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Themultilayer perceptron (MLP) topology of an artificial neural network (ANN) was applied

to create two predictor models in Agrobacterium-mediated gene transformation of

tobacco. Agrobacterium-mediated transformation parameters, including Agrobacterium

strain, Agrobacterium cell density, acetosyringone concentration, and inoculation

duration, were assigned as inputs for ANN–MLP, and their effects on the percentage of

putative and PCR-verified transgenic plants were investigated. The best ANN models

for predicting the percentage of putative and PCR-verified transgenic plants were

selected based on basic network quality statistics. Ex-post error calculations of the

relative approximation error (RAE), the mean absolute error (MAE), the root mean

square error (RMS), and the mean absolute percentage error (MAPE) demonstrated

the prediction quality of the developed models when compared to stepwise multiple

regression. Moreover, significant correlations between the ANN-predicted and the actual

values of the percentage of putative transgenes (R2 = 0.956) and the percentage of

PCR-verified transgenic plants (R2 = 0.671) indicate the superiority of the established

ANN models over the classical stepwise multiple regression in predicting the percentage

of putative (R2 = 0.313) and PCR-verified (R2 = 0.213) transgenic plants. The

best combination of the multiple inputs analyzed in this investigation, to achieve

maximum actual and predicted transgenic plants, was at OD600 = 0.8 for the LB4404

strain of Agrobacterium × 300 µmol/L acetosyringone × 20min immersion time.

According to the sensitivity analysis of ANN models, the Agrobacterium strain was

the most important influential parameter in Agrobacterium-mediated transformation

of tobacco. The prediction efficiency of the developed model was confirmed by the

data series of Agrobacterium-mediated transformation of an important medicinal plant

with low transformation efficiency. The results of this study are pivotal to model and

predict the transformation of other important Agrobacterium-recalcitrant plant genotypes

and to increase the transformation efficiency by identifying critical parameters. This

approach can substantially reduce the time and cost required to optimize multi-factorial

Agrobacterium-mediated transformation strategies.
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INTRODUCTION

A rapid improvement in the important economic traits
of plants is needed due to climate change and the steady
increase in global population. Nowadays, in vitro-based
biotechnological methods are applied for breeding with the aim
of improving plant genotypes through rapid multiplication,
micropropagation of disease-free plants, production of plant-
derived metabolites, and gene transformation (Hesami et al.,

2020b). Genetic transformation (genetic engineering) is one of
the key biotechnological tools to improve plant performance.

The genetic transformation of plantscan be achieved by direct

and indirect methods (Niazian et al., 2017). The most effective
and well-known laboratory method for indirect gene transfer
in plants is through Agrobacterium infection (Meyers et al.,
2010). The Agrobacterium method is a simple, efficient, and
practical protocol for the transfer of foreign DNA and is the
first prerequisite to produce genetically modified plants (Abbasi
et al., 2020). However, this is challenging because of the low

efficiency in most of the important plants, as many factors may
affect this process. The Agrobacterium strain, Agrobacterium cell
density, immersion time, type and concentration of antibiotics
to kill Agrobacterium, type and concentration of the selected
antibiotics, concentration of acetosyringone, duration of co-
cultivation, pH and temperature of co-cultivation, and wounding
treatments are the key factors that can affect Agrobacterium-
mediated gene transformation and should be taken into
account in all gene delivery studies (Liu et al., 2020). The first
group of factors that affects Agrobacterium-mediated gene
delivery are Agrobacterium strain, Agrobacterium cell density,
and antibiotic eliminating Agrobacterium, while the second
group of influential factors is explant type and age along with
immersion time and wounding treatment. The third group
of significant factors is the concentrations of other additives,
such as the selected antibiotics for the plant along with the
chemical stimulants. Finally, the fourth group of factors that
is involved in Agrobacterium-mediated gene transformation
which can affect its efficiency are the co-cultivation parameters,
such as duration, pH, and temperature. Plasmids for optimizing
expression in plants (sub-optimal promoter, enhancer, poor
codon usage, 5’UTR sequence, trigger silencing, integration
of the gene into a silent region of chromatin) are another
important influential factor for the genetic transformation of
plants. Numerous studies are underway in order to increase
the efficiency of Agrobacterium–mediated gene transformation
in different plant species and genotypes by optimizing the
aforementioned parameters. In ajowan (Trachyspermum ammi
L.), a medicinal plant, different levels of gene transformation
parameters, including the Agrobacterium optical density
(OD), Agrobacterium strain, Agrobacterium killing antibiotic,
acetosyringone concentration, and inoculation duration were
assessed during the introduction of the BADH gene, and greatest
gene transformation efficiency was obtained using the LB4404
strain of Agrobacterium at OD600= 0.6–0.8× 160 mg/L timentin
× 250 µmol/L acetosyringone × 30min inoculation duration
(Niazian et al., 2019). The different levels of cell density of A.
tumefaciens (OD600 = 0.2, 0.3, 0.5, 0.8, 1.0, 1.2, 1.4) and the

concentrations of acetosyringone (0–100µM) were investigated
in Agrobacterium-mediated gene transformation of Veratrum
dahuricum, a medicinal plant. An optical cell density of 0.8
(OD600 = 0.8) at 600 nm along with 20µM of acetosyringone
were reported as the optimum levels for these parameters (Ma
et al., 2020). Different suspension solutions (OD600 = 0.2, 0.4,
0.6, 0.8, and 1.0), along with the immersion durations (10,
20, 30, and 40min) and acetosyringone concentrations (50,
100, 150, and 200µM), were investigated in Agrobacterium-
mediated gene transformation of Pinus tabuliformis and at
600 nm for Agrobacterium, an optical density of 0.8 × 150µM
acetosyringone × 30min immersion time were reported as the
optimal gene transformation factors (Liu et al., 2020). The effects
of various optical densities of the Agrobacterium suspension
(OD600 = 0.3, 0.35), duration of incubation (5, 10, 15, 20, and
25min), and co-cultivation time (24, 48, 72, 96, and 120 h) were
investigated in the Agrobacterium-mediated transformation
efficiency of pigeon pea [Cajanus cajan (L.) Millsp] (Karmakar
et al., 2019). The authors reported a transformation efficiency
of 83% using Agrobacterium cells at an optical density (OD600)
of 0.25, with an immersion time of 15min, co-culturing with
explants for 72 h which served as the optimized parameters
of transformation (Karmakar et al., 2019). The different
levels of acetosyringone concentration (0, 50, 100, 150, and
200mM) and A. tumefaciens cell density (OD600 = 0.2, 0.4,
0.6, 0.8, and 1.0) were assessed to improve the Agrobacterium-
mediated transformation efficiency of cotton (Gossypium
hirsutum L.‘KC3’) and an A. tumefaciens cell suspension of
OD600 nm = 0.6 containing 100mM acetosyringone led to the
maximum transformation efficiency of 20.25% (Gurusaravanan
et al., 2020).

The incorporation of different chemicals and additives into
the medium, which trigger the transformation activity of
Agrobacterium or increase the regeneration efficiency, is the next
solution to increase the efficiency of Agrobacterium-mediated
transformation. In lily (Lilium cv‘Manissa’) as a cut flower, a
higher transformation efficiency (11.1%) was achieved when
chloroxynil was used instead of acetosyringone (6.6%) as the
phenolic compound (Abbasi et al., 2020). In soybean [Glycine
max (L.) Merrill], the transformation efficiency was improved
(34.6% vs. 23%) when sodium nitroprusside (as the leading
source of the nitric oxide donor) was applied in both shoot
inducing and rooting media (Karthik et al., 2020). Spermidine
incorporation in the culture medium (15 mg/L), as a polyamine,
led to the increased Agrobacterium-mediated transformation
efficiency (17.3%) in watermelon (Citrullus lanatus Thunb.) cv.
Arka Manik (Vasudevan et al., 2020).

The interaction between the plant genotype and the
aforementioned factors, challenges the implementation of the
transformation strategies, leading to genotype-dependency in
gene transformation studies; meaning the different responses of
different plant genotypes to a specific protocol. As an in vitro
procedure, Agrobacterium-mediated transformation is a multi-
factorial biological system that is highly variable and complex in
nature, making it a non-deterministic and a non-linear process.
Highly non-linear and complex relationships of biological events
are difficult to predict by regression-based models. Analysis
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and interpretation of non-linear biological systems by non-
linear and non-parametric methods is much more efficient. One
of the powerful non-linear and non-parametric computational
methods to overcome the problem of regression models is
the artificial neural network (ANN) (Emamgholizadeh et al.,
2015; Pentoś, 2016). A good illustration of this approach
is the work conducted by Wawrzyniak (Wawrzyniak, 2020),
which demonstrates the superiority of neural networks over a
traditional regression-based model in describing the dynamics
of fungal growth in the mass of stored rapeseeds. The author
reported that the use of neural networks not only allows models
that better describe the phenomenon but are also, due to the
lack of preliminary assumptions, able to use the wide spectrum
of experimental data that could not be used in non-linear
regression. Artificial neural networks have been successfully used
to analyze non-linear relationships prevalent in a variety in
vitro studies in plants (Dutta Gupta and Pattanayak, 2017; Arab
et al., 2018). Tobacco is a model plant for gene transformation
studies (Mushtaq et al., 2020). Modeling and optimizing the gene
transformation protocol in this plant can encourage researchers
to establish efficient protocols in other desired recalcitrant plant
species. The aim of this study was to create two predictive models
in Agrobacterium-mediated gene transfer of tobacco under the
influence of different gene transformation parameters.

MATERIALS AND METHODS

The Agrobacterium-Mediated Gene
Transformation Procedure and Calculation
of the Percentage of Putative and
PCR-Verified Transgenic plants
A routine Agrobacterium-mediated gene delivery of tobacco was
conducted using the pCAMBIA2301 binary vector (11634 bp).
This vector carries the kanamycin resistance gene of neomycin
phosphotransferase (nptII), which acts as a selectable marker
for plant selection, and the gusA reporter gene. In the left
border (LB), the nptII gene is driven by the cauliflower mosaic
virus 35S (CaMV35S2) promoter and CaMV35S terminator,
whereas the intron—gusA in the right border (RB) is driven
by the CaMV35S promoter and NOS-terminator. The effects
of the factors in Agrobacterium-mediated gene transformation,
including Agrobacterium strains (AGL1, LB4404, and GV3101),
Agrobacterium cell density (OD600 = 0.6, 0.7, and 0.8),
acetosyringone concentration (200, 300, and 400 µmol/L), and
inoculation duration (immersion time) (1, 10, and 20min) were
assessed. Pre-incubated (2 days) leaf disk explants (1× 1 cm2) of
4-week-old in vitro-obtained plantlets of tobacco were inoculated
into the Agrobacterium suspension, containing the binary vector,
were blot dried on sterile filter paper and co-cultivated in a
phytotron at 25 ± 1◦C with 60 to 70% relative humidity for 48 h
(in dark). The Murashige and Skoog medium (MS) (Murashige
and Skoog, 1962) supplemented with 0.1 mg/L indole-3-acetic
acid (IAA) + 1 mg/L 6-benzylaminopurine (6-BA) and 100µM
acetosyringone was used for co-cultivation (Pathi et al., 2013;
Leng et al., 2020). Explants were then transferred to the
selective regeneration medium. An agar-solidified MS medium,

supplemented with 1 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-
D) + 0.5 mg/L kinetin (Kin) + 200 mg/L kanamycin + 160
mg/L ticarcillin disodium/clavulanate potassium was used for
direct shoot regeneration. All cultures were maintained in a
phytotron at 25 ± 1◦C with 60 to 70% relative humidity under
a 16/8 (light/dark) photoperiod. Regular subcultures of explants
were performed in the same medium. Then, the emerging shoots
(15th day of the experiment) were transferred to a PGR-free
MS medium, supplemented with 100 mg/L kanamycin + 300
mg/L cefotaxime, for rooting, maturation, and elongation. After 2
weeks, the roots of the plantlets were washed with distilled water
to remove any traces of agar. Then, plantlets were transferred
to plastic pots (200-ml) containing autoclaved perlite:peat moss
(1:1) and were kept in a phytotron, with aforementioned
conditions, for 7 days. The surviving plantlets were assumed as
putative transgenic plants and were used as the first dependent
variable (output) of the experiment. Figures 1A–F reports all
the laboratory steps, from inoculation of the explants to the
acclimatization of the putative transformed tobacco plants.
Basal MS medium, plant agar, all PGRs, and antibiotics were
supplied by Duchefa (Haarlem, The Netherlands). The genomic
DNA of putative transformed (kanamycin-resistant) plants was
extracted using the method described by Sika et al. (2015). The
specific primers (forward: 5′-CCACCATGATATTCGGCAAC-3′

and reverse: 5′-GTGGAGAGGCTATTCGGCTA-3′) were used
for the amplification of the NPTII gene (0.54 kb fragment)
with polymerase chain reaction (PCR). The amplification was
performed using a thermal cycler (MyCycler, BIO-RAD, USA)
under the conditions described by Saini and Sonia (2003). The
PCR products were separated by electrophoresis on a 1% agarose
gel and visualized by ethidium bromide. The percentage of PCR-
positive plants were recorded and used as output for the second
predictor model.

Construction of Artificial Neural Networks
and Statistical Analysis
A factorial experiment based on a completely randomized
design with three replications (Petri dishes) was carried out to
study the combined effect of independent variables (number of
independent observations= 3× 3× 3× 3× replications= 243).
Five explants were cultured in each Petri dish and the percentage
of putative transgenes and PCR-verified plants were considered
as dependent variables (y1, y2). The ANOVA for the number
of putative and PCR-verified transgenic plants was performed
using SAS R© (SAS Institute Inc., Cary, NC, USA) software. Two
MLP topologies of the ANN (Kujawa et al., 2014), each with
two hidden layers containing neurons, was trained and tested to
assess the effect of independent variables (Agrobacterium strains,
Agrobacterium cell density, acetosyringone concentration, and
inoculation duration) on dependent variables (percentage of
putative and PCR-verified plants). The first of the independent
variables was qualitative and involved the three adopted values
of the feature considered. The other independent values were
quantitative. The extended ANN topologies, including input,
output, and number of hidden layers, for percentage of putative
transgenic plants and PCR-verified plants are presented in
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FIGURE 1 | Steps for creating putative transgenic tobacco plants. (A) The inoculation of leaf square explants in Agrobacterium suspension (bar = 2 cm). (B) The

establishment of Agrobacterium-inoculated explants in an agar-solidified selective regeneration medium (bar = 2 cm). (C) The emergence of direct regenerated shoots

in the selective regeneration medium (bar = 2 cm). (D) The rooting of putative transgenic shoots in the PGR-free MS medium containing kanamycin and cefotaxime

antibiotics (bar = 2 cm). (E) The elongation of the rooted putative transgenic seedling of tobacco in the PGR-free MS medium containing kanamycin and cefotaxime

antibiotics (bar = 2 cm). (F) The acclimatization of the putative transgenic tobacco plant under greenhouse conditions (bar = 4 cm).

Figures 2A,B, respectively. In both models, the independent
variables were directly fed into the input layer and their
interaction effects on the output were evaluated. An Automatic
Network Designer (AND) from Statistica v7.1 (StatSoft Inc.,
Tulsa, OK, USA) was applied to build the ANN models. The
following assumptions were made when using the AND: MLP
structure of the neural network; 1 or 2 hidden layers; 1–
20 neurons in each hidden layer; activation function—linear
or logistic. The optimization process was conducted using
trial and error to find the best topology of the AND: MLP
structure. In both models, the experimental data (243 data) were
divided into 70%:15%:15% parts for training, validation, and
testing, respectively. Basic network quality statistics, including
SD, mean error, deviation error, mean absolute error, quotient
of deviation, and correlation coefficient, were calculated and
the model with the lowest mean absolute error and the
largest correlation coefficient values was considered the best
model. The efficiency of developed ANN models for predicting
the dependent variables (the quality of the prediction) was
assessed through the ex-post measures of the prediction error,
including the mean absolute error (MAE), the root mean square
error (RMS), the relative approximation error (RAE), and the
mean absolute percentage error (MAPE) statistics (Niedbała,
2019). The impact of independent variables (network inputs)
on dependent variables was determined through a sensitivity
analysis of the neural network. Error quotient and the rank of
variables were applied in the sensitivity analysis (Niedbała et al.,
2019a,b). A classical stepwise multiple regression model was

generated with SAS R© software using the same inputs and outputs
of the ANN–MLP model.

RESULTS

The analysis of variance (ANOVA) reported a significant effect
of the treatments and their interactions with the percentage
of putative and PCR-verified transgenic plants (Table 1). The
four-way interaction of Agrobacterium strain, Agrobacterium cell
density, acetosyringone concentration, and inoculation duration
was significant for the percentage of putative and PCR-verified
transgenic tobacco plants at the 1% probability level (Table 1).

The best networks were selected, among 10,000 networks,
according to the ideal qualitative indicators. The ANNs selected
for further analysis were characterized by a linear aggregation
function in all of the layers. A linear activation function was
applied to the input layer. The neurons in the hidden layers
included a hyperbolic activation function. Moreover, a logistic
activation function was adopted in the output layer. Basic
information on the quality of the adapted neural networks
for modeling Agrobacterium-mediated gene transformation of
tobacco is presented in Table 2. The small values of errors
(learning, validation, test, average, deviation, and mean absolute
errors) and the high amount of correlation obtained indicate the
strength of the expanded models (Table 2).

The response surface for the interaction effects of
Agrobacterium cell densities and acetosyringone concentrations
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FIGURE 2 | The topology of applied ANN models to predict the percentage of putative and PCR-verified transgenic tobacco. (A) The topology of the ANN with four

input factors to predict the percentage of putative transgenic tobacco plants. (B) The topology of the ANN with four input factors to predict the percentage of

PCR-verified plants.

on putative transgenic tobacco plants showed that the highest
percentage of putative transgenic tobacco plants can be
obtained by the Agrobacterium cell density, at 600 nm, of 0.8
(OD600 = 0.8) × 280–300µM of acetosyringone (Figure 3A).
The chart for the response surface of the interaction effects
of Agrobacterium cell densities and inoculation durations
showed that Agrobacterium cell density of 0.8 (OD600 = 0.8) ×
20min inoculation is the best combination to reach the highest
percentage of putative transgenic tobacco plants (Figure 3B).
The chart for the response surface of the interaction effects
of acetosyringone concentrations and inoculation durations
showed that acetosyringone concentrations of 400µM × 20min
inoculation is the best combination of these two variables in
terms of percentage of the putative transgenic plants (Figure 3C).

The response surface for the interaction effects of
Agrobacterium cell densities and acetosyringone concentrations
on PCR-verified plants showed the highest percentage of
transgenic tobacco plants can be obtained by the Agrobacterium
cell density, at 600 nm, of 0.8 (OD600 = 0.8) × 400µM of
acetosyringone (Figure 4A). The chart for the response surface
of the interaction effects of Agrobacterium cell densities and
inoculation durations showed that Agrobacterium cell density of
0.8 (OD600 = 0.8) × 20min inoculation is the best combination
to reach the highest percentage of transgenic tobacco plants
(Figure 4B). The chart for the response surface of the interaction
effects of acetosyringone concentrations and inoculation
durations reported that acetosyringone concentrations of 220–
240µM × 18–20min inoculation is the best combination of
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TABLE 1 | Analysis of variance (ANOVA) of the percentage of putative and PCR-verified transgenic tobacco plants under the main and interactive effects of parameters

investigated.

Source of variation degree of freedom Mean squares*

Putative transgenes PCR-verified transgenic plants

Agrobacterium strain 2 1.800 18,009.565

Agrobacterium optical density (OD600) 2 0.238 2,387.563

Acetosyringone concentration 2 0.285 2,854.690

Inoculation Duration 2 0.320 3,202.952

Agrobacterium strain × OD600 4 0.072 723.022

Agrobacterium strain × Acetosyringone concentration 4 0.038 383.349

Agrobacterium strain × Inoculation duration 4 0.009 98.092

OD600 × Acetosyringone concentration 4 0.204 2,042.062

OD600 × Inoculation duration 4 0.032 329.166

Acetosyringone concentration × Inoculation duration 4 0.012 123.589

Agrobacterium strain × OD600 × Acetosyringone concentration 8 0.021 217.415

Agrobacterium strain × OD600 ×Inoculation duration 8 0.005 59.192

Agrobacterium strain × Acetosyringone concentration × Inoculation duration 8 0.010 100.975

OD600 × Acetosyringone concentration × Inoculation duration 8 0.026 269.226

Agrobacterium strain × OD600 × Acetosyringone concentration × Inoculation duration 16 0.006 60.839

Coefficient of Variation (%) 16.770 16.770

*Significant at 1% probability level.

TABLE 2 | Basic information of the quality and structure of the neural models

produced for putative and PCR-verified transgenic tobacco plants.

Neural network structure Putative

transgenic

plants

PCR-verified

transgenic

plants

MLP 4:6-13-6-1:1 MLP 4:6-5-6-1:1

Learning error 0.034 0.126

Validation error 0.047 0.084

Test error 0.035 0.209

Mean 0.233 6.744

Standard deviation 0.177 9.954

Average error 0.000 −0.031

Deviation error 0.036 5.721

Mean Absolute error 0.026 3.042

Quotient deviations 0.207 0.574

Correlation 0.978 0.819

these two variables in terms of percentage of the PCR-verified
transgenic plants (Figure 4C).

The results of the prediction errors of the developed models,
using measures prediction ex-post of analyzed neural models,
are presented in Table 3. The small number of prediction
errors (MAPE, RAE, RMS, and MAE) obtained, indicted the
strength and accuracy of the developed models in forecasting
the percentage of putative and PCR-verified transgenic tobacco
plants (Table 3). The scatter plot of the observed vs. the predicted
values of the percentage of putative transgenic tobacco plants
showed there was no significant difference between the observed

and the ANN–MLP predicted data (Figure 5A). The high value
of the determination coefficient of the model (R= 0.97) suggests
high repeatability of the established model (Figure 5A). The
scatter plot of the observed vs. the predicted values of the
percentage of PCR-verified transgenic tobacco plants reported
no significant difference between the observed and the ANN–
MLP predicted data (Figure 5B). The determination coefficient
of the model (R2 = 0.97) indicates a good performance of
the established model (R = 0.819) to predict the percentage of
transgenic tobacco plants (Figure 5B).

Comparison of the actual values of outputs, achieved from
the interaction of the different levels of the four inputs, with
predicted values achieved from the ANN models, showed the
greatest measured and predicted values of the percentage of
putative and PCR-verified transgenic tobacco plants were related
to the interaction of the LB4404 strain of Agrobacterium ×

cell density of 0.8 (OD600 = 0.8) × 300µM of acetosyringone
× 20min inoculation duration (Supplementary Tables 1, 2).
Therefore, this combination of inputs was selected as the
optimal condition for Agrobacterium-mediated transformation
of tobacco. The next important combination of inputs that led
to the higher measured and predicted values of the percentage of
putative and PCR-verified transgenic tobacco plants was related
to the GV3101 strain of Agrobacterium × cell density of 0.8
(OD600 = 0.8)× 300µMof acetosyringone× 20min inoculation
duration (Supplementary Tables 1, 2). The lowest measured and
predicted values of the putative transgenic plants were obtained
from the AGL1 strain of Agrobacterium × cell density of 0.6
(OD600 = 0.6) × 400µM of acetosyringone × 1min inoculation
duration and AGL1 strain of Agrobacterium × cell density of 0.7
(OD600 = 0.7) × 200µM of acetosyringone × 1min inoculation
duration (Supplementary Table 1).
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FIGURE 3 | The response surface for the interaction effects of

Agrobacterium-mediated gene transformation parameters on putative

transgenic tobacco plants. (A) The interaction effects of Agrobacterium cell

densities and acetosyringone concentrations on the percentage of putative

transgenic tobacco plants. (B) The interaction effects of Agrobacterium cell

densities and inoculation durations on the percentage of putative transgenic

(Continued)

FIGURE 3 | tobacco plants. (C) The interaction effects of acetosyringone

concentrations and inoculation durations on the percentage of putative

transgenic tobacco plants.

Results from the stepwisemultiple regression analysis revealed
the lower performance of this classical statistical model when
compared to the ANN–MLP models, in terms of R2, RAE, MAE,
RMS, and MAPE statistical values (Table 4). The correlation
coefficient of the classical stepwise regression analysis for putative
(R2 = 0.313) and PCR-verified transgenic plants (R2 = 0.213) was
significantly lower than those obtained from MLP–ANN models
(R2 = 0.956, R2 = 0.671). Instead, the prediction errors (MAPE,
RAE, RMS, and MAE) of the stepwise multiple regression
analysis for putative and PCR-verified transgenic plants (Table 4)
were higher than those of the developed MLP–ANN models
(Table 3).

The network sensitivity analysis of the produced neural
models reported the highest rank (1) of investigated factors was
related to the Agrobacterium strain, which suggests that this
factor is the most important input variable with the potential
to affect the percentage of putative transgenic tobacco plants
(Table 5). Based on their impact on the Agrobacterium-mediated
gene transformation of tobacco, Agrobacterium cell density,
acetosyringone concentration, and inoculation duration were in
the second, third, and fourth places of importance, respectively
(Table 5).

DISCUSSION

Earlier Agrobacterium-mediated transformation experiments
were analyzed by classical statistical approaches, such as ANOVA
and mean comparison analysis, to interpret the experimental
results and establish an optimized Agrobacterium-mediated gene
transformation protocol (Niazian et al., 2019; Gurusaravanan
et al., 2020; Liu et al., 2020; Ma et al., 2020). In plant
sciences, there are certain assumptions in order to utilize
parametric analysis methods (e.g., ANOVA, correlation, t-
tests, and regression). Normal distribution of residuals and
homogeneity of variance of the errors are the most important
assumptions (Ghasemi and Zahediasl, 2012). Checking data
distribution, using the normality test (especially frequentist
tests), is a prerequisite to apply parametric tests in plant
data. However, in plant dynamic study, data have leptokurtic
distribution and univariate normality tests are not efficient
(Delmail et al., 2011). Therefore, non-parametric tests need
to be applied when the basic mentioned assumptions are
violated and there is evidence of non-normality and presence
of outliers. Consequently, assumptions made on the distribution
and homogeneity of the variance of errors are not required
in non-parametric algorithms (Pour-Aboughadareh et al., 2019;
Hocaoglu et al., 2020).

Results of this study reported that the highest levels of
Agrobacterium optical density and acetosyringone concentration
as well as inoculation duration led to an optimal response in
the plant transformation. However, when all the experimental
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FIGURE 4 | The response surface for the interaction effects of

Agrobacterium-mediated gene transformation parameters on PCR-verified

(Continued)

FIGURE 4 | transgenic tobacco plants. (A) The interaction effects of

Agrobacterium cell densities and acetosyringone concentrations on the

percentage of transgenic tobacco plants. (B) The interaction effects of

Agrobacterium cell densities and inoculation durations on the percentage of

transgenic tobacco plants. (C) The interaction effects of acetosyringone

concentrations and inoculation durations on the percentage of transgenic

tobacco plants.

TABLE 3 | Measures prediction ex-post of analyzed neural models.

Error measure MAPE RAE RMS MAE

MLP 4:6-13-6-1:1 15.994 0.159 0.037 0.027

MLP 4:6-5-6-1:1 33.979 0.339 8.844 5.858

MAPE, mean absolute percentage error; RAE, relative approximation error; RMS, root

mean square error; MAE, mean absolute error.

inputs are considered (four-way interactions), it was observed
the highest level of acetosyringone did not lead to the highest
predicted value of the outputs and the negative effect of the
higher levels of acetosyringone was evident in the measured
and the predicted values of putative and PCR-verified transgenic
plants. Actually, we selected the effective levels of parameters
investigated as the final level, and increased levels of these three
inputs may lead to a lower percentage of transgenic plants. In
biological experiments, such as Agrobacterium-mediated gene
transformation, there is a threshold for the applied parameters.
Levels and concentrations greater than the optimum will lead
to an inhibitory effect. For example, higher Agrobacterium cell
density and longer inoculation durations have destructive effects
on host cells and significantly reduce regeneration. It is a similar
situation for acetosyringone where concentrations higher than
the optimum level have inhibitory effects on both Agrobacterium
as well as the host cells (Niazian et al., 2019).

The efficiency of Agrobacterium-mediated gene
transformation depends on the main and interactive effects
of several pivotal parameters. Testing the serial levels
(concentrations) of each parameter independently, and/or
in combination with the serial levels of other parameters, is
the methodology that has been applied to find the optimum
level(s) of input and increase the efficiency of the Agrobacterium-
mediated gene transformation strategies. However, this is a
costly and time-consuming process. Predicting the value of
the response from the values of the independent variables can
help to understand the effect of a factor on a process (Barone,
2019). Usually, there are complex non-linear relationships that
exist between the independent (input) and dependent (output)
parameters of plant in vitro studies. In addition, the interaction
of these parameters with the plant genotype and environment
leads to a non-deterministic condition (Prasad and Gupta, 2008).
Classical linear regression methods are unable to predict and
interpret the non-linear and complex relationships between the
variables investigated (Niazian et al., 2018). Non-parametric
algorithms, such as ANNs, partial least square regression (PLSR),
random forest (RF), and support vector machines (SVMs), have
great efficiency for processing non-linear data (Zheng et al.,
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FIGURE 5 | The scatter plot of the observed vs. the predicted values of (A) the percentage of putative transgenic tobacco plants and (B) the percentage of

PCR-verified transgenic tobacco plants in the fitted ANN models.

2018; Hesami and Jones, 2020; Niazian and Niedbała, 2020).
Artificial neural networks, especially MLP, have superiority over
the classical statistical methods for analyzing and interpreting
unpredictable data sets (Salehi et al., 2020). As a data-driven
model, ANN can be used for predicting and optimizing

non-linear plant in vitro studies (Hesami et al., 2017). Through
the full use of all spectral data and by avoiding multicollinearity,
ANNs are able to manage non-normal, non-linear, and non-
deterministic data sets obtained from multi-factorial plant in
vitro studies. In MLP–ANN, the interconnection of neurons
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TABLE 4 | The performance of stepwise multiple regression to predict the percentage of putative and PCR-verified transgenic tobacco plants based on R2, MAPE, RAE,

RMS, and MAE.

Variable in the model Output Performance

R2 MAPE RAE RMS MAE

Agrobacterium strain +

Agrobacterium optical density +

Acetosyringone concentration +

Inoculation duration

Percentage of putative transgenic plants 0.313 18.834 0.267 0.149 0.124

Percentage of PCR-verified transgenic plants 0.213 79.617 0.5000 8.922 19.990

TABLE 5 | The sensitivity analysis of the governing variables on the percentage of putative and PCR-verified transgenic tobacco plants.

Variable Quotient Rank

MLP 4:6-13-6-1:1 MLP 4:6-5-6-1:1

Agrobacterium strain 4.172 2.109 1

Agrobacterium cell density (OD600) 3.596 1.718 2

Acetosyringone concentration 3.386 1.556 3

Inoculation duration 2.504 1.270 4

is formed by feedback on training with the backpropagation
algorithm. Networks are trained to transform input data
to a specific response (dependent variable). Interconnected
neurons of hidden layers are not directly influenced by any
input variable, which gives specific predictive power to the
MLP–ANN (Barone, 2019). The scatter plot of the observed vs.
the predicted values along with R2, RAE, MAE, RMS, and MAPE
statistics demonstrated the predictive power and accuracy of
the developed MLP–ANN models in this study. This accuracy
was reflected in the close actual and predicted values of the
percentage of putative and PCR-verified transgenic plants. The
power of our developed models is reported as the prediction
percentage of putative and PCR-verified transgenic tobacco
plants. Tobacco is a model plant for gene transformation studies.
The efficiency of the developed predictor model was tested in
a medicinal plant with low transformation efficiency (Niazian
et al., 2019). The results obtained showed a high similarity of
the ANN-predicted and the actual values of the transformation
efficiency in ajowan (Trachyspermum ammi L.), a medicinal
plant (Supplementary Table 3). All similar actual and predicted
values of the percentage of putative transgenic ajowan plants
showed the efficiency of our predictor model in other plant
species with low transformation efficiency. By using different
data sets of the percentage of putative and/or PCR-verified
transformants, other researchers can use these models in
Agrobacterium-mediated transformation studies and predict the
gene transformation efficiency of their protocols in desired dicot
and monocot species.

The efficiency of an Agrobacterium-mediated gene
transformation protocol can be determined through the
percentage of regenerated plants in the selective medium,
the molecular methods employed (percentage of PCR-
verified plants and percentage of plants verified through
advanced molecular techniques such as RT-PCR and Southern
blot), and the expression methods used. In this study, we

presented two different predictor models. The first one is a
cost-effective predicting model, in Agrobacterium-mediated gene
transformation of tobacco, as it used regenerated plants in the
selective medium (putative transgenic plants) as output of the
model and was found to be independent of time-consuming
and expensive advanced molecular techniques. The regeneration
percentage of inoculated explants in the selective medium is the
most important factor that determines the efficiency of the final
gene transformation study. The more the number of putative
transgenic plants, the more the transgenic events. Finding and
predicting the best combination(s) of factors influencing the
percentage of putative transgenic lines will help increase the
number of transgenic events in an Agrobacterium-mediated
transformation study. Hence, the first model of this study is a fast
and cost-effective model used to predict putative transformants
in an Agrobacterium-mediated transformation study. However,
the second model is suitable for predicting the transformation
efficiency, as the output of this model is the percentage of PCR-
verified plants. There is only one recently published paper in
this field, which utilized gene transformation efficiency as output
of the machine learning models. Actually, it is a data mining
work that used an “ensemble model” for combining and mixing
previously published data sets of Agrobacterium-mediated gene
transformation of chrysanthemums employing different in vitro
regeneration and Agrobacterium-mediated gene transformation
protocols (Hesami et al., 2020a). The obtained high values of
R2 and low values of prediction errors in developed ANN–
MLP models over the classical stepwise multiple regression
indicate the high similarities and low differences between the
experimental data (observed) and the predicted values through
the established ANN models and the superiority of the models
in comparison with the classical model. The high similarity
of the observed (measured) and the ANN-predicted data has
been reported in earlier plant in vitro studies (Dutta Gupta and
Pattanayak, 2017). With all the mentioned results, it should
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be noted that uncertainty is of major importance in machine
learning algorithms for the purpose of prediction. Uncertainty
caused by randomness (aleatoric) and uncertainty caused by
ignorance (epistemic) are the two inherently different sources
of uncertainty, which are usually not distinguishable in a
learning algorithm. Additional data (information) can reduce
the epistemic uncertainty in supervised learning algorithms
(Hüllermeier and Waegeman, 2021).

The sensitivity analysis of the established ANN models
showed the Agrobacterium strain is more important when
compared to other parameters investigated in the gene
transformation of tobacco. According to the sensitivity analysis
on the developed ensemble model in Agrobacterium-mediated
gene transformation of chrysanthemums, (Hesami and Jones,
2020) also reported the highest variable sensitivity ratio (1.86)
for the Agrobacterium strain, Gehl et al. (2020) reported a
better regeneration rate and potentially higher number of shoots
in the genetic transformation of Campanula medium by the
AGL1 Agrobacterium strain compared to the GV3101:pMP90
and ABI strains. The LB4404 Agrobacterium strain was more
efficient than the AGL1 strain in the gene transformation of
foxtail millet (Setaria italic L.) (Sood et al., 2020). Host–pathogen
interaction is an important factor in Agrobacterium-mediated T-
DNA delivery, as it can significantly affect the survival rate and
regeneration activity of the transformed explants (Agarie et al.,
2020). The transcription levels of the virulence (vir) genes in
the induction medium can affect the transformation efficiency of
Agrobacterium tumefaciens strains, as high transcriptional levels
of vir genes were important for successful transformation (Wang
et al., 2020).

It is obvious that there are other parameters that affect
the efficiency of a gene delivery study. Parameters related to
plasmids for optimizing expression (sub-optimal promoter,
enhancer, poor codon usage, 5’UTR sequence, trigger silencing,
integration of the gene into a silent region of chromatin)
along with the in vitro regeneration parameters (type of the
basal culture medium, explant type, explant age, type and
concentration of PGRs, additives, etc.) are also involved in
the results of an Agrobacterium-mediated transformation.
Therefore, two sets of optimizations are needed to develop an
efficient gene transformation protocol, including optimization
of the tissue culture protocol parameters and optimization
of the gene transformation protocol parameters, considering
these parameters together can help to achieve a comprehensive
and reliable model. However, this requires a huge number
of experiments. In addition, there are some in planta
transformation methods that are independent of the in
vitro regeneration parameters (Niazian et al., 2017). Therefore,
the results of this study are valuable for standard and in planta
Agrobacterium-mediated transformation of plants.

CONCLUSIONS

The optimization of plant in vitro studies, by taking into account
all the influential factors, is laborious, time-consuming, and

challenging because of its multi-factorial nature. A powerful
data analysis can help researchers improve the efficiency, time,
and cost-effectiveness of their techniques, and subsequently
generate a better decision-making tool in complex biological
processes. Using complex mathematical functions, ANNs are
able to analyze non-deterministic and non-linear data sets of
plant in vitro studies. Modeling and predicting complicated
in vitro processes, such as Agrobacterium-mediated gene
transformation, through ANNs can be useful in identifying
the influencing factors. Establishing an optimized model in a
specific plant genotype can be helpful in overcoming the barriers
of genetic engineering in important Agrobacterium-recalcitrant
plant genotypes.

This study demonstrates that a novel ANN is an accurate
approach for assessing the effect of Agrobacterium strains,
Agrobacterium cell densities, acetosyringone concentrations,
and inoculation durations on the percentage of putative and
PCR-verified transgenes in tobacco. Based on our results, the
greatest actual and predicted values of the percentage of putative
and PCR-verified transgenic plants were obtained by 20-min
inoculation of tobacco leaf explants in a suspension of the
LB4404 strain of Agrobacterium at optical density (OD600)
of 0.8 and 300µM of acetosyringone. The Agrobacterium
strain was the most important factor among all parameters
studied. The predicted values of the percentage of putative
and PCR-verified transgenic plants were close to those
observed, which indicates the efficiency of the established
ANN models. The developed model was also efficient in
predicting the gene transformation efficiency of an important
medicinal plant with a low rate of transformation. Through
the precise and efficient data interpretation, ANN could be
helpful for optimizing the gene transformation conditions in
Agrobacterium-mediated gene transformation studies, regarding
all the influential parameters (expression plasmid optimization,
Agrobacterium, and in vitro regeneration parameters),
and open the way for targeted genome editing methods,
such as clustered regularly interspaced short palindromic
repeats-associated (CRISPR/Cas).
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