The concept of explained proportion of variance or modeled proportion of variance is
reviewed in the situation of the random effects hierarchical two-level model. It is argued
that the proportional reduction in (estimated) variance components is not an attractive
parameter to represent the joint importance of the explanatory (independent) variables
Jfor modeling the dependent variable. It is preferable instead to work with the propor-
tional reduction in mean squared prediction error for predicting individual values (for
the modeled variance at level 1) and the proportional reduction in mean squared
prediction error for predicting group averages (for the modeled variance at level 2). It
is shown that when prediciors are added, the proportion of modeled variance defined in
this way cannot go down in the population if the model is correctly specified, but can go
down in a sample; the latter situation then points to the possibility of misspecification.
This provides a diagnostic means for identifying misspecification.
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he concept of explained variance is well-known in multiple

regression analysis: it gives an answer to the question, how
much of the variability of the dependent variable is accounted for by
the linear regression on the explanatory variables. This concept,
however, is somewhat complicated in the hierarchical random effects
model, which is so fruitful in multilevel research (see, among many
others, Aitkin and Longford 1986; Raudenbush and Bryk 1986;
Goldstein 1987; Bryk and Raudenbush 1992). One way to approach
the concept of explained variance is to transfer its customary treat-
ment, well-known from multiple linear regression, in a straightfor-
ward way to multilevel models: treat proportional reductions in the
estimated variance components as analogues of R values. There are
several variance components in hierarchical random effect models
(e.g., in a random intercept two-level model, there is a random effect
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for either level). So this approach to defining explained variance leads
to several R* values, one for each variance component. Raudenbush
and Bryk (1986, p. 9) and Bryk and Raudenbush (1992, pp. 65, 70)
follow this approach; it is also proposed by Prosser, Rasbash, and
Goldstein (1991, p. 13). Some practitioners, however, have run into
problems with this definition of R*: it sometimes happens that adding
explanatory variables increases rather than decreases some of the
variance components. This leads, under the stated definition of R? to
negative values for the contribution of this explanatory variable to R?
and sometimes even to negative values for R?.. Examples will be
provided in the sequel. Negative values for R? clearly are undesirable
and do not correspond with its intuitive interpretation.

This article explores the concept of explained variance for hierar-
chical random effects two-level models. As we dislike the term ex-
plained variance because of the often ill-founded connotation of causal
explanation, we use the more neutral term of modeled variance. 1t is
well known that, in multiple regression, the concept of R> makes sense
only in the case that the predictor variables are random variables (i.e.,
the design is observational rather than experimental). The reason is
that the variance accounted for by the regression model depends not
only on the regression coefficients and the residual variance, but also
on the variances and covariances of the predictor variables. In other
words, although the regression model is conditional on the values of
the predictor variables, the value of R? is population dependent.
Correspondingly, we assume throughout the article that the predictor
variables are random variables over some population, so that we can
take expectations with respect to them.

The article consists of four parts. In the first place, we desire to
understand better why variance components might go up when pre-
dictor variables (used in this article as a synonym of explanatory
variables; we shall not use the term independent variables) are added.
To this end, we consider some simple two-level models where explicit
expressions are available for estimated variance components, and we
indicate circumstances under which estimated variance components
should indeed go up in the course of a forward model selection process.
Second, we propose for two-level random effects models a definition
for R? or proportion of modeled variance, at the lower level; and
similarly for the higher level. Third, we investigate whether the so

Downloaded from http://smr.sagepub.com at Oxford University Libraries on July 4, 2008
© 1994 SAGE Publications. All rights reserved. Not for cial use or ized
distribution.



http://smr.sagepub.com

344 SOCIOLOGICAL METHODS & RESEARCH

defined R*-type parameters can go down when predictors are added to
the model. As the last part of the article, we give formulae extending
these definitions to random slope models, which have more than two
variance components.

HOW IS RESIDUAL VARIANCE AFFECTED BY PREDICTORS?

Let us first try to get an understanding of the way in which predictor
variables influence the estimated variance components at the two
levels by considering a simple model with equal group sizes. We
consider a two-level model with a random group main effect but no
other random effects:

Y; =X + Uy + Ey, 4))

where i denotes the level-1 unit (also called individual i) and j the
level-2 unit (also designated as group j), Xj; is a row vector of predictor
variables, and B is a column vector of regression coefficients; Uy; is
the random effect of group j, having mean 0 and variance 7, whereas
E; is the residual at level 1 having mean 0 and variance ¢°. The random
effects Uy and E; are assumed to be independent. A normality assump-
tion will be made for Uy; and E; when discussing parameter estimation,
but not for the definition of analogues of R>. The predictor variables
X; are random; they are assumed to be independent of Uy and E;; it is
further assumed that the distribution of the vector Xj; is the same for
alli and j, and that for identical group sizes, the group means X have
the same distribution for all j. No specific distributional forms such as
normality are assumed for the X;;. The number of groups (level-2 units)
is N; the group size isequalton forallj=1,...,N.

The assumptions with respect to X;; are so general that some of the
predictor variables (components of the vector X;) might be variables
at the level of the individuals whereas others might be group variables
(i.e., not dependent on i). Also, the X;; do not need to be independent
within the groups. As an example, it is allowed that, for a given
substantive explanatory variable, the within-group deviation score
(with group means necessarily equal to 0) as well as the group mean
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are contained in the vector X;;. Thus it is possible to specify model (1)
in such a way that within-group regression coefficients and between-
group regression coefficients are allowed to be different, but also to
specify the model in such a way that within-group and between-group
regressions are required to be the same for some of the substantive
explanatory variables.

We first consider unrestricted maximum likelihood estimation.
Under the assumption of normality for the random residuals U, and
E;;, the log likelihood is given by

~N(n - Dlog(c) — VaNlog(a® + nt?) — 146788, (B) — 14(6% + nt2) 'SSy(B), (2)

where SS,(8) and SSy(B) denote the residual within- and between-
groups sums of squares:

SSuB) = 2 1Y - Y, - (X - XpBY2 )

SSe(B) = > a(Y;~ X B)% @

To obtain the unrestricted (full-information) maximum likelihood
(ML) estimate, the likelihood is maximized as a function of §, 6% and
72, It is seen from (2) that with regard to the vector P of regression
coefficients, this means that a weighted sum of the within-group and
between-group residual sums of squares is minimized. This minimi-
zation can be considered as two separate minimizations, one for the
within-group and one for the between-group sums of squares, if and
only if for every predictor variable that has within- as well as between-
group variability, the within-group regression coefficient is allowed
to be different from the between-group regression coefficient; in other
words, when for all variables with a positive between-group variance,
the group means are also included as predictor variables in the regres-
sion model. It follows from differentiation with respect to ¢ and t*
that the ML estimates for the variance components are given by

& = S8, (BY(N(r - 1)) + min{0,[SSs(B) - SS.B)(n ~ DYNn},  (5)
22 = max{0,{SS(BYN — 8%/} = max{0,[SSs(B) - SS.BY(n ~ YNn). (6)
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These expressions are well-known; for the compound symmetry
model (i.e., the case without the X;s), they were derived by Herbach
(1959) and are given, for example, in Searle (1971, p. 419).

What will happen to these estimates when a researcher has fitted a
model of this kind and then adds another predictor? Most predictors
have both within-group and between-group variability. The two ex-
treme possibilities, where this is not so, are a group-level variable and
a within-group deviation variable. By definition, the former has zero
within- and the latter zero between-group variance. Let us consider
these two extreme possibilities in turn. To simplify the discussion, we
suppose, for the time being, that within-group and between-group
regression coefficients for all level-1 predictor variables are allowed
to be different, so that the within-groups and the between-groups
residual sums of squares, SS,, and SS;, vary independently as functions
of the regression coefficients 3. In other words, for every predictor
variable that has a positive between-group as well as within-group
variance, its group mean is included in the list of predictor variables.

When the main effect of a group variable (i.e., a level-2 variable)
is added, the term X; - X) in SS,, is not affected. This means that
SS.., and hence 02 does not change. Unless the new predictor is
completely collinear with the predictors already used, it will be
possible, however, to obtain a smaller value for the between-group
residual variance SSg, and hence the estimate, 72, for the group-level
variance component will be diminished.

Now suppose that a within-group deviation variable is added: that
is, a variable with within-group means X; equal to 0. Then the
between-group sum of squares is not affected, and only the within-
group sum of squares SS,, will become smaller. This means, as can be
seen from equations (5) and (6), that 62 will become smaller while T
becomes larger. Another way to explain this is as follows. Unex-
plained within-group variability is represented completely by o
Unexplained between-group variability, however, is constituted by
variation ascribed to T as well as variation ascribed to 6>

var(Y { Xy, . . ., Xp) =T + 5”:—. @)
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Adding a predictor that models a part of the within-group variability
must decrease the estimate of ¢?; if this predictor does not model part
of between-group variability then, because unexplained between-
group variability remains the same, the decrease of 6* must be bal-
anced by an increase of the estimate of 7°.

The preceding discussion was formulated for the unrestricted max-
imum likelihood estimator. However, the explanation based on (7) for
the fact that adding a within-group deviation variable must increase
the estimate of 1° is a direct consequence of the model assumptions
and does not depend on the estimator employed. Other estimators,
such as the restricted maximum likelihood estimator (REML, also
called MLR for maximum likelihood-random; see Dempster, Rubin,
and Tsutakawa 1981) present a similar behavior.

In designs with differing group sizes n;, the formulas are more
complicated and explicit expressions for the ML estimates of 6> and
12 cannot be given. Also in cases where, for some variables, within-
group regression coefficients are restricted to be identical to between-
group regression coefficients, the situation is more complicated. How-
ever, in both of these situations, provided that no equality assumptions
between within-group and between-group regression coefficients are
made that are strongly at odds with the data, the general conclusions
of the preceding analysis still are valid to the effect that adding a
group-level variable will decrease the estimate for T but hardly affect
the estimate for 62, whereas adding a within-group deviation variable
will decrease the estimate for 6° and at the same time increase the
estimate for 2.

These theoretical insights are confirmed by practical experience. In
data analysis, it is usual to have explanatory variables that have a
positive within- as well as a positive between-group variance; it is also
common to have different group sizes and, for some variables, the
constraint that within-group and between-group regression coeffi-
cients are identical (i.e., the group mean is not included in the list of
explanatory variables). In this general situation it is not uncommon to
see estimated variance components going up when explanatory vari-
ables are added. Especially if the between-group variance of an
explanatory variable is small compared to within-group variance
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divided by group size, it is not unusual to observe an increased estimate
for 1> when the variable is added to the model.

To illustrate this, data from a study by Vermeulen and Bosker (1992)
on the effects of part-time teaching in primary schools is used. The
dependent variable is an arithmetic test score; the sample consists of
718 third-grade pupils in 42 schools. An intelligence test score is used
as predictor variable. Group sizes range from 1 to 33 with an average
of 20. We balanced this design to 33 schools with 10 pupils in each
school by deleting schools with less than 10 pupils from the sample
and randomly sampling 10 pupils from each of the remaining schools.
In Table 1, the resuits of the analyses (calculated using ML.3 by Prosser
et al. 1991) are summarized, both for the balanced and for the entire
data set. From Table 1 we see that in the balanced as well as in the
unbalanced case, T increases as a within-group deviation variable is
added as an explanatory variable to the model. Furthermore, the
estimates of the variance components in tl/{e balanced case behave
exactly as predicted. In the unbalanced case, 6* increases slightly when
adding the group variable to the model. When R? is defined as the
proportional reduction in residual variance, as discussed earlier, then
R? on the group level is negative for model C, while for the entire data
set R? on the pupil level is negative for model B. Estimating 6> and 7°
using restricted maximum likelihood results in slightly different pa-
rameter estimates. The pattern, however, remains the same.

We would like to stress that the possibility, discussed above, of an
increase of residual variance estimates when predictor variables are
added is not a consequence of misspecification. The model without
and the model with the extra predictor variable could both be valid
statistical models for the observations at hand (although the latter
model would be better in the sense of having a greater explanatory
power). To illustrate this, we now turn from the data and the estimators
to the population. Consider the following two different models, both
of which we assume to be valid for one given population (Xj; is random
and independent of Uy; and E;;, and all group sizes are equal to n):

Y; =By + U + E; &)
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TABLE 1: Modeling Variance by Within- and Between-Group Variables

& 2

I. Balanced Design

A.Yj3= P+ Ug +Ej 8.694 2271

B.Yy=0p+ ﬁli.j +Ug; + By 8.694 0.819

C. Yij = BO + Bz(xij - i,) + UOj + E;j 6.973 2.443
I1. Unbalanced Design

A. =P+ Ug + Ej 7653 2798

B.Yy=Pp+ Bli.j +Ug; + By 7.685 2.038

C.Y;j= By + (X - X)) + Ugy + B 6.668 2.891

where X is a vector of within-group deviation variables: X; = 0 for
all j, and where the variances of the random residual variables are
denoted 7%, 6%,7%, and G?, respectively. The assumption that (8) and (9)
both are valid models for the same joint distribution of the variables
X; implies that the residuals, Uj; and E;; in model (9), have to incorpo-
rate the effects modeled in (8) by X;8. The variance components T2,
o’, 7%, and & are identified by the variances and the within-group
covariances. Recall that the X are random vectors. Because of the
assumption that X, = 0 for all groups j, it cannot be assumed that the
X are independent within groups. Instead, we assume that their
distribution is permutation-symmetric within each group (i.e., the joint
distribution of X;; to X, is invariant under permutations of the indexes
1 to n), and independent and homoscedastic across groups. Denoting
the covariance matrix of X by Xy, it can be shown that the cross-
covariance matrix of X;; and X;; for i #1i’ (i.e., the covariance matrix
between the predictor variables for two different pupils in the same
school) is equal to —(n — 1)'Z,. This implies that if (8) and (9) both
are valid statistical models for the joint distribution of the Y, then

var(Y) =FZ B+ + 0> =T+ G’
cov(Yy, i) =—(n— ' PExB+ 12 =77,

which implies that the variance components of model (8) are related
to those in model (9) by

2__ 32 —1n’
T=T+(n-1)"BEZB,
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o =&~ (nln - DIF'EP.

It is seen that the within-group deviation variable as a predictor
contributes a negative amount to the residual variance at level 1, which
is balanced by an extra positive contribution to the residual variance
at level 2. It is also seen that model (8) can only be represented in the
form (9) if the intercept variance is large enough:

P2 (-1 PP

It can be concluded that the correspondence between the variance
components 1%, 6* and 72, G? in model (8) and (9), respectively, contains
the design variable » and is not very appealing conceptually: the predic-
tors X;; do not model any variation at the level of group means, so the
models are formally identical at the aggregated level of group means, but
nevertheless the variance components 12 and 7> at the group level are
different. This demonstrates that the partitioning of variance between
the random level-1 residual E;; and the level-2 intercept Uy; can depend
in a conceptually rather undesirable way on the predictors. This is an
argument against using the intercept variance 7 as the fundamental
parameter for comparison of level-2 modeled variance for different
models. In the next section we propose, therefore, a different parameter.

MODELED VARIANCE AT EITHER LEVEL

In multiple linear regression, the customary R*> measure can be
introduced in several ways—for instance, as the maximal squared
correlation coefficient between the dependent variable and some
linear combination of the predictor variables or as the proportional
reduction in the residual variance parameter due to the joint predictor
variables. The latter description is convenient as a utilitarian definition
because it is easily calculated from computer output; from a concep-
tual point of view, however, this definition is not the most appealing
one. In the context of multilevel modeling, we need some reflection
about what constitutes a suitable definition because it is not a priori
clear that the definitions used in the multiple linear regression frame-
work can be automatically carried over to the multilevel framework
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and still make sense; nor is it certain that the various possible defini-
tions will coincide here, as they do for multiple linear regression.

In our view, the most appealing principle to define measures of
modeled (or explained) variation is the principle of proportional
reduction of prediction error. This is one of the definitions of R? in
multiple linear regression and can be described as follows: A popula-
tion of (X, Y;) values is given, with a known joint probability distri-
bution; B is the value for the vector v for which the expected squared
error E(Y, — X;v)? is minimal. If the value of X, is unknown, then the
best predictor for Y; is its expectation E(Y), with mean squared
prediction error var(Y)); if X, is given, the linear predictor of Y, with
minimum squared error is the regression value X3, with mean squared
prediction error E(Y; — X;8). The proportional reduction of the mean
squared error of prediction is defined as

var(Yp=var(Y; — X;) =1 var(Y; — X;B)
var(Y) S va(y)

this formula expresses one of the equivalent ways to define R%.

The same principle can be used to define modeled proportion of
variance in multilevel random effect models. In the case of two-level
models, however, a basic question is, What is predicted? An individual
value Y at the lowest level, or an aggregated value Y atahigherlevel?
On the basis of the distinction between the two levels, two concepts
of modeled proportion of variance in a two-level model can be defined.
To introduce the basic idea, first consider a two-level random effects
model with arandom intercept and some predictor variables with fixed
effects but no other random effects: '

where the random residuals U, and E; are uncorrelated and have
expectation zero; and where the X variables are random and not
correlated with the U and the E variables. We assume that (10) is a
model with intercept: The first variable in X is identically equal to
unity. Because we wish to discuss the definition of modeled proportion
of variance as a population parameter, we assume, temporarily, that
the vector P of regression coefficients is known.
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For the level-1 modeled proportion of variance, we consider the
prediction of Y, for a randomly drawn level-1 unit i within a randomly
drawn level-2 unit j. If the values of the predictors X are unknown,
then the best predictor for Yj; is its expectation, puf3 where p = EX;; the
associated mean squared predlctlon error is var(Yy). If the value of the
predictor vector X1J for the given unit is known, then the best linear
predictor for Y; is the regression value X;B; the associated mean
squared predlctlon error is var(Y; — X;B) = 6 + 7°. The level-1 modeled
proportion of variance is defined as the proportional reduction in mean
squared prediction error:

_ ., va(Y; - Xf})
Ri=1- W )]

How can this parameter R} be estimated? For unbalanced data, the
sample variance is not necessarily the best estimator for var(Y;). An
esti/{nator that is more in line with the random effects two-level model
is 03 + TAZO, where G5 and fc\ﬁ are defined as the estimators for the
two-level model with a random intercept but without any predictors:

Y, = By + Uy +E;. (12)

. A .
Because the sample variance and G} + 4:\3 are two estimators for the

same parameter, their outcomes will not be very different; in any case,
they should only rarely be significantly different. Using the complete
(unbalanced) data from the earlxer mentioned study of Vermeulen and
Bosker (1992) once again, 00 + fc\é amounts to 10.45, whereas the
sample variance is 10.14.

Then the most straightforward way to estimate R? is to consider
G? + 72 for the reference model (12) as well as for model (10), and
compute 1 minus the ratio of these Values In other words, R? is just
the proportional reduction in the value of 6% + 72 due to including the
X variables in the model. For a sequence of nested models, the
contributions to the estimated value of (11) due to adding new predic-
tors can be considered to be the contribution of these predictors to the
modeled variance at leve] 1.

To illustrate this, we once again use the data from the first (bal-
anced) example, and estimate the proportional reduction of prediction
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error for a model where within- and between-groups regress1on coef-
ficients might be different. From Table 2 we see that 6 + 12 for model
(A) amounts to 10.965, and for model (D) to 7.964. R?is thus estimated
to be 1 —(7.964/10.965) = 0.274.

Now we turn to the level-2 modeled proportion of variance. It is
natural to define this as the proportional reduction in mean squared
prediction error for the prediction of Y, for a randomly drawn level-2
unit j. If the values of the predictors X for the set of level-1 units i
within level-2 unit j are completely unknown then the best predictor
for Y; is its expectation, which is again pp where p = EXj; the
assoc1ated mean squared prediction error is var(Y ). If the values of
the predictors X;; for all i in this particular group j are known, then the
best linear predictor for Y is the regression value X [; the associated
mean square prediction error is var(Y ; — X B) = 6%/n, + 7%. The level-2
modeled proportion of variance is now defined as the proportional
reduction in mean squared prediction error for Y ;:

—1- var(Y - YPB) (13)

var(Y)

It must be noted that this parameter is similar to the value of R* (defined
in the classical way) in the aggregated regression analysis, where Yj
is regressed on Xj. This is apparent from definition (13). (The simi-
larity, however, is conditional on the correct model specification; if a
two-level model is estimated with incorrectly assumed equalities of
within-group and between-group regression coefficients, then the
estimated value for R? will be smaller than the R* estimated in the
aggregated regression analysis, because then a nonoptimal value for
B is used.)

To estimate the level-2 modeled proportion of variance, we follow
a similar approach as for estimating R? : For balanced data, we estimate
R? as the proportional reduction in the value of oYn + 2.

In the example given earlier, for model (a) the value of &n + T is
8.694/10 + 2.271 = 3.140, whereas for model (b) this amounts to
6.973/10 + 0.991 = 1.688. R} is thus estimated at 1 — (1.688/3.140) =
0.462.

For unbalanced data, it must be noted that the mean squared error
for predicting a group mean naturally depends on the group size; one
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TABLE 2: Estimating R%, the Level-1 Modeled Variance (balanced data)

A
& 7
D. Y =B+ Bi(Xy~ X)) + B, X + Ugy + Ey 6.973 0.991

could use as the value for n either a value deemed a priori to be
representative, or the harmonic mean, defined by {(1/N)¥,(1/n)}™".

BEHAVIOR OF R? AND R3 WHEN PREDICTORS ARE ADDED

The starting point of this article was a criticism of the use of
proportional reductions in the variance components ¢* and T as
definitions of modeled fractions of variance: it was pointed out that
the variance components can increase when predictors are added. In
particular, 7 increases when a successful within-group deviation
variable is added. What about our definitions of R? and R?, based on
proportional reduction of prediction error? Is it possible that adding
predictor variables leads to smaller values of R} and R3? Can we even
be sure at all that these quantities are positive?

It turns out that a distinction must be made between the population
parameters R? and R} and their estimates from data. For the population
parameters, we have the following properties.

Proposition 1. Suppose that

Y =X + Uy + Ey, (14)

where the correlations between the X variables on the one hand, and
the U and E variables on the other, are zero. Let X{ be any subvector
containing k elements of the random vector Xj;, and let 3* be any fixed
k vector. Then

Var(Y; — XPB®) = Var(Y; ~ X;p). (15)

This implies that the value of R} when computed for all predictors in
the vector X is not smaller than the value of R} when computed for
only the predictors in the vector X®; in particular, R? 2 0.
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Proof. It holds that
Var(Y; - XPB®) = Var(Y;; - X;B + X, (16)
where

Xij8 = XijB - Xi(;()B(k)-
Such a vector 6 exists because X is a linear function of Xj;. The model
for Y;; implies that Y; — X8 = Uy, + E; and that this latter random
variable is uncorrelated with X;;. Therefore, (16) is equal to

Var(Uy; + E; + X;8) = Var(Uy; + E;) + Var(X,)
2 Var(Uy, + E) = var(Y;; - XijB)'

This proves (15). It follows immediately from applying (15) to the
definition of R} that this parameter for the entire vectorX;; is not smaller
than for the subvector X¥. By taking X% as the vector with the constant
variable as its only element, the last result implies that R? > 0. QED.

Note that normality assumptions or assumptions on the covariance
structure of the residuals Uy + E;; are not needed for this proposition;
the conditions only refer to the correct specification of the regression
part X8 and to the zero correlation between the explanatory variables
and the residuals.

The interpretation of this proposition is that population values of
R} in correctly specified models become smaller when predictor
variables are deleted. In a similar way, it can be proved that population
values of R} in correctly specified models become smaller when
predictor variables are deleted, provided that the variables Uy and E;
on one hand are uncorrelated with all the X; variables on the other hand.

For estimates of R? and R?, the situation is different: it cannot be
proved, in general, that these estimates become smaller when predictor
variables are deleted. The important point is that, for the monotonicity
property of the population values of R} and R3, it had to be assumed
in Proposition 1 that the larger of the two models being compared was
correctly specified. This implies the following: when it is observed
that an estimated value for R} or R becomes considerably smaller by
the addition of a predictor variable, or considerably larger by the
deletion of a predictor variable, this suggests that the larger model is
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misspecified. In this sense, changes in R? or R} serve as a diagnostic
for possible misspecification. Because the proposition does not require
the assumption of normal distributions or of a specific structure for
the random part of the model, this possibility of misspecification refers
to the fixed part of the model (i.e., the specification of the explanatory
variables having fixed regression coefficients).

An important type of misspecification in two-level models is the
restriction that a certain variable has the same within-group as
between-group regression coefficients, whereas in the population
these coefficients are different. We have simulated some examples
where this anomalous tehavior of R? and R} was indeed observed.
Example. Data were simulated with N = 30 groups of size, n = 5 with
one predictor variable according to the model,

Y, =X;-2X;+ Uy +E;

ij»

where the random variables X;, Uy, and E; all are independent and
normally distributed with Var(X;) =1, 6*=1,7*=0.1. When the model,

Ylj = BO + UO] + Eij’ (17)
was fitted, the following estimates were obtained:
6% =2.228, 12 = 0.088;
fitting the model
Y;; =By + B X + Uy + By (18)
yielded the estimates
A Ay A
6% = 1.026, 72 = 1.077, B, = 1.046.

Model (18) is incorrectly specified because it is based on the assump-
tion of equal within-groups and between-groups regression coeffi-
cients for X. We see that the value for the mean squared prediction
error at level 2 is for model (18), given by T+ 6Yn=1. 282; this is
larger than for the intercept-only model (17), which has 0.534. Corre-
spondingly, the estimated value for Rj is negative:

R} =1-1.282/0.534 = -1.401.
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Example. Another data set was simulated with the same parameters as
the previous one, except that the difference between the between-
group and the within-group regression coefficients was even stronger,
namely, by using the regression model

Y, = 2%+ 3X; + Uy + E;.
Here the estimates obtained for the intercept-only model (17) were
6% = 5457, 7 = 4.047,
whereas the estimates obtained for the incorrect model (18) were

A
62 =0.976, 12 = 9.702, B, = ~1.978.

. A, A A .
In this case, both 62 + T2 and 6¥/n + 2 are larger for the incorrect larger

model; the estimates for the proportions of modeled variance are
negative,

A A
R} =-0.124 and R} = -0.926.

The fact that estimated values for R? and R? can be negative might
seem an undesirable feature of these statistics. Keeping in mind,
however, that the population values for correctly specified models are
necessarily nonnegative and that these population values decrease
when relevant predictor variables are deleted from a well-specified
model, this property of the estimators for R? and R} turns into an
advantage because now we have an interesting new diagnostic for
misspecification. For well-specified models, the estimated R} and R
will behave nicely just like their population counterparts; if estimated
R? and R? are strongly negative or decrease by a significant amount
when predictor variables are added, then the specification of the fixed
part of the model must be doubted.

PROPORTION OF MODELED VARIANCE
FOR MODELS WITH SEVERAL RANDOM EFFECTS

The idea of using the proportional reduction in the prediction error
for Y;; and Y ;, respectively, as the definitions of modeled variance at
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either level can be immediately extended to two-level models with one
or more random regression coefficients. This model is formulated as

Yy=XB+ zhzhijUhj +E; 19)

where h ranges from 0 to H, and Z, is identically equal to unity so that
Uy is the random intercept as in (10). The Z, are level-1 variables with
random regression coefficients; there might be an overlap between the
X variables and the Z variables. It is assumed that the U,; are random
variables with means zero and (co)variances cov(Uy;, Uy) = T,, and
that they are uncorrelated with the E;; further, the X and Z variables
are assumed to be statistically independent of the U and the E
variables.

One warning is in order before we embark on the extension of R?
and R to model (19). The random effects part of the modely,Z,; U, is
of no help to predict Y;; or Yj because the U,; are unknown. Therefore,
although it is necessary for a consistent treatment of R? and R? to define
these parameters and their estimators also for model (19), in practical
data analysis, the addition to model (10) of random slopes so that
model (19) is obtained will not lead to important changes in estimated
values for R} or R3. (And if it does, one should again be suspicious of
misspecification.)

First we consider the proportion of modeled variance at level 1. It
follows from the model definition that the best linear predictor of Y;;
given the Xj; values, is X;B. Therefore, formula (11) can be retained
as the definition of R}. When Y, is predicted by X,B, the associated
mean squared prediction error, conditional on the Z, values, is

var(Yy - XiB1Zy, ..., Z) = Zh,k ot + o’ (20)

There is one complication: this is a conditional mean squared predic-
tion error that depends on the covariates Z,, which are themselves
random variables. (When discussing model (10), this complication did
not arise because the covariate with a random coefficient in that
case was unity, so it remained implicit in the equations.) The
unconditional mean squared prediction error is the expected value of
(20), given by
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Var(Yij ~-X;B) = Zh,k E(ZyyZy) T + o

= W,T Wy + trace(TEE + IV ) + o, @n

where T is the matrix with elements 7, JL, is the mean of the vector Z,
and X2 and XY are the between-group and within-group covariance
matrices of Z. (Note that u,=1 and 7, =0 forh =0, . . ., H. For model
(10), the case of only a random intercept and no other random group
effects, Ty, = 1° and (21) reduces to the parameter 1> + G° that was
discussed before.) For model (19), the proportion of modeled variance
R} can be estimated as the proportional reduction in the estimated
value of (21) due to the addition of the X|; and/or the Z,; variables.

If the model has only one random slope (ie., H = 1), then the
parameters of the corresponding explanatory variable Z, are W,
ob, o}, and (21) reduces to

T+ 2Ty, + T2(W} + O + OY) + 07 (1)

For the proportion of modeled variance at level 2, we again consider
the prediction of Y, for a randomly drawn level-2 unit j. Suppose first
that the number of level-1 units is equal to n for each group. If the
values of the predictors X for the set of level-1 units i within this
level-2 unit j are known, then the best linear predictor for Y, is the
regression value X . It follows that R} can again be defined by (13).
Conditional on the Z, values, the mean squared prediction error of X 8
as a predictor for Y is

Vaf(?.j - .X-]B l\Z,,...,2Z,)= Zh,kzh.j—z-k.j Tnk + % . (22)

The unconditional mean squared prediction error is the expected value
of this quantity, given by

Var(?.j - S(_.jﬁ) = zh,k E(zh.jzkj)'chk + %0'2
' (23)
= W, + trace(t(ZL + %Z}V)) + %0‘2.

The level-2 modeled proportion of variance can be estimated as the
proportional reduction in the estimated value of (23) due to the
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addition of the Xj; and/or the Z,,; variables. In case the model has only
one random slope, the arguments to reduce (21) to (21°) can be used
again, and (23) reduces to

1 1
Ty + 2U,Ty; + Ti(UT + OF + ;5\1’\1’) + ;0'2- (23%)

For designs with unequal group sizes n;, the same approach can be
followed as in random intercept models: Use a representative value
for n or use the harmonic mean of the group sizes.

The monotonicity properties of R} and R3, discussed above for the
random intercept model, also hold true for the more general model
(19). In the proof of Proposition 1, the only assumption is that the fixed
regression part X;B is uncorrelated with the residual part Uy + E;;.
Because in model (19) the X and Z variables are independent of the
U and the E variables, the term 3Z,;U,; in (19) might play the role of
Uy, in Proposition 1, and the conclusion of the proposition is also valid
for this model. Thus the population values of R} and R} are nonnegative
and increase when predictor variables are added; but their estimates
can be negative and can decrease when predictor variables are added,
which then points to the possibility of misspecification of the fixed
part X, in model (19).

Example. The data of the first (balanced) example are used again
now with a model where the within-group deviation score on the
intelligence test is given a random slope:

Yy = Bo + Bi(Xy~ Xj) + BZi.j + (X - }—(-.j)Ulj + Uy + E;; (24

The proportions of modeled variance R? and R} will be estimated for
model (24); var(Y;) and var(Y. ;) (for the denominators of [11] and [13])
are estimated for the reference model that includes a random intercept
and no random slopes. Because the variable with random slope is a
within-group deviation score, we have p, = o}, = 0. For thlS data set,
0‘u = 8.545. Estlmatxon of model (24) using ML3 yielded 1700 =1.029,
1',01 = 0.044, ‘cu = 0.032, and &% = 6.589. Formula (2Y) yields 1.029 +
0.032*8.545 + 6.589 = 7.891. This leads to an estimate for R? of 1 —
(7.891/10.965) = 0.280, which indeed is almost the same as the value
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of 0.274 found for the model without a random slope. Formula (23"),
for n = 10, yields 1.029 + 0.032%8.545/10 + 6.589/10 = 1.715.
Accordingly, the estimate for R3 is 1 — (1.715/3.140) = 0.454. This is
quite close to the value of 0.462 found for the model without the
random slope.

DISCUSSION

The concept of proportional reduction in mean squared prediction
error leads to R? and R} defined by (11) and (13); these are clearly
interpretable parameters for the proportion of modeled variance in
two-level random coefficient models. For the random intercept model
(10) these parameters can be estimated as the proportional reduction
in 6% + 72 and 6%/n + T2, respectively, due to the explanatory variables.
For the more general random coefficient model (19), R} and R can be
estimated as the proportional reduction in the estimated values for (21)
and (23), respectively. The population parameters R} and R} have the
desirable properties that they are nonnegative and cannot decrease
when predictor variables are added to the model, provided that the
model for the fixed effects is correctly specified. The indicated esti-
mators, however, do not possess these monotonicity properties for all
data sets. When, for a given data set, negative values are estimated for
R? or R or when a decrease of the estimate of either of these
parameters is observed on the inclusion of an additional predictor in
the model, then this must be due either to a chance fluctuation or to
misspecification in the model of the set of predictor variables with
fixed regression coefficients.

The formulae for estimating R} and R} in models with random
intercepts only are very easy. Estimating R} and R} in models with
random slopes is more tedious. The software package HLM (Bryk,
Raudenbush, Seltzer, and Congdon 1988), however, provides the
necessary estimates because it not only produces estimates of the
variance components, but also of the observed residual variances
var(Y; — X;B). Using these latter estimates, one can calculate the
estimate of R? and R? straightforwardly.
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A further question in model (19) with random regression coeffi-
cients is how much the explanatory variables contribute to the predic-
tion of these varying slopes. This question will be treated in a following
article.

To conclude this article, we go back briefly to the idea with which
we started and which we rejected; namely, the use of proportional
reductions in 6° and ©* as R*like measures. The rejection should not
be taken absolutely because, even in the context of proportional
reduction in prediction error, such measures do have a meaningful
interpretation. Consider the general two-level model (19). Parameter
o’ is the mean squared error for predicting Y;; by X8 + 3,7,;,U,; in
other words, the mean squared error for the prediction of the individual
outcome, when we know not only all covariates but also all peculiar-
ities of group j, expressed in its random effects U,;. In still other words,
the proportional reduction in G* is the proportional reduction in mean
squared error for predicting Y; for a random individual in a given
group. The only disturbing aspect of this interpretation is that the group
is supposed to be known up to its kidneys—after all, the U,; are not
directly observable. Another interpretation of 6° is that it is n/(n — 1)
times the mean squared error for predicting Y; — Y. Hence the
proportional reduction in 6> is also the proportional reduction in mean
squared error for predicting within-group differences.

The proportional reduction in 7° can be interpreted in the random
intercept model as the proportional reduction in mean squared error
for predicting Y in an infinitely large group: for n; — o, the influence
of ¢ on 7% + ©%n; vanishes. So the criticized definitions of R, as
proportional reductions in the values for 6* and for 1* can still be
interpreted as reductions in mean squared prediction errors, but in
rather artificial situations.
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