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Abstract—We study the data mining problem of modeling
adoptions and the stages of the diffusion of an innovation. For
our aim we propose a stochastic model which decomposes a
diffusion trace (sequence of adoptions) in an ordered sequence
of stages, where each stage is intuitively built around two
dimensions: users and relative speed at which adoptions happen.
Each stage is characterized by a specific rate of adoption and it
involves different users to different extent, while the sequentiality
in the diffusion is guaranteed by constraining the transition
probabilities among stages.

An empirical evaluation on synthetic and real-world adoption
logs shows the effectiveness of the proposed framework in
summarizing the adoption process, enabling several analysis tasks
such as the identification of adopter categories, clustering and
characterization of diffusion traces, and prediction of which users
will adopt an item in the next future.

I. INTRODUCTION

The spread of new ideas or technology in a society is a

complex process that starting from a small fraction of the

population, propagates over time through a diverse set of

communication channels, potentially reaching a critical mass.

Understanding the dynamics of such complex process is an

important task with implications for sociology and economics,

as well as important applications, especially in marketing.

The most popular model in this area was proposed by Ev-

erett Rogers in his seminal work “Diffusion of Innovations”,

first published in 1962 [11]. Rogers’ theory models the process

of diffusion of innovation using four main elements: the

innovation, the communication channels, time, and a society.

Those elements work in synergy to produce a diffusion: an

innovation is communicated through a variety of channels,

over time, among the members of a social system. While the

term “diffusion” refers to the overall process at the level of the

social system, the term “adoption” refers to the sub-process

that brings the single individual to the decision of adopting

the innovation. Rogers’ theory provides a categorization of

individuals, based on their propensity to innovate, in five

classes. The individuals who tend to be the first in adopting

innovations are labeled as innovators. The early adopters

tend to adopt ideas after innovators and hold leadership roles

in the social system. Those are responsible for bringing the

innovation to the attention of the mass market. Early majority

is made of individuals that waits until most of their peers adopt

the innovation. Late majority, is the part of the population

who tend to adopt an innovation after the average member

of the society does. Finally laggards are the last to adopt an

innovation.

In this paper we study the data mining problem of modeling

adoptions and the stages of the diffusion of an innovation. Our

unique input is a database of adoptions D, which is a relation

(User,Item,Time) where a tuple 〈u, i, t〉 ∈ D indicates

that the user u adopted the item i at time t.
While a unifying one-model-fits-all theory (as the one by

Rogers) is appealing, when it comes to modeling real-world

data, more flexibility is needed. In fact, real-world items

exhibit consistent differences in the way they diffuse. This is

particularly true if we consider the speed with which nowadays

ideas, news, opinions or rumors can propagate through a

variety of new communication channels, such as on-line social

networks, microblogs, instant messenger systems, and so on.

Firstly, as users are typically interested in a limited number

of topics, the diffusion of different items may interest different

segments of the market, e.g. news about finance are unlikely

to interest teenagers. Secondly, some items may be widely

adopted, whereas others could be adopted by a limited number

of individuals. In other terms, the diffusion of a item can

achieve different level of success. Finally, different items may

exhibit different temporal patterns of diffusion. For instance,

the diffusion of news or tweets happens rapidly and fades out

in few days, whereas the diffusion of books or movies may

last for years after their release.

These considerations motivate the need for a more fine

grained analysis of the diffusion process, aimed at detecting

different groups of items which share similar diffusion pat-

terns, and for each detected group, capture the main diffusion

characteristics (e.g., the stages of diffusions, their temporal

length and adoption rate) in a simple and useful abstraction.

A. Contributions and roadmap

The main contribution of this paper is MASD, a stochastic

framework for modeling adoptions and the stages of diffusions,

which realizes a good compromise between descriptive ca-

pabilities and simplicity. At the high level, the process of

diffusion is decomposed in a finite and ordered sequence

of stages of adoptions, where early stages correspond to

the introduction in the market of a item, while latter ones

correspond to the maturity phase of its life cycle.

The key idea of our framework, is to enforce a 1-to-1

association between the stages of adoptions, and the states



of a Markov model. In particular, in order to capture the

natural sequentiality of the stages of diffusion, we use a

special type of hidden Markov model, known as left-to-right,

where the diffusion of an item starts from the first state of

the model, progresses through later states, never backtracking

to previous states. The number of states is automatically

detected by relying on the Bayesian Information Criterion

(BIC). Each state involves some users more than others, and it

is characterized by a specific rate of adoption, which controls

the elapsed time between consecutive adoptions.

In order to better explain the diffusion mechanisms, we

devise a learning framework that alternates two phases (i)
clustering the diffusions in different groups, and (ii) for each

group fits the parameter of the MASD model by means of an

Expectation Maximization process.

We present a thorough empirical evaluation using both

synthetic and real-world data. Experiments on synthetic data

with planted clustering structure confirm the accuracy of the

learning framework, which is also shown to scale linearly with

the size of data and the number of models. Experiments on

real-world diffusion data show interesting patterns of adoption,

with large diversity among the clusters produced, in terms of

diffusion size and speed. Experiments also shows that a user

is, in most of the cases, bound to one or two states maximum.

Having learned a stochastic model allows us to use it for

predictive purposes. In our experiments, we show how we

can use it to accurately predict, for an on-going diffusion,

which are the users that more likely will adopt the item in a

future time window (e.g., next week). This capability enables

dynamic marketing strategies, in which we focus on targeting

specific segments of users, that are likely to adopt the product

in the near future.

The rest of the paper is organized as follows. In the next

section we provide a brief overview of related literature. In

Section III we introduce our MASD model, while in Section

IV we present the learning framework. Section V contains our

thorough experimentation, and Section VI concludes the paper.

II. RELATED WORK

The problem of understanding the dynamics (how, why and

at which rate) that characterize the process of diffusion of

innovations has received a considerably amount of attention

by different research communities (anthropology, geography,

economy and sociology, just to name a few). Rogers’ seminal

work [11] provides a unified tool for modeling diffusion

processes and it has inspired, among others, several studies that

focus on how information spread on the Web and on online

social networks. In fact, the Web provides a very effective

communication channel for the diffusion of topics, news and

rumors. Leskovec et al. [8] propose a framework for tracking

short phrases (“memes”) across mainstream media sites, and

to study the diffusion dynamics of the news cycle. Similar

techniques enable the tracking of emerging trends on social

and mainstream media [6], [9] and the study of the dynamics

of diffusion process across different kinds of topics [12].

A complementary perspective focuses the role of people

in the diffusion of information. Rogers’ theory identifies five

categories of people by considering the adoption time of each

person with respect to the rest of the population. Given a log

that records browsing behavior, Mele et al. [10] tackle the

problem of identifying users who discover interesting Web

pages before others (early adopters), and such information is

exploited for recommendation purposes. Saez et al. [13] extend

Rogers’ categorization of users, by introducing the concept of

trendsetters, i.e. people that adopt and effectively boost the

spread of new ideas before these ideas become popular. Being

an early adopter does not imply being a trendsetter, as the

latter requires the ability of propagating information to their

social peers through word-of-mouth phenomena.

Social networks enable individuals to share information with

their social peers; in this context, few, high influential, users

can trigger large cascade of adoptions. Bakshy et al. [2] study

how the social network affects online information diffusion.

Their findings confirm that users exposed to the diffusion of

an item are significantly more likely to adopt it than those

who are not exposed. However, the dynamics of diffusion of

information in social networks cannot be exclusively described

by local models, in which the likelihood of adoption for one

user depends only on the adoptions by his peers. Borrowing

Rogers’ categories, Budak et al. [4] confirm that the likelihood

of adoption depends also on the behavior of the considered

user with respect to the entire population.

The research contributions summarized above attempt at

modeling diffusions as either global or local processes, but

they overlook the modeling of the different stages of diffu-

sions, that entails different dynamics and different intensity

with which information is adopted. Another main distinction,

is that the bulk of this literature focuses on analyzing propaga-

tions through a social network, i.e., when the social structure

of the population is an input to the problem. In our work

instead, we model diffusion in a general population, when no

social network is given (D is the only input to our problem).

A setting closer to ours is that of finding bursts in informa-

tion streams. In [7] Kleinberg models the burst of activity in a

data stream as a probabilistic automaton, where each state is

associated with a different level of burstiness. The evolution

of the inter-arrival times between observations in the stream

is captured by state transitions in a specified a hierarchical

structure, where each state has a level of burstiness higher

than the previous one. Finally, the analysis temporal patterns

in the adoption of online content can be cast as time series

clustering problem [15], where each cluster is characterized

by a distinct shape of popularity across time.

III. MODELING THE STAGES OF DIFFUSION

We are given an adoption log D, which is a relation

(User,Item,Time) where a tuple 〈u, i, t〉 ∈ D indicates

that the user u adopted the item i at time t. This data is the

unique input to our problem.

Let U = {u1, · · · , uM} and I = {i1, · · · , iN} denote the

user-set and items-set, respectively. Each diffusion trace Di is



TABLE I: Main notation used.

Symbol Description Symbol Description

D adoption log |D| total number of adoptions

U user-set M number of users

I item-set N number of items

Di adoption trace for item i |Di| number of adoptions in Di

ui,n n-th user adopting i ti,n time of the n-th adoption of i

sj j-th state K number of states

φu,j P (u|φj) λj adoption rate in the state sj
aj,k transition probability qi,n 〈ui,n, ti,n〉

from state j to state k

a record of individuals and their corresponding adoption times

of the item i, such that Di = {〈u, t〉 | 〈u, i, t〉 ∈ D}. We also

denote qi,n = 〈ui,n, ti,n〉 the n-th adoption of item i.
Our goal is to decompose the process of diffusion of items

as a finite and ordered sequence of stages, such that given a

sequence of past adoptions the current stage is univocally iden-

tified. In continuity with Rogers’ theory, users have different

likelihood of being involved in each stage. Each stage is further

characterized by a rate which describes the relative speed

of adoption. These concepts can be formalized by properly

instantiating the density function for observing a specific

adoption given all the previous ones and the current status

of the process (i.e., the current stage sj).

We formulate such density function as:

f(〈ui,n, ti,n〉 | 〈ui,n−1, ti,n−1〉 , · · · , 〈ui,1, ti,1〉 , sj ; Θ) =

P (ui,n|Θj) · f(ti,n|ti,n−1,Θj) =

φui,n,j · f(ti,n|ti,n−1, λj). (1)

In Equation 1, Θ = (Φ,Λ) represents the set of parameters

of the model: (i) Φ is a M ×K matrix, where φj is a multi-

nomial distribution over users for the stage j and φu,j is the

probability that the individual u will adopt the innovation in

the stage j; (ii) Λ is a K-vectors that specifies stages-specific

adoption rates λj ; (iii) Θj represents the set of parameters

governing the j-th stage. Equation 1 entails two assumptions.

First, the density function for an adoption 〈ui,n, ti,n〉 in the

stage sj is defined as the product of observing the adopter ui,n

and the probability density function of observing the adoption

occurring at time ti,n. Second, the probability of observing

the adopter ui,n only depends on her propensity φui,n,j of

adoption in the given stage sj , independently of other users

that have adopted i so far.

One of the most natural ways of modeling temporal dy-

namics is to assume that observations occur continuously and

independently at a constant rate. In our model the adoption

time only depends on the time of the previous adoption and the

stage-specific adoption rate λj . This memoryless process can

be described by employing an exponential distribution: during

each stage sj , temporal gaps between consecutive adoptions

are independent and identically distributed according the fol-

lowing density function:

f(ti,n|ti,n−1, λj) = λj exp{−λj · δi,n},

where δi,n = ti,n−ti,n−1 is the temporal gap between the n-th

adoption and the previous one. The choice of the exponential

distribution implies that the expected elapsed time between

two consecutive adoptions during stage si is 1
λj

.

We are now ready to introduce our MASD model. The key

idea is to consider a 1-to-1 association between the stages of

adoptions, and the states of a Markov model.1 Given K states

S = {s1, · · · , sK} (with K ≥ 2), a Markov model is defined

by a transition probability matrix A, where ai,j encodes the

probability of transition si → sj , i.e., the probability that the

next state will be sj given that the current state is si. For all

si ∈ S, we have
∑

sj∈S
ai,j = 1.

Let S(qi,n) → [1, · · · ,K] associate a stage to each observed

adoption. In order to enforce a clear sequentiality in the

evolution of the stages of adoption we introduce the following

constraints:

S(qi,1) = s1,

S(qi,n) ≤ S(qi,n+1). (2)

That is to say that the diffusion of each item i starts from the

first state, and after each adoption it can only stay in the current

state, or progress through later states, never backtracking to

a state that has been left. These structural constraints can

be accommodated in a special type of hidden Markov model

(HMM), known as left-to-right, or Bakis, model [1].

A HMM is a Markov model, which at each state outputs

observations x. These observation are considered as, either

continuous or discrete, observed random variables, while the

states are hidden. The emission of observed variables is gov-

erned by state-specific distributions P (xn|zn,Φ), where xn is

the n-th observation, zn encodes the status of corresponding

latent variable, and Φ is a set of parameters governing such

distributions. The starting state is defined by a distribution

Π = {πi, · · · , πK},
∑K

j=1 πj = 1.

In our setting, the emission probability density for each

observation 〈ui,n, ti,n〉 at the state sj is given in Equation

1. The main notation we will use in the rest of the paper is

briefly summarized in Table I.

In a left-to-right HMM the state sequence is such that, as

time increases, the state index can only increase, or stay the

same. An example of such a model is given in Figure 1: states

proceed from left to right (hence the name) and this behavior

is achieved by imposing constraints on the values of transition

matrix A (aj,k = 0, if k > j) and by constraining each

sequence to start in the first state (the initial state probability

πj is set to 1 if j = 1, zero otherwise).

(1) (2) (3) (4) A =

2

6

4

a1,1 a1,2 a1,3 a1,4
0 a2,2 a2,3 a2,4
0 0 a3,3 a3,4
0 0 0 a4,4

3

7

5

Fig. 1: A 4-states left-right HMM and its transition matrix.

1All over the paper we use the term “stage” when referring to the
phenomenon we want to model (e.g., “stage of diffusion”), while we use
“state” when referring to the concrete model (e.g., “the state of the HMM).



The choice of modeling the likelihood of user’s adoption by

employing a stage specific multinomial distribution, makes it

possible, in principle, to generate multiple times the adoption

of the same item by the same user. If we want to avoid this, we

can adopt a multivariate hypergeometric distribution, which

simulates the sampling from a finite set of element without

replacing. However, the multinomial distribution converges to

the multivariate hypergeometric distribution for a large size of

the sampling population, as it is in our context where U is

supposedly large.

Finally, note that each individual u ∈ U is not bound to

a unique state, but instead it a distribution of probability of

adoption over the set of states. Nevertheless our model allows

the identification of the different roles played by users in the

diffusion of innovations. If our user u has larger φu,j for

smaller j, then she can considered an innovator, whereas u
can be considered a laggard if φu,j is large for large j (i.e.,

u has more probability of adoptions in the later stages of a

diffusion).

In the next section we present an Expectation Maximization

(EM) process to learn the parameters of our MASD model

from a diffusion log D. As previously discussed in Section I,

we do not attempt to model all the diffusions in D with a

unique single MASD model. On the contrary, we propose a

learning framework that while fitting the parameters of the

model, divide the diffusions in different groups, and produces

a MASD model for each group.

IV. LEARNING

Following the standard EM notation, Θ̂ will represent the

current estimate of the set of parameters Θ = (A,Φ,Λ).
Assuming that each diffusion trace is independent from others,

the likelihood of the data given the model parameters Θ, can

be expressed as:

L(Θ;D) =
∑

i∈I

logL(Θ;Di). (3)

Let zi,n,j be a binary latent variable which is 1 if the

n-th adoption in the trace Di is associated to the state j,

zero otherwise. By assuming that each diffusion trace is

independent from others, we can formalize the Complete-Data

Expectation Likelihood [5] of the generative process, given

graphically in Figure 2, as follows:

Q(Θ, Θ̂) =
∑

i∈I





|Di|
∑

n=2

K
∑

j=1

K
∑

k≥j

ǫ(zi,n−1,j , zi,n,k) log aj,k+

|Di|
∑

n=1

K
∑

j=1

γ(zi,n,j) logP (ui,n|φj)+

|Di|
∑

n=2

K
∑

j=1

γ(zi,n,j) log f(ti,n|ti,n−1, λj)



 ,

where:

• ǫ(zi,n−1,j , zi,n,k) = P (zi,n−1,j , zi,n,k|Di, Θ̂),

• γ(zi,n,j) = P (zi,n,j = 1|Di, Θ̂), i.e., the conditional

probability of observing state j for the n-th adoption in

the diffusion trace Di.

zi,1 zi,2 ... zi,|Di|

ui,1 ti,1 ui,2 ti,2

...
ui,|Di| ti,|Di|

A

Φ Λ

K ×K

K K

N

#Clusters=4 #Clusters:8

Fig. 2: Graphical representation of conditional dependencies among
observed and latent variables (and their respective states) in MASD.

Given an initial setting of the parameters Θ = (A,Φ,Λ)
and we iteratively alternate between the expectation and the

maximization learning steps until we meet a chosen conver-

gence criterion (see [3, Chapter 13] for further details).

During the expectation step we compute:

γ(zi,n,j) =
α(zi,n,j)β(zi,n,j)

∑K

k=1 α(zi,n,k)β(zi,n,k)

ǫ(zi,n−1,j , zi,n,k) =
α(zi,n−1,j)aj,kβ(zi,n,k)f(qi,n|ti,n−1,Θj)

α(zi,n−1,j)β(zi,n,j)
,

where the variables α(zi,n,j) = f(qi,1, · · · , qi,n, zi,n,j) and

β(zi,n,j) = f(qi,n+1, · · · , qi,|Di||zi,n,j) can be computed effi-

ciently by adopting the Forward-backward algorithm [3, pages

618–622], with the emission probability density instantiated as

in Equation 1.

In the maximization step we update the parameters of the

MASD model as follows:

aj,k =

∑N

i=1

∑ni

n=2 ǫ(zi,n−1,j , zi,n,k)
∑N

i=1

∑ni

n=2

∑K

k′=1 ǫ(zi,n−1,j , zi,n,k′)

φu,j ∝

N
∑

i=1

|Di|
∑

n=1
ui,n=u

γ(zi,n,j) (
∑

u

φu,j = 1, 1 ≤ j ≤ K)

λj =

∑N

i=1

∑|Di|
n=2 γ(zi,n,j)

∑N

i=1

∑|Di|
n=2 γ(zi,n,j) δi,n

.

The MASD model that maximizes the likelihood over the



adoption log D, describes in a compact way the diffusion

patterns in the underlying data. However, as we expect in the

data to coexist very diverse types of diffusions (e.g., large vs.

small, fast vs. slow) we focus on detecting more local patterns,

i.e. set of diffusion traces whose dynamics can be accurately

and compactly described by the same MASD model. This can

be accomplished by grouping traces into a set of H clusters,

where each cluster Ch can be accurately described by a MASD

model governed by parameters Θh. Assuming that the number

of clusters H is known, we can apply this simple procedure

that alternates clustering of traces and parameter estimation.

1) Initialization: produce a random partition of traces in

D in H clusters {C1, · · · , CH} and determine the pa-

rameters Θh of the MASD model that maximize the

likelihood over traces in Ch.

2) Update clusters: At each iteration t, compute

h
(t)
i = argmax

h={1,··· ,H}

logP (Di|Θh),

for each trace Di. If h
(t)
i 6= h

(t−1)
i then swap Di from

C
h
(t−1)
i

to C
h
(t)
i

.

3) Update models: For each 1 ≤ h ≤ H , compute

Θh = argmax
Θ

∏

Di∈Ch

P (Di|Θ),

by applying the EM algorithm.

4) Convergence: If the percentage of swaps observed in the

current iteration is below a threshold ϕ, than output the

current partiton {C1, · · · , CH}, otherwise go to step (2).

This is an instance of prototype-based clustering, where

we employ the likelihood P (Di|Θh) to measure how-well

the set of parameters Θh represents the dynamics observed

in each considered trace Di. We shall evaluate empirically

the effectiveness of such procedure and its scalability in

Section V-B.

The clustering procedure may detect groups of diffusion

traces whose dynamics exhibit different levels of complexity

which, in the HMM framework, translates naturally into the

number of hidden states. To automatically tune the number of

states that are best suited to describe the underlying patterns

in each cluster Ch we need a criterion that realizes a trade-

off between quality of fit and complexity of model. For this

purpose, we resort to the Bayesian Information Criterion

(BIC) [14]. Given a cluster Ch and a set of candidate models

having different degree of complexity, i.e. number of states,

we select Θ∗
h as:

Θ∗
h = argmin

Θ
−2 L(Ch|Θ) + kΘ · log(

∑

Di∈Ch

|Di|)

where:

• L(Ch|Θ) =
∏

Di∈Ch
P (Di|Θh),

• kΘ is the number of independent parameters to be esti-

mated, i.e., the number of state transition probabilities

in left-to-right schema, plus the number of emission

probabilities in all the K states, plus one λ in each state,

kΘ =
∑K

k=1 k+K(M − 1)+K = K(K+1)/2+KM .

V. EXPERIMENTAL EVALUATION

In this section, we assess our proposed MASD model by

mean of various experimental analyses on both synthetic and

real-world adoption logs. More in details, our analysis will

cover the following aspects:

1) In synthetic data with planted clustering structure, we

assess the quality and accuracy of the learning frame-

work in “reconstructing” the known clustering.

2) We also assess convergence and stability of the learning

framework, as well as its efficiency on synthetics data.

3) On real-world traces we investigate whether the frame-

work is able to detect clearly distinguishable clusters,

w.r.t. complexity of the models, size and speed of the

diffusions, as well as the population of users involved.

4) We also study the propensity of users in adopting an

item in a state (on real-world data).

5) Finally, we measure the accuracy of MASD model in

two different predictive tasks.

Implementation details. The learning procedure for MASD

has been developed in Java by extending the Jahmm libraries2.

The learning procedure stops when we observe less that 1%
improvement on log-likelihood. All experiments are run on a

Intel Xeon 2.2 Ghz with 6 cores and 16 GB memory.

A. Synthetic data generation

We generate synthetic data with planted clustering structure

in two steps. First, we generate a set of MASD models

as the seeds of the clusters to be generated. In this step,

fixing the number of hidden states, we draw model parameters

from a fully random process: the upper triangular transition

probability matrix is generated randomly, the user emission

probabilities φu,j are generated uniformly at random and then

normalized, and finally the rates of adoption λj are sampled

from a Gamma distribution (shape=2, scale=0.3).

In the second step actual traces are generated using the

following protocol: (i) sample the trace length from a Poisson

distribution with mean 50, (ii) sample uniformly at random

a model for the generative process, and finally, (iii) generate

adoptions by using the selected MASD model as a generative

model.

B. Evaluation on synthetic data

Given the procedure to generate synthetic data with known

clustering structure, we apply our learning framework to the

synthetic data to see to which extent it accurately “recon-

structs” the known clusters. To exhaustively evaluate this

clustering and fitting procedure we vary both the number of

data partitions ({4, 8, 16, 32}) as well as the size of training

data (between 2.5k to 25k). Each experiment is run 10 times.

In Figure 3 we report the results of the evaluation of this

“clustering reconstruction” task in terms of Rand index.3

2code.google.com/p/jahmm/
3http://en.wikipedia.org/wiki/Rand index
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Fig. 3: Accuracy in the “clustering reconstruction” task on synthetic data with planted clusters, measured in terms of Rand index.
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Fig. 4: Convergence rate of the clustering/learning process, measured as the percentage of swaps observed at each iteration.

We can see that the values are generally very high. As

expected the Rand index grows for larger number of clusters

and with the size of observed data. The former is due to the

Rand index definition, while the latter is due to the learning

procedure, which provides better estimate of parameters as it

observes more data.

The convergence rate and the stability of the clustering

procedure can be assessed by considering the number of

swaps, i.e. the total number of changes in trace-to-model

assignments recorded in consecutive iterations. In Figure 4

we report the percentage of swaps at each iteration recorded

on the dataset with 10k traces. Overall, these empirical results

confirm both the effectiveness and stability of the clustering

and learning procedure.

# clusters

# traces 4 8 16 32

2.5k 109± 22 304± 50 674± 90 1.5k ± 125
5k 247± 54 829± 250 2.1k ± 449 4.6k ± 1.5k

10k 577± 60 1.2k ± 279 3.6k ± 501 9.8k ± 1.2k
15k 1085± 245 1.8k ± 547 4.9k ± 544 11k ± 2.9k
20k 1.2k ± 417 3.7k ± 931 7.2k ± 1k 19k ± 5k
25k 2.2k ± 659 4k ± 1.5k 9.7k ± 1.2k 35k ± 2.5k

TABLE II: Learning time (in secs) on synthetic data.

Finally, in Table II, we summarize the running times (in

seconds) of the overall learning phase. The procedure scales

linearly with the size of data and the number of models

and takes less than 10 hours to run in the worst among the

considered settings.

C. Evaluation on real data.

We next evaluate our model in detecting and characterizing

different patterns of adoption on real data. For this purpose, we

consider two datasets, namely MovieLens4 and Yahoo Meme.

The first dataset collects explicit user ratings on movies: for

us, each movie is a certain item diffused over the network

and each adoption corresponds to a user rating a particular

movie. The second dataset is a sample of temporal snapshot

(from 1 Jan. till 31 Dec. 2010) extracted from Yahoo Meme,

a microblogging service5, in which users can share different

kinds of information called “memes”. Here a diffusion trace

is defined by the set of users who have shared the same meme

and their corresponding timestamp of the sharing.

Before studying their diffusion dynamics, we perform some

basic preprocessing of the input datasets, disregarding those

traces whose length differs from the mean more than two

times the standard deviation. A brief summary of the main

properties of both the datasets is given in Table III. The main

difference between the two datasets is the rate of adoptions,

which is clearly higher for Yahoo Meme than MovieLens, as

expected given the different nature of the two datasets (memes

vs. movies). For the sake of presentation, we choose 5 as the

number of clusters to be identified. As explained in Section IV

we employ BIC to select the number of states in the prefixed

range [2, 12].

Table IV summarizes the main properties of the clusters

found by our model. Here, the size of each cluster is the

number of traces that are associated to it, and we can observe

a mix of small and large size clusters on both datasets. As

expected, each cluster reflects the patterns of diffusion with a

different level of complexity, which is indicated by the varying

number of adoption stages. The length of a trace represents

the number of adoptions: while on Yahoo Meme we cannot

4Publicly available at http://grouplens.org/datasets/hetrec-2011/
5Discontinued in May 25, 2012
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Fig. 5: Graphical representation of the MASD model produced in Yahoo Meme dataset. The thickness of arcs indicate the strength of
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(ii) the average percentage of adoptions and (iii) the percentage of traces that involve the corresponding stage. These statistics are computed
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MOVIELENS YAHOO MEME

Number of users 2, 113 21, 236
Diffusion traces 7, 780 33, 421

Overall adoptions 751, 840 954, 871
Avg. adoptions per user 356 45
Avg. adopters per trace 97 29

Avg. time span of traces (days) 1912 65
Avg. adoption rate 0.02 6.25

TABLE III: Datasets statistics.

appreciate a significant difference among clusters with respect

to this dimension, the resulting partitioning on MovieLens

clearly differentiates between popular and less popular traces.

The evolution of diffusion patterns for each cluster can be

nicely described by plotting the corresponding model. Figure

5 graphically shows the stages of diffusion in all the clusters

of Yahoo Meme.

We also discuss the evolution of diffusion rates (λj) in

different states of the model. These are reported in log-scale

in Figure 6. In both the datasets, the rates are higher in the

initial state, i.e., the expected time delay between consecutive

adoptions is low. The rate quickly drops from the first state

and we observe different trends from this point onwards. In

MovieLens, diffusion rates start increasing towards the later

states, where as, in Yahoo Meme we observe an entirely

opposite trend as the rate falls mostly sharply towards the

later states. The evident differences among the evolution of

diffusion rates in different clusters empirically confirms the

need of detecting groups of traces that share the same diffusion

patterns, rather than having a single representative model of

the entire dataset.

In order to assess user involvements in different clusters,

states
size

(traces)
avg. trace

length
avg. time span
of traces (days)

avg. rate
of adoption

C1 7 830 33 1843 2.5E − 4
C2 7 210 472 2222 2.0E − 4
C3 7 3935 37 2373 1.6E − 4
C4 8 2438 188 2528 2.7E − 4
C5 5 367 55 593 1.6E − 4

(a) MovieLens

states
size

(traces)
avg. trace

length
avg. time span
of traces (days)

avg. rate
of adoption

C1 10 18749 26 49 7.7E − 3
C2 4 2485 40 72 9.3E − 2
C3 8 7046 21 55 8.3E − 3
C4 5 2971 39 59 3.0E − 2
C5 5 2120 50 90 4.0E − 2

(b) Yahoo Meme

TABLE IV: Main properties of the diffusion traces within the
detected clusters.

C2 C3 C4 C5

C1 0.12 0.06 0.07 0.15
C2 0.17 0.03 0.16

C3 0.09 0.27
C4 0.16

C2 C3 C4 C5

C1 0.13 0.10 0.10 0.13
C2 0.08 0.07 0.07

C3 0.08 0.09
C4 0.07

(a) MovieLens (b) Yahoo Meme

TABLE V: JSD between cluster-specific multinomial distributions
over users.

we compute P (u|Ch) as the probability of observing a user

adoption u in cluster Ch. The pairwise comparison between

these distributions provides us an insight on how the con-

sidered clusters tend to interest different user segments of

the entire population. Table V reports the Jenson-Shannon

divergence (JSD) (values are bounded in [0, 1] due to the use

of the base 2 logarithm for the computation) between cluster-

specific multinomial distributions over users. This analysis

suggests that while the difference between some clusters can



1 2 3 4 5 6 7

1
e
-0
2

1
e
+
0
0

1
e
+
0
2

State

R
a

te
 o

f 
a

d
o

p
ti
o

n

1 2 3 4 5 6 7

0
.0
1

0
.0
5

0
.5
0

5
.0
0

State

R
a

te
 o

f 
a

d
o

p
ti
o

n

1 2 3 4 5 6 7

1
e
-0
2

1
e
+
0
0

1
e
+
0
2

State

R
a

te
 o

f 
a

d
o

p
ti
o

n

2 4 6 8

0
.0
1

0
.0
5

0
.2
0

1
.0
0

State

R
a

te
 o

f 
a

d
o

p
ti
o

n

1 2 3 4 5

0
.0
1

0
.0
5

0
.2
0

0
.5
0

State

R
a

te
 o

f 
a

d
o

p
ti
o

n

2 4 6 8 10

0
.0
0
1

0
.0
0
5

0
.0
5
0

0
.5
0
0

State

R
a

te
 o

f 
a

d
o

p
ti
o

n

1 2 3 4

0
.0
0
1

0
.0
0
5

0
.0
2
0
0
.0
5
0

State

R
a

te
 o

f 
a

d
o

p
ti
o

n

1 2 3 4 5 6 7 8

0
.0
0
1

0
.0
1
0

0
.1
0
0

1
.0
0
0

State

R
a

te
 o

f 
a

d
o

p
ti
o

n

1 2 3 4 5

0
.0
0
1

0
.0
0
5

0
.0
2
0

0
.1
0
0

State

R
a

te
 o

f 
a

d
o

p
ti
o

n

1 2 3 4 5

0
.0
0
1

0
.0
0
5

0
.0
2
0

State

R
a

te
 o

f 
a

d
o

p
ti
o

n

Fig. 6: Different diffusion rates (log-scale) in the five clusters in MovieLens (top) and Yahoo Meme (bottom).
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Fig. 7: Adoption patterns, in the 5 clusters, MovieLens (top) and Yahoo Meme (bottom).

be explained at user level, other clusters tend to involve the

same users but with different temporal dynamics.

We also look at the differences among the diffusion patterns

of different clusters at the level of individual traces. For this,

first, we select a few representative traces in each cluster.

These traces are the top-5 w.r.t. minimizing the perplexity for

the considered model. Formally:

perplexity(Di|Θh) = exp

{

−
logP (Di|Θh)

|Di|

}

, (4)

where, the numerator is the log likelihood of the adoption

trace given the model and denominator is the length of the

trace (number of adoptions). Then, for each cluster we plot in

Figure 7 the fraction of adoptions with respect to time for the

top-5 representative traces. These plots show homogeneous

patterns of diffusions for the traces belonging to the same

cluster; for instance, the second cluster in MovieLens contains

movies that are diffused slowly in the beginning, however,

their popularity increases sharply after a certain point.

Finally, we study to how many stages a user is associ-

ated. We compute user-specific distributions in each stage

by exploiting the output of the Viterbi algorithm. We define

P (S(u) = j) as the probability that for a given user, an

adoption happens in the j-th stage of the diffusion process, and

we associate the user to a stage only if P (S(u) = j) ≥ 0.1. In

Figure 9 we plot the distribution of the number of stages that

each user is associated to. On both the datasets, the figures

suggest that the majority of the users are associated to 1, or

maximum 2, stages of diffusion.

Furthermore, we compute for each user u the expected stage

in which we observe his adoption, as:

E [S(u)] =

K
∑

j=1

j · P (S(u) = j).
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Fig. 8: Distribution of expected stage of adoption for users in Yahoo Meme.
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Fig. 9: Distribution of the number of stages associated to each user.

We plot the densities of the expected stage of adoption for

each user on Yahoo Meme data in Figure 8. We can observe

again that different clusters exhibit very diverse behavior. An

interesting observation is that a very large portion of the users

have an integer value for the expected stage of adoption: this

is because they have probability 1 of activating in one stage

and 0 in all the other stages.

D. Predictive tasks

The joint modeling of users’ behavior and temporal dynam-

ics allows the application of the proposed model to interesting

prediction scenarios. Assume that we have trained our models

on observed data. For a new item that is only partially observed

(up-to time t), we consider the following two prediction

questions:

• Q1: Which users will adopt the item within a considered

time window (e.g 1 week)? This information, if accurate,

enables dynamic marketing strategies where the focus is

to target specific user segments that are likely to adopt

the item in the near future.

• Q2: How many users will adopt the item in a considered

time window? This determines the future popularity of

an item and an accurate estimate of this could tune the

effectiveness of advertisement.

In order to perform these evaluations we randomly split dif-

fusion traces in Dtrain and Dtest, where the latter accounts for

20% of the overall available data. We use Dtrain for learning

model parameters and Dtest to evaluate model predictions. The

first step of the prediction tasks is to select a portion of each

trace Di ∈ Dtest (that represents a partially observed trace)

and associate it to a model that better describes its dynamics,

or, the one that maximizes its log-likelihood. Note that the

quality of the fitting is expected to change when we increase

the length of observed traces in the evaluation set. To account

for this phenomenon we evaluate the prediction accuracy on 3
settings by varying the lengths of the traces among 60%, 50%
and 40%. The accuracy of the prediction is measured on the

remaining part of the evaluation traces.

We address our first prediction question by means of a

simulation-based method. Here, given a trace Di observed until

time ta, we find its most likely current state of diffusion after

determining the model that suits its dynamics the most. The

current diffusion state is easy to find by applying Viterbi (given

the representative MASD model). From the current state, we

generate multiple samples according to the generative process.

Assuming that we are interested in predicting user adoptions

within the time interval [ta, tb], we stop the generative process

as soon we sample an adoption at a time greater or equal to

tb. We repeat this process for a fixed number of runs (1k in

our setting) and compute the probability of observing user

adoptions in the simulated traces. As baseline competitor, we

rely upon a k-nearest neighbors algorithm. For this, first, we

compute the Jaccard index between the set of users in the par-

tially observed evaluation trace and each other adoption trace

in Dtrain. Then, we select the top-k most similar traces and

aggregate their information within the considered prediction

window to compute the probabilities of users’ adoptions.

Table VI provides the area-under-the-curve (AUC) values

recorded on this evaluation, considering three prediction time

windows, up to 30 days for MovieLens and 24 hours for

Yahoo Meme. Our model consistently outperforms the k-

NN baselines, for all considered values of k. As expected,

the accuracy of our method increases with the length of

the evaluation trace used for fitting, but MASD is still able

to achieve satisfactory results on the most difficult among

considered settings.

We address the second prediction question by considering

similar techniques that we used for the previous question.

Recall that our focus now is to predict the number of adoptions

in a given time window. We generate the predicted number

of adoptions for a partially observed trace by averaging the

length of the synthetic data sampled from the model. The

baseline competitor computes the weighted average (based on

the Jaccard index) of the lengths of the k-nearest neighbors.

The values of mean absolute error (MAE) between the actual

and estimated number of adoptions on both dataset are shown

in Table VII. Again, MASD outperforms the k-NN baseline

in all considered settings.



60% partial observation 50% partial observation 40% partial observation

Time Window MASD k-NN (60, 80, 100) MASD k-NN (60, 80, 100) MASD k-NN (60, 80, 100)
30 days 0.70 0.54 0.55 0.55 0.69 0.55 0.55 0.55 0.69 0.54 0.54 0.55

21 days 0.69 0.55 0.55 0.55 0.69 0.54 0.54 0.55 0.68 0.54 0.54 0.54

14 days 0.69 0.54 0.54 0.54 0.69 0.54 0.54 0.55 0.69 0.53 0.54 0.54

(a) Movielens

60% partial observation 50% partial observation 40% partial observation

Time Window MASD k-NN (60, 80, 100) MASD k-NN (60, 80, 100) MASD k-NN (60, 80, 100)
60 min. 0.83 0.73 0.74 0.75 0.82 0.72 0.73 0.74 0.82 0.72 0.74 0.74

30 min. 0.82 0.72 0.73 0.74 0.81 0.71 0.72 0.72 0.81 0.71 0.72 0.73

15 min. 0.81 0.68 0.70 0.70 0.80 0.69 0.70 0.71 0.81 0.66 0.68 0.69

(b) Yahoo Meme

TABLE VI: Area under the curve (AUC) for predicting single user activations in different time windows. The baseline procedure is evaluated
for three selections of k and three different splits of propagations.

60% partial observation 50% partial observation 40% partial observation

Time Window MASD k-NN (60, 80, 100) MASD k-NN (60, 80, 100) MASD k-NN (60, 80, 100)
30 days 3.42 3.90 3.90 3.92 3.71 3.90 3.91 3.92 4.61 5.14 5.17 5.17

21 days 2.61 3.02 3.02 3.03 2.88 3.02 3.03 3.03 3.61 3.96 3.97 3.98

14 days 1.93 2.22 2.23 2.23 2.16 2.23 2.23 2.23 2.69 2.90 2.91 2.91

(a) Movielens

60% partial observation 50% partial observation 40% partial observation

Time Window MASD k-NN (60, 80, 100) MASD k-NN (60, 80, 100) MASD k-NN (60, 80, 100)
60 min. 3.57 5.56 5.61 5.63 5.32 7.20 7.24 7.25 7.46 9.01 9.08 9.09

30 min. 3.01 4.65 4.69 4.71 4.66 6.13 6.17 6.15 6.69 7.82 7.89 7.93

15 min. 2.49 3.23 3.25 3.26 4.53 5.89 5.92 5.93 5.50 5.63 5.66 5.68

(b) Yahoo Meme

TABLE VII: Mean absolute error (MAE) for predicting aggregate user activations in different time windows. The baseline procedure is
evaluated for three selections of k and three different splits of propagations.

VI. CONCLUSIONS

In this paper we introduce MASD, a stochastic framework

for modeling users’ adoptions and the different stages of

diffusion of innovations. In continuity with Roger’s theory, our

model focuses on the two main dimensions that can explain

the spread of new items through a population, namely the users

and their propensity to adopt a new item in a specific stage

of diffusion, and the speed at which adoptions happen in the

various stages. To capture the evolution dynamics between

stages of adoptions MASD relies on a left-to-right hidden

Markov model. The proposed learning procedure allows us to

detect fine-grained patterns in the underlying diffusion process.

The experimental evaluation over real-world data confirms the

accuracy of the learning framework and its ability to detect

distinct, and interesting, patterns of adoption.

For future work, we plan to investigate an extension of

the proposed model to account for social influence dynamics.

In this scenario, the likelihood of adoption for each user is

naturally expected to increase as more of his social peers adopt

the item. Moreover, each stage of adoption could be further

characterized in terms of virality, hence enabling the detection,

characterization and prediction of stages in which the adoption

of a product will become viral.

Repeatability. All software (sources and executables) and the

sample from Movielens used in our experiments are available

at https://github.com/yasirm/ICDM2014.
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