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Abstract 

We describe the use of a reliability modeling simulation 
tool to evaluate the reliability of a hypercube multiprocessor 
which is a candidate architecture for guidance, navigation, 
and control (G,N,& C) systems for long duration manned 
spacecraft. Our study focuses on the effect of assuming 
Weibull decreasing component failure rates compared to the 
usual assumption of constant component failure rates. We 
also examine the effect of the use of cold spares on system re- 
liability under the assumptions of both constant and W e i b d  
decreasing failure rates. 

Introduction 

NASA is currently exploring the feasibility of a manned 
mission to the Moon or Mars under the Space Exploration 
Initiative program. A vital element for the success of this 
mission is the development of a highly reliable guidance, 
navigation, and control (G,N,& C) system. Many such sys- 
tems have been researched and developed for short dura- 
tion aircraft applications[l, 2, 31, but few have addressed 
the long duration mission. This paper explores the system 
reliability that can be expected from the use of a hyper- 
cube architecture which includes cold and hot spares. A 
unique aspect of this study is the incorporation of a de- 
creasing failure rate (DFR) model for active and spare mod- 
ules. Recently acquired empirical data provide convincing 
evidence that decreasing failure rates are common in space- 
craft applications[4]. Some studies that have used the tradi- 
tional constant failure rate model indicate that a highly reli- 
able long duration G,N,& C system may not be obtainable[5, 
6, 71. The use of the DFR model in conjunction with hot or 
cold spares may provide evidence that such desired systems 
may be feasible after all. 

The inclusion of cold or hot spares with DFRs requires 
the use of a non-Markovian reliability model which is sub- 
stantially more difficult to solve analytically than a Marko- 
vian model that assumes constant failure rates. Given the 
current state of the art, analytical solution of such non- 
Markovian models generally is tractable only for very small 
simple models. An alternate approach involves the use of 
simulation applied to the non-Markovian model. However, 
the use of conventional analog simulation techniques to  ar- 
rive at  a reliability prediction for highly reliable long du- 
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ration missions requires an excessive number of simulation 
trials to arrive at  a confident result. This problem may 
be addressed through the use of a variance reduction tech- 
nique called importance sampling, which recently has been 
receiving increased attention from the reliability modeling 
community[8, 9, lo] .  Recent efforts to develop software tools 
capable of solving non-Markovian reliability models with this 
approach now make feasible the investigation of the reliabil- 
ity and performance of systems like the hypercube using cold 
and hot spares with DFRs that we initially mentioned. The 
tool which we use for our present study is compatible with 
the Hybrid Automated Reliability Predictor (HARP) model- 
ing tool[ll], which is itself a component of the HiRel package 
of reliability modeling tools[l2]. 

In this paper we describe the use of a reliability modeling 
simulation tool to perform a number of analyses intended to 
explore the effect of differing usage of spares (hot vs. cold) 
and component failure rate behavior (constant vs. Weibull 
decreasing) on long duration reliability. The hypercube ar- 
chitecture is being studied at NASA's Jet  Propulsion Lab- 
oratory for future deep space missions and was selected for 
this study because of its potential for high reliability and 
because the selected hypercube architectures have been pre- 
viouslv studied by the authors using conventional Markovian 
models[l3]. We begin with a discussion of simulation applied 
to discrete-state reliability models and the role that impor- 
tance sampling can play. We then describe the hypercube 
multiprocessor architecture under study. We next present 
the results obtained from the models under the differing as- 
sumptions about failure rate behavior and comment on the 
resulting implications for the design of manned spacecraft 
intended for long duration missions. 

Reliability Prediction Using Simulation 

The usual method of using simulation to evaluate reliabil- 
ity and performance of systems involves building a computer 
model of the system, generating events of interest (i.e. com- 
ponent failures), and observing the response of the model to 
the generated events. An alternate approach, which we use 
for our analysis, is to apply simulation not to a model of the 
system itself, but to an analytical model of the system such 
as a Markovian or non-Markovian model. We found this to 
better suit our purposes because it allowed us to capital- 
ize on previous work which had already developed analytical 
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models of the system we wanted to study(l31. We found that 
these analytical models were too large and involved behav- 
ior too complex to be solved by traditional analytical means. 
So the natural next step was to turn to simulation to per- 
form our analysis. We needed to evaluate both Markovian 
and non-Markovian discrete-state models, which represent 
the system in terms of a number of discrete states between 
which the system makes transitions from time to time. 

Simulation of Markovian and non-Markovian Models 
Markovian and non-Markovian discrete-state models can 

be evaluated by simulation in the following way. A sequence 
of failure events denoting a “trial” is generated which repre- 
sents a traversal path among the states of the model. The 
common beginning point for all trials is at  an initial state in 
which all system components are assumed to be operating 
correctly. Upon entry into each state: the process is begun 
for determining the time of transition out of the current state 
and which state the system goes to next. The time to next 
transition is sampled from a probability distribution that 
depends upon the failure rates of the components still ac- 
tive. Once the time to next transition has been determined, 
a sampling from a second distribution is done to  determine 
which of the remaining operating components will experi- 
ence the failure that is the cause of the transition out of the 
state. The determination of the sampling distributions is 
described in [9] and [14]. During each trial, successive inter- 
state transitions are generated until either the mission time 
is exceeded or the system fails, causing the trial to end. The 
system unreliability is then estimated from the proportion of 
trials during which the system failed before the mission time 
was reached. 

Importance Sampling 
Since failure events are extremely rare for highly reli- 

able systems, a large majority of the trials are likely to end 
by the mission time expiring rather than through a system 
failure. This means that a very large total number of tri- 
als must be run before a sufficient number of system fail- 
ures occur to provide a meaningful estimate of the system 
unreliability. A variance reduction technique called impor- 
tance sampling may be employed to reduce the total number 
of trials required. An excellent introduction to importance 
sampling may be found in [15]. The basic concept of impor- 
tance sampling applied to discrete-state reliability models is 
to force and bias transitions along the rare event paths in 
an underlying Markovian or non-Markovian model while dy- 
namically maintaining a record of the forcing and biasing 
that allows post simulation construction of an unbiased es- 
timator of the event of interest, (e.g., system failure) with 
low variance. The importance sampling techniques imple- 
mented in the simulator used for this study are described in 
[9]. They have the effect of emphasizing component failure 
events in ordcr t o  increase the number of trial terminations 
due to system failure, This reduces the total number of trials 
needed to accumulate a sufficient number of system failure 
terminations to provide an acceptable estimate of the system 
unreliability. 

System Model 

The hypercube multiprocessor system and it’s model used 
in this study are described in [13] and [16] under the name 
of Architecture 1. We give a brief description of i t  here. 
The architecture is shown in figure 1. It consists of a 3- 
dimensional hypercube configured as two fault-tolerant 2- 
dimensional modules, each with a spare processing node. 
The processing nodes themselves are multiprocessors con- 
taining four active processors and a spare processor. The 
spare processor can be either hot or cold. The structure of 
the processing nodes is also shown in figure 1. Each process- 
ing node communicates with other processing nodes in the 
system through four ports. The message routing protocol 
restricts messages between each pair of processing nodes in 
the system to only one path. This restriction is mitigated 
somewhat by permitting messages to be routed through the 
spare processing node (even if i t  has not yet been activated) 
in a fault-tolerant module if needed to bypass a failed direct 
link between two active processing nodes in the module. For 
the system to  be operational all eight processing nodes must 
be operational and must all be  able to communicate with 
each other. Therefore, the system will be considered failed 
if any processing node fails and a spare processing node is 
unable to take over or if any two nodes in the hypercube are 
unable to communicate with each other. 

Although the form of the analytical model that is actu- 
ally evaluated is a Markovian/non-Markovian discrete-state 
model, i t  is specified by the reliability analyst in the form 
of a dynamic f u d t  tree[l6]. When simulation is not used for 
model evaluation, the dynamic fault tree can be converted 
into a Markov chain which can then be solved numerically for 
state probabilities. When simulation is used for model eval- 
uation, the discrete-state structure of the underlying model 
is inherent in the simulation process and the dynamic fault 
tree is used to determine whether a state which has been 
entered is a failure state. Dynamic fault tree models for t,lie 
hypercube system appear in [16] and [13]. 

Analvsis Results 

We now present the results of our analysis of the hyper- 
cube multiprocessor. The mission time was assumed to be 10 
years throughout. We are interested in the effect of assuming 
components having a Weibull DFR instead of the usual con- 
stant failure rate that is characteristic of time-homogeneous 
Markov models. We are also interested in assessing the im- 
provement in system reliability, if any, that can be achieved 
by using a cold spare processor in the processing nodes in- 
stead of a hot spare. Note that the choice of cold vs. hot 
spare affects power consumption as well as reliability and 
hence may affect the duration of a feasible mission. Evalu- 
ations of the system were made assuming Weibull DFRs for 
various subsets of components (with remaining components 
assumed to have constant failure rates). Table 1 gives the 
constant failure rates A,, initially assumed for the compo- 
nents in the processing nodes (taken from our previous study 
of this system[l3]). For Weibull failure rates, the failure rate 
Awe;b(t) was taken to be equal t o  the constant failure rate A,, 
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Module 1 \ 

3.477 x 10-7 

Figure 1: Hypercube Multiprocessor System 

at  t = 0 and assumed to decrease monotonically throughout 
the mission according to the expression: 

X w e i b ( t )  = X,,at"-' (1) 

where cy is the Weibull shape parameter[l7]. Note that when 
a = 1 the Weibull failure rate reduces to a constant failure 
rate. When a < 1 the Weibull failure rate is monotonically 
decreasing. 

Intra-node bus 
Processor 
Hyperswitch and I / O  port 

1.147 x lo-? 
1.990 x 10-6 
3.477 x 10-7 

Table 1: Initial Constant Hazard Rates (failures/hour) for 
Components in Processing Nodes 

Effect of Weibull DFRs 
Previous studies have indicated that the use of constant 

failure rates to model liiglily reliable spacecraft systems did 
not yield acceptable system reliability for long duration mis- 
sions of 5 - 10 years[5, 6, 71. If the assumption of constant 
component failure rates over such long missions is valid then 
the conclusion must be that such systems will not be ade- 
quate for missions of such long duration. However, Hecht et  
al.[4] cite evidence that component failure rates for space- 
craft on long missions may follow a Weibull DFR model 
rather than a constant failure rate model. In view of this, we 

wish to  determine whether assuming a Weibull DFR model 
makes enough of a difference to  indicate acceptable system 
reliability may be obtained from a fault tolerant spacecraft 
system (specifically, the hypercube system described in the 
previous section). We used the HARP reliability prediciton 
program[ll] to evaluate the reliability of a single processing 
node of the hypercube with a hot spare. Figure 2 shows the 
effect of assuming a Weibull DFR for processors (all other 
components assumed to have constant failure rates) for vary- 
ing values of the shape parameter a. The Weibull failure rate 
is shown to make a very significant difference in the process- 
ing node unreliability over the 10 year mission time. Node 
unreliability drops significantly after only a very modest re- 
duction in cy below 1, with most of the unreliability reduction 
achieved for 0.5 5 a 5 1.0, Hecht et  al. found that space- 
craft failure rates attributable to parts/quality and operation 
were consistent with values of Q in the range of 0.25 - 0.5(4]. 
With this in mind, a value of a = 0.5 was selected as a 
representative value for a for the remainder of the study. 

When all processing node components have the constant 
failure rates given in table 1, the unreliability of the pro- 
cessing node at  10 years is 0.2199. Assuming a Weibull 
DFR for the processors only with X = 1.990 x and 
shape parameter a = 0.5 (i.e. with X w e ; b ( t )  declining over 
time from an initial value of 1.990 x the unreliability 
of a processing node at  10 years falls to 0.04468. Follow- 
ing Chau and Liestman[l8], we observe that the expression 
giving the combinatorial reliability (i.e. considering pro- 
cessing node failures only, not interconnection failures) is: 
Rs(t)  = [ ~ ( t ) '  + 4 ~ ( t ) ~ ( 1  - ~ ( t ) ) ] ~ ,  where Rs(t)  is the sys- 
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Figure 2: Effect of Processor Weibull DFRs on Processing 
Node Unreliability 

tern reliability and ~ ( t )  is the reliability of the processing 
node. Using a quick combinatorial calculation with this ex- 
pression, the above processing node unreliabilities translate 
into system unreliabilities at  10 years of 0.5155 (constant 
FR’s) compared to 0.03614 (Wcibull DFR). This confirms 
that unacceptable unreliability estimates (> 50% chance of 
system failure) can be obtained by using a constant fail- 
ure rate model, whereas an acceptable level of unreliability 
(< 4%) can be obtained from the same system architecture 
under the assumption of Weibull DFRs. The values calcu- 
lated above were confirmed with our simulator program by 
applying i t  to a niodel of the system which considered only 
processing node failures. 

We next considered the effect of Weibull DFRs on the 
overall system unreliability. To do this, we used our simula- 
tor program to evaluate the model of the full system. Table 
2 and figure 3 show the effect of assuming Wcibull DFRs for 
various subsets of components. The results reported in table 
2 are averaged over 10 runs. The effect of assuming Weibull 
DFRs for increasing numbers of the components clearly rc- 
siilts in decreasing system unreliability. The result of assuiri- 
ing Weibull DFRs for all components is a difference of about 
three orders of magnitude in tlie system unreliability (from 
0.631 21 0.013 when all components have constant FRs down 
to about 0.777 x lop3 f 0.41 x wlicn all components 
have Weibull DFRs). 

From the data in table 2 we may also see the important 
effect of the functional dependencies (in tlie form of intrrcon- 
nection failures) on system unreliability. The unreliability at  

All Components 
Constant FRs 

.?43 i .01G 
,271 i .01F 
.31? i . O l i  
.3G1 i ,018 
,413 = ,018 

,530 * ,018 
.57G i ,017 

. 4 i5  .nia 

003 i 016 
,631 * ,013 

P~OCCSSOLS i Processors 
Wcihull DFRs 1 and Porth 

Table 2: Effect of N’ciboll DFRb on Systiiin Unrelial~ihry 
(Hot Sparrs) 

0 400 

__ - - 0 000 n z o o /  o 000 / - e -  
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Figure 3: Effect of Weibull DFRs on System Unreliability 
(Hot Spares) 

10 years when all components have constant failure rates is 
seen to be  0.631 f 0.013 which is greater than the value of 
0.5155 calculated above accounting for processing node fail- 
ures only. The difference can be attributed to the functional 
dependencies: when an interconnection failure occurs, two 
ports (each on different processing nodes) are rendered un- 
usable and consequently both are considered to be failed. 
This has tlie effect of raising tlie unreliability of the system 
from that obtained by considering only processing node fail- 
ures. This effect is even more pronounced when processors 
are assumed to have a Weibull DFR and the ports are still 
assumed to have a constant FR: the 10 year unreliability of 
the full system is in thr  neighborhood of 0.257f0.036, about 
a seven-fold increase over the value for the combinatorial cal- 
culation of 0.03614. This may be explained by the following 
reasoning: the processors are by far the major source of fail- 
ures initially, but their influcnce on system failure declines 
dramatically over time due to the Wcibull FR’s, whereas the 
ports (with constant FR’s) retain the same influence over 
the system’s failure and become the dominant factor near 
the end of the mission. The functional dependencies involve 
only the ports and have the effect of increasing the influence 
of the ports on system reliability. Hence the huge increase in 
system unreliability of the full system over the combinatorial 
prediction after a 10 year mission. These results illustrate 
dramatically an important issue in all systems modeling work 
which is often easy to overlook: the modeling assumptions 
used can have a big effect on the results obtained from the 

Processors 
W a h d  DFRs 

.0240 C ,0033 

.0456 3~ ,0043 
o n o +  mi 

. i ~  i .nio 
,150 -t ,012 
178 i .n15 

0 9 7 8 i  0073 

,202 + O l G  
. 2 2 7 i  018 
. ? 5 2 =  020 

Table 3- Effect o f  Weibiill DFRs  ai1 Systriii Unrdiabi l i ty  
I Cold Spares) 
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Figure 4: Effect of Hot vs. Cold Spares on System Unrelia- 
bility (Constant FRs) 

Effect of Cold Spares for Processors 
We next consider the effect of using a cold spare pro- 

cessor in the hypercube processing nodes. Table 3 shows 
the effect of assuming Weibull DFRs for various subsets of 
components. The table shows that the effect of assuming 
Weibull DFRs for increasing numbers of components is sirn- 
ilar to that when hot spares exclusively are used: decreasing 
system unreliability. We next compare usage of hot spares 
vs. cold spares for specific combinations of constant and 
Weibull FRs among the components. When all components 
have constant FRs, the use of a cold spare processor in the 
processing nodes instead of a hot spare yields a lower system 
unreliability as shown in figure 4. This effect holds whenever 
the components with Weibull DFRs are not the components 
for which cold spares exist in the system (this general result 
was observed during our study but we omitted data support- 
ing i t  in this paper). 

One might expect that using a cold spare with Wcibull 
DFRs might be even more effective in lowering the system 
unreliability. However, an interesting contrary effect is ob- 
served in figure 5, which shows the system unreliability for 
hot vs. cold spare processors when Weibull DFRs are as- 
sumed for the processors in the hypercube processing nodes. 
There is no improvement in system unreliability over us- 
ing hot spares, and in fact the system unreliability may be 
even slightly higher than if hot spares are used. This can 
be accounted for in the following manner: components with 
Weibull FR’s begin with an initial F R  equal to the constant 
FR given in table 1. As the mission progresses the FR of the 
component decreases steadily from the initial value accord- 
ing to the Weibull failure rate expression in equation 1. For 
active processors and hot spares, the component F R  has its 
inital value at t = 0 and decays from there throughout the 
mission. For cold spares, the FR is 0 while the processor is 
cold, but then takes on the initial value at the time the spare 
is activated and begins decaying from then on. Hence at  a 
point in time after the spare is brought online, i t  will have 
a higher operating F R  than the other processors that were 
operating from mission start (i.e. i t  has the same Weibull 
decreasing rate progression as the others, but trails them in 
time by tact, where t,t is the time the cold spare was ac- 

* hot spare 
+ cold spare 

0 2 4 6 8 10 

Mission Time (years) 

Figure 5: Effect of Hot vs. Cold Spares on System Unrelia- 
Lility (Weibull D F R ~  for Processors) 

tivated assuming the mission started at  time t = 0). The 
higher F R  of the activated spare may be enough to negate 
the benefit of i t  being cold until needed, and (for appropri- 
ate values of alpha) can even outweigh that benefit, resulting 
in a worse (i.e. larger) system unreliability over the entire 
mission life. This can be considered counter-intuitive in a 
sense, and serves as an example of what modeling can do for 
design engineers to give them insights into the system that 
would not be initially apparent or expected. 

Summary and Conclusion 

We have reported on a reliability analysis of a hyper- 
cube multiprocessor which is a candidate architecture for a 
guidance, navigation, and control system for manned space- 
craft intended for long duration missions. The analysis was 
performed using a simulation tool to evaluate homogeneous 
Markovian, non-homogeneous Markovian, and non-Markovian 
models of the hypercube. The simulation tool is part of the 
HiRel package of reliability analysis programs and is com- 
patible with the HARP reliability analysis tool, which was 
also used in the study. The goal of our study was to de- 
termine whether the assumption of Weibull decreasing fail- 
ure rates for system components, rather than the usual con- 
stant failure rates, will lead to  estimates of system reliabil- 
ity high enough to indicate adequate system performance 
for the intended missions. Recent studies employing con- 
stant component failure rates suggest that acceptable levels 
of system reliability could not be acheived. We found that 
assuming Weibull DFRs for components does indeed lead to 
dramatically lower system unreliability estimates that should 
be more than adequate for missions as long as 10 years in 
duration. We also wanted to determine the extent of im- 
provement in system reliability offered by the use of cold 
spares over hot spares. Our analysis results show that when 
constant failure rates are assumed for the components for 
which cold spares exist in the system, a significant reduction 
in system unreliability results from the use of cold spares. 
However, when Weibull DFRs are assumed for components 
that have cold spares, improvement in system reliability due 
to the use of cold spares is uncertain. In fact, we observed 



that the use of cold spares with Weibull DFRs may slightly 
increase the system unreliability if the cold spares truely 
have Weibull DFRs that behave uniformly beginning when 
the component is activated (which in the case of a cold spare 
generally is not the beginning of the mission). This implies 
that system engineers designing such a system must carefully 
weigh the benefits of power consumption against potential 
adverse effects on long term system reliability that the cold 
spares offer when deciding whether to use hot or cold spares. 
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