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Abstract

Deep learning has achieved tremendous success in numer-
ous industrial applications. As training a good model often
needs massive high-quality data and computation resources,
the learned models often have significant business values.
However, these valuable deep models are exposed to a huge
risk of infringements. For example, if the attacker has the full
information of one target model including the network struc-
ture and weights, the model can be easily finetuned on new
datasets. Even if the attacker can only access the output of the
target model, he/she can still train another similar surrogate
model by generating a large scale of input-output training
pairs. How to protect the intellectual property of deep models
is a very important but seriously under-researched problem.
There are a few recent attempts at classification network pro-
tection only.

In this paper, we propose the first model watermarking frame-
work for protecting image processing models. To achieve this
goal, we leverage the spatial invisible watermarking mecha-
nism. Specifically, given a black-box target model, a unified
and invisible watermark is hidden into its outputs, which can
be regarded as a special task-agnostic barrier. In this way,
when the attacker trains one surrogate model by using the
input-output pairs of the target model, the hidden watermark
will be learned and extracted afterward. To enable water-
marks from binary bits to high-resolution images, both tradi-
tional and deep spatial invisible watermarking mechanism are
considered. Experiments demonstrate the robustness of the
proposed watermarking mechanism, which can resist surro-
gate models learned with different network structures and ob-
jective functions. Besides deep models, the proposed method
is also easy to be extended to protect data and traditional im-
age processing algorithms.

Introduction

In recent years, deep learning has revolutionized a wide
variety of tasks such as image recognition (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2016), medical image
processing (Hong et al. 2017b; 2019; Zhang et al. 2017a;
Hong et al. 2017a), speech recognition (Graves, Mohamed,
and Hinton 2013; Zhang et al. 2017b) and natural language
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processing (Vaswani et al. 2017), and significantly outper-
forms traditional state-of-the-art methods. To fully utilize
the strong learning capability of these deep models and
avoid overfitting, a large scale of high-quality labeled data
and massive computation resources are often required. Since
both human annotation and computation resources are ex-
pensive, these learned models are of great business value
and need to be protected. But compared to traditional image
watermarking techniques, protecting the intellectual prop-
erty (IP) of deep models is much more challenging. Because
of the exponential search space of network structures and
weights, numerous structure and weight combinations exist
for one specific task. In other words, we can achieve similar
or better performance even if we slightly change the struc-
ture or weights of the target model.

In the white-box case, where the full information includ-
ing the detailed network structure and weights of the tar-
get model is known, one typical and effective attacking way
would be fine-tuning or pruning based on the target model
on new task-specific datasets. Even in the black-box case,
where only the output of the target model can be accessed,
we can still steal the intellectual property of the target model
by using another surrogate model to imitate its behavior.
Specifically, we can first generate a large scale of input-
output training pairs based on the target model then directly
train the surrogate model in a supervised manner by regard-
ing the outputs of the target model as ground-truth labels.

Very recently, some research works (Uchida et al. 2017;
Adi et al. 2018; Zhang et al. 2018; Merrer, Perez, and Trédan
2017) start paying attention to the IP protection problem for
deep neural networks. They often either add a parameter reg-
ularizer to the loss function or use the predictions of a special
set of indicator images as the watermarks. However, deep
watermarking is still a seriously under-researched field and
all existing methods only consider the classification task.
And in real scenarios, labeling the training data for image
processing tasks, is much more complex and expensive than
classification tasks, because their ground-truth labels should
be pixel-wisely precise. Examples include removing all the
ribs in Chest X-ray images and the rain streaks in real rainy
images. Therefore protecting such image processing models
is more valuable.
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Figure 1: The simplest watermarking mechanism by adding
unified visible watermarks onto the target output images,
which will sacrifice the visual quality and usability.

Motivated by this, this paper considers the deep water-
marking problem for image processing models for the first
time. And because the original raw model does not need to
be provided in most application scenarios, they can be easily
encrypted with traditional algorithms to resist the white-box
attack (i.e., fine-tuned or pruned). So we mainly consider the
second black-box attack case where only outputs of the tar-
get model can be obtained and attackers use surrogate mod-
els to imitate it. To resist such attacks, the designed water-
marking mechanism should guarantee the watermarks can
still be extracted from outputs of learned surrogate models.

Before diving into the model watermarking for image pro-
cessing networks, we first discuss the simplest spatial visible
watermarking mechanism shown in Figure 1. Suppose that
we have a lot of input-output training pairs and we manually
add a unified visible watermark template to all the outputs.
Intuitively, if a surrogate model is trained on such pairs with
the simple L2 loss, the learned model will learn this visi-
ble watermark into its output to get lower loss. That is to
say, given one target model, if we forcibly add one unified
visible watermark into all its output, it can resist the plagia-
rism from other surrogate models to some extent. However,
the biggest limitation of this method is that the added visi-
ble watermarks will sacrifice the visual quality and usabil-
ity of the target model seriously. Another potential threat is
that attackers may use image editing tools like Photoshops
to manually remove all the visible watermarks.

To address the above limitations, we propose a general
model watermarking framework by leveraging the spatial
invisible watermarking mechanism as shown in Figure 2.
Given a target model M to be protected, we denote its
original input and output images as domain A and B re-
spectively. Then a spatial invisible watermark embedding
method H is used to hide a unified target watermark δ into
all the output images in the domain B and generate a new
domain B

′. Different from the above simple visible water-
marks, all the images in the domain B

′ should be visually
consistent to domain B. Symmetrically, given the images in
domain B

′, the corresponding watermark extracting algo-
rithm R will extract the watermark δ′ out, which is consis-
tent to δ. The key hypothesis here is that when the attacker
uses A and B

′ to learn a surrogate model SM, R can still
extract the target watermark from the output B′′ of SM.

We first test the effectiveness of our framework by us-

ing traditional spatial invisible watermarking algorithms like
(Kutter 1999; Voloshynovskiy, Deguillaume, and Pun 2000).
It works well for some surrogate models but limited to some
other ones. Another big limitation is that the information ca-
pacity they can hide is relatively low, e.g., tens of bits. To
hide high capacity watermarks like logo images and achieve
better robustness, we propose a novel deep invisible water-
marking system shown in Figure 3, which consists of two
main parts: one embedding sub-network H to learn how to
hide invisible watermarks into the image, and another ex-
tractor sub-network R to learn how to extract the invisible
watermark out. To avoid R generating watermark for all the
images no matter whether they have invisible watermarks or
not, we also constrain it not to extract any watermark out if
its input is a clean image. To further boost the robustness,
another adversarial training stage is used.

Experiments show that the proposed method can resist the
attack from surrogate models trained with different network
structures like Resnet and UNet and different loss functions
like L1, L2, perceptual loss and adversarial loss. Depending
on the specific task, we find it is also possible to combine
the functionality of M and H to train a task-specific H.

To summarize, our contributions are fourfold:

• We are the first to introduce the intellectual property pro-
tection problem for image processing tasks. We hope it
can draw more attention to this research field and inspire
greater works.

• We propose the first model watermarking framework to
protect image processing networks by leveraging the spa-
tial invisible watermarking mechanism.

• We design a novel deep watermarking algorithm to im-
prove the robustness and capacity of traditional spatial in-
visible watermarking methods.

• Extensive experiments demonstrate that the proposed
framework can resist the attack from surrogate models
trained with different network structures and loss func-
tions. It can also be easily extended to protect valuable
data and traditional algorithms.

Related work

Media Watermarking Algorithms. Watermarking is one
of the most important ways to protect media copyright. For
image watermarking, many different algorithms have been
proposed in the past decades, which can be roughly cate-
gorized into two types: visible watermarks like logos, and
invisible watermarks. Compared to visible watermarks, in-
visible watermarks are more secure and robust. They are of-
ten embedded in the original spatial domain (Kutter 1999;
Voloshynovskiy, Deguillaume, and Pun 2000; Deguillaume,
Voloshynovskiy, and Pun 2002; Voloshynovskiy, Deguil-
laume, and Pun 2001), or other image transform domains
such as discrete cosine transform (DCT) domain (Hsu and
Wu 1999; Hernandez, Amado, and Perez-Gonzalez 2000),
discrete wavelet transform (DWT) domain (Barni, Bartolini,
and Piva 2001), and discrete Fourier transform (DFT) do-
main (Ruanaidh, Dowling, and Boland 1996). However, all
these traditional watermarking algorithms are often only
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able to hide several or tens of bits, let alone explicit logo
images. More importantly, we find only spatial domain wa-
termarking work to some extent for this task and all other
transform domain watermarking algorithms fail.

In recent years, some DNN-based watermarking schemes
have been proposed. For example, Zhu et al.(Zhu et al.
2018) propose an auto-encoder-based network architecture
to realize the embedding and extracting process of water-
marks. Based on it, Tancik et al.(Tancik, Mildenhall, and Ng
2019) further realize a camera shooting resilient watermark-
ing scheme by adding a simulated camera shooting distor-
tion to the noise layer. Compared to these image watermark-
ing algorithms, model watermarking is much more challeng-
ing because of the exponential search space of deep models.
But we innovatively find it possible to leverage spatial invis-
ible watermarking techniques for model protection.

Model Watermarking Algorithms. Though watermarking
for deep neural networks are still seriously under-studied,
there are some recent works (Uchida et al. 2017; Adi et al.
2018; Nagai et al. 2018; Zhang et al. 2018) that start paying
attention to it. For example, based on the over-parameterized
property of deep neural networks, Uchida et al.(Uchida et al.
2017) propose a special weight regularizer to the objective
function so that the distribution of weights can be resilient
to attacks such as fine-tuning and pruning. One big limita-
tion of this method is not task-agnostic and need to know
the original network structure and parameters for retraining.
Adi et al.(Adi et al. 2018) use a particular set of inputs as
the indicators and let the model deliberately output specific
incorrect labels, however, it may not work if the network are
retrained. Zhang et al.(Zhang et al. 2018) associate the wa-
termark with the actual identity by making great changes to
original images, which is easy to be detected.

However, all the methods mentioned above focus on the
classification tasks, which is different from the purpose of
this paper: protecting higher commercial valued image pro-
cessing models. We innovatively leverage spatial invisible
watermarking algorithms for image processing networks
and propose a new deep invisible watermarking technique
to enable high-capacity watermarks(e.g., logo images).

Image-to-image Translation Networks. In the deep learn-
ing era, most image processing tasks such as image seg-
mentation, edge to the image, deraining, and X-ray im-
age debone, can be solved with an image-to-image trans-
lation network where the input and output are both images.
Recently this field has achieved significant progress espe-
cially after the emergence of the generative adversarial net-
work (GAN) (Goodfellow et al. 2014). Isola et al.propose a
general image-to-image translation framework by combin-
ing adversarial training in (Isola et al. 2017), which is fur-
ther improved by many following works (Choi et al. 2018;
Wang et al. 2018; Park et al. 2019). The limitation of these
methods is that they need a lot of pairwise training data. By
introducing the cycle consistency, Zhu et al.propose a gen-
eral unpaired image-to-image translation framework Cycle-
GAN (Zhu et al. 2017). In this paper, we mainly focus on the
deep models of paired image-to-image translation, because
the paired training data is much more expensive to be ob-
tained than classification datasets or unpaired datasets. More
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Figure 2: The proposed deep watermarking framework by
leveraging spatial invisible watermarking algorithms.

importantly, there is no prior work that has ever considered
the watermarking issue for such models.

Method
In this section, the details will be elaborated. Before that, we
will first introduce the formal problem definition and give a
simple theoretical pre-analysis to justify our hypothesis.
Problem Definition. For image processing tasks, assume
the input domain A is composed of massive images
{a1, a2, ..., an}, and the target output domain B consists of
images {b1, b2, ..., bn}. In this paper, we only consider the
pairwise case where ai and bi are one-one matched by an
implicit transformation function T . Then the goal of the im-
age processing model M is to approximate T by minimizing
the distance L between M(ai) and bi, i.e.,

L(M(ai), bi) → 0. (1)

Assume we have learned a target model M based on mas-
sive private image pairs and computation resources. Given
each input image ai in domain A, M will output an image
bi in domain B. Then the attacker may use the image pairs
defined by (ai, bi) from domain A,B to train another sur-
rogate model SM. Our target is to design an effective deep
watermarking mechanism which is able to identify SM once
it is trained with data generated by M. Because in real sce-
narios, it is highly possible we cannot access the raw model
SM in a white-box way, the only indicator we can leverage
is the output of SM. Therefore, we need to figure out one
way to extract watermarks from the output of SM.
Theoretical Pre-analysis. In traditional watermarking algo-
rithms, given an image I and a target watermark δ to embed,
they will first use a watermark embedding algorithm H to
generate an image I ′ which contains δ. Symmetrically, the
target watermark δ can be further extracted out with the cor-
responding watermarking extracting algorithm R. Consid-
ering each image bi ∈ B is embedded with a unified water-
mark δ, where b′i = bi+δ, forming another domain B

′, there
must exist a model M′ which can learn good transformation
between domain A and B

′. One simplest solution of M′ is
to directly add δ to the output of M with a skip connection:

L(M(ai), bi) → 0 ⇔ L(M′(ai), (bi + δ)) → 0

when M
′ = M(ai) + δ.

(2)
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Based on the above observation, we propose a general
deep watermarking framework for image processing models
shown in Figure 2. Given a target model M to protect, we
add a barrier H by embedding a unified watermark δ into
all its output images before showing them to the end-users.
So the surrogate model SM has to be trained with the image
pair (ai, b

′

i) from domain A,B′ with watermark, instead of
the original pair (ai, bi) from domain A,B. No matter what
architecture SM adopts, it’s behavior will approach to that
of M′ in preserving the unified watermark δ. Otherwise, its
objective loss function L cannot achieve a lower value. And
then the watermarking extracting algorithm R can extract
the watermark from the output of SM.

To ensure the watermarked output image b′i is visually
consistent with the original one bi, only spatial invisible wa-
termarking algorithms are considered in this paper. Below
we will try both traditional spatial invisible watermarking al-
gorithm and a novel deep invisible watermarking algorithm.
Traditional Spatial Invisible Watermarking. Additive-
based embedding is the most common method used in the
traditional spatial invisible watermarking scheme. The wa-
termark is first spread to a sequence or block which satisfies
a certain distribution, then embedded into the corresponding
coefficients of the host image. This embedding procedure
can be formulated by

I ′ =

{

I + αC0 if wi = 0
I + αC1 otherwise

(3)

where I and I ′ indicate the original image and embed-
ded image respectively. α indicates the embedding intensity
and Ci denote the spread image block that represents bit
“wi”(wi ∈ [0, 1]). In the extraction side, the watermark is
determined by detecting the distribution of the correspond-
ing coefficients. The robustness of such an algorithm is guar-
anteed by the spread spectrum operation. The redundancy
brought by the spread spectrum makes a strong error correc-
tion ability of the watermark so that the distribution of the
block will not change a lot even after image processing.

However, such algorithms often have very limited embed-
ding capacity because many extra redundant bits are needed
to ensure robustness. In fact, in many application scenarios,
the IP owners may want to embed some special images (e.g.,
logos) explicitly, which is nearly infeasible for these algo-
rithms. More importantly, the following experiments show
that these traditional algorithms can only resist some spe-
cial types of surrogate models. To enable more high-capacity
watermarks and more robust resistance ability, we propose
a new deep invisible watermarking algorithm and utilize a
two-stage training strategy as shown in Figure 3.
Deep Invisible Watermarking. To embed an image water-
mark into host images of the domain B and extract it out
afterward, one embedding sub-network H and one extractor
sub-network R are adopted respectively. Without sacrificing
the original image quality of domain B, we require images
with the hidden watermark should be still visually consis-
tent with the original images in the domain B. Since adver-
sarial networks have demonstrated their power in reducing
the domain gap in many different tasks, we append one dis-
criminator network D after H to further improve the image

quality of domain B
′. During training, we find if the extrac-

tor network R is only trained with the images of domain B
′,

it is very easy to overfit and output the target watermark no
matter whether the input images contain watermarks or not.
To avoid it, we also feed the images of domain A and do-
main B that do not contain watermarks into R and force it to
output a constant blank image. In this way, R will have the
real ability to extract watermarks only when the input image
has the watermark in it.

Based on the pre-analysis, when the attacker uses a surro-
gate model SM to imitate the target model M based on the
input domain A and watermarked domain B

′, SM will learn
the hidden watermark δ into its output thanks to the inher-
ent fitting property of deep networks. Despite of higher hid-
ing capacity, similar to traditional watermarking algorithms,
the extractor sub-network R cannot extract the watermarks
out from the output of the surrogate model SM neither if
only with this initial training stage. This is because R has
only observed clean watermarked images but not the water-
marked images from surrogate models which may contain
some unpleasant noises. To further enhance the extracting
ability of R, we choose one simple surrogate network to im-
itate the attackers’ behavior and fine-tune R on the mixed
dataset of domain A,B,B′,B′′. Experiments show this will
significantly boost the extracting ability of R and resist other
types of surrogate models.

Network Structures. In our method, we adopt the UNet
(Ronneberger, Fischer, and Brox 2015) as the default net-
work structure of H and SM, which has been widely used
by many translation based tasks like (Isola et al. 2017;
Zhu et al. 2017). It performs especially well for tasks where
the output image shares some common properties of input
image by multi-scale skip connections. But for the extractor
sub-network R whose output is different from the input, we
find CEILNet (Fan et al. 2017) works much better. It also
follows an auto-encoder like network structure. In details,
the encoder consists of three convolutional layers, and the
decoder consists of one deconvolutional layer and two con-
volutional layers symmetrically. To enhance the learning ca-
pacity, nine residual blocks are inserted between the encoder
and decoder. For the discriminator D, we adopt the Patch-
GAN (Isola et al. 2017) by default. Note that except for the
extractor sub-network, we find other types of translation net-
works also work well in our framework, which demonstrates
the strong generalization ability of our framework.

Loss Functions. The objective loss function of our method
consists of two parts: the embedding loss Lemd and the ex-
tracting loss Lext, i.e.,

L = Lemd + λ ∗ Lext, (4)

where λ is the hyper parameter to balance these two loss
terms. Below we will introduce the detailed formulation of
Lemd and Lext respectively.

Embedding Loss. To embed the watermark image while
guaranteeing the original visual quality, three different types
of visual consistency loss are considered: the basic L2 loss
ℓbs, perceptual loss ℓvgg , and adversarial loss ℓadv , i.e.,

Lemd = λ1 ∗ ℓbs + λ2 ∗ ℓvgg + λ3 ∗ ℓadv. (5)
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Figure 3: The overall pipeline of the proposed deep invisible watermarking algorithm and two-stage training strategy. In the first
training stage, a basic watermark embedding sub-network H and extractor sub-network R are trained. Then another surrogate
network SM is leveraged as the adversarial competitor to further enhance the extracting ability of R.

Here the basic L2 loss ℓbs is simply the pixel value differ-
ence between the input host image bi and the watermarked
output image b′i, Nc is the total pixel number, i.e.,

ℓbs =
∑

b′
i
∈B′,bi∈B

1

Nc

‖b′i − bi‖
2. (6)

And the perceptual loss ℓvgg (Johnson, Alahi, and Fei-Fei
2016) is defined as the difference between the VGG feature
of bi and b′i:

ℓvgg =
∑

b′
i
∈B′,bi∈B

1

Nf

‖V GGk(b
′

i)− V GGk(bi)‖
2,

(7)
where V GGk(·) denotes the features extracted at layer k
(“conv2 2” by default), and Nf denotes the total feature neu-
ron number. To further improve the visual quality and min-
imize the domain gap between B

′ and B, the adversarial
loss ℓadv will let the embedding sub-network H hide water-
marks better so that the discriminator D cannot differentiate
its output from real watermark-free images in B, i.e.,

ℓadv = E
bi∈B

log(D(bi)) + E
b′
i
∈B′

log(1−D(b′i)). (8)

Extracting Loss. The responsibility of the extractor sub-
network R has two aspects: it should be able to extract the
target watermark out for watermarked images from B

′,B′′

and output a constant blank image for watermark-free im-
ages from A,B. So the first two terms of Lext are the recon-
struction loss ℓwm and ℓclean for these two types of images
respectively, i.e.,

ℓwm =
∑

b′
i
∈B′

1

Nc

‖R(b′i)− δ‖2 +
∑

b′′
i
∈B′′

1

Nc

‖R(b′′i )− δ‖2,

ℓclean =
∑

ai∈A

1

Nc

‖R(ai)− δ0‖
2 +

∑

bi∈B

1

Nc

‖R(bi)− δ0‖
2
,

(9)
where δ0 is the constant blank watermark image. Besides
reconstruction loss, we also want the watermarks extracted
from different watermarked images to be consistent, thus an-
other consistent loss is added:

ℓcst =
∑

x,y∈B′∪B′′

‖R(x)−R(y)‖2. (10)

Then Lext is defined as the weighted sum of these three
terms, i.e.,

Lext = λ4 ∗ ℓwm + λ5 ∗ ℓclean + λ6 ∗ ℓcst. (11)

Adversarial Training Stage. With the above initial training
stage, R only observes the clean watermarked images and
cannot generalize well for the noisy watermarked output of
some surrogate models. To enhance its extracting ability, an
extra adversarial training stage is added. Specifically, one
surrogate model SM is trained with the simple L2 loss by
default. Denote the outputs of SM as B

′′, we further fine-
tune R on the mixed dataset A,B,B′,B′′ in this stage.

Experiments

In this paper, two examples of image processing tasks are
conducted: image deraining and Chest X-ray image debone.
The goal of these two tasks is to remove the rain streak
and rib components from the input images respectively. To
demonstrate the effectiveness of our method, we first show
the newly introduced deep invisible watermarking algorithm
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Task PSNR SSIM NC

Debone-aaai 47.89 0.99 0.9999

Derain-flower 39.98 0.99 0.9966

Table 1: Quantitative results of the proposed invisible image
based watermarking. *-aaai and *-flower use the AAAI logo
and a colorful flower image as watermarks respectively.

can hide high-capacity image-based watermarks, then evalu-
ate the robustness of the proposed deep watermarking frame-
work to different surrogate models. Finally, some ablation
analysis is provided to justify the motivation of our design
and shed some light on more inspiring potentials.

Implementation Details. For image deraining, we use
12100 images from the PASCAL VOC dataset as target do-
main B, and use the synthesis algorithm in (Zhang and Pa-
tel 2018) to generate rainy images as domain A. These im-
ages are split into three parts: 6000 both for the initial and
adversarial training, 6000 to train the surrogate model and
100 for testing. Similarly, for X-ray image debone, we se-
lect 6100 high-quality chest X-ray images from the open
dataset chestx-ray8 (Wang et al. 2017) and use the rib sup-
pression algorithm proposed by (Yang et al. 2017) to gener-
ate the training pair. They are also divided into three parts:
3000 both for the initial and adversarial training, 3000 to
train the surrogate model and 100 for testing. By default,
λ, λ1, λ2, λ4, λ5, λ6 all equal to 1 and λ3 = 0.01.

Evaluation Metric. To evaluate the visual quality, PSNR
and SSIM are used by default. To judge whether the water-
mark is extracted successfully, we use the classic normalized
correlation (NC) metric as previous watermarking methods.
The watermark is regarded as successfully extracted if its
NC value is bigger than 0.95. Based on it, the success rate
(SR) is further defined as the ratio of watermarked images
whose hidden watermark is successfully extracted.

Deep Image Based Invisible Watermarking. In this exper-
iment, we give both quantitative and qualitative results about
the proposed deep image based invisible watermarking al-
gorithm. For debone and deraining, one AAAI logo image
and a colorful flower image are used as the example water-
mark image respectively. As shown Table 1, the embedding
sub-network H and the extractor sub-network R collaborate
very well. H can hide the image watermark into the host im-
ages invisibly with high visual quality (average PSNR 39.98
and 47.89 for derain and debone respectively), and R can
extract these hidden watermarks out afterward with an av-
erage NC value over 0.99 (100% success rate). Two visual
examples are shown in Figure 4.

Robustness to The Attack from Surrogate Models. To
evaluate the final robustness of the proposed deep water-
marking framework, we use a lot of surrogate models that
are trained with different network structures and objective
loss functions to imitate the attackers’ behavior. Here four
different types of network structures are considered: vanilla
convolutional networks only consisting of several convolu-
tional layers (“CNet”), an auto-encoder like networks with
9 and 16 residual blocks (“Res9”, “Res16”), and the afore-
mentioned UNet network (“UNet”). For objective loss func-

watermark-free watermarked gt watermark extracted watermark

Figure 4: Two examples of hiding image watermark into host
images with the proposed invisible watermarking algorithm.

Setting T-Debone T-Derain D-Debone D-Derain D-Debone† D-Derain†

CNet 0% 0% 92% 100% 0% 0%

Res9 0% 0% 100% 100% 0% 0%

Res16 0% 0% 100% 100% 0% 0%

UNet 100% 100% 100% 100% 0% 0%

Table 2: The success rate (SR) of resisting the attack from
surrogate models trained with L2 loss but different network
structures. T-* means the results of using traditional spatial
invisible watermarking algorithms to hide 64-bit, while D-
* means that of the proposed deep invisible watermarking
algorithm to hide watermark images. † denotes the results
without adversarial training.

tions, some popular loss functions like L1, L2, perceptual
loss Lperc, adversarial loss Ladv and their combination are
considered. Since one surrogate model with “UNet” and L2
loss function is leveraged in the adversarial training stage,
this configuration can be viewed as a white-box attack and
all other configurations are black-box attacks.

Due to the limited computation resource, we do not con-
sider all the combinations of different network structures
and loss functions. Instead, we choose to conduct the con-
trol experiments to demonstrate the robustness to the net-
work structures and loss functions respectively. In the Ta-
ble 2, both traditional spatial bit-based invisible watermark-
ing algorithms (hide 64-bit) and the proposed deep image-
based invisible watermarking algorithm are tested. Though
only UNet based surrogate model trained with L2 loss is
leveraged in the adversarial training stage, we find the pro-
posed deep model watermarking framework can resist both
white-box and black-box attacks when equipped with the
newly proposed deep image-based invisible watermarking
technique. For traditional watermarking algorithms, they can
only resist the attack of some special surrogate models be-
cause their extracting algorithms cannot handle noisy water-
marked images from different surrogate models. More im-
portantly, they cannot hide high-capacity watermarks like
logo images. We have also tried many traditional transform
domain watermarking algorithms like DCT-based(Fang et
al. 2018),DFT-based(Kang, Huang, and Zeng 2010) and
DWT-based(Kang et al. 2003) but all of them do not work
and achieve 0% success rate.

To further demonstrate the robustness to different losses,
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Task L1 L1 + Ladv L2 L2 + Ladv Lperc Lperc+Ladv

D-Debone 100% 100% 100% 100% 88% 92%

D-Derain 100% 100% 100% 100% 86% 100%

D-Debone† 0% 98% 0% 100% 0% 0%

D-Derain† 0% 0% 0% 100% 24% 0%

Table 3: The success rate (SR) of resisting the attack from
surrogate models that are trained with different loss combi-
nations. † means the results without adversarial training.

image image extracted watermarkextracted watermark

NC: 0.91

Figure 5: Comparison results with (first row) and without
(second row) clean loss. The second and last column are the
extracted watermarks from the watermark-free images ai, bi
from domain A,B respectively.

we use the UNet as the default network structure and train
surrogate models with different combinations of loss func-
tions. As shown in Table 3, the proposed deep watermark-
ing framework has a very strong generalization ability and
can resist different loss combinations with very high success
rate. Since in real user scenarios, detailed network structure
and training objective functions are the parts of the surrogate
model that attacker may often change, we have enough rea-
sons to think the proposed deep watermarking framework is
applicable in these cases.

Ablation Study

The Importance of Clean Loss and Consistent Loss. Be-
sides the watermark reconstruction loss, we add one clean
loss and consistent loss into the extracting loss. To demon-
strate their importance, two control experiments are con-
ducted. As shown in Figure 5, without clean loss, the ex-
tractor will always extract meaningless watermark from
watermark-free images of domain A,B. Especially for im-
ages of domain B, the extracted watermarks have a quite
large NC value and make the forensics meaningless. Sim-
ilarly in Figure 6, we find the extractor can only extract
very weak watermarks or even cannot extract any watermark
out when training without consistent loss. By contrast, our
method can always extract very clear watermarks out.

The Importance of Adversarial Training. As described
above, to enhance the extracting ability of R, another ad-
versarial training stage is used. To demonstrate its necessity,
we also conduct the control experiments without adversar-
ial training, and attach the corresponding results in Table 2
and Table 3 (labelled with †). It can be seen that, with the
default L2 loss, its resisting success rate is all about 0% for

image image image extracted watermark

Figure 6: Comparison results with (first row) and without
(second row) consistent loss. The last column is the ex-
tracted watermark from the output b′′i of surrogate model.

surrogate models of different network structures. When us-
ing UNet as the network structure but training with different
losses, we find only some special surrogate models can par-
tially extract the hidden watermarks, which demonstrates the
significant importance of the adversarial training.

Task Specific Deep Invisible Watermarks. In our default
setting, the embedding and extractor sub-network are task-
agnostic and appended as a general barrier. In this experi-
ment, we try a more challenging task that lets H be task-
specific. Take debone as the example, the input image of H
is directly the image of the domain A with rib components
now, and we want H to remove the rib components and hide
watermarks simultaneously. In such a case, H is the final
watermarked target model M. For comparison, we also train
a baseline debone model without the need of hiding water-
marks. We find the above task-specific watermarked model
can achieve very comparable results (PSNR: 24.49, SSIM:
0.91) to this baseline model (PSNR: 25.81, SSIM: 0.91).

Extension to Protect Data and Traditional Algorithms.
Though our motivation is to protect deep models, the pro-
posed framework is easy to be extended to protect valuable
data or traditional algorithms by directly embedding the wa-
termarks into their labeled groundtruth images or outputs.

Conclusion

We introduce the deep watermarking problem for image pro-
cessing networks for the first time.Inspired by traditional
spatial invisible media watermarking, the first deep water-
marking framework is proposed. To make it robust to differ-
ent surrogate models and support image-based watermarks,
we propose a novel deep invisible watermarking technique.
Experiments demonstrate that our framework can resist the
attack from surrogate models trained with different network
structures and loss functions. We hope this work can inspire
more great works for this seriously under-researched field.
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