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abstract: Understanding how the natural world will be impacted

by environmental change over the coming decades is one of the most

pressing challenges facing humanity. Addressing this challenge is dif-

ficult because environmental change can generate both population-

level plastic and evolutionary responses, with plastic responses being

either adaptive or nonadaptive. We develop an approach that links

quantitative genetic theory with data-driven structured models to al-

low prediction of population responses to environmental change via

plasticity and adaptive evolution. After introducing general new the-

ory, we construct a number of example models to demonstrate that

evolutionary responses to environmental change over the short-term

will be considerably slower than plastic responses and that the rate of

adaptive evolution to a new environment depends on whether plastic

responses are adaptive or nonadaptive. Parameterization of the mod-

els we develop requires information on genetic and phenotypic varia-

tion and demography that will not always be available, meaning that

simpler models will often be required to predict responses to envi-

ronmental change. We consequently develop a method to examine

whether the full machinery of the evolutionarily explicit models we de-

velop will be needed to predict responses to environmental change

or whether simpler nonevolutionary models that are now widely con-

structed may be sufficient.

Keywords: population dynamics, evolutionary genetics, structured

models, environmental change.

Introduction

Ecosystems—from the deep ocean to the high arctic, from
deserts to tropical forests—are responding to environmen-
tal change. Understanding and predicting these responses
is one of the most pressing issues currently facing humanity.
For this reason, in the past quarter century, there has been
considerable interest in developing ways to understand how
the natural world will be affected by environmental change
(Ives 1995; Bossdorf et al. 2008; Gilbert and Epel 2009; Wiens
et al. 2009; Lavergne et al. 2010; Dawson et al. 2011; Hoff-
mann and Sgrò 2011). We introduce a new general ap-
proach combining insights fromstructuredpopulationmodel-
ing and evolutionary genetics that allows us to examine how
adaptive evolution and plasticity contribute to the way that
populations—and, consequently, the ecosystems in which
they are embedded—respond to environmental change.
In order to understand how evolution and plasticity con-

tribute to population responses to environment change, it
is necessary to appreciate how different levels of biological
organization—alleles, genotypes, phenotypes, populations—
are linked, as well as feedbacks between the different levels.
First, evolution is defined as a change in allele frequencies
(Charlesworth 1994). Allele frequencies change as a direct
consequence of changes in the frequencies of the genotypes
the alleles occur in, and genotype frequencies can change
with a change in the distribution of the phenotypes they code
for (Fisher 1930). The dynamics of phenotypic trait distri-
butions are determined by differential birth, death, develop-
ment, and inheritance rates across phenotypic trait values,
where inheritance is defined in the broad sense as the map
between parental and offspring phenotypes (Easterling et al.
2000; Rees et al. 2014). Given these links between different
levels of biological organization, there can be a cascading
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dynamic at the level of the phenotype, the genotype, and
the allele caused by differences in the demography of indi-
viduals with different phenotypic trait values (Lynch and
Walsh 1998). Another consequence of this variation is the
ecology of the system: population dynamics are an emer-
gent property of who lives, who breeds, and with whom,
as are the dynamics of the community and ecosystem the
population is embedded within (Caswell 2001).

Although the cascading ecological and evolutionary con-
sequences of variation in demographic rates are relatively
straightforward to grasp, the devil is in the details—in par-
ticular, how alleles combine to make genotypes, how geno-
types influence phenotypes, and how phenotypes influence
demographic rates (Coulson et al. 2011). The rate and direc-
tion of evolution depends on how these links influence the
relative fitness of each allele within the population (Charles-
worth 1994). The challenge is that these links are often com-
plicated, particularly for complex phenotypic traits such as
body size that are routinely measured by field biologists.
The complexity arises not only because large gene networks
and multiple cell types can contribute to the phenotype but
also because the environment makes a contribution too via
plasticity, defined as change in a phenotypic trait distribu-
tion that is not caused by genetic change (Baldwin 1896;
Gavrilets and Scheiner 1993; Lande 2009).

The environment can be partitioned into biotic and abi-
otic components (Berryman 2002). The biotic component
captures the sizes and structures of the population of the
focal species and of all other species with which it interacts.
The abiotic environment includes weather, mineral, and water
available. The biotic and abiotic environments can influence
one another, although the influence of the biotic environment
on the abiotic environment typically plays out over geological
timescales (one exception being man-made climate change).

The biotic and abiotic environment can influence the
map both between genotype and phenotype (Baldwin 1896)
and between phenotype and demographic rates (Link et al.
2002). Put another way, demographic rates are a function
of phenotype-by-environment interactions, and phenotypic
traits are a function of genotype-by-environment interactions.
For quantitative phenotypic traits, genotype-by-environment
interactions can often usefully be understood by treating the
phenotype as consisting of a genetic and an environmental
component, with the environmental component determined
by aspects of the current and past biotic and abiotic environ-
ments (Falconer 1960; Lande 1982; Cheverud et al. 1983).
The environmental component of the phenotype can cap-
ture phenotypic change caused by individuals altering their
physiology, metabolism, behavior, or levels of gene expres-
sion. We use the term “epigenetic” to refer to any process that
does not involve genetic change that is captured by the dy-
namics of the environmental component of the phenotype.
The biotic and abiotic environment can also influence the

generation of new alleles, for example, via retroviral inser-
tions into the germ line of their hosts or via ultraviolet ra-
diation (Salter et al. 1987; Kanjilal et al. 1993). In figure 1a,
we depict how different levels of biological organization are
linked and feed back to influence one another.
How can this view of biology be used to inform how pop-

ulations respond to environmental change? Environmen-
tal change occurs when the biotic or abiotic environment
changes. Biotic changes can result from the arrival of a new
species or an extinction within the ecosystem or from evo-
lution. In order to capture such change and to model the links
between alleles and demographic rates described above and
in figure 1a, it is necessary for models to incorporate (1) the
genotype-phenotype map at birth, (2) how the phenotype
develops, (3) how the phenotype influences survival at each
developmental stage, (4) the population’s mating system, and
(5) patterns of mate choice based on the phenotype, as well
as how these mate choice patterns influence (6) reproductive
success, (7) the distribution of genotypes among offspring,
and (8) how all these processes result in change in allele fre-
quency and population size from one generation to the next.
Processes 1–6 (and consequently also 8) can be influenced by
the biotic or abiotic environment. Integral projection models
(IPMs) provide a very flexible structured modeling framework
that allow each of these processes to be simultaneously mod-
eled (Easterling et al. 2000; Coulson 2012; Merow et al. 2014).
IPMs project the dynamics of phenotype distributions

as a function of expected survival and reproduction, the way
the phenotype develops, and the distribution of offspring
phenotypes (Easterling et al. 2000). Numerous quantities of
interest to ecologists and evolutionary biologists describing
life-history, population dynamic, and phenotypic traits can
be calculated from IPMs (Childs et al. 2003; Ellner and Rees
2006; Coulson et al. 2010, 2011; Rees et al. 2014; Steiner et al.
2014, 2012; Vindenes and Langangen 2015). They conse-
quently offer great potential to study ecological and evolu-
tionary responses to environmental change (Coulson et al.
2011). However, most IPMs to date have been restricted to
phenotypic variation in that they do not include genotype-
phenotype maps (Merow et al. 2014). A small number of
evolutionarily explicit IPMs that do include these maps have
been developed. For example, Coulson et al. (2011) used IPMs
to track the distribution of body size and coat color in wolves,
where coat color was determined by genotype at a single bi-
allelic locus. Barfield et al. (2011) and Childs et al. (2016)
developed IPMs of quantitative characters determined by
a large number of unlinked loci of small effect. However,
none of these models incorporates plasticity or different ge-
netic influences on the phenotype at different ages, and these
omissions limit their utility in predicting how populations
will be influenced by environmental change (Chevin 2015).
The aim of this article is to introduce a general frame-

work to allow prediction of how populations respond to
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environmental change. We do this by developing IPMs of
the bivariate distribution of a phenotype split into its ge-
netic and environmental components. Themodels incorpo-
rate different development and inheritance rules for each
component of the phenotype. We develop and illustrate our
framework using simple models. Our models reveal new in-
sights into the way that plasticity can influence evolution
while also allowingus to retrieve keyfindings fromevolution-
ary genetics that are already known.

Methods and Results

Modeling Approach

We refer to functions as f(...), where the dots inside paren-
theses define the variables on which the function f operates.
Parameters of a function are referenced by the same letter
as the function, with subscripts defining the variable they
influence. For example, a parameter fZ represents a param-
eter of function f that operates on variable Z. We reserve I

a b c

d e

f g

h

Figure 1: a, Linkages and feedbacks in biology. Evolution is defined as the change in allele frequencies but is often inferred from the dy-
namics of genotypes and phenotypes. Research into links between alleles and genotypes—and particularly between genotypes and pheno-
types—often focuses on mechanism (red arrows). Differential survival and reproduction and patterns of mating determine (1) the dynamics
of phenotypes, genotypes, and alleles and (2) population, community, and ecosystem dynamics (purple arrows). Ecological dynamics deter-
mine the biotic environment that, along with the abiotic environment, can influence the generation of new alleles as well as the maps between
genotype and phenotype and between phenotype and demographic rates. b, Integral projection models track the dynamics of the phenotype
distribution from t (black line) to t 1 1 (blue line). c, In our approach, we treat the phenotype as a bivariate distribution of an additive genetic
(breeding value) and environmental component and iterate this distribution forward. Dashed gray lines are clines, where each point on a cline
denotes the same phenotypic trait value. There are two steps to iterate the phenotype forward within a cohort. First, viability selection (d ): in
this example, all individuals with a trait value below a threshold have lower survival than those above the threshold. Second, development among
survivors (e): breeding values do not change within individuals as they age, meaning that only selection can generate change in the breeding
value distribution within a cohort ( f ). In contrast, selection and development can alter the distribution of the environmental component of
the phenotype (g). The dynamics of the two components combine to generate the dynamics of the phenotype. h, Mechanistic inheritance rules
generate the distribution of offspring breeding value, given parental breeding values in two steps. First, a distribution of midpoint parental breed-
ing values is generated before segregation variance is added to create a distribution of offspring breeding values. The inheritance rules for the
map between the parental and environmental component of the phenotype are less constrained than genetic inheritance and are not shown.
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for the intercept of functions and a for age. Age is included
only in models for species with overlapping generations.
Following standard convention for IPMs (Coulson 2012; Me-
row et al. 2014; Rees et al. 2014; Ellner et al. 2016), we use
primes to indicate the character value of an individual at the
end of a time step. For example, this allows us to show how
an individual with phenotype Z can develop over a time
step to a potentially different phenotype Z 0 or how a parent
with genotype G can produce an offspring with genotype
G0. There are, of course, other notational conventions that
could achieve the same objective, and we recognize that
primes are used differently in evolutionary genetics; our no-
tation is chosen to make clear how evolutionary processes
can be included in the IPM framework. The definitions of
all variables and functions are summarized in table 1.

Our starting point is a widely used phenotypic modeling
approach that many readers will be familiar with (Coulson
2012; Merow et al. 2014; Rees et al. 2014). We then extend
this approach by developing dynamic models of the phe-
notype decomposed into its genetic and environmental com-
ponents. We start with a two-sex IPM that captures all de-
mographic processes that can contribute to the dynamics
of phenotypes—survival, recruitment, development, inher-
itance, and mating patterns (Coulson et al. 2011; Schindler
et al. 2013, 2015; Traill et al. 2014a)—and that iterates for-

ward the distribution of the phenotype at time t:N(Z, t)
(fig. 1b).
The model consists of two equations—one for females

and one for males—with each equation consisting of two
additive components (Schindler et al. 2013). The first com-
ponent deals with survival and development of individuals
already within the population, and the second component
deals with reproduction and the generation of phenotypes
among newborns entering the population.We assume a pre-
breeding census such that survival occurs before develop-
ment and recruitment before inheritance:

N f (Z 0, t 1 1)

p

ð

[Df (Z 0jZ, v, t)Sf (Z, v, t)N f (Z, t)]dZ

1 sCNfNm

ð ð

[H f (Z 0jZm,Zf , v, t)M(Zm,Z f , t)

::: N f (Z f , t)Nm(Zm, t)R(Z f ,Zm, v, t)]dZmdZf ,

Nm(Z 0, t 1 1)

p

ð

[Dm(Z 0jZ, v, t)Sm(Z, v, t)Nm(Z, t)]dZ

1 (12 s)CNfNm

ð ð

[Hm(Z 0jZm,Z f , v, t)M(Zm,Z f , t)

::: N f (Z f , t)Nm(Zm, t)R(Z f ,Zm, v, t)]dZmdZ f ,

ð1Þ

Table 1: Notation used in the article

Notation Definition

Z An individual’s phenotypic trait value. Z can be anything that can be measured on an organism when it is captured or

observed. Z cannot be a life-history quantity (such as life expectancy), which is an emergent property of the dy-

namics of Z.

G Genetic component of the phenotype defined as the total genotypic contribution of an individual’s genotype to Z. G
can be calculated across multiple loci and can be decomposed into contributions from epistasis, dominance, and

additive genetic effects.

A Additive genetic component (breeding value) of G. Change in the distribution of A reflects change in allele frequencies

and consequently evolution.

E Environmental component of the phenotype defined as phenotypic variation not attributable to genetic contributions.

Nutrient or energy availability may influence E, meaning that it may be correlated with environmental drivers v.

v An environmental driver. Can be either biotic or abiotic.

X X ∈ fZ,G,A, Eg.
N(X , t) Distribution of X at time t. Note that this is an abundance distribution (not a probability distribution):

Ð b

aN(X )dX is

the number of individuals with characters in the interval [a, b], and the integral of N(X , t) over the full range of X
gives the total population size at time t.

N(A, E, t) Bivariate distribution of the additive genetic and environmental components of the phenotype at time t.

Z p z(G, E) Function describing the phenotype as a function of its genetic and environmental components.

S(Z, t) Survival function. Describes the expected association between Z and survival between t and t 1 1. Only used in age-

structured models.

R(Z, t) Recruitment function. Describes the expected association between Z and the number of offspring produced between t

and t 1 1 that survive to recruit into the population at time t 1 1.

H(X 0jX , t) Inheritance function. Describes the expected probability of a reproducing individual with character value X at t

producing an offspring with character value X 0 at t 1 1 when it recruits to the population.

D(E 0jE, t) Development function. Describes expected probability of a surviving individual with E at t expressing E 0 at t 1 1. Only

used in age-structured models.

ð1Þ
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where N f (Z 0, t 1 1) and Nm(Z 0, t 1 1) are distributions of
phenotypes Z 0 in females and males, respectively, at time
t 1 1; Df (Z 0jZ, v, t) and Dm(Z 0jZ, v, t) are the probability
of the phenotype developing from Z to Z 0 in females and
males, respectively, between t and t 1 1 as a function of en-
vironmental drivers v; Sf (Z, v, t) and Sm(Z, v, t) are survival
functions for females and males from t to t 1 1, including
effects of phenotype and environmental drivers v; s is the
birth sex ratio measured as the proportion of female offspring
produced; H f (Z 0jZm,Zf , v, t) and Hm(Z 0jZm,Z f , v, t) de-
scribe the probabilities of parents with phenotypes Zm and
Z f producing male and female offspring, respectively, with
phenotype Z 0 as a function of environmental drivers v at
time t ; M(Zm,Z f , t) captures the rate of mating between
a male with phenotype Zm and a female with phenotype
Z f ; R(Z f ,Zm, v, t) is the expected litter size, given a mating
between a male and a female with phenotypes Zm and Z f

in environment v at time t; and CNf Nm
is a normalization

constant that is used to specify the mating system. In the-
ory, it could be combined with the mating function, but we
follow the notation of Schindler et al. (2013).

CNf Nm
can be used to capture a range of mating systems.

For example, if we follow Schindler et al. (2013) and write

CNfNm p

Ð

∞

ZfðminÞN f (Z f , t)dZ f

Ð

∞

0 M(Zm,Z f , t)Nm(Zm, t)N f (Z f , t)dZmdZ f

, ð2Þ

this adds a minimum size at which females can reproduce
Z f (min). Depending on the mating behavior of the species,
CNf Nm

can be modified in various ways. For example, it can
easily be altered such that the number of birth events is de-
termined by the number of the rarer sex, as in monogamous
species. Mate choice can be influenced by specifying differ-
ent functions for M(Zm,Zf , t). Schindler et al. (2013) dem-
onstrate how it can be specified for random mating, assorta-
tive mating, disassortative mating, and size-selective mating.

In phenotypic IPMs, the phenotypic development func-
tions are usually Gaussian probability functions (Easter-
ling et al. 2000); for example,

D(Z 0jZ, v, t)p
1

VD(Z, v, t)
ffiffiffiffiffiffi

2p
p e

2
[Z0
2mD (Z,v,t)]

2

2VD (Z,v,t)2 : ð3Þ

The functions mD(Z, v, t) and VD(Z, v, t), respectively, de-
scribe the expected value of Z 0 given Z and v at time t and
the standard deviation around mD(Z, v, t). The Gaussian form
can also be used for inheritance functionsH(Z 0jZ, v, t) with
functions mH(:::) and VH(:::).

The two-sex IPM described above is not evolutionarily
explicit because it does not include mechanistic rules for
genetic inheritance. We now take this phenotypic model
and extend it to be evolutionarily explicit. We do this by
writing the phenotype as a function of genetic G and envi-
ronmental E components Z p z(G, E). We assume that Z

is a quantitative phenotype (i.e., measured in integer or real
values). The genotypic value G and environmental value E
describe the numerical contributions of the genetic and en-
vironmental components of the phenotype to an individu-
al’s phenotypic trait value. A simple map can consequently
be written Z p G1 E (Falconer 1960).
G is determined by genotype g. When the map between g

and G is additive, the dynamics of g and G are identical
(Falconer 1960). This means that the dynamics of alleles
are identical to the dynamics of genotypes in which they oc-
cur. In contrast, when alleles interact—either at a locus (dom-
inance) or across loci (epistasis)—the map between g and G
is not additive, and the dynamics of G are not identical to
the dynamics of g (Fisher 1930). In classical quantitative ge-
netics, it is assumed that the map between g and G is ad-
ditive (Falconer 1960). Under these assumptions, it is not
necessary to track the dynamics of g, but evolution can be
investigated by modeling the dynamics of just G. When the
map is additive, we refer to the genetic component of the
phenotype as a breeding value and denote it A.
In classical population genetics, when the contribution

of dominance and epistasis to evolution are often a key fo-
cus, it is necessary to track the dynamics of g and calculate
G from each g. The map between G and the phenotype Z is
often assumed to be one-to-one (Hartl et al. 1997). In con-
trast, in quantitative genetics, the environment can influ-
ence the map between A and Z by influencing the value of
the environmental component of the phenotype, E (Falconer
1960). E can take different values in different individuals
and can vary within individuals throughout life. The dy-
namics of the phenotype may not consequently represent
the dynamics of the genotypic value A. Statistical quantita-
tive genetics is concerned with estimating moments of A
fromZ by correcting for environmental and individual var-
iables that determine E (Kruuk et al. 2008).
The genotype-phenotype map for phenotypic traits mea-

sured by biologists in free-living populations is rarely known,
and quantitative genetic assumptions are widely adopted
(Kruuk et al. 2008). In particular, the infinitesimal model is
assumed in whichA is determined by a large number of un-
linked loci of small additive effect (Fisher 1930). Until we
have a better understanding of the genetic architecture of
complex traits, this approach is the most powerful available
to investigate evolution in the wild (Kruuk et al. 2008). We
consequently adopt it here.
We track the joint distribution of the two components

of the phenotype N(A, E, t). The utility of this is that we
can write expressions to describe the dynamics of each of
the components separately, if necessary, before easily com-
bining them to retrieve the dynamics of the phenotype. For
Z p A1 E, we canuse a convolutionbetween the two com-
ponents of the phenotype to construct the phenotype (Bar-
field et al. 2011).

Population Responses 000
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Phenotypic plasticity and epigenetic inheritance are cap-
tured in the dynamics of E. In previous quantitative genetic
IPMs, E is a randomly distributed variable that captures de-
velopmental noise (Barfield et al. 2011; Childs et al. 2016).
A key contribution of this article is to show how E can be
extended to also capture the biotic or abiotic environment
as well as signatures of parental A’s and E’s. E is defined as
a function of these factors, and we write E 0jE,A, v, t to cap-
ture the effects of E, A, and the environment v at time t
on E 0.

We now expand terms in our two-sex phenotypic IPM
to include the genotype-phenotype map Z p z(A, E). We
start with the bivariate distribution of A and E at time t
among females that are already within the population at
time t: N f (A, E, t). Viability selection now operates on this
distribution. Viability selection is a simple multiplicative pro-
cess describing the expected survival from t to t 1 1 as a
function of the phenotype. We can consequently write

N s
f (A, E, t)p Sf (z(A, E), v, t)N f (A, E, t): ð4Þ

When it comes to development, A remains fixed through-
out life, while E may vary:

N s
f (A, E 0, t 1 1)p

ð

Df (E 0j(E,A, v), t)N s
f (A, E, t)dE: ð5Þ

Recruitment is dealt with in a similar way to survival in
that it is a multiplicative process:

N r((Am, Em), (Af , E f ), t)

p M((Am, Em), (Af , E f ), t)N(Am, Em, t)

::: N(Af , E f , t)R(z(Am, Em), z(Af , E f ), v, t):

Note that this is a recruitment-related term of both male
and female offspring that is not yet scaled by the normal-
ization factor CNf Nm

.
As with development, inheritance of the genetic and en-

vironmental components of the phenotype operates in dif-
ferent ways. For example, once mating pairs have formed
and the number of offspring from each mating has been
determined, the distribution of offspring genotypes is pre-
dictable. We can write the inheritance function for the ge-
netic and environmental components of the phenotype as

N r
f (A0, E 0, t 1 1)

p sCNfNm

ð ð ð ð

H f (A0j(Am,Af ), E 0j(Em, E f , v, t))

::: N r((Am, Em), (Af , E f ), t)dAmdEmdAfdE f ,

ð6Þ

then

N f (A0, E 0, t 1 1)p N r
f (A0, E 0, t 1 1)1 N s

f (A, E 0, t 1 1):

ð7Þ

The same logic applies to the production of male offspring.
We can construct the phenotype from the two compo-

nents A0 and E 0, for example,

N f (Z 0, t 1 1)p

ð

QZ 0

N r
f (A0, E 0, t 1 1)dE 0 dA0

1

ð

QZ 0

N s
f (A, E 0, t 1 1)dE 0,

ð8Þ

where QZ 0 is the set of (A0, E 0) values satisfying z(A0, E 0)p
Z 0. For the second integral in equation (8), we have
z(A, E 0)p Z 0 because the A does not change within indi-
viduals and consequently has no prime.
The additivity assumption means that models of clonal

inheritance can generate very similar predictions to models
of two sexes, particularly if both males and females have
similar demography. However, clonal models are simpler
than two-sex models (Lande 1982). We utilize this conse-
quence of the additivity assumption and initially work with
clonal reproduction to examine how the dynamics ofA and
E influence population and phenotypic trait dynamics and
adaptive evolution. We can write a clonal model,

N(A, E 0, t 1 1)

p

ð

[D(E 0jE,A, v, t)S(z(A, E), v, t)1H(E 0jE,A, v, t)

::: R(z(A, E), v, t)]N(A, E, t)dE,

ð9Þ

N(Z0, t 1 1)p

ð

QZ 0

N(A, E 0, t 1 1)dE 0: ð10Þ

The above equations describe the dynamics of a bivariate
distribution of the genetic and environmental components
of the phenotype. Figure 1b–1g provides graphical examples
of how these functions alter the bivariate distribution and, in
particular, how development and inheritance rules differ be-
tween the environmental and additive genetic components.
To demonstrate these differences, we now focus on developing
univariate models of (1) A and (2) E. These models capture
limits where all phenotypic variation among individuals is
determined by (1) genetic variation and (2) variation in
the environmental component of the phenotype. We then
combine insights from these univariate model and construct
models of the bivariate distribution of A and E.
We primarily work with linear functions for three rea-

sons. First, they are easier to interpret and analyze than non-
linear or nonadditive forms. Second, when the environment
changes impacting populations, responses—at least in the
short term—can be well described with linear or linearized
additive models (Cooch et al. 2001). Third, selection—the
underpinning of adaptive evolution—is often directional
and well described with linear or linearized associations be-
tween phenotypic traits and components of fitness (King-

ð8Þ
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solver et al. 2001). Parameters used for all models are pro-
vided in section A1 in the appendix (available online), as are
expressions to calculate key statistics used to show ecological
and evolutionary change frommodel outputs (sec. A2). Code
to produce each figure is available in the Dryad Digital Re-
pository (http://dx.doi.org/10.5061/dryad.4c117; Coulson et al.
2017) as well as GitHub (https://github.com/tncoulson/QG
-meets-IPM-figure-code/tree/master).

Adaptive Evolution: The Dynamics of A
Here we start with a simple clonal model of a univariate dis-
tribution of A. We go on to show how genetic constraints
can be imposed to slow or stop evolution. We then extend
this clonal model in two ways: first, we include a multivar-
iate, age-structured distribution of A, and second, we relax
the clonality assumption and compare the dynamics of clonal
and sexual models. Finally, we introduce a new approxima-
tion to describe sexual reproduction and compare its per-
formance with our initial approach.

Genotypes (and henceA) are determined at birth and re-
main fixed throughout life; neither is influenced by the en-
vironment. A consequence of this is that the development
function simplifies to a one-to-onemap and can be removed
from equation (5). We also start by considering clonal re-
production, which means that the inheritance function
can also be removed because offspring genotype is identi-
cal to parental genotype. The dynamics of A are conse-
quently determined by the survival and reproduction. In
these models, as long as there is genetic variation within a
population and fitness is a monotonic function of genotype,
evolution—defined as E(N(A, t 1 1))p E(N r(A, t))(
E(N(A, t)) (where E represents expectations)—will occur.

In our first models we assume nonoverlapping genera-
tions,

N(A, t 1 1)p N r(A, t)p R(A, t)N(A, t),

and a linear reproduction function R(A, t)p RI 1 RAA,
with expected fitness increasing with the value of A. Over
the course of a simulation of 30 generations (model A in
section A1.1), the population never achieves an equilib-
rium structure or growth rate; it grows hyper-exponentially
(fig. 2a, black line) and the shape of the breeding value dis-
tribution continually changes location (fig. 3b, black line)
and shape (fig. 2b, 2d, black lines). Linear selection slowly
erodes only the genetic variance and skew (fig. 2c, 2d), and
these changes lead to a slight slowing of the rate of change in
the mean breeding value (fig. 2b) and the population growth
rate (fig. 2a) each generation (the black lines are not linear).

In this model there are two ways to prevent the fitness
function from generating change in the location of the dis-
tribution. First, the fitness function can take unimodal non-

linear forms, such as R(A, t)p RI 1 RAA1 RA2A2, with
RA 1 0, RA2 ! 0, and R(A, t) constrained to nonnegative
values. This generates stabilizing selection, with the mean
breeding value being maintained at the value that max-
imizes fitness. Eventually, in this model, the breeding value
distribution will achieve a trivial equilibrium, a Dirac delta
function at this value. Second, continual change in the lo-
cation of the distribution can be prevented by defining a
maximum possible value for A that cannot be exceeded.
This captures a genetic constraint in the maximum possible
character value; that is, evolution has not evolved a genetic
solution to creating a larger breeding value. In our models,
this process can be captured by setting the abundance of
N(A 1 x, 1)p 0, where x is the maximum possible trait
value that evolution can achieve. Selection now pushes
the breeding value distribution up to x, again eventually
achieving a trivial equilibrium captured by a Dirac delta
function where all mass of the distribution is at Ap x.
Genetic constraints can also impact the transient dynam-

ics of the breeding value distribution (fig. 2a–2d, red lines).
When we impose a genetic constraint (model A in sec. A1.1
with xp 11:5), the genetic variance and skew evolve faster
than when no genetic constraint is in place (fig. 2c, 2d).
These more rapid changes result in a slowing in the evolu-
tion of the mean breeding value (fig. 2b) and of the popu-
lation growth rate (fig. 2a).
Genetic covariances between traits can also capture ge-

netic constraints and can also influence the outcome of
evolution. We demonstrate this by developing an age-
structured model. A now becomes age structured but is
still inherited at birth. We construct a multivariate charac-
ter A describing the breeding values that influence a char-
acter at each age (e.g., A1,A2, :::,An for breeding values at
ages ap 1, 2, :::, n). If some of the same loci contribute to
the genetic components of the character at different ages,
there is a genetic covariation across ages. The genetic var-
iances within each age and the covariances between ages
can be used to construct a G matrix (Lande 1979). Such
age-structured G matrices underpin the character-state ap-
proach of quantitative genetics (Lynch and Walsh 1998).
In the age-structured model that follows, we define a bivar-
iate normal distribution with a known variance-covariance
structure as our starting point and iterate this forward (mod-
els B–D in sec. A1.2–A1.4). We consider a simple case: a
monocarpic biennial life cycle, where individuals in their
first year of life do not reproduce and all age 2 individuals
die after reproduction. As with our model for a species
with nonoverlapping generations, we assume clonal inheri-
tance,

N(A1, 1, t 1 1)p R(A2, 2, t)N(A2, 2, t),

N(A2, 2, t 1 1)p S(A1, 1, t)N(A1, 1, t),
ð11Þ
ð11Þ
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where survival from age 1 to age 2 is specified as

S(A1, 1, t)p
1

11 e2(SI,11SA1,1A1)
, ð12Þ

with expected survival to age 2 being highest for larger val-
ues ofA1. AlthoughA2 is not under direct selection, its dis-
tribution is modified by its covariance with A1.

A2, the genotype at age 2, determines expected repro-
duction,

R(A2, 2, t)p e(RI,21RA2A2): ð13Þ

Although A1 does not directly influence reproduction, there
is an association between it and reproduction via its covari-
ance with A2. All age 2 individuals die following reproduc-
tion in this model, although it is possible to extend our ap-
proach to any arbitrary number of ages.

The evolutionary dynamics that particular parameteri-
zations of the fitness functions S(A1, 1, t) and R(A2, 2, t)

generate are dependent on (1) the initial covariance between
the characters and (2) the fitness functions (models B–D in
sec. A1.2–A1.4). Many parameterizations and initial covari-
ances are likely to generate evolutionary dynamics that may
be biologically unrealistic. We demonstrate this with three
contrasting parameterizations, considering size as our trait
(fig. 2e–2g). In the first example (fig. 2e; model B in sec. A1.2),
the two characters positively covary and experience selection
in the same direction. Over the course of the simulation the
average developmental trajectory has evolved, withA1 evolv-
ing to be 1.76 times larger andA2 evolving to be 1.52 times
larger. For a trait such as body size, such a proportional
change at different ages may be appropriate. In examples
in figure 2f and 2g (models C, D in sec. A1.3, A1.4), the bi-
variate character evolves in contrasting ways. In model F,
A2 evolves much faster than A1, while in model G, A1
evolves to be larger, while A2 evolves to be smaller. These
simulations demonstrate that only a constrained set of fit-
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Figure 2: Role of selection on the dynamics of A. Dynamics of univariate A subject to linear selection and clonal inheritance a–d (model A in
sec. A1.1 in the appendix, available online). The population does not reach an equilibrium, with population growth (a) and the mean (b),
variance (c), and skew (d) of the character continually evolving. Imposing a maximum possible character value constrains change (red lines vs.
black lines in a–d). In the age-structured case we track the dynamics of a bivariate character distribution (e–g; models B–D in sec. A1.2–
A1.4). The models in e and f (models B, C in sec. A1.2, A1.3) are identical except that the starting distribution at time t p 1 has a covariance
of20.2 in f compared with 0.7 in e. The parameterization in g is chosen to demonstrate a case where the two traits evolve in different directions.
The colored image plots in e–g represent Gaussian development functions D(Z 0jZ, t) fitted to the bivariate distributions of A at the beginning
and end of the simulation. Evolution of the bivariate character has resulted in different parameterizations of these phenomenological functions.
The lighter the shading, the greater the probability of a transition from character value Z at age 1 to Z 0 at age 2.
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ness functions and genetic covariances will give biologically
realistic evolutionary trajectories for the size-related traits
that biologists often study.

We now return to a univariate model and examine the
clonality assumption. How can the clonality assumption be
relaxed, and what are the consequences? In sexually repro-

ducing species, offspring inherit a mix of their parent’s ge-
nomes. However, genetic segregation means that full sib-
lings do not have the same genotype. When additivity is
assumed, the breeding value of offspring is expected to be
midway between parental breeding values. However, to ob-
tain the distribution of offspring genotypes, the contribu-
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Figure 3: Dynamics of inheritance (model E in sec. A1.5 in the appendix, available online). The dynamics of population growth rate R0 (a)
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tion of genetic segregation to variation among offspring needs
to be taken into account. In two sex models, three steps are
required to generate the distribution of offspring genotypes
or breeding values, given parental values. First, a distribu-
tion of mating pairs needs to be constructed. Second, the
distribution of midpoint parental genotypes or breeding val-
ues given the distribution of mating pairs needs to be con-
structed. Third, segregation variance needs to be added to
the distribution (Feldman and Cavalli-Sforza 1979; Felsen-
stein 1981; Turelli and Barton 1994). The mating system
and the segregation variance are related: when mating is as-
sortative with respect to genotype, the segregation variance
is small, and siblings closely resemble one another and their
parents. In contrast, when mating is disassortative with re-
spect to genotype, siblings can differ markedly from one an-
other, and the segregation variance is large.

Expressions have been derived for the segregation vari-
ance for the infinitesimal model, where it is assumed that
traits are determined by a very large number of unlinked
loci of small additive effects and mating is random (Fisher
1930). The infinitesimal model is assumed in most empir-
ical quantitative genetic analyses (Kruuk et al. 2008) and
in our initial model. For random mating where both sexes
have identical demographies, the distribution of offspring
breeding values given parental breeding values is (Barfield
et al. 2011)

N(A, t 1 1)p

 

N r(⋅, t)

2
∗
N r(⋅, t)

2
∗ f

 

⋅,
j2
r (A, t)

2

!!

(A),

ð14Þ

where * represents convolution and f(A, j2)p
(1=

ffiffiffiffiffiffiffiffiffiffi

2pj2
p

) exp(2A2=j2) is a Gaussian function with mean
0 and variance j2 representing the segregation variance.

If males and females have different demographies, then
they will have different distributions of genetic values after
selection; we represent these as N r

M(A, t) and N r
F(A, t), re-

spectively. In this case, equation (14) is replaced by

N(A, t 1 1)

p

 

N r
M(⋅, t)

2
∗
N r

F(⋅, t)

2
∗ f

 

⋅,
j2

rðMÞ(A, t)1 j2

rðFÞ
(A, t)

2

!!

(A),

ð15Þ
where j2

rðMÞ(A, t) and j2

rðFÞ
(A, t) are variances of the postre-

cruitment selection breeding value of males and females, re-
spectively.We do not superscript the r’s with j2 to avoid a no-
tation making it appear that j is raised to some quantity 2r.

The first two terms on the right-hand side of equation (15)
generates the distribution of expected parental midpoint
values; it ensures that the mean breeding value among off-

spring is midway between the two parental breeding values.
However, because the parental distributions are halved, the
variance of this distribution is half that of the parental dis-
tributions. The third term on the right-hand side of equa-
tion (15) adds the segregation variance. For random mating,
the variance is assumed to be normally distributed, with a
mean of 0 and a variance of half the additive genetic vari-
ance among the entire population when the population is at
linkage equilibrium (Felsenstein 1981). We approximate this
variance as half the additive genetic variance in the parental
distribution (Feldman and Cavalli-Sforza 1979). This ap-
proach has already been incorporated into IPMs (Barfield
et al. 2011; Childs et al. 2016).
We now run two simulations (fig. 3a–3d) to examine

differences in the predictions of clonal and sexual models.
The first model assumes clonal inheritance and the second
the convolution in equation (15), with both models assum-
ing a linear function R(Z, t) (model E in sec. A1.5). The two
models predict slightly divergent dynamics. The reason for
this is that equation (15) results in the skew and kurtosis in
NR(A, t) is reduced at each time step in the sexual model
compared with in the clonal model. If selection is exponen-
tial (and the starting distribution proportional to a Gauss-
ian distribution), then there will be no difference between
the two approaches. This is because a normal distribution
multiplied by an exponential fitness function results in a
normal distribution with an unchanged variance (Diaconis
and Ylvisaker 1979). These results suggest that insights from
clonal models will approximate those from sexual models
reasonably well, at least when males and females have sim-
ilar demography.
In the remainder of this section we explore simple ap-

proximations of the models of breeding values described
above. Some authors have queried the use of equation (3) as
an approximation in IPMs to the inheritance convolution
in equation (15) used in models of sexually reproducing
species (Chevin et al. 2010; Janeiro et al. 2017). However,
being able to construct inheritance functions for A that are
of the form of equation (3) would be useful because it would
permit methods developed for two-sex phenotypic IPMs to
be applied to evolutionarily explicit IPMs (e.g., Schindler
et al. 2015). Given that Gaussian approximations frequently
perform well in models of evolution (Turelli and Barton
1994), we hypothesize that Gaussian inheritance functions
may perform well in evolutionarily explicit IPMs. We con-
sequently constructed a Gaussian inheritance function and
compared results with those obtained from the convolution.
Equation (15) results in the mean and variance of the par-

ental and offspring breeding value being the same.We can ap-
proximate this by ensuring that the function mH(A, t) passes
through the coordinate xp E(NR(A, t)), yp E(NR(A, t))
and that the variance VH(A, t)p j2(NR(A, t)). When both
sexes have the same demography, we can write
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mH(A, t)p (12 h)ER(NR(A, t))1 hA,
VH(A, t)p (12 h)2j2(NR(A, t)),

ð16Þ

where E and j2 represent expectations and variances, re-
spectively, and h represents the degree of assortative mating.
When hp 1, mating is entirely assortative; when vp 0:5,
mating is random; and when hp 0, mating is completely
disassortative. An equation for the case when males and fe-
males have different demographies is provided in section A3.
The approximation in equation (16) will increase in accuracy
as the distribution of midpoint parental breeding values be-
comes more Gaussian.

When we compared predictions from equations (15) and
(16) with hp 0:5 using the same model used to compare
clonal and sexual life histories, results were indistinguish-
able (fig. 3a–3d). This reveals that for linear selection, Gauss-
ian inheritance functions for A perform remarkably well.

None of our models to date include any form of mutation.
We have not incorporated mutation into our models because
we are simulating responses to environmental change over
a few tens to hundreds of generations (figs. 1–3), and over
that time period mutation is unlikely to play a major role in
adaptation. However, for simulations over longer time peri-
ods, we can incorporate mutation into our models by slightly
increasing the size of the segregation variance (e.g., Lynch
and Walsh 1998). This will have the effect of increasing the
additive genetic variance, partly countering any loss of ge-
netic variance due to selection.

Our approximation can be used to examine the dynam-
ical contributions of nonadditive genetic processes to popu-
lation responses to environmental change in a phenomeno-
logical manner. Fisher (1930) demonstrated that dominance
variance can be treated as an offset, and in our models this
would lower the intercept of the function mH(G, t) in equa-
tion (16). A consequence of this is that the mean of the off-
spring genotype is no longer equal to the mean of parental
genotype and the dynamics of genotypes no longer exactly
match the dynamics of alleles. We demonstrate this with a
single-locus two-allele model. When the effects of alleles
are additive, the dynamics of the genotype captures the dy-
namics of alleles (fig. 3e). In contrast, when the heterozy-
gote has higher fitness, allele frequencies do not change once
the equilibrium is achieved. However, selection and inheri-
tance alter genotype frequencies (fig. 3f ). This effect of dom-
inance variance can be phenomenologically captured within
an IPM by setting the intercept of the inheritance function
for the genetic component of the phenotype to be less than
ER(NRA, t)=2; this imposes an offset that can reverse gains
made by selection (fig. 3g). Because this offset is negative
when dominance variance is operating, dominance variance
will slow rates of evolutionary change. We could easily phe-
nomenologically explore how a particular value of this off-
set impacts predicted dynamics; however, further work is

required to relate different levels of dominance variance to
specific values of the offset in our models. Having shown
how IPMs can be formulated to project forward the dynamics
of the genetic component of the phenotype, we now turn
our attention to the dynamics of the environmental compo-
nent of the phenotype.

Plasticity: The Dynamics of E
Plasticity is determined by the dynamics of E and in partic-
ular in how E is influenced by the ecological environment
v. To capture plasticity in IPMs we need to model the prob-
ability of transition from E at time t to E 0 at time t 1 1 as a
function of the environment v. For most plastic traits we
have a poor mechanistic understanding of development and
inheritance patterns, and for that reason we use the Gauss-
ian probability density function in equation (3).
In quantitative genetics it is often assumed that the mean

of E(E, t)p 0, and any individual departures are purely
random (Falconer 1960). In equation (3) this requires the
intercepts and slopes of the functions mD(:::) and mH(:::)
to take the following values: mH

I p 0, mD
I p 0, mH

E p 1,
and mD

E p 1. We relax this assumption and allow the mean
(and variance) of E to vary with time as v varies by speci-
fying particular forms for development and inheritance
functions of E.
Gaussian transition functions (eq. [3]) can be formulated

to predictably modify moments of the distribution of E
from time t to time t 1 1. For example, careful choice of in-
tercepts and slopes of mD(E, t), mH(E, t), VD(E, t), and
VH(E, t) can be used to predictably grow or shrink the var-
iance of E via either development or inheritance (sec. A4).
In addition, specific biological processes can be easily in-
corporated into the dynamics of E: if the slopes mD

E ( 0
or mH

E ( 0, then there will be temporal autocorrelation in
the value of E among individuals and between parents
and their offspring. For example, if mD

E 1 0, then individu-
als with a relatively large value of E at time t will be expected
to have a relatively large value of E 0 at time t 1 1. This prop-
erty of development functions is useful because it allows
some memory of E across ages: if an individual has bene-
fited from a particularly good set of circumstances at one
age, any phenotypic consequences can persist to older ages.
In a similar vein, if mH

E 1 0, then a parent with a relatively
large E at time t will produce offspring with relatively large
E’s at time t 1 1, a form of parental environmental effect
(Nussey et al. 2007).
Different formulations of mH(:::) and mD(:::) can be used

to capture a variety of different forms of plasticity (table 2).
When v is incorporated as an additive effect, it acts to shift
the intercept of these functions as t changes. This means
that the environment influences all values of A in the same
manner. If Z p A1 E, then Z changes as a function of

ð16Þ
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how v influences E if A remains constant. A remains con-
stant as it does not vary within individuals as they age or if
A0 in offspring is the same as A in parents.

Interactions between E, A, and v are listed in table 2.
Each form describes a different type of reaction norm (Gav-
rilets and Scheiner 1993). These forms allow E to develop
among individuals (phenotypic plasticity) or be inherited
(epigenetic inheritance) as a function of an individual’s breed-
ing valueA and the environment v as well as the value of E
at time t.

Plasticity can be either adaptive or nonadaptive (Ghalam-
bor et al. 2015), and both forms can be captured in our mod-
els. Adaptive plasticity enables populations to rapidly respond
to an environmental change. For example, if environmental
change reduces population size, then adaptive plasticity would
result in a change to the mean of the phenotype via either phe-
notypic plasticity (the development function) or epigenetic
inheritance (the inheritance function) that leads to an in-
crease in survival or recruitment rates. In contrast, nonadap-
tive plasticity does the opposite, potentially exacerbating the
detrimental effects of environmental change.

We demonstrate this with an example of a simple IPM
of a species with nonoverlapping generations: N(E 0, t 1
1)p

Ð

H(E 0jE, v, t)R(E, t)N(E, t)dE. The model contains no
genetic variation, and the phenotype is determined by the
density at the time the offspring is born. This means that
we can remove A from the model. We assume a linear fit-
ness function and a Gaussian inheritance function,

R(E, t)p RI 1 REE 1 Rvv,
mH(E, t)p mH

I 1 mH
E E 1 mH

v v,
VH(E, t)p VH

I :

Next, we assume that the phenotypic trait is positively as-
sociated with expected recruitment such that RE 1 0. We
also assume that the environmental driver is positively as-
sociated with expected recruitment such that as v increases

in value and fitness increases (Rv 1 0). This means that the
population growth rate (in a density-independent model)
or population size (in a density-dependent model) also in-
creases with v. Now assume that a negative environmental
perturbation decreases v such that fitness decreases. For
adaptive plasticity to counter this, the effect of the decrease
in v on epigenetic inheritance must increase the expected
value of E. In our simple model, this can occur only if mH

v !

0. Then, as v declines, mH
v v becomes less, and the value of

mH
I 1 mH

v v becomes larger, increasing the mean of E and fit-
ness. In general, in additive linear models such as this, if RE
and mH

v take opposing signs, then plasticity will be adaptive.
We develop three density-dependent models of a phe-

notype in a species with nonoverlapping generations. In
all models we define the fitness function to be R(E, t)p
RI 1 REE 1 Rn(t)n(t), where n(t)p

Ð

N(E, t)dE and Rn(t) !

0. In each model we define mH(E, t)p mH
I 1 mH

E E 1
mH
n(t)n(t). We set in model F mH

n(t) p 0; in model G mH
n(t) !

0; and in model H mH
n(t) 1 0 (sec. A1.1).

The first model (model F) does not include plasticity
(mH

n(t) p 0), the second (model G) captures adaptive plas-
ticity (mH

n(t) ! 0 and RE 1 0), and the third (model H)
captures nonadaptive plasticity (mH

n(t) 1 0 and RE 1 0). All
three models include temporal autocorrelation in the envi-
ronmental component of the phenotype (sometimes referred
to as phenotypic carryover) when mH

E 1 0 (table 2). Because
the models are not age structured and do not include devel-
opment, plasticity operates via epigenetic inheritance (e.g.,
maternal environmental effects). The same logic can be ex-
tended to the development function in age-structured pop-
ulations. In our examples, parameterizations are chosen so
that all models converge to the same value of carrying ca-
pacity K. Once all three models have converged, we initially
impose a one-off perturbation. Model G regains the equilib-
rium first, followed by model F and then model H (fig. 4a),
showing that adaptive plasticity allows the population to re-
cover from a one-off environmental perturbation much faster

Table 2: Different forms of plasticity and their incorporation into integral projection models

Term Biological interpretation Type of plasticity

mH
I No plasticity

1mH
E 0E 0 Temporal autocorrelation in E Phenotypic carryover

1mH
v v Ecological environment influences all values of E in

the same way

Additive plasticity generated by temporal variation in the

ecological environment

1mH
v,EvE Temporal autocorrelation in E depends on the eco-

logical environment

Nonadditive plasticity generated by variation in the ecological

environment

1mH
AA Value of E depends on A No plasticity

1mH
v,AvA Value of E depends on an interaction between A and

the ecological environment

Genotype-by-environment interaction

1mH
A,E 0AE 0 Temporal autocorrelation in E depends on A Genotype-by-environment interaction

Note: Each term in the table can be included in the functions mH(E, t), mH(E, a, t), or mD(E, a, t). Similar terms could be included in VH(E, t), VH(E, a, t), or
VD(E, a, t) if the variance in inheritance or development varied for specific values of E in predictable ways. This would capture different forms of bet hedging.
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than when there is no plasticity or plasticity is nonadaptive.
Nonadaptivity plasticity significantly slows the rate at which
the population can recover from a perturbation, with the ini-
tial population size before perturbation reattained only after
80 generations.

Adaptive and nonadaptive plasticity also impact the way
populations respond to permanent environmental change.
We demonstrate this by running the same models F, G,
and H, except now we impose a constant change in fitness
by permanently changing the intercept of the fitness func-
tion RI . When we do this, the three models attain different
equilibria population sizes (fig. 4b) and different mean phe-
notypes (fig. 4c). Model G achieves a larger population size
than the two other models. This buffering of the popula-
tion against environmental change happens because adap-
tive phenotypic plasticity results in a change in the mean
phenotype (fig. 2c) that increases the expected recruitment
rate and asymptotic population size (fig. 2b). In contrast,
nonadaptive plasticity exacerbates the consequences via a
change in the mean phenotype that decreases fitness.

In contrast to our example models in “Adaptive Evolu-
tion: The Dynamics of A,” the IPMs we have developed in
this section—and, indeed, all nongenetic IPMs so far
published—achieve an asymptotic population growth rate
or equilibrium population size and a stable population
structure. These IPMs have monotonically increasing or
decreasing fitness functions: an increase in the character
results in an increase in expected fitness. A consequence of
this is that in these models the recruitment function acts to
alter the location of the character distribution and often also
alter its shape (Wallace et al. 2013). This is reflected in that the
means (and often other moments) differ between the distri-
butions of the phenotype before and after selection. In
models at equilibrium with monotonic fitness functions, the

inheritance function must reverse the locational and shape
changes caused by the fitness function. This is because at
equilibrium the moments of the phenotype distribution at
times t and t 1 1 must be equal.
In models of species with nonoverlapping generations

at equilibrium, such as those above, the inheritance func-
tion for E must exactly reverse the changes to the character
distribution generated by the fitness function. This requires
moments of parental and offspring characters to differ from
one another if NR(E, t)2 N(E, t)( 0. When there is a cor-
relation between parental and offspring traits in the inher-
itance function for E, as in our models, the intercept of the
inheritance function must take a value such that offspring
characters are smaller than their parents’ were at the same
age (Coulson and Tuljapurkar 2008).
IPMs for species with overlapping generations include

development functionsD(E 0jE, a, t). These functions can al-
ter the size (population size) and shape of the distribution
of E as individuals age. When generations are overlapping,
and at equilibrium, changes to the location of the character
distribution via survival, recruitment, and development are all
exactly countered by the inheritance functions H(X 0jX , a, t).
Coulson and Tuljapurkar (2008) showed that in red deer,

age-specific effects meant that young and old parents were in-
capable of producing offspring that had the same body weight
as they did at birth. This process reversed the effects of via-
bility selection removing small individuals from the popula-
tion early in life. The same process was observed in marmots
(Ozgul et al. 2010) and Soay sheep (Ozgul et al. 2009) and
may be general for body size in mammals.
We have now developed IPMs for (1) A where we as-

sumed all individuals had the same constant E and (2) E
where we assumed all individuals had the same A. We have
shown how IPMs can capture a wide range of biological
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Figure 4: Dynamics of E and plasticity. a, Return times to equilibrium for three inheritance functions (models F–H in sec. A1.6–A1.8 in the
appendix, available online) following a one-off perturbation. There is no plasticity incorporated into model F (black line). Model G (red line)
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processes, including adaptive and nonadaptive plasticity
and correlated characters, and the circumstances when equi-
libria are achieved. We now link together these advances into
models of the joint dynamics of the bivariate distribution
N(A, E, t).

Models for the Phenotype Consisting of Genetic
and Environmental Components

Here we construct models where the character can be de-
termined by a mixture of the genetic and environmental
components. These models allow us to explore how adap-
tive evolution is influenced by plasticity.

We first develop a dynamic univariate version of the
breeder’s equation (Falconer 1960) for a species with non-
overlapping generations in a constant environment. In this
case, the environmental component of the phenotype is as-
sumed to be a consequence of developmental noise: indi-
viduals achieve their genetic potential, plus or minus a de-
parture. At each generation within each breeding value, the
distribution of the environmental component of the pheno-
type is assumed to be Gaussian with a mean of 0 and a con-
stant variance (model I in sec. A1.9).

Our initial conditions are a bivariate Gaussian distribution
of A and E, which we iterate forward for 300 time steps.
Over time, the mean of the genetic component of the phe-
notype increases. In contrast, the mean of the environmen-
tal component is constant. The population grows hyperex-
ponentially (fig. 5a), the mean of the phenotype increases
in value because of evolution (fig. 5a, 5d), and the additive
genetic variance is slowly eroded (fig. A2). Because the ad-
ditive genetic variance is eroded while the phenotypic var-
iance remains constant, the heritability declines over time
(fig. A2).

Our second model (model J in sec. A1.10) has a negative
density-dependent term in the fitness function. The phe-
notype evolves faster in this model than in our density-
independent model (fig. 5b). Population size grows nearly
linearly in this model (fig. 5d ), although the rate of in-
crease does slow slightly each generation as genetic varia-
tion is eroded. The difference between the hyperexponen-
tial (density-independent model) and nearly linear increases
(density-dependent model) in population size explains the
difference in the rates of evolution. This is because the se-
lection differential that determines the rate of evolution (an
emergent property from our model [Wallace et al. 2013])
has the population growth rate in its denominator. The
population growth rate is smaller in the density-dependent
model (just above unity) than in our density-independent
one (it increases with time), and this leads to an increase
in the strength of selection and the rate of evolution (see also
Pelletier and Coulson 2012). A consequence of this is that

the additive genetic variation and heritability tend toward
0 faster in the density-dependent model than in the density-
independent one (fig. A2).
In our third model (model K in sec. A1.11), negative

density dependence is included in the inheritance function
for the environmental component of the phenotype as well
as in the fitness function. This captures adaptive pheno-
typic plasticity. This results in a negative change in the mean
of the environmental component of the phenotype with time
(fig. 5c). This decrease is reflected in a change in the mean
of the phenotype itself. Adaptive phenotypic plasticity leads
to a decline in the population growth rate, which results in
a slight increase in the rate of evolution compared with the
density-dependentmodelwith no plasticity.However, the ef-
fect is not large and is only just distinguishable when com-
paring figure 5b, 5c.
In our final models (models L–N in sec. A1.12–A1.14) we

examine how a one-off perturbation influences the mean of
the phenotype, its components, and the population growth
rate (fig. 5g–5l) when there is no plasticity, adaptive plastic-
ity, and nonadaptive plasticity. We set the variance in the ge-
netic and environmental component of the phenotype to be
equal, giving an initial heritability of h2

p 0:5. In each
model we allow the population to achieve the same equilib-
rium population size in the absence of selection (RZ p 0).
We then impose a one-off mortality event when 99% of in-
dividuals above the mean of the phenotype are killed off.
At this point we also impose selection (RZ p 0:1). In all
three models the mortality event results in a small change
in the mean value of the phenotype (for an explanation, see
sec. A5; fig. 5g–5i, red lines) but a halving of population
size (fig. 5j–5l). Adaptive plasticity results in the environ-
mental component of the phenotype returning to its preper-
turbation value very quickly (fig. 5g–5i, blue lines). In con-
trast, although the perturbation causes a modest change in
the mean of the genetic component of the phenotype, it
takes 110 generations for evolution to reverse the change
(fig. 5g–5i, black lines). This demonstrates that a strong se-
lective effect can leave a large population dynamic impact
but leave only a small initial signature in the phenotype,
even when the trait is highly heritable.
Over the longer term, the dynamics of the components

of the phenotype, the phenotype itself, and the population
dynamics all depend on whether plasticity is adaptive or
nonadaptive. Adaptive plasticity allows the population size
to initially recover from the perturbation more quickly
than when plasticity is absent or nonadaptive (fig. 5j–5l).
However, over a longer time period, nonadaptive plasticity
results in the population achieving a larger size than when
plasticity is absent or adaptive. These differences in popu-
lation growth rate impact rates of evolution: immediately
following the perturbation, the rate of evolution is greatest
when plasticity is nonadaptive. However, the rate of evo-
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lution then increases when plasticity is adaptive (figs. A2,
A3). As with our previous models, the effects of adaptive
and nonadaptive plasticity on rates of evolution are rela-
tively small, but our results demonstrate how the two pro-
cesses can interact.

Signatures of Evolution in Models That Are Not
Evolutionarily Explicit

The models in the previous section are quite complex. Do
we always need to construct such evolutionarily explicit IPMs
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Figure 5: Dynamic version of the breeder’s equation. The dynamics of the phenotype (red lines) and its genetic (black lines) and environ-
mental (blue lines) components (a–c, g–i) and the dynamics of the population (d–f, j–l). In the first model (a, d), both fitness and inheritance
of the environmental component of the phenotype are independent of density (model I in sec. A1.9 in the appendix, available online). In the
second model (b, e), fitness is negatively density dependent, and inheritance of the environmental component of the phenotype is density
independent (model J in sec. A1.10). In the third model, both fitness and inheritance of the environmental component of the phenotype
are negatively density dependent (model K in sec. A1.11). The treatment of plasticity can dramatically influence the dynamics of the phe-
notype and population size (models L–N in sec. A1.12–A1.14). Adaptive phenotypic plasticity (h, k) leads to the population size and phe-
notype recovering from a perturbation much faster than nonadaptive plasticity (i–l). The absence of a plastic response (g, j) results in the
population recovering from a perturbation at an intermediate rate between cases where adaptive and nonadaptive plasticity are operating.
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to predict population responses to environmental change,
or can we rely on simpler, phenotypic IPMs? There are two
reasons why it may be preferable to not construct evolution-
arily explicit models. First, evolutionarily explicit IPMs are
more complicated to construct than those that do not include
genotypes or breeding values. Second, when data are unavail-
able to explicitly include breeding values into models (Traill
et al. 2014b), the effects of evolution on predicted dynamics
can still be explored by examining the consequences of per-
turbing parameter values (Traill et al. 2014a).

When evolution occurs within a system we would expect
parameters in phenomenological inheritance and develop-
ment functions that are fitted to data to change with time.
We can see this in figure 2e–2g. In these age-structured evolu-
tionarily explicit models, the bivariate breeding value distri-
bution (black contours) changes location as evolution occurs.
We have fitted Gaussian development functions to these bi-
variate distributions at the beginning of each simulation and
at the end (colored image plots). The parameters that deter-
mine these developments functions have clearly changed as
the location of the functions have changed. A similar process
occurs for inheritance functions (not shown).

Numerous authors have previously noted this phenom-
enon in models of evolution. For example, in population
genetic (Charlesworth 1994) and ecoevolutionary models
(Yoshida et al. 2003; Coulson et al. 2011) when genotype
frequencies change with time, macroscopic, population-
level quantities such as mean survival and recruitment also
change; in adaptive dynamic models, as one strategy invades
another, population-level parameters inevitably change with
strategy frequency over time (Metz et al. 1996); in quanti-
tative genetic predator-prey models, population-level param-
eters of both predators and prey vary over time, leading to
persistence of the interaction (Doebeli 1997); and in evolu-
tionarily explicit IPMs, parameters in inheritance functions
have been shown to change with time as evolution prog-
resses (Rees and Ellner 2016). These insights are useful be-
cause if evolution is occurring within a system, then tempo-
ral trends in statistical estimates of model parameters would
be expected; in other words, the effect of time—either ad-
ditively or in an interaction with other parameters—would
be expected in mH(Z, t), mH(Z, a, t), or mD(Z, t). If marked
temporal trends are observed in parameters in development
and inheritance functions that cannot be attributed to a chang-
ing environmental driver, then evolutionarily explicit IPMs
may be required.

What about parameters in fitness functions S(Z, t) and
R(Z, t)? Can any inferences from temporal trends in these
parameters be made? In our approach, evolution of a focal
trait would not be expected to alter statistical estimates of
the fitness functions. In our models, evolution simply moves
the location and shape of the phenotype distribution, but
not its association with survival or recruitment.

We have identified one circumstance where evolution
will leave a signature in the dynamics of fitness function pa-
rameters. Parameters in these functions can evolve in the
presence of a genetically unmeasured correlated character
that is also evolving. To demonstrate this we construct a
model of a bivariate character and examine the dynamics
it predicts before exploring the consequences of failing to
measure one of the characters.
We assume clonal inheritance such that dynamics of

the characters are solely determined by a bivariate fitness
function,

R(A, t)p RI 2 RA1A11 RA2A2: ð17Þ

The dynamics this model predicts depend on the initial co-
variance between the two characters in a similar way to our
age-structured model (eq. [11]). In our first example the two
characters negatively covary, while in the second they posi-
tively covary (for model parameterizations, see sec. A1.1). The
initial negative covariation allows rapid evolution, with pop-
ulation growth (fig. 6a), the mean of the characters (fig. 6b),
their variances (fig. 6c), and the covariance between them
(fig. 6d) evolving relatively quickly. In contrast, when the
two characters positively covary, evolution is much slower,
with the character means, variances, and covariance chang-
ing much more slowly, even though the fitness functions
are identical in each model (fig. 6e–6h).
We now construct a fitness function for A1 when A2 is

not measured. We start by defining mean fitness, an ob-
servable, as E(R:t)p E(R(A, t)). The slope R̂A1,t is given
by

R̂A1,t p RA1 1
j(A1,A2, t)

j2(A1, t)
RA2: ð18Þ

The intercept can be calculated in the usual manner by es-
timating the means of fitness and A1,

R̂ I,t p E(R, t)2 R̂A1,tE(A1, t), ð19Þ

giving

R(A, t)p R̂I,t 1 R̂A1,tA1: ð20Þ

Equation (20) is what would be estimated from data if A2
were not measured and included in analyses (Söderström
and Stoica 2002; Kendall 2015). It will correctly describe
the consequences of selection on A1 even thoughA2 could
be correlated with it. This is because the unmeasured cor-
related character impacts fitness whether it is measured or
not and consequently impacts the association between the
focal character and fitness in its absence (Lande and Arnold
1983). However, the fitness function cannot provide accu-
rate predictions over multiple generations when it is assumed
that the fitness function is constant.
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Over multiple generations the existence of unmeasured
correlated characters will alter parameters in the fitness func-
tion in equation (20) if selection alters genetic variances and
covariances of measured and unmeasured correlated charac-
ters (fig. 6i, 6j). This is because R̂I,t and R̂A1,t are both func-
tions of the covariance between the two characters (eqq. [18]–
[20]). If selection alters this covariance, parameters R̂I,t and
R̂A1,t will evolve with time. It is also why we use the sub-
script t for R̂I,t and R̂A1,t . Evidence of correlated characters
under selection can consequently be inferred if parameters

in fitness functions are observed to change with time in a
system in the absence of a changing environmental driver.
Note that a nonstationary unmeasured environmental driver
could also generate trends in parameter values in fitness
functions in phenomenological IPMs.

Discussion

In this article, we develop an approach that allows predic-
tion of how populations respond to environmental change
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via adaptive evolution and plasticity. We do this by incorpo-
rating insights from evolutionary genetics into data-driven
structured population models. Our approach is to split the
phenotype into its genetic and environmental components
and to model the dynamics of the genetic component with
functions based on understanding of the mechanisms of in-
heritance. In contrast, the dynamics of the environmental
component of the phenotype are modeled with phenome-
nological functions that can be identified from the analysis
of data. Our approach is appropriate for sexually reproduc-
ing or clonal species with either overlapping or nonoverlap-
ping generations.

Evolutionarily Explicit Structured Models

IPMs are now a widely used tool in ecology and evolution
because of their versatility and the ease with which they
can be parameterized (Merow et al. 2014). All key statistics
routinely estimated in population ecology, quantitative ge-
netics, population genetics, and life history describe some
aspect of a character distribution or its dynamics (Coulson
et al. 2010). IPMs are so versatile because they describe the
dynamics of these distributions. Characterization of the
determinants of these statistics gained via sensitivity or elas-
ticity analysis of models has provided insight into how ecol-
ogical and evolutionary quantities that interest biologists
are linked (Coulson et al. 2011). Although this logic was de-
veloped several years ago, there has recently been criticism
that IPMs cannot be used to track the dynamics of multi-
variate breeding values expressed at different ages (Chevin
2015; Janeiro et al. 2017). Our article addresses this criti-
cism head-on; we show how IPMs can be formulated to
capture a mechanistic understanding of inheritance and de-
velopment. In demonstrating this we develop a general mod-
eling approach to capture population responses to environ-
mental change. Having done this, we are now in a position
to construct IPMs of quantitative characters and examine
how perturbing the environment will influence not only
the dynamics of the phenotype and its genetic and envi-
ronmental components but also the life history (Steiner
et al. 2012, 2014) and population dynamics (Easterling
et al. 2000).

The work we present here adds to a growing literature
that explicitly incorporates evolution into structured mod-
els and IPMs in particular. Within the population genetics
paradigm, Charlesworth (1994) developed structured mod-
els with a one-to-one map between genotype and pheno-
type in age-structured populations. Building on this work,
Coulson et al. (2011) showed how simple genetic architec-
tures can be incorporated into IPMs, developing a model
to explore how evolution at a single locus would occur si-
multaneously with phenotypic change of discrete and con-
tinuous characters, life history, and population dynamics.

Working in the quantitative genetic paradigm, Lande
(1982) derived age-structured models that tracked the dy-
namics of the mean of the additive genetic component of
the phenotype (E(A) in our notation) and the mean of the
phenotype itself (E(Z)). He assumed a constant genetic
variance-covariance matrix and consequently weak selec-
tion and normally distributed character values—assumptions
we relax. Barfield et al. (2011) extended Lande (1982)’s ap-
proach to track the dynamics of the entire character distri-
bution and to stage-structured populations. In doing so, they
developed a general, flexible approach to track the entire dis-
tributions of A and Z. Childs et al. (2016) extended this
approach to two sexes. Because A is inherited with mech-
anistic rules that are not impacted by the environment,
while inheritance and development of E are plastic and can
be impacted by the ecological environment (Falconer 1960),
it is difficult to incorporate the effects of the environment
on the dynamics of the phenotype by focusing on A and
Z as Lande (1982), Barfield et al. (2011) and Childs et al.
(2016) have done. In contrast, our approach (which other-
wise has a similar logic to Barfield et al. [2011] and Childs
et al. [2016]) tracks the dynamics of E and A (or G—the
full genotypic value, including nonadditive components—
if desired), making incorporation of environmental driv-
ers that influence inheritance and development of E more
straightforward. We show that it is possible to have selec-
tion operating on the phenotype while incorporating mod-
ern understanding of genetic inheritance into the dynamics
of the genetic component of the phenotype and phenome-
nological insight into the role of the ecological environment
on the dynamics of the environmental component of the
phenotype. By doing this, we show how population responses
to environmental change via adaptive evolution, phenotypic
plasticity, and epigenetic inheritance can be simultaneously
explored. This opens up the way to provide novel insights
into the circumstances when each process is expected to con-
tribute to population responses to environmental change.

Population Responses to Environmental Change

Unlike previous evolutionarily explicit IPMs (Barfield et al.
2011; Childs et al. 2016; Rees and Ellner 2016), our approach
requires explicit consideration of the inheritance and devel-
opment of E, the environmental component of the pheno-
type. This allows our models to capture a range of plastic re-
sponses to environmental change along with adaptive ones.
What do our findings say about the contributions of plas-
ticity, evolution, and their interaction to population re-
sponses to environmental change?
Detrimental environmental change often causes a de-

cline in population size. When there is an association be-
tween a phenotypic trait and survival and recruitment rates,
phenotypic change can lead to increased survival and re-

000 The American Naturalist

This content downloaded from 137.222.138.046 on July 03, 2017 04:42:22 AM

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



cruitment rates (Ozgul et al. 2010) and consequently an in-
crease in population growth rate and size. Two processes
can lead to phenotypic change: plasticity and adaptive evo-
lution. There has been considerable discussion about the
relative roles of each in allowing populations to respond
to change (e.g., Chevin et al. 2010; Bonduriansky et al.
2012).

Genotypes and breeding values remain fixed within in-
dividuals throughout life, which means that differential sur-
vival and recruitment rates are the processes that alter these
distributions and underpin evolution. The strength of dif-
ferential survival and recruitment can be impacted by envi-
ronmental variation generating fluctuating selection (Lande
2007). Environmental variation does not influence genetic
inheritance: once mating pairs are formed, inheritance of
breeding values, A, does not alter the mean or variance of
breeding value distributions (Fisher 1930). In contrast, dis-
tributions of the environmental component of the pheno-
type can be altered via survival, recruitment, development,
and inheritance, with each process potentially impacted by
environmental variation (Reed et al. 2010). Given these dif-
ferences between the dynamics of A and E, plasticity can
lead to more rapid change than evolution in our models
(e.g., fig. 5). This is because more biological processes can
directly alter the distribution of plastic characters than can
impact distributions of breeding values. These results are con-
sistent with those of other authors, including Lande (2009)
and Chevin et al. (2010), who also concluded that plastic
change should be faster than evolutionary change. But how
quickly will evolution alter phenotypic trait distributions?

Our results on the speed of evolution suggest that claims
of detectable rapid evolution in quantitative phenotypes is
likely to take a few tens of generations. For example, envi-
ronmental change increases mortality, leading to a decline
in population size, but for mortality selection to lead to evo-
lutionary change over the course of a generation, a large pro-
portion of the population needs to be selectively removed,
and the phenotype needs to be highly heritable. This is seen
in our model results (fig. 5g–5i) and with a simple numer-
ical example: when all individuals above the mean of a nor-
mally distributed character are removed from the popula-
tion and the trait has a heritable of h2

p 0:5, population
size halves in a single time step, but the mean of the charac-
ter will only shift from the 50th percentile to the 37.5th per-
centile. For a standard normal distribution with a mean of
0 and a standard deviation of unity, this means that the
mean would shift by only 0.319, that is, less than one-third
of a standard deviation. In reality, mortality selection re-
sulting from environmental change will likely result in a
change to the mean of the distribution that is only a frac-
tion of a standard deviation compared with our example.
Given this, reports of rapid evolution due to environmental
change increasing mortality selection over a small number

of generations (e.g., Coltman et al. 2003) should be treated
with caution. It is much more likely that change is a con-
sequence of phenotypic plasticity. Over multiple gener-
ations, recruitment selection can also contribute to evolu-
tionary change, and our approach allows the role of this
to be investigated. However, unless reproduction is restricted
to individuals with extreme phenotypic trait values in both
sexes, it seems unlikely that evolution can generate statisti-
cally demonstrable evolutionary change over a small num-
ber of generations (Coulson et al. 2017). This is not to say
that evolution is not important over longer timescales. Over
tens of generations evolution can shift phenotypic traitmeans
to a greater extent than phenotypic plasticity (fig. 5g–5i, blue
vs. black lines).
In order for plasticity to allow populations to rapidly re-

spond to environmental change, a large proportion of indi-
viduals within the population must exhibit the same plastic
response. A good example of such a dynamic is for size-
related traits that are determined by resource availability,
particularly when scramble competition is operating. When
resources become limiting, all individuals will be unable to
develop as rapidly as when resources are more common. A
consequence of this is that individuals that developed in
cohorts when resource were sparse will exhibit smaller body
sizes compared with individuals in those cohorts that devel-
oped when resources were more abundant. We can capture
this form of plasticity in our framework with an additive ef-
fect of density in the inheritance or development function
for E (e.g., fig. 4). In contrast, when contest competition
operates, larger individuals would acquire more resources
than those that are smaller and would develop faster. We
can capture this in our models with interactions between
density, E, and A in either the inheritance or development
functions for E.
This discussion demonstrates how our approach can be

used to capture different forms of plasticity. However, for
plasticity to help populations respond to environmental
change, it must be adaptive: plasticity must change the
mean trait value in a way that increases fitness (Ghalam-
bor et al. 2007). We demonstrate that for additive, linear
models, adaptive and nonadaptive plasticity can be speci-
fied by altering the sign for the effect of the environment
in the function specifying the mean dynamics of the inheri-
tance or development functions (fig. 4). When interactions
are included in these functions, specifying general rules for
whether plasticity is adaptive or nonadaptive will likely be
more challenging. However, our approach provides a way
in which to investigate when plasticity is adaptive or non-
adaptive and how different types of plasticity will influ-
ence population responses to environmental change.
Our results also show how plasticity can influence evo-

lutionary rates. Plasticity—operating via development and
inheritance functions for the environmental component of
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the phenotype—alters the distribution of the phenotype,
and this can alter the strength of selection, which can then
influence the dynamics of the genetic component of the
phenotype (evolution). The effects of plasticity on selection
and evolution can be surprisingly complex. We examined
only the evolutionary consequences of plasticity following
an environmental shock that influenced all individuals in
the same way, but even in this simple case we found that
adaptive plasticity initially slowed the rate of evolution com-
pared with nonadaptive plasticity before increasing it (fig. 5;
appendix). In general, in order to understand how plasticity
will influence selection, it is necessary to understand how it
influences both the numerator and the denominator of the
selection differential that underpins evolution (Pelletier and
Coulson 2012). The numerator is the covariance between
the phenotype and absolute fitness (Falconer 1960), and the
denominator is mean fitness. In our models of species with
nonoverlapping generations, this is mean recruitment—the
population growth rate (Fisher 1930). Selection is linear in
our models, where plasticity influences all individuals in the
same way via an additive effect of density on inheritance of
the environmental component of the phenotype (fig. 5), and
this means that plasticity influences the population growth
rate rather than the numerator of the selection differential.
A consequence of this is that it is differences in the popu-
lation growth rate that generates the differences in evolu-
tionary rates between models when plasticity is adaptive
and nonadaptive. In more complex cases when plasticity in-
fluences the covariance between the phenotype and fitness
via genotype-environment interactions within a generation,
to understand how selection influences evolution it is nec-
essary to understand not only how plasticity influences mean
fitness but also how it generates differences between the co-
variance between the genetic component of the phenotype
and fitness and the covariance between the phenotype itself
and fitness. Because the components of the selection differ-
ential can be calculated from IPMs (Coulson et al. 2010; Wal-
lace et al. 2013), the approach we develop here provides a
flexible way to examine how different types of plasticity can
influence evolution following environmental change.

We have not considered bet hedging in this article. Bet
hedging is another form of plasticity that can influence the
way populations respond to environmental change, and it
can be incorporated into IPMs (Childs et al. 2010). Deter-
ministic IPMs incorporate probabilistic transitions when
VH(E 0jE,A, t) 1 0 and VD(E 0jE,A, t) 1 0. These probabili-
ties do not vary from one time step to the next. In stochas-
tic models these functions can include terms for an envi-
ronmental driver v, such that the variation in trajectories
changes with the environment. In evolutionarily explicit
models, the variance in transition rates among different
values of E can be made to depend on v, A, and their in-
teraction (if desired). This means that individuals with spe-

cific values of A can produce offspring with more variable
values of E (and consequently Z) in particular environments
than individuals with other values ofA. In this article we fo-
cused on the incorporation of v into mH(E 0jE,A, v, t) and
mD(E 0jE,A, v, t), but responses to environmental change
could also be incorporated into functions for the standard
deviation that we use to construct our kernels. In order to
explore how the various forms of plasticity influence rates
of evolution for real systems, it will be necessary to param-
eterize our models with data.

Parameterizing and Analyzing
Evolutionarily Explicit IPMs

A large literature exists on how to statistically parameterize
IPMs (Easterling et al. 2000; Merow et al. 2014; Rees et al.
2014). The vast majority of IPMs have been constructed
phenomenologically, using statistical descriptions of obser-
vational data. Several authors have shown how fixed and
random effects incorporated into these statistical functions
can be formulated within IPMs (Childs et al. 2003; Rees and
Ellner 2009; Coulson 2012), but additional statistical esti-
mation is required to parameterize the evolutionarily ex-
plicit IPMs we have developed.
Fitness functions in evolutionarily explicit IPMs can be

parameterized using standard general, generalized, and ad-
ditive regression methods that are routinely used to param-
eterize phenomenological IPMs (Rees and Ellner 2009). If
relatedness information is available and the infinitesimal
model is assumed, genetic and phenotypic variances and co-
variances can be estimated using the animal model (Lynch
and Walsh 1998). These quantities can be used to con-
struct the initial distributions of the genetic and environ-
mental components of the phenotype. Parameter estimates
of ecological drivers fitted as fixed or random effects in the
animal model can be used to parameterize inheritance and
development functions for the environmental component
of the phenotype. It is consequently possible to parameter-
ize models using our approach with existing methods.
There is also a large literature on how to analyze IPMs

(Ellner and Rees 2006; Steiner et al. 2012, 2014). The ma-
jority of these tools—including sensitivity and elasticity anal-
ysis of model predictions to transition rates and function pa-
rameters (Ellner and Rees 2006; Coulson et al. 2010, 2011;
Steiner et al. 2012, 2014)—are likely sufficiently general to
be applicable to evolutionarily explicit IPMs. In future work
we plan to parameterize models for bird, mammal, and fish
species with overlapping generations and to analyze them
with existing methods. Once evolutionarily explicit IPMs
have been parameterized and analyzed, we will be able to
explore howpopulations, phenotypic characters, and life his-
tories are predicted to respond to a range of environmental
changes via plasticity and adaptation.
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When Should Evolutionarily Explicit IPMs Be Used to
Predict Population Responses to Environmental Change?

Chevin (2015) and Janeiro et al. (2017) speculated that pub-
lished IPMs that did not include explicit evolutionary pro-
cesses could provide spurious insight. Three strands of evi-
dence suggest that this speculationmay often be unwarranted.

First, the signature of evolutionary change in model pre-
dictions is a function of the heritability of the trait: when
the phenotypic variance is dominated by the environmental
component of the phenotype, then the dynamics of that com-
ponent will dominate model predictions. Most IPMs to date
have been constructed for body weight (Merow et al. 2014), a
trait that often has a heritability of !0.2 in vertebrates (e.g.,
blue tits; Garnett 1981) and often around 0.1 (e.g., bighorn
sheep; Wilson et al. 2005). This means that model predic-
tions will be dominated by the dynamics of the environmen-
tal component of the phenotype and that a phenomenolog-
ical statistical approach to parameterizing these models has
the potential to capture observed dynamics well.

Second, even when phenotypic traits are heritable, they
rarely evolve in the wild as predicted: evolutionary stasis of
heritable phenotypic traits in the presence of directional
selection is frequently observed in nature (Merilä et al.
2001). When fitness functions are monotonic in the phe-
notypic value and selection is directional (which is typical
for body size [Kingsolver et al. 2001]), then in order to
maintain an equilibrium trait distribution the inheritance
function must reverse the phenotypic changes caused by se-
lection. Coulson and Tuljapurkar (2008) showed this for
the mean phenotypic trait. However, when the genotype-
phenotype map is additive and there is additive genetic vari-
ance for the trait, directional selection is expected to result
in evolutionary change, and the inheritance function for the
genetic component of the phenotype cannot reverse genetic
changes attributable to selection. Unmeasured genetically cor-
related characters can prevent evolutionary change in these
circumstances, although the cases when this is likely to pre-
vent evolution are restrictive, and evidence for such charac-
ters playing a major role in limiting evolution in the wild is
lacking (Agrawal and Stinchcombe 2009). Assuming that
selection on the phenotype has been measured appropriately
and is directional, this suggests that the assumption of an
additive genotype-phenotype map may be violated, and the
mean of the parental and offspring breeding value distribu-
tions may not be equal. A mechanism such as overdomi-
nance can achieve this (Fisher 1930). Our approach allows
the effects of relaxing assumptions of quantitative genetics
on evolutionary change to be approximated through the
use of phenomenological inheritance functions for the ge-
netic component of the phenotype.

Third, because evolutionary change is rarely observed in
the wild when it is predicted, observed phenotype change

in natural populations is usually attributable to plasticity (e.g.,
Ozgul et al. 2009, 2010). In these cases, standard nonevolu-
tionarily explicit IPMs have accurately captured observed dy-
namics (Childs et al. 2003; Ozgul et al. 2010; Merow et al.
2014).
These three strands of evidence suggest that evolution-

arily explicit IPMs may frequently not be required to gain
useful insight into population responses to environmental
change. If there is no statistical evidence of temporal trends
in inheritance, development, or fitness function parameters
once variation in the ecological environment has been cor-
rected for, then the use of evolutionarily explicit IPMs may
result in the construction of unnecessarily complex models.
There is often a temptation to include ever more complex-
ity into models, but this comes at the cost of analytical trac-
tability: as more mechanisms or processes are incorporated
into models, understanding why a model produces the pre-
dictions it does becomes increasingly challenging. However,
when evolutionary change is convincingly documented (e.g.,
Reznick et al. 1997) or is proposed to be a possible mecha-
nism generating rapid phenotypic change (Coltman et al.
2003), the construction of evolutionarily explicit IPMs is
advised because the models allow separation of the roles of
adaptive and plastic responses to environmental change.
We have shown how evolutionarily explicit IPMs can be

constructed, invalidating the criticisms of Chevin (2015)
and Janeiro et al. (2017) that IPMs have not been developed
to incorporate the character-state approach of quantitative
genetics. IPMs that are not evolutionarily explicit have been
used to address many questions in ecology, and their appli-
cation has proven insightful (Merow et al. 2014). They are
likely to remain widely used, and we expect this use to re-
sult in important new insights. However, we have extended
their utility to cases where evolutionary processes are known
or proposed to be drivers of phenotypic change.

Conclusions

In this article we have developed a theoretical modeling
approach that links demography and quantitative genetics
to explore how populations will respond to environmental
change. The approach is general, providing formal links be-
tween ecology and evolution. Our work builds on a grow-
ing literature of developing evolutionarily explicit struc-
tured population models. This body of literature shows
how flexible IPMs are. They provide a powerful tool with
the potential to unify ecology and evolution.
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“The Echinoderms (starfishes, sea urchins and sea cucumbers) are far more complicated than the Cœlenterates, having a true alimentary
canal passing through the general cavity of the body. In them for the first time among the Radiates appears a well developed nervous system.
Not only do the young exhibit a bilateral symmetry, but in the higher forms, as the spantangoid sea urchins, this is quite well marked; and
there is a dorsal and ventral side.” From “The Mode of Growth of the Radiates” by A. S. Packard Jr. (The American Naturalist, 1875, 9:218–
240).
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