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ABSTRACT 

The complete dynamics model of a four-Mecanum-wheeled robot considering mass eccentricity and friction uncertainty 

is derived using the Lagrange’s equation. Then based on the dynamics model, a nonlinear stable adaptive control law is 

derived using the backstepping method via Lyapunov stability theory. In order to compensate for the model uncertainty, 

a nonlinear damping term is included in the control law, and the parameter update law with σ-modification is considered 

for the uncertainty estimation. Computer simulations are conducted to illustrate the suggested control approach. 
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1. Introduction 

In 1973, BengtIlon invented the Mecanum wheel (also 

called Ilon wheel) when he was an engineer with the 

Swedish company Mecanum A.B. [1,2]. The Mecanum 

wheel is designed with passive rollers mounted around 

the wheel circumference at an angle of 45 degrees to the 

wheel plane, thus it allows for in place rotation with 

small ground friction and low driving torque. Usually the 

mobile robots using Mecanum wheels, such as an intel- 

ligent wheelchair, a forklift, or the URANUS omni-di- 

rectional robot, are designed with four wheels to provide 

agile mobility in any direction without changing its ori- 

entation. This omni-directional capability provides greater 

flexibility in congested environments. Ould-Khessal [3] 

applied it in a robot soccer team design. 

Although the benefit of omni-directionality of a stan- 

dard Mecanum wheel, it has an unfortunate side effect of 

reducing the motor effective driving force through the 

rollers by projecting a portion of the motor force into a 

force perpendicular or at an angle to that produced by the 

motor. Thus, it may be inefficient when the platform 

travels in a straight line, especially when travels diago- 

nally. Diegel et al. [4] proposed an improved Mecanum 

wheel design with a “twist” mechanism for adjusting and 

locking the angle of the passive rollers to best suit the 

direction the platform is traveling in. Since a planar mo- 

bile robot consisting of four Mecanum wheels has only 

three degrees of freedom (DOF): two translational mo- 

tions along X- and Y-axes, and one rotation about Z-axis, 

it has one redundant degree of freedom. Asama et al. [5] 

proposed a transmission mechanism such that four wheels 

can be driven by only three actuators, each of which 

drives wheels to move the robot for a certain DOF, re- 

spectively. 

The most popular approach to the control of an omni- 

directional robot considers the kinematic control relying 

only on the kinematics model of the platform [e.g. 6,7]. 

The kinematic control neglects the dynamics effect and 

thus lowers the effective moving speed that could be ob- 

tained. Based on the Newton’s second law, Tlale and de 

Villiers [8] developed and verified a dynamic model for 

the omni-directional robot with four Mecanum wheels 

using the resolved force method. In their developed mo- 

bile platform, each wheel was fitted with encoder for 

measuring the wheel rotation/velocity, and 3D gyrometer 

and accelerator are also installed in the platform for 

measuring its orientation and translation motion. Vi- 

boonchaicheep et al. [9] presented a position rectification 

method including symptomatic and preventive rectifica- 

tions during the position and orientation control. Their 

control system is based on kinematics and joint-space 

linear dynamics model. Recently, Han et al. [10], Park et 

al. [11], and Tsai and Wu [12] proposed fuzzy control 

systems for Mecanum wheeled robots based on kine- 

matic model or joint-space dynamic model. 

In this work, we will propose a more complete kine- 

matics and dynamics modeling of an omni-directional 

mobile robot with four Mecanum wheels considering 
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both the friction and load eccentricity effects. After es- 

tablishing the kinematics model, the 3-DOF dynamics 

model in the Cartesian space is derived using the La- 

grange’s equation, which can be used for arbitrary trans- 

lational and rotational dynamic control. Then an adaptive 

control is constructed using the backstepping method via 

Lyapunov stability theory. The derived adaptive control- 

ler with uncertainty compensator has excellent three-axis 

arbitrary trajectory tracking performance, even the plat- 

form is encountered a not small eccentricity uncertainty. 

Finally, simulation results are presented to illustrate the 

suggested control system performance. The suggested 

nonlinear controller is more complex than traditional PID 

control, however it could have more satisfactory and 

faster arbitrary-trajectory tracking capability. 
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2. Kinematics and Dynamics Modeling of a 
Mecanum-Wheeled Mobile Robot 

As shown in Figure 1, a Swedish wheel consists of a 

fixed standard wheel with passive rollers attached to the 

wheel circumference. The Mecanum wheel is a type of 

Swedish wheels with , where 45    is the angle 

between the passive-roller rotation axis and the wheel 

plane. Complete kinematics and dynamics modeling of 

an omni-directional robot with four Mecanum wheels 

will be considered in this section. 

2.1. Kinematics of a Four-Wheeled Mecanum 
Robot 

Consider a Mecanum wheel mounted on a mobile robot 

with local coordinate frame {R}: R R RX Y Z , as shown in 

Figure 1, where point A is its center and the other geo- 

metric parameters are defined as follows.   is the an- 

gle of the vector , from the robot frame origin G to 

the wheel center A, with respect to the 

GA
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Figure 1. Parameters of a mecanum wheel. 

 
is the angle between the vector  and the main wheel 

axis. The distance from the geometric center G to the 

wheel center A is l, and the main wheel’s radius is r. And 

  and SW

r

 are respectively the rotation speeds of the 

main wheel and the passive roller contacted with the flat 

floor. 

Assume that the contact point between the Mecanum 

wheel and the floor is an instantaneous rotation center, 

that is, the contact is in a pure rolling condition without 

slipping, then the corresponding velocity of the wheel 

center A is 

cosr

 along the tangential direction as shown 

in Figure 1. So the wheel center A’s velocity component 

along the contact roller’s axis is  

 T
. 

Let the robot’s instantaneous translation velocity in 

terms of local frame {R} be R Rx y  , and the rotation 

velocity about RZ  axis be 

, ,

. Then the wheel center 

A’s velocity can also be computed by summing the 

translational velocity vectors R Rx y 
l

 and the relative 

velocity   due to the rotation velocity shown in Fig- 

ure 1. Thus, the wheel center A’s velocity component 

along the contact roller’s axis can be expressed as fol- 

lows (computed via the platform’s velocity): 
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If no slipping occurs along the contact roller’s axis, the 

same velocity can also be computed from the wheel’s 

rotation speed 

     
T

cos cos cosR Rl x y r

 Hence, we have the following con- 

straint equation for a Swedish wheel: 

 

sin                       
                    (2) 

 

Since the rotation matrix representing the orientation of the inertia frame {I} with respect to the robot frame 
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{R} can be expressed as 

 
cos

sinR
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where   is the angle between axes  and R IX X

T

R R Rx y

, and the 

robot’s velocity vector in terms of the robot frame {R},  

    ξ  



 can be computed as: 

R

R I Iξ R ξ 

T

I I Ix y

, 

where    ξ  

   

 is the robot velocity vector  

in terms of the inertia frame {I}, Equation (2) can be 

transformed to as follows [6]: 
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In the direction orthogonal to the contact roller’s axis, 

the motion is not constrained because of the free rotation 

of the passive contact roller, thus we have the following 

velocity relation: 
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Thus, the above rolling condition can be transformed as: 
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Consider the omni-directional robot with four Mecanum 

wheels shown in Figure 2. The angles , ,  and i i i  
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   

 of 

the mounted four Mecanum wheels,  are 

shown in Table 1. From Equation (3), we have the 

following four constraint equations for the centers of the 

four Mecanum wheels: 

 

 
     
     
     

 

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3

sin cos cos cos

sin cos cos cos

sin cos cos cos

sin cos cos cos

R

I I

l r

l

l r

l r

       

4 4 4 4 4 4 4 4 4 4 4 4

r

 
         


         
         

        
                 
 

        






R ξ


 
 
 
 
 

              (5) 

 
YR 

l 

Wheel 4

XR

α 

b
 

G

l l 

a 

l 

Wheel 1Wheel 2 

Wheel 3 YI 

XI O 

-β 

, , 1, 2,3, 4,i ir r l l i  

 

Figure 2. A four-Mecanum-wheeled robot. 

Assuming that each Mecanum wheel has equal radius  

and mounting distances,  and by  

substituting the parameters in Table 1 into Equation (5), 

we can obtain the inverse kinematics equation as follows: 
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where 1tan .b a 
 

Define the Jacobian matrix as: 
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Table 1. Parameters of the Mecanum wheels. 

Wheels i
  

i
  

i
  

1  1tan b a   1tan b a   π 2 π 4  

2  1tan b aπ   1tan b a   π 2 π 4   

3  1tan b aπ   1tan b a   π 2 π 4  

4  1tan b a2π   1tan b a   π 2 π 4   
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The forward kinematics equation of the four-wheeled 

Mecanum mobile robot can be obtained as follows: 
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 is the pseudoinverse of J. Jwhere 

2.2. Dynamics of the Mecanum Robot 

Consider the four-wheeled Mecanum mobile robot 

shown in Figure 3, where G is the geometric center with  

position vector I x yr

G

 in terms of the inertia  

  is the mass center of the moving plat-  frame {I}, and 
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in terms of robot frame {R}. The velocity  of point  

G, in terms of robot frame {R} can be expressed as 
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lows: 
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The total kinetic energy T of the mobile robot includ- 

ing those of the platform and four Mecanum wheels can 

be computed as below: 
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where  is the mass of the platform, and  is the  

mass of the ith wheel, ; I  is the moment of  

inertia of the platform about RZ   axis ( parallel to RZ ) 

through point , and G
iI  is the moment of inertia of 

the ith wheel about its main axis;   is the rotational 

speed of the platform, and i  is the rotational speed of 

the ith wheel about its main axis; and  is the radius of 

each Mecanum wheel. Since the mobile robot is assumed 

moving in a plane, the total potential energy 

r

0V  . As- 

sume that the four Mecanum wheels are identical and 

thus let wi w  and i,m m ,I 1, 2,3, 4.

L T V T   can be obtained as below: 

I i   After sub- 

stituting Equation (2) and some computations, the La-  
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Figure 3. Schematic of the Mecanum robot.     
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2

2

2

2

2

4
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






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2
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2
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2
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x y l
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r
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r
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r
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      



 

 

 
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     
2

π 4   42

1 1
cos sin sin cos 2 sin

2
I II x y l

r
          

                    (12) 

 

The dynamics model can then be derived using the 

Lagrange’s equations: 

d

d i i

L L

t q q

  
    

,  1, 2,3iF i 

iq i

       (13) 

where  is the ith generalized coordinate, and 

the ith generalized force/torque. The generalized coordi-

nate vector of the mobile robot can be defined as: 

1 2 3 I I   T T
q q q x y  q . Refer to Figure 3, 

where if  is the contact friction force of the ith Me-

canum wheel with the floor, the generalized force/torque 

,  1, 2,3iF i  , can be derived as follows [13]:F  is  

 

     
4 4

1
1 1

sgn sgni i
i i i i i i

i iI I

F r f r f

x x

   
 

 
   

  
 


                       (14) 

 

By Equation (6), we can obtain 

 

       31 2 41 1 1 1
cos sin ; cos sin ; cos sin ; cos sin .

I I I Ix r x r x r

  
x r

         
        

   
  

   

 



 
 

Thus, 

 

     

       3 3 3 4 4 4sgn cos sin sgn cos sinr f r f
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

                    
                   

 

       

 

              (15) 

 

Similarly, 
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1
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1
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1
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i
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r

 

     
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
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
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      

         

4 4

in π 4l


4
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i
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r
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 
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
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                  (17) 

 

After some straightforward computations, the equa- 

tions of motion of the mobile robot can be expressed in 

matrix/vector form as: 

    T T1

r
B Sf B τ, M q q C q q q          (18) 
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C
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.
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3. Stable Adaptive Control of a  

Mecanum-Wheeled Robot 

3.1. Modeling Uncertainty 

In practice, the mass of the platform carrying payload, 

and the contact friction forces may be varied, thus we can 

model their uncertainty by letting , and ˆ
b b bm m m  

f f f , where  and ˆ
bm

 
T

,1 ,2 ,3 ,4

1ˆ ˆ 4
4

ˆ ˆ ˆ ˆ 

b w

rr rr rr rr

m + m

g u u u u



   

f
       (19) 

are the nominal platform mass and friction vector, re- 

spectively. Here g  is the gravitational constant, and 

,rr i , are the nominal rolling friction coeffi- 

cients of the four wheels. Substituting into Equation (18), 

the dynamics of the mobile robot considering uncertainty 

can be summarized as follows: 

ˆ ,u 1, 2,3, 4i 

T T

1 2

1 ˆˆ
r

   Mq B τ B Sf D D       (20) 

where 
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,
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I
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y
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
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H

w
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0

 

3.2. Stable Adaptive Control of a 
Mecanum-Wheeled Robot 

3.2.1. Nominal Control Law Derivation 

In order to synthesize the adaptive control law, we can 

first neglect the uncertainty effect, i.e., let 1 2 D D  

in Equation (20), and consider the following nominal 

dynamics model: 

T T1 ˆˆ
r

 Mq B τ B Sf

T T
T T T T

1 2

T

I I I Ix y θ x y θ

       

              (21) 

Defining the state vector as: 

   



 

z z z q q
 

the state equation of the nominal system can be written 

as 

1 2

1 T T

2

1 ˆˆ
r





       

z z

z M B B S



 
        (22) 

f
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Based on the backstepping method, a stable nonlinear 

nominal control law can be obtained as follows. 

First consider the 1z  subsystem, 1 2 .z z

1 1

 Let 

z v

v

1 1 d e z q

    T

 I d dt t  

1d d q v q  

                    (23) 

where 1  is a virtual input. Define the tracking error 

vector as 

                 (24) 

where  is the desired     , ,,  ,d I dt x t yq

trajectory vector for the platform. Differentiating Equa-

tion (24), we have 

1 1 e z             (25) 

Considering the Lyapunov function candidate 

T

1 1 1 1

1

2
V  e K e

3 3K R

               (26) 

where 1  is symmetric and positive definite, and 

differentiating Equation (26), we have 
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d
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T
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1 1d v q e

T
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

      (27) 

Thus, we can choose 

                (28) 

and obtain 

V              (29) 

By Equation (29), we know that 1lim 0,t e

2 2 1 e z v

t
 that is, 

the subsystem is asymptotically stable. 

Further, the whole nonlinear system (22) is considered. 

After introducing new error vector 

                 
 (30) 

we can obtain 

 
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v

q e e

1 1 2 1

2 1 2 1

2 2 1 2 1

1 T T1 ˆˆ

d d

d

d

r



     

    

   

   
 

  


    

e z q z q v

e v q e e

e z v z q + e

M B B Sf

    (31) 

Then by considering the Lyapunov function candidate 

as 

T T
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T

1 1
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1

2
a

V V  


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T
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2V
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where  is symmetric and positive definite,  2

 1 2diag ,a K K K and taking the time 

derivative of , we have 
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Thus, we can consider the nominal control law as 

 
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1
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n

d

r
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and obtain 

       e K e e K e e K e    (35) 

Since V t
0

2  is negative definite, we know that the 

equilibrium point e

1 2,

 is exponentially stable. 

3.2.2. Adaptive Control of a Mecanum-Wheeled 

Robot with Uncertainty 

Consider the Mecanum-wheeled robot dynamics model 

with uncertainty D D : 

T T

1 2

1 ˆˆ
r

   Mq B B Sf D D 
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2 2 1 1 1

d d
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Using the error vectors defined before in the nominal 

control design, 

      

e z q q q

e z v q v q q e  

   

        (36) 

the system’s error dynamics can be obtained by direct 

differentiating Equation (36) as below: 

T
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1
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r
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q
M
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Consider the following Lyapunov function for adap- 

tive control design, 

T 1

2

1

2
a m mV V   w w 

ˆ

          (38) 

where m m m w w w 

aV

 and  is a symmetric and posi-

tive definite matrix. And taking the time derivative of 

, we have 
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By the definition of 2D  in Equation (20), we know 

that it is bounded, i.e., 2 2

law as 

D 0, 2 


. Since 

1 m mD H w

dτ

n d
 is in linear parametrized form, we can in- 

troduce a compensating term  and choose the control  

   

 

               (40) 

with 

 

 

 
 

T

2

1 1
T T

2

2
1

ˆ
d m m

V
q

r r
V

q c


 

 
    





e
B B B B B B H w

e






1 0c 

                            (41) 

 

where . Substituting Equations (40) and (41) into Equation (39), we have 
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Choose the parameter adaptation law as 

 

   
T

02ˆ ˆ
m m m m m

V σ
           

w w q H w w
e

  

0,

                                   (43) 

 

 0w mwand  is the best guess for the unknown parameter vector . Since where  m
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Since 2V e  satisfies the following inequality equa- 

tion [14], 

we have 

2

22
2

m

aV V d   
w           (44) 

where 

2
0

2

m mw w

1d c             (45) 

     
1 22e eV  e e e            (46) 

where we can choose    
1 2

T1

2
e e a  e e e K e

1e

, thus  

K  and 
2e  are class-  function, and  

  2 1eV   e e , we can obtain 
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 
2

2

m
d  

w
12a eV   e           (47) 

Let  1 e2 0d e , then  1 2e d e , and thus  

 1

1 2e ed b  e . Similarly, while 

2

0
2

m
d  

w
 , 

we have 
2

m

d
b


w   w . Hence, if ebe  or 

mw wb 

0aV 

, then 

                 (48) 

Since 

   

T T 1

21

ax

m m

e m





w w

e w

 





2 m

1 1

2 2

1
    

2

a aV

 

 

 

e K e

         (49) 

by substituting ebe  and m  into the right 

side of Equation (49), we can define 
wbw 

 1

maxd








1

2 1
2

r e e

d
V       

 
          (50) 

and thus, 

    0 ,a rV V V1 maxe a  e  

Hence, we have 

   1

1 max e 0 ,e a rV V            (51) 

Define 

   ax 0 ,a rV V


 6 1

1: me eR    B e e     (52) 

and we thus have  ,t t e B

, , ,c
e

By properly choosing the parameters: 2 1

. 

 
, ,  and 

 
1 2 ,K K  constants eb  and w  can be made suf- 

ficiently small, and the norm of the tracking error 

b 
e  is 

bounded. And thus the adaptive control system is stable. 

4. Results and Discussion 

In this section, two computer simulation examples are 

given to illustrate the performance of the proposed adap- 

tive control for the Mecanum-wheeled mobile robot. 

The first considers a pure translation along a rectangu- 

lar desired trajectory in the I IX Y


 plane with fixed 

orientation  0.t d  The platform’s geometric center 

is planned to move forward from the origin of the inertia 

frame along 



IX  axis 1 m, then leftward along IY  axis 

1 m, and then backward along IX  axis 1m, and finally 

move rightward along IY

    and

 axis 1 m and return to the 

origin. The desired , ,I d I d x t y t

ˆ 0.25,u

 are obtained 

using the cubic spline method [15] and shown as the 

dashed lines in Figure 4(a). 

The parameters of the mobile robot are selected as fol- 

lows: mb = 12 kg, I = 0.5 kg·m2, Iw = 4.0378 × 10−4 

kg·m2, a = 0.2 m, b = 0.3 m, l = 0.25 m, mw = 0.313 kg, r 

= 0.0508 m, rr   and And the ada- 

ptive controller parameters are chosen as: 

29.8 m/s .g 

 1 diag 9000 9000 100 ,K
 

 2 diag 2000 1800 3.25 ,K

0.002,

 

1 0.0001,c  
 

0.002 ,I  T0 0 0 0 ,w    

and 

 diag 8 2 4.75 .

1 2 0.02 m,d d

 

In the simulation, we consider the platform having ec-

centricity with  
3 kg.m

and the mass has varia-

tion b 

 T0.05 0.05 0.05 0.05 Nf 

 The wheels’ contact frictions are as-

sumed with uncertainty  

. 

The simulation results are shown in Figure 4. Figure 

4(a) depicts the tracking performance of the IX - and 

IY -axes translation, and the orientation   variation, and 

Figure 4(b) shows their tracking errors. We know that 

the tracking errors along the IX - and IY -axes are 

within ‒0.0063 - 0.0056 m and ‒0.0065 - 0.0062 m, re-

spectively, and the orientation error is within 0.57 - 
0.64

 
. The corresponding control torques of the four 

Mecanum wheels are shown in Figure 4(c). The adapta- 

tion processes of the uncertainty compensation term’s 

parameters vector  ˆ twm  are shown in Figure 4(d). 

And the geometric center’s moving trajectory in the 

I I  plane is shown in Figure 4(e). X Y
Considering the same uncertainties as the first case, a 

second simulation is considered to show the pure rota- 

tional control performance. The adaptive control pa- 

rameters are selected as below: 

1 0.0001,c  0.002, 

 1 diag 9000 9000 2000 ,K  

 2 diag 2000 900 1000 ,K  

 diag 0.0001 0.03 0.03 , 0 0,w  

and 

 diag 5 0.001 0.03 .  

Simulation results of the pure rotation case are shown 

in Figure 5. Figure 5(a) depicts the tracking perform- 

ances of the IX - and IY -axes translation, and the ori- 

entation  , and Figure 5(b) shows their tracking errors. 

We know that the undesired displacement along the -IX      
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Figure 4. Simulation results of the pure translational case. (a) and 
I I

x y, ,   responses; (b) Tracking errors; (c) Control 

torques,    
1 4

~ N m   ; (d) Compensator parameters adaptation ˆ
m

t

    y t, m

w ; (e) Tracking results of geometric center, 

.  I I
x t

 

and IY -axes can be kept within ‒0.0257 - 0.0235 m and 

‒0.0143 - 0.0270 m, respectively, and the orientation 

 error is within ‒0.0574 - 0.0362 rad. The correspond-

ing control torques of the four Mecanum wheels are 

shown in Figure 5(c). The adaptation processes of the 

uncertainty compensation term’s parameters vector  ˆ twm  

are shown in Figure 5(d). And the geometric center’s 

displacement in I IY

-

 plane is shown in Figure 5(e). X

5. Conclusions 

In this paper, Cartesian-space dynamics modeling and  

stable adaptive control for a four-Mecanum-wheeled 

robot are considered. Based on the derived 3-DOF dy- 

namics model considering the platform mass variation, 

eccentricity, and friction uncertainty, a nonlinear stable 

adaptive control law is derived using the backstepping 

method via Lyapunov stability theory. A nonlinear 

damping term is included in the control law to compen- 

sate for the estimation error, and the parameters adapta- 

tion law with  modification is considered for the un-

certainty estimation. Computer simulations are pre- 

sented to illustrate the control system performance. Real     
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Figure 5. Simulation results of the pure rotational case. (a)  and 
I I

x y, ,   responses; (b) Tracking errors, (c) Control 

torques,    
1 4

~ N m   ; (d) Compensator parameters adaptation ˆ
m

w t

    , m

; (e) Displacement of geometric center 

.  I I
x t y t

 

implementation study using the suggested control law 

with microcontroller deserves future consideration. 
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