain applications with non-obvious/

non-existent model relation among sensors, e.g., intelli-

gent sensors with embedded diagnosis unit (Alippi et al.

).

From residuals (21), (26)–(28) and Equations (17)–(20),

the theoretical FSM for the subsystems considered (Figures 8

and 9) is presented in Table 1. In the latter, the sensitivity of

each residual to each fault is detailed by means of a 0 (i.e.,

non-sensitive) or a 1 (i.e., sensitive) in the corresponding

element of the matrix, obtaining a fault signature from

each of its columns. Also, ordinal index i is assigned for

each tank subsystem as follows: i¼ 1 for d175LOR, i¼ 2

for d200CGY, i¼ 3 for d268CGY and i¼ 4 for d361CGY

tank subsystem, respectively. Moreover, it may also be

observed how spatial consistency residuals are used for

fault detection here, since ri,1 is sensitive to all the con-

sidered faults within each i single tank subsystem, while

TS residuals are employed for fault isolation purposes.



Table 1 | Faults’ signatures

fym
fqoutm

fqinm

fp fym1
fqoutm1

fqinm1

fp1 fym2
fqoutm1

fqinm2

fp2 fym3
fqoutm3

fqinm3

fp3

r1,1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

r1,2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

r1,3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r1,4 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

r2,1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

r2,2 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

r2,3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

r2,4 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

r3,1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

r3,2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

r3,3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

r3,4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

r4,1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

r4,2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

r4,3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

r4,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

843 M. À. Cugueró-Escofet et al. | Model- vs. data-based approaches in fault diagnosis Journal of Hydroinformatics | 18.5 | 2016

Downloaded from http
by guest
on 20 August 2022
The resulting PTPR fault diagnosis scheme

implemented in the Barcelona PWSN system, involving

the different elements detailed in this section, is shown in

Figure 10.
Figure 10 | FDI scheme for Barcelona PWSN.

://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
Fault scenarios

The Barcelona PWSN simulator allows the introduction of

faults of different kinds in distinct elements of this water
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network. Here, faults of freezing, offset and drift nature are

considered:

• Freezing: Γ(k) ¼ 0 and χ(k) ¼ κ for k � kf

• Offset: Γ(k) ¼ 1 and χ(k) ¼ η for k � kf

• Drift: Γ(k) ¼ 1 and χ(k) ¼ R(k� kf) for k � kf

where κ and η are constants, R denotes the ramp function of

a certain slope and kf is the time instant when the fault is

occurring.

Moreover, the faults considered are either of abrupt or

incipient nature, as defined by their time profile β(k) as

follows:

• Abrupt:

β(t) ¼ 0, k< kf
1, k � kf

�

• Incipient:

β(t) ¼ 0, k< kf

1� e�ρ(k�kf ), k � kf

(

where ρ> 0 is the constant characterizing the evolution of

the corresponding fault and kf is the time instant when the

fault occurs. The faults presented in this section are meant

to be generic, but may well represent actual common

hydraulic faults occurring in water networks, e.g., leaks

(which may be represented by offset/drift abrupt/incipient

faults), bursts (which may be represented by offset abrupt

faults) or sensor communication faults (which may be rep-

resented by freezing abrupt faults).

Different fault scenarios are defined in order to test and

compare the methods presented here, all including random

normally distributed measurement noise of ±1% full scale.

The dataset considered to implement these fault scenarios

lasts for seven months, with a sampling period T¼ 1 hour

and a fault appearing at tf ¼ 744 � T in different elements

of the Barcelona PWSN subsystems considered (Figures 8

and 9, respectively):

• iOrioles pump sensor (fqinm ) in Orioles subsystem

• c175LOR demand sensor (fqoutm ) in Orioles subsystem
om http://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
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• iCanGuey1d2 pump sensor (fqinm1
) in Can Guey

subsystem

• iCanGuey2 pump sensor (fqinm2
) in Can Guey subsystem

• iCanGuey3 pump sensor (fqinm3
) in Can Guey subsystem

• c268CGY demand sensor (fqoutm2
) in Can Guey subsystem

• c361CGY demand sensor (fqoutm3
) in Can Guey subsystem

The way these faults affect the hydraulic network com-

ponents is represented in the models (19) and (20). These

fault scenarios are part of a fault benchmark used in the fra-

mework of the Seventh Framework Program European

project iSense (ref. FP7-ICT-2009-6) as a collaborative data-

set provided by the Polytechnic University of Catalonia to

be used by all the partners involved. The parametrization

of the faults involved in this benchmark is depicted in

Table 2.
Methods setting

The HMM-based CDT uses ARX linear models for the

extraction of the parameters θ. In the case of Orioles subsys-

tem (Figure 8), the relationship patterns among the

measured tank level, the input flow and the measured

demands are modelled. The dependency graph is learned

by considering all the binary relationships with autocorrela-

tion greater or equal to ξmin ¼ 0:5. The result is the graph

presented in Figure 4 with (x1, x2, x3) ¼ (ym, qinm , qoutm ). In

the case of Can Guey subsystem (Figure 9), we only con-

sidered those relationships compatible with the causality

given by the water flow phenomenon (i.e., those in

Figure 2(a)) and selected those having autocorrelation

greater or equal to ξmin ¼ 0:8, where the higher threshold

is due to the increased complexity of the network. Under

faulty conditions, the considered relationships will exhibit

changes that will depend on the kind and magnitude of

the fault introduced, thus their monitoring is useful for

fault isolation purposes.

Regarding the PTPR initialization, the first 13 days of

data are used as training dataset to identify the model par-

ameters, the next 13 days are used as validation dataset to

obtain the corresponding fault detection threshold and the

rest of the data is used as test dataset. Regarding the

HMMs, also a total of 26 days are used for training and vali-

dation purposes: 23 and 25 days are used for training the



Table 2 | Faults’ parametrization and diagnosis results

PTPR method CFDS method

Delay [# of samples] Delay [# of samples]

Id. Type of fault Magnitude Detection Isolation FP [%] FN [%] Iso. [%] Detection Isolation FP [%] FN [%] Iso. [%]

1 Offset abr. iOrioles 10% MFD 2 4 0 7.34 22.22 4 4 7.44 94.52 5.48

2 Offset abr. iOrioles 25% MFD 2 2 0 2.37 79.16 3 3 11.57 4.11 95.89

3 Offset inc. iOrioles 10% MFD 12 23 0 3.04 4.16 35 35 12.40 82.19 17.81

4 Offset inc. iOrioles 25% MFD 9 13 0 4.53 52.77 16 16 0.00 27.40 72.60

5 Drift abr. iOrioles 1% MFD 9 13 0 2.71 73.61 8 8 13.22 10.96 89.04

6 Drift abr. iOrioles 10% MFD 3 3 0 2.78 84.72 4 4 1.65 5.48 94.52

7 Drift inc. iOrioles 1% MFD 12 23 0 3.54 59.72 18 18 9.92 24.66 75.34

8 Drift inc. iOrioles 10% MFD 7 7 0 4.09 77.77 4 4 8.26 8.22 91.78

9 Offset abr. c175LOR 10% MFD 1 3 0 0.02 65.27 3 3 0.00 4.11 95.89

10 Offset abr. c175LOR 25% MFD 1 3 0 0.02 65.27 1 1 0.00 1.37 98.63

11 Offset inc. c175LOR 10% MFD 10 21 0 0.29 34.72 47 47 0.00 64.38 35.62

12 Offset inc. c175LOR 25% MFD 7 11 0 0.13 58.33 65 65 0.00 89.04 10.96

13 Drift abr. c175LOR 1% MFD 7 7 0 0.11 59.72 33 33 0.00 45.21 54.79

14 Drift abr. c175LOR 10% MFD 2 4 0 0.04 63.88 4 4 0.00 5.48 94.52

15 Drift inc. c175LOR 1% MFD 10 15 0 0.25 52.77 39 39 0.00 53.42 46.58

16 Drift inc. c175LOR 10% MFD 5 7 0 0.11 59.72 8 8 38.02 10.96 89.04

17 Freezing abr. iOrioles – 7 12 0 7.22 8.33 17 17 10.74 68.49 31.51

18 Freezing inc. iOrioles – 19 36 0 7.52 5.55 3 3 22.31 73.97 26.03

19 Freezing abr. c175LOR – 11 14 0 16.79 6.94 33 33 0.00 45.21 54.79

20 Freezing inc. c175LOR – 59 – 0 92.84 0 58 58 4.13 79.45 20.55

21 Offset abr. iCanGuey1d2 15% MFD 2 4 0 1.37 39.73 21 22 0 30.56 69.44

22 Offset inc. iCanGuey1d2 15% MFD 9 26 0 12.33 8.22 32 50 0 69.44 30.56

23 Drift abr. iCanGuey1d2 15% MFD 3 4 0 2.74 93.15 5 11 0 15.28 84.72

24 Freezing abr. iCanGuey1d2 – 3 8 0 9.59 71.23 12 21 0 29.17 70.83

25 Offset abr. iCanGuey2 15% MFD 2 – 0 1.37 – 14 29 0 40.28 59.72

26 Offset inc. iCanGuey2 15% MFD 8 26 0 12.33 2.74 32 53 0 73.61 26.39

27 Drift abr. iCanGuey2 15% MFD 3 4 0 2.74 93.15 7 9 0 12.50 87.50

28 Freezing abr. iCanGuey2 – 3 4 0 5.48 67.12 11 12 0 16.67 83.33

29 Offset abr. c361CGY 15% MFD 2 4 0 1.37 93.15 3 3 0 4.17 95.83

30 Offset inc. c361CGY 15% MFD 9 11 0 10.96 82.19 10 12 0 16.67 83.33

31 Drift abr. c361CGY 15% MFD 3 4 0 2.74 93.15 3 3 0 4.17 95.83

32 Freezing abr. c361CGY – 10 12 0 34.25 10.96 9 11 0 15.28 84.72

33 Offset abr. c268CGY 15% MFD 2 4 0 1.37 93.15 1 1 0 1.39 98.61

34 Offset inc. c268CGY 15% MFD 8 11 0 9.59 80.82 3 9 0 12.50 87.50

35 Drift abr. c268CGY 15% MFD 3 4 0 2.74 93.15 2 2 0 2.78 97.22

36 Freezing abr. c268CGY – 10 12 0 56.16 6.85 3 11 0 15.28 84.72

37 Offset abr. iCanGuey3 15% MFD 2 4 0 1.37 63.01 5 7 0 9.72 90.28

(continued)
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Table 2 | continued

PTPR method CFDS method

Delay [# of samples] Delay [# of samples]

Id. Type of fault Magnitude Detection Isolation FP [%] FN [%] Iso. [%] Detection Isolation FP [%] FN [%] Iso. [%]

38 Offset inc. iCanGuey3 15% MFD 8 28 0 28.77 12.33 28 29 0 40.28 59.72

39 Drift abr. iCanGuey3 15% MFD 3 4 0 2.74 93.15 4 4 0 5.56 94.44

40 Freezing abr. iCanGuey3 – 3 10 0 26.03 64.38 9 13 0 18.06 81.94

MFD, maximum flow/demand.

846 M. À. Cugueró-Escofet et al. | Model- vs. data-based approaches in fault diagnosis Journal of Hydroinformatics | 18.5 | 2016

Downloaded fr
by guest
on 20 August 2
Orioles and the Can Guey cases, respectively, while the

remaining days are used to compute the threshold for detec-

tion and validation (Alippi et al. ). The orders of ARX

models have been chosen by means of a validation

procedure. The log-likelihood window length has been set

to ω ¼ 10 and the batch size has been set to NT ¼ 96 and

NT ¼ 100 for the Orioles and Can Guey subsystems,

respectively.
Figures of merit

The numerical results are presented by means of different

figures of merit. The first stage in fault diagnosis deals with

faultless vs. faulty situation discrimination. The performance

achieved in this fault detection stage is measured by the next

indices:

• Detection delay: Number of samples needed by the fault

diagnosis method to detect a certain fault.

• False positives (FP): Percentage of test dataset faultless

samples (i.e., not affected by a certain fault) that are deter-

mined as faulty by the fault detection method. FP

corresponds to false alarms in FDI terminology (see

Blanke et al. ).

• False negatives (FN): Percentage of test dataset faulty

samples (i.e., affected by a certain fault) that are deter-

mined as faultless by the fault detection method within

the 72 samples (i.e., 3 days) after a fault is produced.

FN corresponds to missed alarms in FDI terminology

(see Blanke et al. ).

Moreover, the second stage in fault diagnosis involves

fault isolation and classification abilities of the FDI
om http://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
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method. These may be quantified by different figures of

merit, which are defined as follows:

• Isolation delay: Number of samples needed by the fault

diagnosis method to isolate a certain fault.

• Isolation index: Percentage of test dataset faulty samples

(i.e., affected by a certain fault) that are properly isolated

within the 72 samples (i.e., 3 days) after a fault is pro-

duced, considering a certain fault scenario.
RESULTS

In Table 2, fault diagnosis results achieved by both FDI

methods are detailed. In Figures 11 and 12, isolation results

obtained by PTPR method for faults Id. 2 and Id. 14 in

Table 2 are also depicted. As may be seen in the figures,

residuals’ evolution fit the fault signatures corresponding to

the respective faults occurring in the system when these

results are attained, i.e., iOrioles actuator sensor fault (fqinm
in Table 1) and c175LOR demand sensor fault (fqoutm in

Table 1). Similar isolation results have been obtained for

faults included in Table 2 affecting similar network elements.

On the one hand, Table 2 shows generally better detec-

tion and isolation delay results achieved by PTPR method

than by CFDS method, for the pump sensors of iOrioles

(e.g., fault Id. 3, 4), iCanGuey1d2 (e.g., fault Id. 21, 22, 26),

iCanGuey3 (e.g., fault Id. 37, 38) and the demand sensor

c175LOR (e.g., fault Id. 11, 12, 13, 15, 19), with the excep-

tions of some faults with similar or better performance

achieved by CFDS affecting iOrioles pump sensor (e.g.,

fault Id. 1, 2, 5, 6, 8), c175LOR (e.g., fault Id. 10),

c268CGY and c361CGY demand sensors (e.g., fault Id. 29



Figure 11 | Fault Id.2 residuals, PTPR method.

Figure 12 | Fault Id.14 residuals, PTPR method.
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to 36), freezing incipient faults affecting Orioles system (e.g.,

faults Id. 18, 20) or iCanGuey pump sensor (fault Id. 25) for

isolation delay. Also, generally better FP and FN rates are

achieved by the PTPR method, with some exceptions regard-

ing freezing nature faults (i.e., faults Id. 20, 32, 36, 40) for FN

rates. This overall detection and isolation behaviour leads to

a generally quicker and more reliable diagnosis of the faulty

component under study achieved by the PTPR method. On

the other hand, the CFDS method grants better isolation

rates in general (with the exception of faults Id. 1, 12, 13,

15, 23, 24, 27 where the PTPR method provides similar or

better results, depending on the scenario considered),

which makes it useful to confirm the isolated fault occurring

in the system. It is worth noting that the CFDS method pro-

vides the performance in Table 2 without assuming any a

priori information about the physical model of the system.

In the case of faults with an increasing profile, the detection

delays of the CFDS are worse than those obtained with the

PTPR method. This is due to the fact that the HMM-based

CDT is more sensitive to abrupt changes in the parameter

distribution. Also, CFDS is generally characterized by

higher FP index values. The reason for this behaviour is

two-fold: nominal state approximation and process time

invariance. First, the nominal model is estimated during

an initial training phase that, in principle, could lead to inac-

curate models, i.e., model bias due to, e.g., an incorrect

selection of the family of models, the lack of enough data

for training or the fact that training data do not excite the

whole dynamics of the process. This undesired model bias

tends to induce FP detections in the testing phase. Second,

the process under monitoring could be intrinsically time-

varying and not follow the Markov assumption. This leads

to FP detection induced by an estimated model which is

not able to fully describe the process.
DISCUSSION

From the light of the results in the previous section, both

FDI methods introduced present satisfactory performance

for the fault scenarios considered, also showing some com-

plementarity features which suggest possible integration in

order to improve the overall fault diagnosis. Specifically,

the PTPR method obtains generally lower detection and
om http://iwaponline.com/jh/article-pdf/18/5/831/390618/jh0180831.pdf
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isolation delays, as well as better FP and FN rates. Hence,

it is a good choice for early reliable isolation of the faults

appearing in the system, while the CFDS obtains generally

better isolation rates, which allows reliable confirmation of

the fault being detected and isolated. Regarding the benefits

of each method, on the one hand, PTPR is based on physical

models describing normal behaviour and does not need to

have data from all the possible fault scenarios to perform

the fault diagnosis, in contrast to the CFDS method. On

the other hand, the main drawback of the PTPR approach

is the deep knowledge of the model structure and par-

ameters required to successfully apply this methodology,

which is not needed by the CFDS since it is a data-based

approach. These facts further motivate the integration of

both methods for FDI, taking advantage of the highlights

which characterize each one separately.
CONCLUSIONS

In this work, the application and comparison of two well-

accepted general purpose fault diagnosis methods (one

model-based, the other data-based) applied to a real PWSN

located in the Barcelona area, is developed. Most of the

works in the literature addressing fault diagnosis in water net-

works have treated the problem at the distribution level, but

not at the supply level. However, water supply networks

have characteristics which allow the application of tech-

niques that cannot be applied to distribution networks. The

first method is built upon a model-based approach exploiting

a priori information regarding physical/temporal relations

which exist between the measured variables within the mon-

itored system, while the second aims at characterizing and

detecting changes in the probabilistic pattern sequence of

the data coming from this system. Some enhancements of

the two approaches considered are introduced, such as the

use of TS residuals, not generally considered in classical

residual-based fault diagnosis schemes, which traditionally

use physical residuals. Successful results have been achieved

by both methods, showing good complementary conditions

which suggest integrated usage in order to improve the results

achieved by each one separately. These results have been

tested using heterogeneous types of faults in representative

subsystems within the network under study. Future work,
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including additional analysis of the fault diagnosis results

achieved, considering uncertainty such as noise and model-

ling/measurement errors derived by the examination of the

system under study, is to be done in the ongoing works invol-

ving the Barcelona PWSN.
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