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The paper describes amultistage influence diagram game formodeling themaneuvering decisions of pilots in one-

on-one air combat. The game graphically describes the elements of the decision process, contains a model for the

dynamics of the aircraft, and takes into account the pilots’ preferences under conditions of uncertainty. The pilots’

game optimal control sequences with respect to their preference models are obtained by solving the influence

diagram game with a moving horizon control approach. In this approach, the time horizon of the original game is

truncated, and a feedback Nash equilibrium of the dynamic game lasting only a limited planning horizon is

determined and implemented at each decision stage. To demonstrate the influence diagram game and its aspects,

exampleswith a pointmass aircraftmodel are computed andanalyzed. The gamemodel presented in the paper offers

a new way to analyze optimal air combat maneuvering and to develop an automated decision making system for

selecting combat maneuvers in air combat simulators.

I. Introduction

T HE paper introduces a nonzero-sum multistage influence
diagramgame that describes pilots’ sequential control decisions

in one-on-one air combat. The game takes into account the dynamics
of the aircraft, the pilots’ preferences, and the uncertainty related to
the decisionmaking in a structured and transparent way allowing, for
example, the elicitation of preference information from the actual
decision makers. As far as the authors know, the game model is the
first application of influence diagrams in which the earlier ideas
related to influence diagram game modeling and dynamic decision
settings are taken into practice.

Because rigorous mathematical methods that result in practically
feasible guidance solutions for realistic game models of one-on-one
air combat are not available [1], it is imperative to consider some
other approaches. An alternative is to consider how factors like
preferences, perception, and beliefs reflect themselves in an air
combat game setting. Overall, the modeling work should not bypass
the fact that human influence is in some form always present in air
combat. From a practical point of view, an important question is how
to produce computer guided pilots that act in a controlled,
explainable, and understandable manner? This issue is of particular
interest to developers of decision making systems used, for example,
in air combat simulators or unmanned aerial vehicles.

Influence diagrams [2,3] are directed acyclic graphs that describe a
decisionmaking situation and provide amethodological basis for the
ranking of the available decision alternatives. They are closely
related to decision trees (see, e.g., [4]) that originate from the theory
of games in extensive form [5]. A diagram consists of decision,
chance, and utility nodes and arcs connecting them. Influence
diagrams separate the structural aspects of a specific decision
problem from the aspects related to the opinions of the decision
maker. The structured and well-laid foundations of the methodology
make the modeling process transparent, traceable, and under-

standable also for the experts of the substance area. Considering the
general usability of models, this is of utmost importance. For an
introductory air combat related example of an influence diagram,
see [4].

Originally, influence diagrams consider only one decision maker.
An extension to multiple decision makers is mentioned in [6] and
later implemented in [7,8] using concepts of noncooperative game
theory [9]. On the other hand, in [10], an extension of the influence
diagram concept into a dynamic multistage decision setting without
game consideration is described. Although discussed on a general
level in [11], this paper is the first elaboration where these ideas have
been combined into a dynamic game setting. The setting is
represented using amultistage influence diagramgame containing an
explicit model of the dynamic decision environment which is
described with the equations of motion for an aircraft. Thus, here the
term “dynamic game” refers to a game involving control and state
variables that obey a given set of differential equations.

In the dynamic air combat influence diagram game, the
preferences of the pilots are described by using utility functions [5].
The game model gives the cumulative utilities related to the discrete
control alternatives of the players. The underlying uncertainties in
the game combined with the cumulative utilities and the structure of
the diagram result in a probability distribution of the utility for each
control choice at each decision instant. The payoffs of the game
associatedwith the cumulative expected utilities are calculated based
on these distributions.

When solving a feedback Nash equilibrium [9] of the nonzero-
sum influence diagram game, game optimal controls maximizing
simultaneously both the payoffs are given as a function of the current
state of the game. There exists a variety of solution techniques for
ordinary influence diagrams [10,12]. For influence diagram games
the situation is different. In [8], a divide and conquer-type solution
approach where the game is divided into smaller subgames that are
solved iteratively is presented. Unfortunately, the approach does not
produce game optimal controls in a feedback form and thus it cannot
be applied in the solution of the game at hand. If feedback solutions
are preferred, dynamic programming [13] remains as the only
alternative for solving the game.

A drawback attributed to dynamic programming is the com-
binatorial explosion of the computation. To circumvent this, we trade
the solution of the complete game with computing time and apply a
moving horizon control approach. The obtained solutions are
suboptimal in the global sense, but they are calculated in a feedback
form. Although originated from the field of control theory [14,15]
where the approach is also known as receding horizon or model
predictive control, it has been recently applied to dynamic games as
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well [16–18]. In themoving horizon control approach, the horizon of
the original influence diagram game is truncated and a dynamic game
with a short planning horizon is solved at each decision instant. The
states of the players at the next decision instant are then obtained by
applying the players’ game optimal controls related to the truncated
game.

II. Related Approaches

Quantitative analysis of air combat has its roots in optimal control
theory [19] that allows the optimization of the controls of a single
decision maker. For encounters with multiple decision makers, the
theory of dynamic games [9] provides a suitable framework. Team
problems involving M vs N players have received less attention in
the open literature but situations involving two decisionmakers have
been subject to a profound research effort.

In pursuit-evasion games [20], the roles of the two players are
assumed fixed: one player, the pursuer, tries to reach the other player
called the evader. The objective of the evader is to escape, but if this is
not possible, maximize the cost of the capture that may be, for
example, the elapsed time [21] or the distance to the border of a
nation [22]. A capture is defined as the collection of states that belong
to a specific target set of the game, that is, a capture means that the
state of the game enters the target set.

The qualitative solution of a pursuit-evasion game divides the state
space of the game into the sets of initial states that lead to a capture or
evasion of the evader under the supposition that the players play
optimally. Only an error of the adversary can change the outcome.
For a capturability assessment of a missile and a fighter aircraft, see
[23]. Quantitative solutions of the game announce the game optimal
controls of the players for the states from which the pursuer can
enforce a capture; see [24].

Pursuit-evasion games are suitable for describing situations where
the roles of the players are fixed beforehand. Nevertheless, this is
usually not the case for two aircraft committing to a combat. For such
situations, two-target game models have been proposed [25,26]. In a
two-target game, both players have a target set of their own, and the
objectives of the players are to avoid the adversary’s target set while
attempting to drive the state of the game into his own target set. Four
outcomes are possible: capture of one player by the other, joint
capture, or draw.

Two-target games can be regarded as an extension to pursuit-
evasion games. Similarly as in pursuit-evasion games, the state space
can in principle be divided into regions with different outcomes by
the qualitative solution of the game. For a comprehensive analysis
with greatly simplified vehicle models, see [27].

Quantitative solutions for two-target games would give game
optimal strategies for both players in different regions of the state
space. However, there are severe modeling issues that hitherto have
not been solved in a satisfactory way. First, even though the concept
of game optimality is clear in the regions leading to a capture of either
player, the fact that the game has two target sets has to be taken into
account. For example, in the combat game approach [28], the
condition that one must not enter the other player’s target set leads to
an ill-posed state variable inequality constraint involving both
players but being on the responsibility of only the other player. In
multicriteria games [29], the game has two objectives that represent,
for example, the distances of the state of the game to the target sets of
the players. Different solution concepts corresponding to concepts of
multicriteria optimization are defined and outlined on a theoretical
level [26], but none of these elaborations has, so far, led to practical
applications.

The second unresolved aspect concerning quantitative solutions is
that the concept of optimality in the regions not leading to a unique
capture is not clear. In the region leading to a joint capture, the
optimal behavior depends on the preference ordering of the players
between joint capture and draw, and in the region leading to a draw,
no unique way to determine the controls can be given. In [30],
reprisal strategies in which the objective of the player is to reach the
zone leading to his win before the adversary by utilizing nonoptimal
behavior of the adversary are presented.

A further complication of the game approach is that in order to
make sense, the quantitative solutionsmust be obtained in a feedback
form. Complete feedback solutions of the games are computationally
intractable. In practice, both the time and the control alternatives
have to be discretized and the planning horizonmust be truncated. In
[18], a pursuit-evasion game is solved with a moving horizon control
approach in which the evader is assumed to fly straight ahead for the
duration of the planning horizon. In [31], one-stage matrix games
with a heuristic payoff are used. In [32], an approximate solution
where the time is discretized, and at each decision instant the players
play amyopicmatrix gamewith predetermined nonoptimal feedback
guidance laws, is proposed. In [33,34], a helicopter duel as a myopic
game tree where each node is associated with a score based on the
players’ kill and survival probabilities is considered.

Although the game approaches originate from profound
mathematical analysis, the synthesis of control decisions is based
on rule based reasoning or ranking approaches. The general principle
is to first obtain the possible states of the combat after a given
planning horizon by projecting each maneuver alternative into the
future and by predicting the state of the adversary. Then, a score is
assigned to each predicted combat state. Finally, the maneuver
alternative leading to the highest score is executed.

In simple air combat expert systems, the combat states are
evaluated by predetermined combat geometry rules [35]. More
advanced systems [36] use a fixed set of questions representing
different goals. The total value of each maneuver alternative is
obtained by calculating the weighted sum of the normalized goal
specific values. In a value-driven heuristic approach [37], the future
combat states are described by a set of attributes, and different states
are evaluated by using an additive value function (see, e.g., [38])
whoseweights depend on the combat state and the goals of the pilots.

Common to these approaches is that unlike in game formulations,
the behavior of the adversary is observed but nothing is assumed.
This is inconsistent with the fact that also the adversary is a rational
agent with similar goals as the decision maker. On the other hand, in
game formulations, issues related to uncertainty and preference
information have not been widely considered.

Influence diagrams have been proven useful in modeling actions
of a single pilot both in short-sighted [4] and long-sighted [10]
decision settings. In the above-mentioned studies, the state of the
adversary is given. Thus far, extensions to dynamic air combat
settings where both players optimize their maneuvering decisions
short sightedly are considered in [11]. The paper at hand extends the
earlier influence diagram models to a multistage influence diagram
game. It unifies the game analysis aspects with the simulation
synthesis and provides a model that is capable of answering analysis
questions and synthesis needs.

III. Air Combat Game

The players of the air combat game, hereafter referred to as blue
and red, are assumed to maneuver in three dimensions and follow a
set of differential equations (A17) described in the Appendix. The
objective of the players is to reach their own target sets before the
adversary. In practice, the target set could represent the firing
envelope of a missile [39].

In the following, the air combat game is modeled by using the
influence diagram that contains the dynamics of the aircraft, the
pilot’s preferences, and a probabilistic belief model of the pilots. The
influence diagram representation of the air combat game, not to be
confused with graph theoretic nets, is shown in Fig. 1. The upper and
lower parts of the gamemodel consist of blue’s and red’s variables at
discrete time steps over the duration of the game, respectively. The
influence diagram consists of decision, chance, deterministic, and
value nodes depicted by squares, ovals, rounded squares, and
diamonds, respectively. They represent the decisions to be made,
uncertain variables, deterministic inputs, and quantities to be
optimized. The directed arcs show the relationships between the
various types of nodes in the diagram. Arcs directed toward a
decision node imply the available information for the player at the
moment of decision making. When directed toward a chance node,
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an arc means that the node is conditionally dependent on the input
node. An arc directed toward a deterministic or value node specifies
that the value of the node is partially determined by the outcome of
the input node.

In the air combat game, the control decisions of the players are
made at discrete time instants tk � k�t, where k� 0; . . . ; N � 1 is
the stage counter and �t is a fixed time interval between two
successive decision stages. The terminal time of the game is given by
tf � N�t where N is the final stage of the game.

At stage k, the state of the player i is given in the deterministic state
node by

x i
k �

h

xik yik hi
k � i

k �i
k vik

i

T

i� B; R. The state variables xik, yik, and hi
k are the horizontal

coordinates and the altitude of the player, respectively, whereas the
remaining state variables are the flight path angle � i

k, the heading
angle �i

k, and the velocity vik at stage k. The state is updated by
integrating the state equations (A17) as

x i
k�1 � xi

k �

Z

tk�1

tk

fi
�

xi;ui
k

�

dt (1)

where the control vector

u i
k �

h

�i
k �ik �i

k

i

T

containing the angle of attack �i
k, the throttle setting �

i
k, and the bank

angle�i
k is given in themaneuver decision node. The controls and the

states of the players are constrained by (A10–A14) and (A15) and
(A16) given in the Appendix. These constraints are written more
concisely as

g
�

xi
k;u

i
k

�

� 0 (2)

h
�

xi
k

�

� 0 (3)

The control and state constraints as well as the examination of the
target set conditions are handled in the solution of the influence
diagram game described in Sec. IV.A.

The state variables themselves are incomprehensible in the game
analysis. We therefore define a function qi describing the essential
features as a combat state vector cik that is computed in the
deterministic combat state node as follows:

c i
k � qi

�

xB
k ;x

R
k

�

; i� B;R (4)

The combat state vector can be defined in numerous ways [10,40].
Here, we select

c i
k �

h

!i
k �ik di

k

i

T
(5)

where the components of the combat state vector for blue are

!B
k � arccos

h

dB
k � vBk

.�

dB
k v

B
k

�i

(6)

�Bk � arccos
h

dB
k � vRk

.�

dB
k v

R
k

�i

(7)

dB
k �

������������������������������������������������������������������������������������

�

xRk � xBk

�

2
�

�

yRk � yBk

�

2
�

�

hR
k � hB

k

�

2

r

(8)

Above, vik refers to the velocity vector of the player i given by

v i
k �

h

_xik _yik
_h
i
k

i

T
(9)

whereas the line-of-sight vector of blue equals

d B
k �

h

xRk � xBk yRk � yBk hR
k � hB

k

i

T
(10)

Here the bearing !B
k 2 �0; 180 deg� and the angle-off �Bk 2

�0; 180 deg� are the angles between the line-of-sight vector of blue
and the velocity vectors of blue and red, respectively, and dB

k � 0 is
the distance between the players at stage k; see Fig. 2. Red’s combat
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Fig. 1 Influence diagram representation of the air combat game.
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state vector is obtained by swapping the indices B and R in
Eqs. (6–8). The combat state vectors of the players describe the state
of the duel from a viewpoint of a particular player.

During the game, each player tries to drive his combat state vector
into his own target set and at the same time prevent the other player
from reaching the other target set. The target set of player i is given by

Ti �
n

cik

�

��
�

cik

�

� 0
o

�
�

cik

�

�
h

!i
k � !i

f �ik � �if di
k � di

f

i

T
(11)

The threshold values of the combat state variables, denoted by!i
f, �

i
f,

and di
f, are fixed.

The game terminates when either or both players manage to drive
their combat state vectors into the respective target sets. The game
has four possible outcomes that are shown in Table 1. Furthermore, if
neither combat state vector ends up in a target set within the
maximum number of stages of the game, denoted byNmax, the game
terminates. The number of stages in the game is therefore given by

N �min
n

k
�

�cBk 2 TB or cRk 2 TR or k� Nmax

o

(12)

In addition to the state information, the players assess the threat
situation of the combat at each stage. The threat assessment is
modeled by a discrete random variable �i

k given in the threat
situation assessment node. The variable infers the threat situation
from a viewpoint of the player at a particular stage. For blue, the four
possible outcomes are shown in Table 2. For red, the outcomes are
obtained from the same table by swapping the descriptions of the
second and third rows.

The probabilities of the outcomes given the momentary combat
state are denoted by P	�i

k � j j C� cik
, j� 1; . . . ; 4, where the
elements ofC are continuous randomvariables for the corresponding
combat state variables. The probabilities sum up to 1, that is,
P

4
j�1 P	�

i
k � j j C� cik
 � 1. At each stage, these probabilities

can be considered as prior beliefs of the succeeding stage’s threat
situation outcome probabilities. Based on these and the succeeding
combat state, the posterior beliefs are computed using Bayes’
theorem (see, e.g., [41]) as

P
�

�i
k�1 � j

�

�C� cik�1

�

�
P
�

�i
k�1 � j

�

pi
�

cik�1

�

��i
k�1 � j

�

P

4
‘�1 P

�

�i
k�1 � ‘

�

pi	cik�1

�

��i
k�1 � ‘

�

�
P
�

�i
k � j

�

�C� cik

�

pi
�

cik�1

�

��i
k�1 � j

�

P

4
‘�1 P

�

�i
k � ‘

�

�C� cik

�

pi
�

cik�1

�

��i
k�1 � ‘

� (13)

where the prior probabilities P	�i
k�1 � j
 are equal to the preceding

posterior probabilities P	�i
k � j j C� cik
. It is assumed that the

elements of C given a particular threat situation outcome are
independent. Hence, the probability density function of the combat
state given the threat situation outcome is calculated by

pi
�

cik

�

��i
k � j

�

� p!;i
�

!i
k

�

��i
k � j

�

p�;i
�

�ik
�

��i
k � j

�

� pd;i
�

di
k

�

��i
k � j

�

(14)

Here, the time-invariant likelihood functions p!;i	�
, p�;i	�
, and
pd;i	�
 represent the distributions of the combat state variables
assuming that the player’s threat situation outcome at stage k is j.
Examples of likelihood functions are introduced in Sec. V.A. The
probabilities of the threat situation outcomes at stage k can bewritten
in shorthand as

p i
k

�

cik

�

�

2

6

6

6

6

6

6

6

6

4

P
�

�i
k � 1

�

�C� cik

�

P
�

�i
k � 2

�

�C� cik

�

P
�

�i
k � 3

�

�C� cik

�

P
�

�i
k � 4

�

�C� cik

�

3

7

7

7

7

7

7

7

7

5

(15)

where the P’s are computed according to Eq. (13).
The combat situation at stage k is evaluated by a utility function

that reflects the player’s preferences in different combat states. The
utilities associated with the different threat situation outcomes j are
computed in the deterministic situation evaluation node as

U i
k

�

cik

�

�
h

Ui
�

1; cik

�

Ui
�

2; cik

�

Ui
�

3; cik

�

Ui
�

4; cik

�i

T

(16)

where

Ui
�

j; cik

�

� w!;i
j u!;i

j

�

!i
k

�

� w�;i
j u�;i

j

�

�ik

�

� wd;i
j ud;i

j

�

di
k

�

j� 1; . . . ; 4 (17)

The utilities are linear combinations of single-attribute utility
functions that map an attribute to a utility scale such that the worst
and the best values of an attribute correspond to zero and one,
respectively. Examples of suitable single-attribute utility functions
are given in Sec. V.B. Each single-attribute utility function is
multiplied by a positive weight representing the importance of the
corresponding attribute. The weights are chosen so that they sum up
to one.

The utility functions of the form (17) are called additive. Additive
utility functions are appropriate if the attributes are mutually

blue red
d B

k

v B
k

v R
k

θ B
kω R

k

ω B
k

θ R
k

Fig. 2 Combat state variables.

Table 1 Outcomes of the air combat game

Outcome Condition

Blue wins cBN 2 TB and cRN =2 TR

Draw cBN =2 TB and cRN =2 TR ) N � Nmax

Joint capture cBN 2 TB and cRN 2 TR

Red wins cRN 2 TR and cBN =2 TB

Table 2 Outcomes of the threat situation assessment for blue

Outcome �B
k Description

Neutral 1 Neither player pursuesa the other one,
or long distance.

Advantage 2 Blue pursues red who evades,b

short distance.
Disadvantage 3 Red pursues blue who evades,

short distance.
Mutual disadvantage 4 The players pursue each other,

short distance.

aThe player flies towards the adversary. bThe player flies away from the adversary.
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independent [17]. The attributes in (17) can be shown to satisfy this;
see [10]. For an example on the use of more complicated preference
models in air combat modeling, see [40].

The situation evaluation utility node contains the cumulative
utility function over all the decision stages of the game. It is here
computed by summing up the single stage utilities, that is,

U i �
X
N

k�1

Ui
k

�

cik

�

(18)

The definition of the game needs also the initial state vectors
xi
0 as well as the initial threat probabilities p

i
0 for both players i� B,

R.
The players are assumed to be rational in the utility theoretical

sense (see, e.g., [38]). The solution of the influence diagram game is
then the sequences of the controls that provide the highest cumulative
expected utilities for the players. On the other hand, the players are
noncooperative, have perfect information concerning the current
level of play, and act simultaneously. In the game setting of this type,
the players end up playing a feedback Nash equilibrium which
depends only on the current state of the system at each stage. It is
unfavorable for either player to deviate from such an equilibrium
alone.

To obtain a feedbackNash equilibrium of the air combat game, the
payoffs of the players, that is, the cumulative expected utilities

Ji
�

uB
0 ; . . . ;u

B
N�2;u

B
N�1;u

R
0 ; . . . ;u

R
N�2;u

R
N�1

�

�
X
N

k�1

h

pi
k

�

cik

�i

T
Ui

k

�

cik

�

; i� B;R (19)

are simultaneously maximized subject to the constraints giving
feasible controls and states.

IV. Moving Horizon Control Approach

A. Look-Ahead Strategy Definition

In the following, a K-step look-ahead strategy refers to a player’s
feedback Nash equilibrium strategy for a truncated game with a
horizon ofK stages. Amoving horizon orK-step look-ahead solution
of the air combat game is obtained by solving the players’ K-step
look-ahead strategies at each decision stage and implementing only
the first components of the obtained control sequences. This is
continued until termination of the game.

B. Moving Horizon Solution of the Air Combat Game

To make the computation of the look-ahead strategies easier, the
control variables are now discretized. At each decision stage, the
players can change their current controls in discrete steps. At stage k,
available control alternatives are

Si
k �

n

ui�

k�1 ��ui
�

s1; s2; s3

�

�t j s1; s2; s3 2
n

�1; 0; 1
oo

i� B; R (20)

whereui�

k�1 is the preceding stage’s control vector and�ui is defined
as follows:

�ui	s1; s2; s3
 � s1��i s2��i s3��i
� �

T (21)

Here ��i, ��i, and ��i are the maximum rates of change for the
control variables, see Eq. (A11). In addition to (20), the controls are
constrained by

�i
k �

n

ui
k

�

�g
�

xi
k;u

i
k

�

� 0;h
�

xi
k

�

� 0
o

(22)

Above, functions g	�
 and h	�
 refer to (2) and (3). In sum, the set of
feasible controls at stage k is given by

Ui
k � Si

k \�i
k (23)

When solving one-step look-ahead strategies at stage k, the
players maximize the payoffs

Jik;k�1

�

uB
k ;u

R
k

�

�
h

pi
k�1

�

cik�1

�i

T
Ui

k�1

�

cik�1

�

; i� B;R

(24)

The states of the aircraft xi
k, the combat state cik, and the probability

vectors pi
k at current stage k are known, and the states and the

probabilities at the next decision stage k� 1 are calculated according
to Eqs. (1), (4), and (13).

In practice, the control and state constraints are handled by
reducing the payoffs related to the control alternatives that violate
constraints (2) or (3). This casts infeasible control alternatives as
dominated strategies that cannot form an equilibrium solution.

Nash equilibrium strategies are obtained by utilizing optimal
responses (see, e.g., [9]) of the players, giving the players’ optimal
controls against a given control of the adversary. At stage k, the
optimal responses of the players as a function of the adversary’s
control are given by

stage k

8

>

>

<

>

>

:

rBk
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�
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R
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� (25)

If uB�

k � rBk 	u
R�

k 
 and uR�

k � rRk 	u
B�

k 
, then the pair of controls ui�

k ,
i� B, R is a Nash equilibrium solution (see [9]) providing the
players’ one-step look-ahead strategies. In practice, the optimal
responses are first solved for all feasible controls of the players, after
which a strategy pair fulfilling the condition above is identified.

The solution of two-step look-ahead strategies requires
application of dynamic programming in addition to optimal
responses. The players then maximize the payoffs
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The optimal responses of the players at stages k� 1 and k are given
by
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Two-step look-ahead strategies of the players are obtained by first
solving the optimal responses of the players at stage k� 1. By
utilizing these responses, Nash equilibrium strategies ui�

k�1 can be
identified for all feasible values of k-stage controls ui

k, i� B, R.
Then, the optimal responses of the players at stage k and Nash
equilibrium strategies ui�

k are solved by applying the previously
solved ui�

k�1 related to the particular k-stage controls of the players.
The two-step look-ahead strategies of the players are then the game
optimal control sequences 	ui�

k ;u
i�

k�1
, i� B, R.
The payoffs and optimal responses for K-step look-ahead

strategies in which the players anticipate the evolution of the duel for
K steps ahead from the current state can be formulated in a similar
manner. The strategies can be solved with optimal responses and
dynamic programming as described above.

1084 VIRTANEN, KARELAHTI, AND RAIVIO



The moving horizon control approach for obtaining the K-step
look-ahead solution of the air combat game can be summarized as
follows:

1) Set k� 0. Set the initial conditions xi
0, u

i
0, and p

i
0, i� B, R.

2) Determine the control sequences 	uB�

k ; . . . ;uB�

k�K�1
 and

	uR�

k ; . . . ;uR�

k�K�1
 by solving K-step look-ahead strategies for blue
and red from states xi�

k , c
i�

k and probabilities pi�

k 	c
i�

k 
, i� B, R by
using optimal responses and dynamic programming.

3) Implement uB�

k and uR�

k .
4) Solve xi�

k�1 with Eq. (1), c
i�

k�1 with Eq. (4), and p
i�

k�1	c
i�

k�1
with

Eq. (13) using uB�

k and uR�

k .
5) If either or both players have reached their respective target sets

(11) or if k� Nmax, stop. Otherwise, set k� k� 1 and go to step 2.

V. Numerical Examples

In this section, we demonstrate the air combat game and the
solution approach with a set of numerical examples. The first
example serves as a simple demonstration of the approach. In the
second example, we solve several instances with different initial
states of the players and compare the differences between the
solutions produced by one- and two-step look-ahead strategies. The
third example demonstrates how the variation of the blue player’s
likelihood functions affects the duel.

The aircraft model used in the examples corresponds to a generic
fighter aircraft. The threat probabilities are initialized to

p i
0 � 0:25 0:25 0:25 0:25

� �

T

aswell as the upper limits for the combat state variables in (11) are set
to !i

f � 30 deg, �if � 60 deg, and di
f � 1000 m, i� B, R in all the

examples. The maximum rates of change of the players’ control
variables are set to ��B � 30 deg s�1, ��B � 60 deg s�1, and
��B � 1:0 s�1 for blue as well as ��R � 10 deg s�1,
��R � 20 deg s�1, and ��R � 0:5 s�1 for red. That is, blue is
more agile than red. The initial controls of the players are set to
ui
0 � �0 0 1�T , i� B;R. The angle of attack limit, the minimum

altitude, the maximum dynamic pressure, and the maximum load
factor are set for both players to �max � 30 deg, hmin � 1000 m,
qmax � 90 kPa, and nmax � 9, respectively. Time between two
successive decision instants is�t� 0:7 s and themaximum number
of stages of the game isNmax � 50. The above parameters as well as
the likelihood functions, the single-attribute utility functions, and the
weights presented in the following subsections are chosen by the

authors and are only demonstrative. In real life applications, they
should be extracted from the experts. Numerical examples are
calculated by using a personal computer equipped with a 1.40 GHz
clock frequency CPU and 224 MB of random access memory.

A. Likelihood Functions

The likelihood functions for the threat situation outcomes are
given in Table 3. The functions are characterized by parameters
ai > 0, i� B, R, and D which define the steepnesses of the
likelihood functions and themaximum allowed distance between the
aircraft, respectively. In the examples, the values ai � 0:1, i� B, R
and D� 10; 000 m are used. The distributions utilized in the
examples are relatively simple and serve only demonstrative
purposes. For convenience, linearly increasing and decreasing
functions have been selected.

The likelihood functions are defined similarly for both players, but
we next consider the threat situation from a viewpoint of blue. If the
aircraft are flying away from each other, or the distance between the
aircraft is large, the outcome is assumed to be “neutral, ”j� 1. In this
case, the probability that the bearing is large and the angle-off is small
is high. Hence, monotonously increasing and decreasing functions
are potential choices for the bearing and the angle-off, respectively.
A uniform density function is suitable for the distance, because when
the distance between the aircraft is large, the uniform distribution
gives larger probabilities than the distributions of the other outcomes.

The outcome “advantage,” j� 2, refers here to a situation where
blue is pursuing red. Therefore, it is highly probable that the angles as
well as the distance between the aircraft are small. Now, a
monotonously decreasing function is a possible choice for both
angles because it gives higher likelihoods for small angles. For the
distance, a monotonously decreasing function, giving higher
probabilities for short distances, can be used.

The outcome “disadvantage,” j� 3, is an opposite of the
advantage outcome. The likelihoods should increase as the angles
increase as well as the distance between the aircraft gets smaller. In
this case, possible functions for the angles are monotonously
increasing, and for the distance, a monotonously decreasing
function. They give higher probabilities for large angles and short
distances.

If the aircraft are heading toward each other and the distance
between the aircraft is small, the outcome is “mutual disadvantage,”
j� 4. In this case, it is likely that the bearing and the distance
between the aircraft are small, but the angle-off is large. Potential
likelihood functions for the bearing and distance are monotonously

Table 3 Likelihood functions for the different threat situation outcomes

j Likelihood function Range

1, 3 p!;i	! j �i � j
 � �ai!=180 deg�1 � ai=2�=180 deg ! 2 �0; 180 deg�
2, 4 p!;i	! j �i � j
 � ��ai!=180 deg�1� ai=2�=180 deg ——

3, 4 p�;i	� j �i � j
 � �ai�=180 deg�1 � ai=2�=180 deg � 2 �0; 180 deg�
1, 2 p�;i	� j �i � j
 � ��ai�=180 deg�1� ai=2�=180 deg ——

1 pd;i	d j �i � j
 � 1=D d 2 �0; D�
2, 3, 4 pd;i	d j �i � j
 � ��aid=D� 1� ai=2�=D ——

Table 4 Single-attribute utility functions and weights

Outcome j w!;i
j w�;i

j wd;i
j u!;i

j 	!
 u�;i
j 	�
 ud;i

j 	d


Neutral 1 0.2 0.1 0.7 180 deg�!

180 deg

180 deg��

180 deg

D � d

D
Advantage 2 0.3 0.0 0.7 180 deg�!

180 deg

180 deg��

180 deg

D � d

D
Disadvantage 3 0.0 0.7 0.3 !

180 deg
180 deg��

180 deg

d

D
Mutual disadvantagea 4 0.2 0.1 0.7 180 deg�!

180 deg

180 deg��

180 deg

D � d

D
Mutual disadvantageb 4 0.2 0.1 0.7 !

180 deg
180 deg��

180 deg

d

D

aPlayer prefers joint capture to draw. bPlayer prefers draw to joint capture.
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decreasing, and for the angle-off, monotonously increasing. They
give higher probabilities for small bearing, short distance, and large
angle-off.

B. Single-Attribute Utility Functions

The single-attribute utility functions used in (17) and the
corresponding weights are shown in Table 4. In a neutral threat
situation, the distance between the aircraft is large and it is hence
presumed that blue should focus on pursuing red by minimizing the
bearing and the distance between the aircraft. Blue should also try to
avoid red from heading toward blue by minimizing the angle-off.
Hence, small angles and short distances should be assigned high
utility scores.

An advantageous threat situation is quite similar to the neutral one
with respect to the player’s preferences. However, because blue is
behind red, it is assumed that red cannot head toward blue, and it is
enough for blue to minimize only the bearing and the distance
between the aircraft.

If the threat situation is disadvantageous, red is pursuing blue.
Blue should now try to turn red’s heading away from blue by
minimizing the angle-off and maximizing the distance between the
aircraft. Hence, small angle-offs and long distances should now be
assigned high utility scores.

A mutually disadvantageous threat situation means here that both
players are heading toward each other. If blue prefers joint capture to
draw, he should head toward red by minimizing the angle-off, the
bearing, and the distance. On the other hand, if blue prefers draw to
joint capture, he should try to escape red bymaximizing the angle-off
and the distance as well as by minimizing the bearing.

In the following examples, blue prefers joint capture to draw,
whereas red’s preferences are opposite. That is, the blue and the red
players’ single-attribute utility functions for a mutually disadvanta-
geous threat situation are given by the second to bottom and the
bottom rows of Table 4, respectively. For the other threat situations,
the players’ utility functions and weights are the same.

C. Example 1

We first consider an example where the aircraft have already
engaged in a dogfight and the less agile red is initially pursuing blue.
The combat situation is initially advantageous for red and
disadvantageous for blue. The initial states of the aircraft are shown
in Table 5.

We study three cases where both players use one-, two-, and three-
step look-ahead strategies, respectively. The three-dimensional
trajectories of the aircraft for the three-step look-ahead solution are
represented in Fig. 3. The histories of the control variables, the
combat state variables, and the threat probability distributions of blue
and red over the duel are shown in Figs. 4–6, respectively.

In the first case, the more agile blue, although being initially
pursued, captures red in 21.0 s, or, in 30 stages. Figure 4 shows that
both players apply the maximum throttle setting for most of the time.
The players also use relatively large angles of attack and bank angles
in magnitude, resulting in tortuous trajectories of Fig. 3. Figures 5a–
5c reveal that although the bearing and the distance are within
feasible intervals near the end, blue does not reach its target set until
the angle-off of blue is driven below the upper limit of 60 deg.

Figure 6 shows that for blue, the probability of the disadvantage
outcome is relatively high during the first 15 s, after which it declines
rapidly. During the rest of the combat, the probability of the
advantage outcome for blue rises toward one, whereas for red it
decreases toward zero. The payoffs of blue and red, computed by

(19), are 17.81 and 15.56, respectively. The payoff ratio, that is, the
ratio of blue’s payoff to red’s one, is 1.1449.

In the second and the third cases, blue again wins the duel by
capturing red in 24.5 and 23.1 s, respectively. Comparison between
the distributions of the first, second, and third cases in Fig. 6 shows
that in the last two cases, the probability of the disadvantage outcome
is slightly higher for blue than in the first one. On the other hand, the
probability of the advantage outcome rises eventually higher in the
second and the third case.

In the second case, the payoffs of blue and red are 21.43 and 17.21,
respectively, and the payoff ratio is 1.2446, whereas in the third case
the respective quantities are 19.59, 17.07, and 1.1472. The payoff
ratios imply that with this particular initial setting, the more long-
sighted strategies yield better payoffs for blue in relation to red than
the first one.

According to Figs. 4–6, the controls, the combat states, and the
threat probability distributions indicate some signs of convergence as
the planning horizon is extended. Still, on the basis of the limited
data, it is impossible to statewhether the convergence implies that the
moving horizon solution is close to the true feedback Nash
equilibrium of the game. Computational burden prevents a direct
comparison. The average computation times per decision instant in
the one-, two-, and three-step look-ahead cases are 9:50 � 10�3 s,
3.62 s, and 1:89 � 103 s, respectively.

To summarize, the more agile blue wins the duel by rolling behind
the red aircraft and capturing it. Red cannot exploit his advantageous
initial state but is eventually forced to evade blue. Here, the longer
planning horizons benefit the winner compared to the shortest one,
but this is not always evident, as will be seen later.

D. Example 2

We next expand the first example by turning the initial heading
angle of blue and applying one- and two-step look-ahead strategies
for both players in each case. The initial states of the aircraft are
shown in Table 5 with an exception of the heading angle of blue. It is
shifted in steps of 30 deg for 180 deg resulting in seven different
cases in total.

The payoff ratios for the different cases are represented in Table 6.
Each case consists of two runs where the length of the planning
horizon corresponds to number of the run. The average computation
times per decision instant are similar to those of the previous example
and are hence not mentioned here.

The three-dimensional trajectories produced by two-step look-
ahead strategies are presented in Fig. 7 for the cases 2, 3, 5, and 6. In

Table 5 Initial states of the aircraft in example 1

Player x0, m y0, m h0, m �0, deg �0, deg v0, m=s

Blue 3000.0 1000.0 6000.0 0.0 30.0 315.0
Red 1000.0 1000.0 6000.0 0.0 0.0 240.0

red

blue

x [km] y[km]

h
[k

m
]

0.5

1.0

1.5

2.0 2.5

3.0

3.5

4.0

4.5

5.5

6.5

Fig. 3 3-D trajectories for the three-step look-ahead solution in

example 1.
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cases 2 and 3, blue and red consider being in a disadvantageous and
advantageous threat situation, respectively. Therefore, blue tries to
minimize the angle-off by turning toward red, whereas red tries to
minimize the bearing bymaintaining the heading toward blue.On the

other hand, in cases 5 and 6, the players believe being in a mutually
disadvantageous threat situation. In such a situation, blue and red
prefer pursuit and evasion, respectively, resulting in the trajectories
of Figs. 7c and 7d.
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Fig. 4 Control histories of the players in example 1.
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Fig. 5 Combat state histories of the players in example 1.
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Fig. 6 Threat probability distributions of the players in example 1.
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Blue wins in all the cases except the first one and the second run of
the last case where the outcome of the game is draw. The victories of
blue are partly due to the different preferences of the players in a
mutually disadvantageous threat situation. Such a situation is likely
to turn advantageous for blue who prefers pursue and disadvanta-
geous for red who prefers evasion, resulting eventually in a win of
blue.

Inmost cases, the ratio of blue’s payoff to red’s one increaseswhen
the planning horizon is extended. However, in the fourth and the fifth
cases, red gains better payoff in relation to blue due to themore long-
sighted strategy. Further test runs not presented here validate that
extending the planning horizon does not always benefit the more
agile player or the winner. Note that since a player gains payoff also
by maneuvering well in a disadvantageous situation, the optimal
values of the payoffs do not necessarily correlate with the actual
outcome of the game.

E. Example 3

We finally consider how the payoffs are affected when blue
chooses his likelihood functions differently. The likelihood
functions shown in Table 7 are characterized by parameters ai,
i� B, R that provide a straightforward way to change the
steepnesses of the functions. The larger the parameter, the steeper the
function. Steep likelihood functions should result in sharper threat
situation assessments.

We study two cases inwhich blue’s parameter aB is set differently.
In the first case, the value of the parameter is greater than in the
second one. The initial states of the players are the same as in
example 1 and the players use one-step look-ahead strategies. Blue
wins the duel in both cases in 21.0 s. The values of the parameters, the
players’ payoffs, and the payoff ratios for both the cases are
represented in Table 7.

The threat probability distributions of blue for both duels are
presented in Fig. 8. Comparisons between the distributions and the
payoffs suggest that with the particular initial setting, blue achieves a
better payoff ratio by applying the nonsteep likelihood functions.

Steep likelihood functions produce alternating threat probability
distributions inwhich only one threat situation outcome dominates at
a time; see Fig. 8a. Nonsteep likelihood functions reflect a more
conservative view about the threat situation related to a certain
combat state. They produce distributions that are closer to the
uniform distribution; see Fig. 8b. Recall that in Eq. (19), the utility
associated with a particular threat situation outcome is weighted by
the corresponding probability. Hence, with steep likelihood
functions mainly a single, largely weighted utility contributes to
the payoff, whereas with nonsteep likelihood functions the payoff is
affected more evenly by all the utilities.

VI. Discussion

A. Comparison with Related Air Combat Modeling Approaches

In two-target games, the solution process consists of two phases.
First, the qualitative solution attempts to classify the combat states
into different sets each of them related to a certain outcome of the
game. Then, the quantitative solution aims at providing game
optimal controls for the players at each time instant. In the influence
diagram game, this process has been unified. A priori knowledge,
observations, and likelihood functions all contribute to the threat
situation probabilities that classify the states, and the utilities and
their weights associated with the combat state attributes guide the
selection of the controls throughout the dynamic game setting.

The threat probabilities can be interpreted as the weights of the
payoff functions that are used for converting amulticriteria game into
a single criterion zero-sum or nonzero-sum game (see [42,43],
respectively). Instead of solutions with predetermined finite or
infinite weights, the latter leading to state constrained quantitative
pursuit-evasion games [28], the influence diagramgame selects these
weights, that is, the threat probabilities, in each combat situation
differently. Besides overall threat probabilities, theweights of single-
attribute utility functions can be chosen variously for the different
threat situations. This means that the utility associated with the
current combat state depends on the threat situation. For instance, if
red is in the vicinity of blue’s target set, that is, the threat situation is
disadvantageous from a viewpoint of red, his objective is to avoid
getting into the target set. In the influence diagram game, the control
alternatives of red leading away from blue’s target set become the
most favorable ones, provided that the likelihood distributions are
selected reasonably.

Table 6 Initial heading angles of blue, payoff ratios, and outcomes of

the game in example 2

Case �B, deg K � 1 Outcome K � 2 Outcome

1 0.0 0.4834 Draw 0.9125 Draw
2 30.0 1.1449 Blue wins 1.2446 Blue wins
3 60.0 1.4084 Blue wins 1.5271 Blue wins
4 90.0 1.9331 Blue wins 1.6752 Blue wins
5 120.0 2.6559 Blue wins 2.4501 Blue wins
6 150.0 3.0770 Blue wins 3.1093 Blue wins
7 180.0 1.7933 Blue wins 1.8407 Draw

Table 7 Parameters of the players’ likelihood functions, payoffs, and

payoff ratios in example 3

Case aB aR JB JR JB=JR

1 0.15 0.1 17.96 15.67 1.1461
2 0.05 0.1 18.85 15.56 1.2116
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Fig. 7 3-D trajectories for the two-step look-ahead solutions in

example 2.
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Fig. 8 Threat probability distributions of blue in example 3.
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The influence diagram game shifts the focus of the classification of
the combat states from rigorous mathematical analysis into a
description enhancing the behavioral aspects of the situation. The
crisp surfaces separating different states are substituted with
probability distributions that describe the decisionmakers’ beliefs. In
this context, the approach also becomes more straightforward, as
instead of very complex computations the classification is now based
on expert opinions represented by the likelihood functions of the
threat probabilities. An important consequence is that the influence
diagram approach decouples the vehicle models from the analysis.
Thus, it allows the use of arbitrarily complex aircraft dynamics
models, although in the numerical examples, only a point mass
model is applied for convenience. Naturally, application of more
complex models increases the number of variables which in turn
increases computational burden. Also, realistic modeling of
rotational dynamics requires a relatively short integration step
which limits the length of the planning horizon. However, the latter
problem could possibly be overcome by applying denser
discretization for the state variables and interpolating the control
variables between the control discretization points.

The structured and widely accepted value-focused multicriteria
decision making approach employed by influence diagrams offers a
competitive alternative over many heuristic models representing the
maneuvering decision of pilots described in Sec. II. Especially the
possibility to treat uncertainty, human preferences, and attitudes
toward risk in a well-established way make the approach an
interesting choice over expert systems. The representation also
makes it easier for persons of the application area to participate in the
modeling process because the meanings of nodes and arcs in the
graph can be understood with a little decision theoretic and
mathematical background.

B. Maneuvering Decision Analysis

One of the aims of the model construction is to find how different
functional parameters affect the behavior and perception of the
players. As such, the detailed structure of the influence diagram
model makes it possible to analyze the effect of each weight, utility
function, and distribution separately. This is demonstrated for the
likelihood functions in example 3. The results in the example are
rather obvious, but the example is basically meant to illustrate the
possibilities of the model.

It is interesting to note that even with completely similar
preferences, the game is not zero sum in an arbitrary combat state. For
example, when high probabilities are associated with the neutral
outcome of both players’ threat assessment, the game is nonzero
sum. On the other end, when the threat situation is advantageous for
one player and disadvantageous for the other one, the nature of the
game is almost zero sum. Hence, the roles of the players change
dynamically according to the combat state, and there is no need to fix
them beforehand.

The combat state vector should be defined so that its elements
would contain all the information on the players’ states that is
relevant regarding the combat. In the simplified examples of this
paper, we use the distance between the aircraft and the angles
between the velocity vectors and the line of sight. Other potential
choices are, for example, features describing the energy difference of
the players that is a crucial factor related to the success of the players
in air combat [39].

One should note that in nonzero-sum games, a feedback Nash
equilibrium in pure strategies does not necessarily exist and it is not
necessarily unique. However, according to our computational
experience, this is uncommon; less than 1% of the moving horizon
subgames solved in this paper did not have a unique Nash
equilibrium. If no unique Nash equilibrium exists, a Stackelberg
equilibrium (see, e.g., [9]) can be used because a nonzero-sum game
always admits this solution. In case of multiple equilibria, all the
equilibrium solutions could be solved at first. Then, the worst one
from a viewpoint of, for example, the blue player could be
consistently implemented. In this paper, however, the first
equilibrium that is found is chosen.

In the present game model, the control alternatives are always
chosen under the supposition that also the adversary maneuvers
optimally with respect to a given preference model. In most cases,
this leads to decisions that guarantee a secure outcome for the player.
It is obvious that if the opponent behaves nonoptimally, the
assumption may be overly stringent. Nevertheless, a rationality
assumption is often better than a mere prediction based on old
observations from the state of the adversary. Considering the fact that
the opponent is a rational agent with predetermined goals, the
rationality assumption is likely to be correct at least for most of the
time.

C. Combat Trajectory Synthesis

In this study, likelihood functions and single-attribute utility
functions have been generated by the authors. For the sake of clarity,
they have been kept reasonable but simple. In the field of decision
analysis, there exist numerous methods for extracting probability
distributions, single-attribute utility functions, and their weights
from actual decision makers and experts. For basic approaches, see
[44]. Application of such methods requires effort, but offers a
possibility to transfer the perceptions, preferences, beliefs, and
attitudes of an expert into the influence diagramgame that can then be
used as a decision making logic of an air combat simulator (see, e.g.,
[37]).

A simulator makes it possible to study air combat tactics and
aircraft performance in a controlled and repeatable environment.
With a planning horizon of the influence diagram game adapted to
the available computational power, it is even possible to produce
decisions in real time. We believe that a careful decision logic
description combined with the modeling of the adversary’s rational
behavior offers an efficient way to produce game and preference
optimal controls for computer guided aircraft.

An obvious shortcoming in all dynamic programming based
methods is the computational explosion. Even the moving horizon
approach allows only relatively short planning horizons. It is
therefore obvious that increasing the computational power is hardly
an option in deepening the search. In the future, the application of
metaheuristics, like Nash genetic algorithms [45], or massively
parallel computing approaches, might provide a way to improve the
approach so that strategies for the players could be obtained in real
time and also for longer planning horizons.However, evenwith one-,
two-, and three-step look-ahead strategies, it is possible to study the
effects of the planning horizon on the solutions.

The strategies of the players correspond to a Nash equilibrium
solution that generally favors neither player. In [17], it is proposed
that if the capabilities of the players are different, a longer planning
horizon can be expected to benefit the more capable player. The
results of example 2 indicate that for the game at hand, this holds true
for some initial states, but not for all. To see why this happens,
consider first a case where the maneuvering of the other player is
completely constrained by the control rate constraints, and the
problem is reduced to a single player optimal control problem. The
global optimum can be guaranteed only by applying dynamic
programming starting from the final stage. With limited planning
horizons, it is possible that at a certain stage, a shorter planning
horizon produces controls that coincide with the global optimum,
whereas a longer one results in suboptimal controls for the particular
stage. This applies obviously to a game situation as well.
Nevertheless, it is reasonable to expect that extending the planning
horizon benefits the more agile player on the average.

VII. Conclusions

In this paper, the successive control decisions of the pilots during
one-on-one air combat are modeled using a multistage influence
diagram game. A feedback Nash equilibrium solution is obtained by
a moving horizon control approach that provides game optimal
control sequences with respect to the preference models of the
players. The computational complexity constrains the planning
horizon of the moving horizon approach. However, the numerical
examples presented in this paper indicate that the air combat game
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produces plausible control choices even with relatively short
planning horizons for which the controls can be computed in real
time. In addition to the synthesis of control decisions, the structure of
the game model makes the backtracking of the solutions
straightforward and offers several analysis possibilities.

The presented influence diagram game is the first elaboration in
which themethodology of influence diagrams and the foundations of
the theory of dynamic games are combined in air combat modeling.
The gamemodel and its aspects suggest that the combination of these
disciplines offers a potential way for describing dynamic game
situations, although a well-determined formalism related to dynamic
influence diagram games is not yet defined. The results and the
discussion of this paper indicate that the influence diagram
representation of the air combat game overcomes several
shortcomings that appear in traditional air combat modeling
approaches.

Appendix

The dynamics of the players is described by a point mass model of
an aircraft, that is, by the following system of differential equations
[46]:

_x� v cos � cos� (A1)

_y� v cos � sin� (A2)

_h� v sin � (A3)

_� �
1

mv
ffL	�; h; v;M	h; v

 � �Tmax	h;M	h; v

 sin�g

� cos� �mg cos �g (A4)

_��
1

mv cos �
fL	�; h; v;M	h; v

 � �Tmax	h;M	h; v

 sin�g

� sin� (A5)

_v�
1

m
f�Tmax	h;M	h; v

 cos� �D	�; h; v;M	h; v

g � g sin �

(A6)

where x and y refer to the horizontal coordinates and h to the altitude
of the player. The remaining three state variables are the flight path
angle �, the heading angle�, and the velocity v. The aircraft is guided
with the angle of attack �, the throttle setting �, and the bank angle�.

The acceleration due to the gravity as well as the mass of the
aircraft, denoted by g and m, respectively, is assumed constant.
Tmax	�
 denotes the maximum available thrust force, L	�
 the lift
force,D	�
 the drag force, andM	�
 theMach number. The lift force is
given by

L	�; h; v;M	h; v

 � CL	�;M	h; v

Sq	h; v
 (A7)

where CL	�
 is the lift coefficient and S the reference wing area. The
dynamic pressure is

q	h; v
 � 1
2
%	h
v2 (A8)

where the air density %	h
 is taken from the International Standard
Atmosphere. The drag force is of the form

D	�; h; v;M	h; v

 � CD	�;M	h; v

Sq	h; v
 (A9)

where CD	�
 denotes the total drag coefficient. This as well as the lift
coefficient and the maximum thrust force of the aircraft is given as
tabular data and is approximated with suitable continuously
differentiable functions.

The control variables are constrained by lower and upper bounds

� �max � � � �max; 0 � � � 1; �180 � � � 180 deg

(A10)

and their rates of change are restricted as

��� � _� � ��; ��� � _� � ��; ��� � _� � ��

(A11)

The latter constraints are due to the flight control systems and the
inertia of the aircraft.

To avoid stall, the angle of attack must be chosen so that the lift
coefficient does not exceed aircraft specific valueCL;max	�
 at a given
altitude and velocity, that is,

CL	�;M	h; v

 � CL;max	M	h; v

 � 0 (A12)

The load factor that is given by

n	�; h; v
 �
L	�; h; v;M	h; v



mg
(A13)

is limited by the structure of the aircraft. This imposes another
constraint related to the angle of attack, altitude, and velocity:

n	�; h; v
 � nmax � 0 (A14)

In addition, the altitude and the dynamic pressure are constrained by

hmin � h � 0 (A15)

and

q	h; v
 � qmax � 0 (A16)

where hmin and qmax refer to the minimum altitude and the maximum
dynamic pressure, respectively.

The set of differential equations (A1–A6) can be written in
shorthand as

_x� f	x;u
; x	t0
 � x0 (A17)

where

x � x y h � � v
� �

T

is the state vector,

u � � � �
� �

T

is the control vector, and x0 is the initial state of the aircraft.
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