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Abstract

This paper introduces an efficient algorithm that recon-

structs 3D human poses as well as camera parameters from

a small number of 2D point correspondences obtained from

uncalibrated monocular images. This problem is challeng-

ing because 2D image constraints (e.g. 2D point correspon-

dences) are often not sufficient to determine 3D poses of an

articulated object. The key idea of this paper is to identify

a set of new constraints and use them to eliminate the am-

biguity of 3D pose reconstruction. We also develop an opti-

mization process to simultaneously reconstruct both human

poses and camera parameters from various forms of recon-

struction constraints. We demonstrate the power and effec-

tiveness of our system by evaluating the performance of the

algorithm on both real and synthetic data. We show the al-

gorithm can accurately reconstruct 3D poses and camera

parameters from a wide variety of real images, including

internet photos and key frames extracted from monocular

video sequences.

1. Introduction

A long standing challenge in computer vision is to re-

construct 3D structures of non-static objects (e.g., deform-

ing faces or articulated human bodies) from monocular im-

age sequences. This paper presents an efficient algorithm

to simultaneously reconstruct 3D human poses and camera

parameters using a small number of 2D point correspon-

dences obtained from images. The problem is challenging

because 2D image constraints are often not sufficient to de-

termine 3D poses of an articulated object. To address this

problem, we introduce a set of new constraints which can be

used to eliminate the ambiguity of 3D pose reconstruction.

Our analysis shows that, under weak perspective projection

model, we need at least five images to accurately reconstruct

3D human poses and camera parameters.

Mathematically, we formulate the reconstruction prob-

lem in a continuous optimization framework by maximiz-

ing the consistency between the reconstructed 3D poses and

2D point correspondences. We develop an efficient opti-

mization process to find 3D human poses and camera pa-

rameters that best match various forms of the reconstruc-

tion constraints. The whole optimization process consists of

two sequential optimization steps. We first estimate human

skeletal size and camera parameters in an efficient gradient-

based optimization framework, and then use the estimated

skeletal size and camera parameters to reconstruct 3D hu-

man poses in joint angle space. The two-step optimization

strategy not only significantly speeds up the whole recon-

struction process but also enables the optimization process

to avoid falling in local minima.

We demonstrate the performance of our system by eval-

uating the algorithm on both real and synthetic data. We

show the algorithm can accurately reconstruct 3D joint an-

gle poses, skeletal bone lengths, and camera parameters

from internet photos or multiple frames from monocular

video streams. The quality of the reconstruction results pro-

duced by our system depends on the number of input images

and accuracies of 2D joint locations specified by the user.

We, therefore, evaluate how increasing or decreasing the

number of input images influences the 3D reconstruction

error. We also evaluate the robustness of the reconstruction

algorithm under different levels of input noise.

2. Background

Our system simultaneously reconstructs 3D human

poses and camera parameters from a small number of 2D

point correspondences obtained from monocular images.

This section briefly reviews related work in reconstructing

3D articulated objects from monocular images.

Our work builds on the success of previous work in

reconstructing 3D articulated objects from a single image

[8, 2, 6]. Modeling 3D articulated objects from a single 2D

image, however, is an inherently “ill-posed” problem. Pre-

vious approaches often rely on known skeletal size [8, 6]

or strong anthropometry prior [2] to reduce the reconstruc-

tion ambiguity. For example, Taylor [8] assumed a known

skeletal size, and present an analytical solution to recover

3D orientation of the bone segments up to an undetermined

weak perspective camera scale. Barron and Kakadiaris [2]

extended the idea to estimate both anthropometric param-
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eters and a human body pose from a single image. They

formulate the problem as a nonlinear optimization problem

and impose a multivariate Gaussian prior on bone lengths

to constrain the solution space. Parameswaran and Chel-

lappa [6] solved the same problem with known skeletal size,

accounting for projective foreshortening effects of a simpli-

fied skeleton model. Our work differs from previous work

because our algorithm simultaneously reconstructs skeletal

size, articulated poses and camera parameters from multiple

monocular images. The use of multiple images allows us to

eliminate the reconstruction ambiguity caused by unknown

skeletal size and camera parameters.

Another approach to reconstruct 3D human poses from

monocular images is to use data-driven techniques to reduce

the reconstruction ambiguity. Previous work in this direc-

tion either learns the mapping between 2D image features

(e.g. silhouettes) and 3D poses [7, 1, 3], or constructs pose

priors to constrain the solution space [4]. This approach,

however, has not demonstrated they can accurately recon-

struct 3D poses with unknown skeletal size and camera pa-

rameters. Another limitation of the data-driven approach is

that it can only model poses that are similar to the train-

ing data. Our approach does not have this limitation, and

can model arbitrary human poses from multiple monocular

images.

A number of researchers have also extended the factor-

ization methods [9] to reconstruct articulated objects from

monocular images [10, 11]. For example, Tresadern and

Reid [10] developed a factorization method to recover seg-

ment lengths as well as joint angles using a large number of

feature trajectories across the entire monocular sequence.

Yan and Pollefeys [11] used the rank constraints to segment

the feature trajectories and then built the kinematic chain as

a minimum spanning tree of a graph constructed from the

segmented motion subspaces. In order to utilize rank con-

straints for factorization and segmentation, this approach

often requires a large number of 2D visible features across

the entire sequences. Our approach is different because we

introduce a set of new constraints for 3D articulated re-

construction and formulate the reconstruction problem in

a continuous optimization framework. One benefit of the

optimization framework is its ability to deal with missing

features. More importantly, the number of corresponding

features required for our algorithm is significantly smaller

than the factorization methods.

3. Problem Statement

Given 2D joint locations of an articulated object at K

frames, our goal is to reconstruct 3D joint locations rela-

tive to the camera. Without loss of generality, we focus our

discussion on human skeletal models, though the basic re-

construction scheme that will be proposed in this section

can easily be extended to recover other articulated objects.

Throughout the paper, we assume a weak perspective

projection model, which is valid when the average varia-

tion of the depth of an articulated object along the line of

sight is small compared to the distance between the camera

and object. The unknown camera parameters are the scalars

of the weak perspective projection across the K frames

s = (s1, ..., sK)T , where sk is the camera scale at frame

k, k = 1, ...,K.

Our human skeletal model consists of B = 17 bones

(see Figure 1.(a)): head, neck, back, and left and right clav-

icle, humerus, radius, hip, femur, tibia, and metatarsal. Let

l = (l1, ..., lB)T represent bone segment lengths, where

li, i = 1, ..., B is the length of the i-th bone. Since we are

dealing with images obtained by single-view cameras, the

absolute length of a bone segment cannot be inferred from

the images. We, therefore, normalize the lengths for all the

bones by assuming l1 = 1.

We follow the representation of Taylor [8]. The 3D pose

of an articulated object at frame k is thus represented by

bone segment lengths l = (l1, ..., lB)T and relative depth

values of two end points for all bone segments dzk =
(dzk,1, ..., dzk,B)T . Let dz be a long vector which stacks

dzk across all frames.

The goal of our paper is to reconstruct unknown camera

parameters s, bone lengths l, and relative depths dz, from

2D joint locations xk,i = (uk,i, vk,i)
T , k = 1, ...,K, i =

1, ..., B + 1 at monocular frames.

4. Constraints for 3D Articulated Reconstruc-

tion

Simultaneous reconstruction of 3D human poses from

monocular image sequences is challenging and often am-

biguous. As discussed in Taylor [8], the solution to this re-

construction problem is up to an unknown weak perspective

scale even with known skeletal size. The key idea of our pa-

per is to identify a number number of new constraints which

can be used to remove the reconstruction ambiguity.

4.1. Bone projection constraints

Taylor [8] introduced bone projection constraints for re-

covering 3D articulated poses with known skeletal size. The

bone projection constraints consider the relationship be-

tween 3D end points of a bone segment and their 2D pro-

jections. Under the weak perspective projection model, the

3D coordinates of a point p = (x, y, z)T in the scene and

the 2D coordinates x = (u, v)T in the image space should

satisfy the following equation:

u = sx

v = sy
(1)

where the scalar s denotes the unknown camera scale for a

weak perspective camera projection. Note that we describe
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(a) (b)

Figure 1. (a) Our human skeleton model consists of 17 bones and a full-body human pose is represented by 6 degrees of freedom (DoFs)

for root position and orientation, and 31 DoFs for joint angles. (b) The histograms of the distances of BC, AE, AF and EF (from left to

right), which are computed from millions of human poses from the online CMU mocap database, show the effectiveness of four rigid body

constraints.

the 3D coordinates of the point with respect to the camera.

We now consider the projection of the i bone segment

onto the image space. The length of the i-th bone can be

computed as follows:

l2i = ‖pi1
− pi2

‖2, i = 1, ..., B (2)

where the vectors pi1
and pi2

represent the 3D coordinates

of two end points for the i-th bone segment respectively.

After combining Equation (1) with Equation (2), we obtain

the following bone projection constraints:

dz2

i = l2i −
‖xi1 − xi2‖

2

s2
, i = 1, ..., B (3)

where dzi represents the relative depth of two end points:

zi1 − zi2 .

A simple extension of Taylor [8] to multiple monocu-

lar images will not work because the bone projection con-

straints are not sufficient to reconstruct the skeletal size, 3D

poses and camera parameters at the same time. The to-

tal number of bone projection constraints (KB) is much

smaller than the total number of unknowns (KB + K +
B−1), which include KB unknown relative depths of bone

segments, K unknown camera scales, and B − 1 unknown

bone lengths.

4.2. Bone symmetry constraints

Studies in anthropometry show human skeletons satisfy

symmetry properties. We therefore can use bone symme-

try constraints to reduce the solution space. We impose

bone symmetry constraints on seven bones, including clav-

icle, humerus, radius, hip, femur, tibia, and metatarsal. In a

mathematical term, we have

l2i1 = l2i2 , (4)

where i1 and i2 are indices to symmetric bones. Totally, we

have seven bone symmetry constraints.

The solution to the reconstruction problem is still not

unique because the number of constraints (KB + 7) is still

fewer than the number of unknowns (KB + K + B − 1).

4.3. Rigid body constraints

We introduce a new set of constraints–rigid body

constraints–to eliminate the reconstruction ambiguity for

3D articulated poses. The rigid body constraints consider

the relationship of three points located on the same rigid

body. The constraints preserve the distances between any

two points regardless of the movement of a human body.

For example, for a standard human body skeletal model,

the root, left and right hip joints, which are often assumed

to be located on the same rigid body bone, satisfies the rigid

body constraints.

We define four rigid body constraints based on the

joints located on the torso: △ABC, △ADE, △ADF and

△DEF (see Figure 1.(a)). To evaluate how well these four

constraints are satisfied for human skeletal models, we com-

pute the distances of BC, AE, AF and EF using mil-

lions of prerecorded human poses in the online CMU mocap

database1. Figure 1.(b) shows the distance distributions for

the four rigid body constraints. The distance distributions

show the four rigid-body constraints are well satisfied.

Let us consider the rigid body constraints for one triangle

(e.g., △ABC). Due to the rigid body property, the relative

depths of the point A, B and C should satisfy the following

condition:

dzB,C = dzA,B − dzA,C , (5)

where dzB,C , dzA,B , and dzA,C represent the relative

depths of the points A, B, and C. After combining Equa-

tion (5) with Equation (3), we obtain the following rigid

body constraints:

l2B,C −
‖xB − xC‖

2

s2
= (dzA,B − dzA,C)2 (6)

1http://mocap.cs.cmu.edu
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where lB,C is the length of the line segment BC. Equa-

tion (6) can also be rewritten as an equation of dz2:

(l2B,C −
‖xB − xC‖

2

s2
− dz2

A,B − dz2

A,C)2 = 4dz2

A,Bdz2

A,C

(7)

In total, we enforce 4K rigid body constraints across all

the frames. We also introduce four new unknowns e =
(lB,C , lA,F , lA,E , lE,F )T to the reconstruction problem.

5. Simultaneous Reconstruction of Skeletal

Size and Camera Parameters

We now discuss how to use constraints described in Sec-

tion 4 to reconstruct human skeletal size and camera pa-

rameters as well as relative depth values based on 2D joint

locations defined in K monocular frames. We formulate the

reconstruction problem in a continuous unconstrained opti-

mization framework. We define our constraints as “soft”

constraints because 2D joint locations extracted from im-

ages often contain noise.

However, even with known skeletal size and camera pa-

rameters, there are still two possible solutions for the rela-

tive depths dzi of the bone segments, representing the pose

ambiguity that has been previously discussed in the work

of Taylor [8]. According to Equation 3, the two possible

solutions for relative depths are

dzi = ±
√

l2i − s2‖xi,1 − xi,2‖2. (8)

The equation shows that the relative depths of the bone seg-

ments are up to an unknown sign.

To address this ambiguity, we choose to optimize the ob-

jective function with respect to squares of all unknowns.

We stack squares of all unknowns into a long vector X =
{l2, s2, dz2, e2}, where s = ( 1

s1

, ..., 1

sK

)T . The overall

objective function includes three terms described in Equa-

tion (3), (4) and (7):

arg minXEp(l
2, s2, dz2) + λ1Es(l

2) + λ2Er(e
2, s2, dz2)

(9)

where Ep, Es, and Er represent bone projection, bone sym-

metry and rigid body constraints respectively. The three

terms represents square differences between the left and

right side of the Equation 3, 4 and 7 respectively. The

weights λ1 and λ2 control the importance of each constraint

term.

We analytically derive the Jacobian of the object func-

tion and then run the optimization with the Levenberg-

Marquardt algorithm in the Levmar library [5]. The opti-

mization converges very quickly. We set initial values for

l2i , sk
2, dz2

k,i, e2

i to 10, 0.1, 0, 10 respectively.

5.1. How many images are needed?

The reconstruction problem consists of squares of four

groups of unknowns: the relative depths of the bone seg-

ments across the K frames dz2 ∈ RKB , the camera pa-

rameters s2 ∈ RK , the lengths of the bone segments

l2 ∈ RB−1, and the lengths of four extra bone segments

e2 ∈ R4 in rigid body constraints. Therefore, there are to-

tally KB + K + B + 3 unknowns. One intriguing question

here is how many constraints are needed for an unique 3D

reconstruction of human skeletal lengths and camera param-

eters.

We assume constraints are independent of each other. If

we want to uniquely reconstruct all unknowns without any

ambiguity, we need at least the same number of constraints.

In total, we have KB bone projection constraints, 4K rigid-

body constraints, and 7 bone symmetry constraints.

In sum, we use KB + 4K + 7 independent constraints

to reconstruct KB + K + B + 3 unknowns. To have a

unique reconstruction, we need to ensure that the number

of constraints is not lower than the number of unknowns.

KB + 4K + 7 ≥ KB + K + B + 3
K ≥ B−4

3

K ≥ 13

3

(10)

According to Equation 10, we need at least five key frames

to remove the reconstruction ambiguity. Otherwise, the sys-

tem will be ill-posed and produce ambiguous results.

6. Reconstruction of 3D Joint-angle Poses

For most applications (e.g., human motion tracking or

video-based motion capture), we need to estimate both hu-

man skeletal size and 3D human poses. This section dis-

cusses how to reconstruct 3D human poses using the re-

constructed bone lengths l and e, camera parameters s, and

squares of relative depths dz2.

We cannot directly compute the 3D joint positions from

dz2 due to undetermined signs for dz (see Equation 8).

There are a finite number of possible poses given the es-

timated dz2. To reduce this ambiguity, we enforce joint

angle limit constraints from biomechanics community and

solve the 3D human poses in the joint angle space in order

to efficiently incorporate them.

We represent a full-body human pose with joint-angle

values of 17 joints. These joints are head (2 Dofs), neck (2

Dofs), back (3 Dofs), and left and right clavicle (2 Dofs),

humerus (3 Dofs), radius (1 Dofs), femur(3 Dofs), tibia (1

Dofs), and metatarsal (2 Dofs). A full-body pose is, there-

fore, represented by a 37 dimensional vector. Let the vector

qk ∈ R37 denote the joint-angle pose at frame k. The 3D

coordinates of joint i at frame k can be computed as a func-

tion of the joint-angle pose qk and bone lengths l:

pk,i = fi(qk; l) (11)
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(a) (b)

Figure 2. Quantitative evaluation on synthetic data: (a) Reconstruction errors of 3D poses, bone lengths, and camera scales vs. the different

numbers (K) of images used for reconstruction. (b) Reconstruction errors vs. different levels of input noise (σ).

where the vector function fi is a forward kinematics func-

tion which maps a joint-angle pose qk and skeletal size l to

3D coordinates of joint i.

Similarly, we formulate the 3D pose recovery problem

as a constrained nonlinear optimization problem. The con-

strained optimization formulation finds the unknowns that

minimize the objective function while satisfying the joint

angle limit constraints:

arg min{q
k
} E′

p + λ1E
′
r

s.t. ql ≤ qk ≤ qu (12)

where E′
p and E′

r represent bone projection and rigid body

constraints in the joint angle space respectively. The vector

ql and qu are the lower and upper bounds for 3D human

poses respectively, which are adopted from biomechanics

community. The weight λ1 tradeoffs the importance of the

following two constraint terms.

The bone projection term, E′
p, measures consistency be-

tween the reconstructed poses and 2D joint locations in im-

ages. More specifically, it computes the distance between

the projections of 3D joints and specified 2D joint locations:

E′
p =

K
∑

k=1

B
∑

i=1

(skfx
i (qk; l)− uk,i)

2 + (skf
y
i (qk; l)− vk,i)

2

(13)

where the function fx
i and f

y
i represent the x and y

coordinates of the i-th joint. The scalars uk,i and vk,i 2D

coordinates of the i-th joint at frame k.

The rigid body term, E′
r, ensures the lengths of extra bone

segments e remain constant across all frames:

E′
r =

K
∑

k=1

4
∑

i=1

(‖fi1(qk; l) − fi2(qk; l)‖ − ei)
2 (14)

where fi1 and fi2 represent 3D joint locations of two end

points of the i-th extra bone segment.

We initialize the optimization in the joint angle space

with the reconstruction results in the position space. More

specifically, the values of dz are initialized by the root

square of the estimated dz2 with random signs. The ini-

tial joint angle values qk are then computed by applying in-

verse kinematics to all of the reconstructed joint locations.

We optimize the constrained objective function using the

Levenberg-Marquardt algorithm with boundary constraints

in the Levmar library [5]. The optimization process con-

verges fast because of known skeletal lengths and camera

parameters.

The joint angle limit constraints significantly reduce the

ambiguity in dz2. But for some poses, they are not sufficient

to remove all the ambiguity. When this happens, we allow

the user to specify the sign of dzi for bones that still have

the ambiguity and run the optimization again.

7. Experimental Results

The performance of our reconstruction algorithm have

been evaluated in a number of experiments.

7.1. Quantitative evaluation on synthetic and real
data

The quality of the reconstruction results produced by our

system depends on the number of input images and accura-

cies of input constraints. We, therefore, have evaluated how

increasing or decreasing the number of input images influ-

ences the 3D reconstruction error. We have also evaluated

the robustness of the reconstruction algorithm under differ-

ent levels of noise.

Minimum number of images. We evaluated the recon-

struction errors for different number of images (K). We ran-

domly selected K 3D poses from the online CMU mocap

database and render each pose with random camera param-

eters. We evaluated the 3D reconstruction error by compar-

ing with ground-truth data. Figure 2.(a) shows the recon-
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Figure 3. Internet photos: ten images are used for reconstruction and the reconstructed poses in four images are shown from the original

viewpoint and a new viewpoint.

Figure 4. An articulated spiderman: twelve images are used for reconstruction and the reconstructed poses in four images are shown from

the original viewpoint and a new viewpoint.

Figure 5. Key frames from monocular video stream. (top) Ten key frames selected from a 135-frame video sequence are used for recon-

struction. (bottom) The reconstructed key poses are rendered from different viewpoints.
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struction errors. The errors of 3D poses are computed as

average Euclidean distances of 3D joints (in meters). The

errors of bone lengths l and camera scales s are measured

as the mean absolute reconstruction errors (MAEs). Fig-

ure 2.(a) confirms our analysis on the minimum number

(five) of images needed for accurate reconstruction. The

reconstruction errors are very large when the number of im-

ages is less than five. For example, the relative errors for

bone length reconstruction are higher than 40% when only

four images are used for reconstruction. But when we use

the minimum number of images (five) to reconstruct bone

lengths, the relative errors drop significantly to 2%.

Robustness to noisy constraints. The joint locations

specified by user (e.g., 2D joint locations) are often noisy.

This experiment evaluated the robustness of our algorithm

under various levels of input noise using the same CMU

mocap database. We randomly selected 15 human poses

from the database, synthesized 2D joint locations for each

pose, and added Gaussian white noise to these 2D joint lo-

cations subsequently . We controlled the noise level with

the standard deviation (σ). Figure 2.(b) reports the recon-

struction errors under different levels of noise.

7.2. Qualitative evaluation on real images

We evaluated the performance of our system by testing

the algorithm on a number of real monocular images. Our

results are best seen in the accompanying video.

Internet photos. We downloaded ten random photos

from a popular basketball player. Figure 3 shows four of

the reconstructed 3D human poses from the original camera

viewpoint and a new viewpoint.

Articulated toy. We have tested the performance of our

algorithm on an articulated toy – spiderman. We posed the

toy in twelve different poses and take a snapshot for each

pose. The camera was about one meter away from the toy.

Figure 4 shows four of the reconstructed poses from the

original camera viewpoint and a new viewpoint.

Monocular video sequence. This experiment demon-

strates that our algorithm can be used for reconstructing 3D

poses and unknown human skeleton size from a small set

of key frames extracted from monocular video streams. We

tested our reconstruction algorithm on ten key frames of an

Olympic fencing video download from internet 2 The recon-

struction results are shown in Figure 5.

Missing features. Our algorithm is also capable of han-

dling missing feature points from input images. Figure 6

shows the reconstruction results with images containing

missing features. Twelve images are used for 3D recon-

struction and four of the reconstructed poses are rendered

from a new viewpoint.

Among all testing examples, the poses from monocular

2http://www.youtube.com

Figure 6. Reconstruction with missing data. (top) The input im-

ages containing missing features. (bottom) The 3D reconstructed

poses rendered from a new viewpoint. Twelve images are used for

3D reconstruction.

images are different and the joint locations specified by the

user are highlighted with red crosses.

7.3. Comparisons

Comparison with optical mocap systems. We com-

pared our reconstruction results with ground truth data ob-

tained from a twelve-camera optical motion capture sys-

tem Vicon. The CMU online motion capture database3 in-

cludes a wide variety of 3D human mocap data as well

as synchronized monocular video sequences. We selected

ten key frames from a “basketball” video sequence and

reconstructed 3D human poses with our algorithm. Fig-

ure 7 shows a side-by-side comparison between ground-

truth poses and reconstructed poses. The numerical errors

of the 3D reconstructed poses is about 5 centimeter every

joint. Note that the Vicon mocap system uses a different

type of skeletal model. Before numerical evaluation, we

need to map the 3D joint positions estimated by the Vicon

system to our skeletal model.

Comparison with anthropometric prior. Anthropo-

metric prior is often used to constrain the solution space

for human skeletal estimation. We have done an experi-

ment to evaluate the reconstruction accuracy with and with-

out anthropometric prior. We applied Principle component

analysis (PCA) to all skeletal models in the online CMU

mocap database (5 bases to keep 99% of the energy), and

modeled a Gaussian anthropometric prior in the 5D space.

We used the priors to constrain the solution space of the

bone lengths. Our preliminary results (via cross validation)

showed the prior did not improve the reconstruction results,

and sometimes it even produced worse results. This might

be due to the effectiveness of the current system and the

3http://mocap.cs.cmu.edu/
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Figure 7. Side-by-side comparisons between the reconstructed poses and ground truth data from optical mocap systems: (left) input images

with annotated 2D joint location; (middle) 3D poses recorded by a twelve-camera vicon system in a new viewpoint. (right) 3D poses

reconstructed by our algorithm.

weak generalization ability of the priors.

8. Conclusion

We present a new technique for simultaneous reconstruc-

tion of 3D articulated poses and camera parameters from

uncalibrated monocular images. One nice property of our

algorithm is that our system does not require any prior

knowledge on 3D poses or skeletal lengths. The key idea

of the paper is to identify a number of new constraints to

eliminate the reconstruction ambiguities. We formulate the

reconstruction problem in a nonlinear optimization frame-

work by maximizing the consistency between 3D poses and

reconstruction constraints. Our analysis and experiments

show that we need at least five single view images to ac-

curately reconstruct the lengths of an unknown symmetric

human skeletal model. Our experiments also show the al-

gorithm can efficiently reconstruct 3D human poses from a

variety of source images such as internet photos or monoc-

ular video streams.
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