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Abstract This paper focuses on the dynamical

analysis of the motion of a new three-degree-of-

freedom (DOF) system consisting of two segments

that are attached together. External harmonic forces

energize this system. The equations of motion (EOM)

are derived utilizing Lagrangian equations, and the

approximate solutions up to the third order are

investigated using the methodology of multiple scales.

A comparison between these solutions and numerical

ones is constructed to confirm the validity of the

analytic solutions. The modulation equations (ME) are

acquired from the investigation of the resonance cases

and the solvability conditions. The bifurcation dia-

grams and spectrums of Lyapunov exponent are

presented to reveal the different types of the system’s

motion and to represent Poincaré maps. The

piezoelectric transducer is connected to the dynamical

system to convert the vibrational motion into electric-

ity; it is one of the energy harvesting devices which

have various applications in our practical life like

environmental and structural monitoring, medical

remote sensing, military applications, and aerospace.

The influences of excitation amplitude, natural fre-

quency, coupling coefficient, damping coefficient,

capacitance, and load resistance on the output voltage

and power are performed graphically. The steady-state

solutions and stability analysis are discussed through

the resonance curves.

Keywords Nonlinear dynamics � Energy
harvesting � Piezoelectric transducer � Perturbation
methods � Stability � Bifurcation diagram � Poincaré
map

1 Introduction

The primary energy-producing resources are nonre-

newable fossil fuels, but they are swiftly running out

and will be exhausted within the next several decades.

It is essential to alter the way energy is produced and

create clean, renewable energy sources. The most

promising form of renewable energy is energy

harvesting, which involves gathering wasted ambient
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energy and transforming it into a more usable form of

energy.

One of the used energy harvesting tools, to convert

mechanical stress and vibrations into electrical power,

is a piezoelectric device [1–3]. An innovative piezo-

electric energy (PE) harvesting model is examined

theoretically and experimentally in [4]. It is based on

coupled transverse and interference galloping to

enhance the energy’s efficiency of the traditional

one. In [5], the authors analyzed theoretically the

nonlinear dynamic behavior of the energy harvester

that is consisting of buckled piezoelectric ribbon layer.

The EOM are derived using Lagrange’s equations and

the analytical solutions are obtained utilizing the

harmonic balance method.

Hamlehdar et al. [6] offered a comprehensive

analysis for the methods of capturing energy, from

fluid flow, utilizing piezoelectric materials. In [7], the

authors suggested a thin-walled PE harvester actuated

by fluid pressure to get homogenous solutions, in

which the weighted residual approach was used. Two

numerical examples are discussed to forecast how the

variations and output power would be responded. In

[8], a linked approach for modeling numerous PE

harvesters depending on vortex-induced vibrations

phenomena at random positions was presented and

experimentally validated. The Navier–Stokes equa-

tions [9] for incompressible fluid flow, piezoelectric

equations of Gauss law, and a damper system of mass-

spring were coupled to achieve the mathematical

formulation.

Wu et al. [10] examined several unique concepts for

PE harvesting from natural resources and environ-

mental vibration. The authors provided a detailed

summary and a discussion of the approaches and the

employed mechanisms to improve the efficiency of

piezoelectric power production and energy harvesting.

The outcomes of modeling a novel nonlinear multi-

stable system for obtaining energy from vibrating

mechanical devices were introduced in [11]. In

addition, the model was composed of a beam and a

system of springs to calculate the potential of a quasi-

flat well. They used the pattern of Lyapunov distribu-

tion to demonstrate that energy harvesting was

diminished in the chaotic motion zones.

A wind energy harvester based on flutter that uses a

hybrid of piezoelectric and electromagnetic devices is

investigated in [12]. A scientific foundation for the

creation of remarkably effective wind energy

harvesters is provided in this study. A spring pendu-

lum system was linked to two different energy

harvesting devices in [13] each in a separate case,

the authors obtained the EOM, and the ME, and they

classified all various cases of resonance. The temporal

histories of motion and the resonance curves were

graphed in their study. The authors in [14], a tri-

stable magneto-piezoelastic absorber was used to

examine concurrently energy harvesting and vibration

isolation. Concepts of Hamilton and Euler–Bernoulli

beam, in addition to a magnetic force are used to

derive the nonlinear EOM. A one DOF dynamical

system of a spring coupled with an energy harvester

was investigated in [15]. The outcomes of the

optimization revealed that the new framework can

output several times more power than the traditional

single DOF system. A reduction of vibration and an

energy harvesting of a spring pendulum dynamical

system is examined in [16]. The pendulum’s structure

was updated using a separate electromagnetic har-

vesting device. All zones of stability and instability are

examined and discussed.

It is well recognized that mechanical systems, in

particular vibrational dynamical problems, e.g.

[17–19], are among the most significant issues in

mechanics due to their wide range of applications,

particularly in engineering. In [20], the authors

performed a dynamic simulation and bifurcation

evaluation for a blade-disk rotor system backed by a

rolling bearing. It is found that the slender blades will

cause a chaotic behavior at high speeds, and blade

stiffness and mass will definitely expand the rotational

speed range of quasi-periodic motion as the system’s

motion sequence gets complicated. In [21], the authors

provided a method for identifying Hopf bifurcations

[22] in 2D dynamical systems that are characterized by

ordinary differential equations (ODE) using an ana-

logue active network. Additionally, they discovered

that the experimental technique is capable of detecting

global impacts that cannot be expected from a local

study, whereas in [23], the authors examined the

motion of a damped system attached to an automatic

parametric pendulum to constitute a 3DOF dynamical

model. They acquired the governing equations and

solved them analytically, in which the stability and

instability regions are analyzed. The topic of variable-

length pendulums was covered in [24]. Using math-

ematical modeling, dynamical analysis, and innova-

tive computer simulations, an attempt is made to
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evaluate current developments in this subject in a

novel way.

Our purpose of this work is to investigate the

vibration analysis of a 3DOF new dynamical system.

This system consists of two connected parts; the first

part is linked to a piezoelectric transducer to convert

the vibrations and stresses into electrical power, and

the second part is a nonlinear damped pendulum. The

regulating EOM are solved analytically using the

methodology of multiple scales till the third order of

approximations. Various cases of resonance are

assorted, in which three cases of external resonances

are investigated at the same time. Therefore, the ME

are acquired by utilizing the solvability conditions. To

confirm the reliability of the analytic solutions, the

numerical ones are compared with them. The bifurca-

tion diagrams are depicted. The spectrum of Lyapunov

exponents and Poincaré maps are graphed to illustrate

several types of system movements. In the electrical

part concerning the PE harvesting, various parameters

studied the influence of the output voltage and power

graphically. The stability of the model is explored with

the help of resonance figures. The value of this work is

due to the investigation of the vibration analysis of a

3DOF dynamical system, to acquire beneficial elec-

trical energy for several life applications in the

presence of a piezoelectric device.

2 Characterization of the dynamical system

The dynamical system under consideration is com-

posed of two segments linked together. The first

portion consists of a mass m1, which is coupled to a

piezoelectric transducer laden with the load resistance

RL, and furthermore, it is linked to a linear spring with

length l1 and stiffness coefficient k1. The second

portion is a nonlinear spring pendulum with mass m2,

length l2, and the stiffness coefficients k2 and k3. The

pendulum’s system is hanged on the mass m1 from

point O as seen in Fig. 1. The mentioned dynamical

system is energized by the external harmonic forces

F1ðtÞ ¼ F1 cosX1t; F2ðtÞ ¼ F2 cosX2t and the

moment MðtÞ ¼ F3 cosX3t: The frequencies and

amplitudes of the applied moment and external forces,

respectively, are Xn ðn ¼ 1; 2; 3Þ and Fn.

The described dynamical system has three degrees

of freedom in addition to three generalized coordinates

XðtÞ; ZðtÞ (representing the springs’ elongations) and

hðtÞ (indicating the rotational angle). It is considered

that Cn ðn ¼ 1; 2; 3Þ are the viscous damping

coefficients.

Since Lagrange’s function of any dynamical system

has the form L ¼ T � V , where T and V are the kinetic

and potential energies of the system. According to the

investigated system, one can write

L ¼ 1

2
fðm1 þ m2ÞX02 þ 2m2 X

0½Z 0 sin hþ ð‘2 þ ZÞh0

� cos h� þ m2½Z 02 þ ð‘2 þ ZÞ2h02�g

� 1

2
ðk1X2 þ k2Z

2 þ 1

2
k3Z

4Þ þ m2gð‘2 þ ZÞ cos h:

ð1Þ

Here, ðX0; Z 0; h0Þ are the system’s generalized

velocities that correspond to their generalized

coordinates.

The governing system of motion can be obtained

according to the following Lagrange’s equations

d

dt

oL

oq0j

 !
� oL

oqj

� �
¼ Qqj ; qjð¼ X; Z; hÞ ð2Þ

where Qqj are the applied generalized forces on the

examined dynamical system and they have the forms

Fig. 1 The dynamical system’s depiction
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QX ¼ F1 cosX1t þ F2 sin h cosX2t � C1
_X � cv;

QZ ¼ F2 cosX2t � C2
_Z;

Qh ¼ F3 cosX3t � C3
_h :

ð3Þ

Here v is the piezoelectric transducer’s output

voltage and c refers the coupling coefficient.

Now, we are going to propose the following

dimensionless parameters to follow the system’s

inquiry approach

X ¼ x ‘þ ðm1 þ m2Þg
k1

; Z ¼ z ‘þ m2 g

k2
;

‘1 ¼ ‘� ðm1 þ m2Þg
k1

; ‘2 ¼ ‘� m2 g

k2
;

x2
1 ¼

k1
ðm1 þ m2Þ

; x2
2 ¼

g

‘
; x2

3 ¼
k2
m2

;

b ¼ m2

ðm1 þ m2Þ
; a ¼ k3 ‘

2

x2
1m2

;

g ¼ m2 g

k2 ‘
; -2 ¼ x2

3

x2
1

; x2 ¼ x2
2

x2
1

; p1 ¼
X1

x1

;

p2 ¼
X2

x1

; p2 ¼
X3

x1

;

l ¼ c

‘ ðm1 þ m2Þx2
1

; c1 ¼
C1

x1ðm1 þ m2Þ
;

c2 ¼
C2

x1m2

; c3 ¼
C3

‘2x1m2

;

f1 ¼
F1

‘x2
1ðm1 þ m2Þ

; f2 ¼
F2

‘x2
1m2

;

f3 ¼
F3

‘2x2
1m2

; s ¼ x1t;

ð4Þ

where the gravity’s acceleration is indicated by g, the

natural frequencies are symbolized by

xn ðn ¼ 1; 2; 3Þ, and s is the dimensionless time

parameter.

Substituting (1), (3), and (4) into (2) to obtain the

following dimensionless system of the EOM

€xþ b €z sin h þ b ð1þ zÞ €h cos hþ 2b _z _h cos h

� b ð1þ zÞ _h2 sin h
þ c1 _xþ xþ l vþ x2 ¼ f1 cos p1sþ f2b sin h cos p2s ;

ð5Þ

€zþ €x sin h� ð1þ zÞ _h2 þ c2 _zþ -2zþ 3 g2a z

þ 3 g a z2 þ a z3

þ x2ð1� cos hÞ ¼ f2 cos p2s ;

ð6Þ

ð1þ zÞ2€hþ ð1þ zÞ€x cos hþ 2ð1þ zÞ _z _hþ c3 _h
þ x2ð1þ zÞ sin h
¼ f3 cos p3s ; ð7Þ

Moreover, the formula of the piezoelectric trans-

ducer’s equation can be according to its electrical

circuit mechanism, as follows

_vþ v

cp RL x1

¼ ‘ c
cp

_x; ð8Þ

where cp is the capacitor’s equivalent capacity.

3 The approximate methodology

In this part, we are going to solve the abovementioned

system of Eqs. (5)–(8) analytically using one of the

perturbation techniques. The multiple scale method-

ology [25] is adopted to obtain the solutions up to the

third approximation. Accordingly, we assumed the

solutions in terms of the minuscule parameter e, as
follows

xðsÞ ¼ e vðs; eÞ; zðsÞ ¼ e fðs; eÞ;
hðsÞ ¼ e uðs; eÞ; vðsÞ ¼ e tðs; eÞ:

ð9Þ

The multiple time scales are represented by

sn ¼ ens ðn ¼ 0; 1 ; 2Þ, the solutions v; f; u, and t
can be written as follows

v ¼
X3
k¼1

ekvkðs0; s1; s2Þ þ Oðe4Þ;

f ¼
X3
k¼1

ekfkðs0; s1; s2Þ þ Oðe4Þ;

u ¼
X3
k¼1

ekukðs0; s1; s2Þ þ Oðe4Þ;

t ¼
X3
k¼1

ektkðs0; s1; s2Þ þ Oðe4Þ:

ð10Þ

Considering the narrowness of the following vari-

ables and parameters
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l ¼ e2 ~l; c ¼ e2 ~c; a ¼ e2 ~a; b ¼ e ~b;

cn ¼ e2 ~cn; fn ¼ e3 ~fn; ðn ¼ 1; 2; 3Þ;

RL ¼
~RL

e2
; cp ¼ e2 ~cp:

ð11Þ

The next operators are employed to transform the

derivatives regarding s, to the corresponding ones

regarding the time scales sn

d

ds
¼ o

os0
þ e

o

os1
þ e2

o

os2
;

d2

ds2
¼ o2

os20
þ 2e

o2

os0os1
þ e2

o2

os21
þ 2

o2

os0os2

� �
þ Oðe3Þ:

ð12Þ

To acquire the following the groups of partial

differential equations (PDE) in powers of e, substitut-
ing (9)–(12) into the EOM (5)–(8), and neglecting the

terms of Oðe3Þ due to their smallness.

(i) Order of ðeÞ

o2v1
os20

þ v1 ¼ 0; ð13Þ

o2f1
os20

þ -2f1 ¼ 0; ð14Þ

o2u1

os20
þ x2u1 þ

o2v1
os20

¼ 0; ð15Þ

ot1
os0

þ t1
x1 ~cp ~RL

¼ ‘ ~c
~cp

ov1
os0

: ð16Þ

(ii) Order of ðe2Þ

o2v2
os20

þ v2 ¼ �~b
o2u1

os20
� 2

o2v1
os0os1

; ð17Þ

o2f2
os20

þ -2f2 ¼ � 1

2
x2u2

1 þ
ou1

os0

� �2

�2
o2f1
os0os1

� u1

o2v1
os20

;

ð18Þ

o2u2

os20
þ x2u2 þ

o2v2
os20

¼ �f1 x2u1 þ 2
o2u1

os20
þ o2v1

os20

� �

�2
of1
os0

ou1

os0
þ o2u1

os0os1
þ o2v1
os0os1

� �
;

ð19Þ

ot2
os0

þ t2
x1 ~cp ~RL

¼ ‘ ~c
~cp
ðov1
os1

þ ov2
os0

Þ � ot1
os1

: ð20Þ

(iii) Order of ðe3Þ

o2v3
os20

þ v3 ¼
1

2
~f1e

i p1 s0 � ~l t1 �
o2v1
os21

� ~c1
ov1
os0

� 2
o2v1
os0os2

þ o2v2
os0os1

� �

� ~b 2
of1
os0

ou1

os0
þ u1

o2f1
os20

þ f1
o2u1

os20

�

þ2
o2u1

os0os1
þ o2u2

os20

�
;

ð21Þ

o2f3
os20

þ -2f3 ¼
1

2
~f2e

i p2 s0 � 3g2~a f1 � x2u1u2

� o2f1
os21

� ~c2
of1
os0

þ 2
ou1

os0

1

2
f1

ou1

os0
þ ou2

os0
þ ou1

os1

� �

þ 2
o2f1
os0os2

þ o2f2
os0os1

� �

� u1 2
o2v1
os0os1

þ o2v2
os20

� �
� u2

o2v1
os20

;

ð22Þ

o2u3

os20
þ x2u3 ¼

1

2
~f3e

i p3 s0 � x2 f2u1 þ f1u2 �
u3
1

6

� �

� o2u1

os21
� o2v1

os21
� ~c3

ou1

os0

� 2
of1
os0

ou1

os1
þ ou2

os0

� �
� 2

ou1

os0

of1
os1

þ f1
of1
os0

þ of2
os0

� �

� 2
o2u1

os0os2
þ o2v1
os0os2

� �

� 2 f1 2
o2u1

os0os1
þ o2v1
os0os1

þ o2u2

os20
þ 1

2

o2v2
os20

� ��

þ o2u2

os0os1
þ o2v2
os0os1

�

� o2u1

os20
ðf21 þ 2f2Þ �

o2v1
os20

f2 �
u2
1

2

� �
;

ð23Þ
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ot3
os0

þ t3
x1 ~cp ~RL

¼ ‘ ~c
~cp

ov1
os2

þ ov2
os1

þ ov3
os0

� �
� ot1
os2

� ot2
os1

:

ð24Þ

The PDE of these groups can be solved sequen-

tially. Therefore, we begin with the general solutions

of the first group of Eqs. (13)–(16) as follows

v1 ¼ A1 e
is0 þ CC; ð25Þ

f1 ¼ A2 e
i-s0 þ CC; ð26Þ

u1 ¼ A3 e
ixs0 þ A1 e

is0

1� x2
þ CC; ð27Þ

t1 ¼ ‘x1~c ~RLA1 e
i s0

ðx1 ~cp ~RL � i Þ
þ CC; ð28Þ

Here, CC denotes the complex conjugates of the

foregoing terms, and An ðn ¼ 1; 2; 3Þ and An are

unknown complex functions of the scales ðs1; s2Þ and
their conjugates, respectively.

Substituting the solutions (25)–(28) into the second

group of PDE (17)–(20), and then eliminating the

produced secular terms, to get the following

conditions

oAn

os1
¼ 0; n ¼ 1; 2; 3: ð29Þ

As a corollary of these conditions, the solutions of

Eqs. (17)–(20) are

v2 ¼ x2 ~bA3 e
ixs0

ð1� x2Þ þ CC; ð30Þ

f2 ¼ ð4� 3x2ÞA1A1

-2ðx2 � 1Þ2
þ x2A3A3

-2

� 3x2A2
1 e

2i s0

2ð-2 � 4Þðx2 � 1Þ2
� 3x2A2

3 e
2ixs0

2ð-2 � 4x2Þ

þ ½2xðxþ 1Þ � 1�x2A1A3 e
iðxþ1Þ s0

ðx2 � 1Þ½-2 � ðxþ 1Þ2�

þ ½2xðx� 1Þ � 1�x2A3A1 e
iðx�1Þ s0

ðx2 � 1Þ½-2 � ðx� 1Þ2�
þ CC;

ð31Þ

u2 ¼
ð2x2 � 2-� 3ÞA1A2e

ið-þ1Þs0

ðx2 � 1Þ½x2 � ð-þ 1Þ2�

þ ð2x2 þ 2-� 3ÞA2A1e
ið-�1Þs0

ðx2 � 1Þ½x2 � ð-� 1Þ2�

� xð2-þ xÞA2A3e
ið-þxÞs0

-ð-þ 2xÞ

þ xð2-� xÞA2A3e
ið-�xÞs0

-ð-� 2xÞ þ CC;

ð32Þ

t2 ¼ � ‘x3x1
~RL~cA3 e

ixs0

ðxx1 ~cp ~RL � i Þðx2 � 1Þ
þ CC; ð33Þ

The requirements of removing the secular terms

from the third group of PDE (21)–(24) can be obtained

after inserting the solutions (25)–(28) and (30)–(33)

into these equations. Therefore, one obtains

i ~c1A1 þ 2i
oA1

os2
þ D1A1 ¼ 0; ð34Þ

i ~c2-A2 þ 3 g2~aA2 þ 2 i-
oA2

os2
þ D2A2A3A3

þ D3A1A2A1 ¼ 0;

ð35Þ

i ~c3xA3 þ 2 ix
oA3

os2
� D2A3ðD4A3A3 � A2A2Þ

þ D5A1A3A1 ¼ 0:

ð36Þ

Ultimately, the solutions of Eqs. (21)–(24) can be

found in the forms

v3 ¼
~f1e

i p1 s0

2ð1� p21Þ
þ ð-þ 1Þ2ðx2 þ -2 � 2Þ~bA1A2e

i ð-þ1Þs0

-ð-þ 2Þð-� xþ 1Þð-þ xþ 1Þðx2 � 1Þ

þ ð-� xÞð-þ xÞ3 ~bA2A3e
i ð-þxÞs0

-ð-þ 2xÞ½1� ð-þ xÞ2�

þ ð-� 1Þ2ðx2 þ -2 � 2Þ~bA2A1e
i ð-�1Þs0

-ð-� 2Þðx2 � 1Þ½ð-� 1Þ2 � x2�

þ ð-þ xÞð-� xÞ3 ~bA2A3e
i ð-�xÞs0

-ð-� 2xÞ½1� ð-� xÞ2�
þ CC;

ð37Þ

f3 ¼ f31 þ f32 þ f33; ð38Þ

u3 ¼ u31 þ u32 þ u33; ð39Þ

where f3n and u3n; ðn ¼ 1; 2; 3Þ are defined as in the

appendix (I).
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t3 ¼
‘ p1x1

~RL ~c ~f1e
i p1s0

2ð1� p21Þðp1x1 ~cp ~RL � i Þ
þ ‘x1

~RL ~c ~bðx2 þ -2 � 2Þ
-ðx2 � 1Þ

� ð-þ 1Þ3A1A2e
ið-þ1Þs0

ð-þ 2Þ½ð-þ 1Þ2 � x2�½x1 ~cp ~RLð-þ 1Þ � i �

(

þ ð-� 1Þ3A1A2e
ið-�1Þs0

ð-� 2Þ½ð-� 1Þ2 � x2�½x1 ~cp ~RLð-� 1Þ � i �

)

� ‘x1
~RL ~c ~b
-

ð-� xÞð-þ xÞ4A2A3e
ið-þxÞs0

ð-þ 2xÞ½ð-þ xÞ2 � 1�½x1 ~cp ~RLð-þ xÞ � i �

(

þ ð-þ xÞð-� xÞ4A2A3e
ið-�xÞs0

ð-� 2xÞ½ð-� xÞ2 � 1�½x1 ~cp ~RLð-� xÞ � i �

)
þ CC:

ð40Þ

4 Resonance investigation

In this section, different aspects of resonance [26] will

be identified which affect the behavior of the system.

Moreover, the solvability conditions that generate the

modulation equations will be determined. Meanwhile,

the frequency response curves will be used to highlight

the zones of stability and instability according to the

system’s physical parameters.

The resonance conditions are fulfilled based on the

denominators of the second and third orders of

solutions (30)–(33) and (37)–(40) when they have

zero values. Here, we have two divisions of resonance.

a. Internal resonance takes place, once the following

terms are met

- � 0; - � �1; - � �2; - � �x;

- � �2x; - � �ðxþ 1Þ;
- � �ðx� 1Þ; x � �1; x � �ð2-þ 1Þ;

x � �ð2-� 1Þ; x � �3; x � �1=3:

b. External primary resonance can be achieved when

p1 � 1; p2 � -; and p3 � x.

Now, we will explore the cases of external primary

resonance at the same time. Then, we introduce the

detuning parameter rn ðn ¼ 1; 2; 3Þ according to

p1 ¼ 1þ r1; p2 ¼ -þ r2; p3 ¼ xþ r3;
rn ¼ e2 ~rn:

ð41Þ

Substituting (41) into the third-order solutions

(37)–(40), and making use of the conditions (34)–

(36), the solvability conditions become

1

2
~f1 e

i s2 ~r1 � i ~c1A1 � 2i
oA1

os2
� D1A1 ¼ 0;

1

2
~f2 e

i s2 ~r2 � i ~c2-A2 � 3 g2~aA2

� 2 i-
oA2

os2
� D2A2A3A3 � D3A1A2A1 ¼ 0;

1

2
~f3 e

i s2 ~r3 � i ~c3xA3 � 2 ix
oA3

os2
þ D2A3½D4A3A3 � A2A2� � D5A1A3A1 ¼ 0;

ð42Þ

Let us consider ~an and ~wn to express the amplitudes

and phases of the solutions v; f; and u. Therefore, we
can specify the functions An in their polar forms, as

follows

An ¼
~anðs2Þ
2

ei
~wns2 ; an ¼ e~an ðn ¼ 1; 2; 3Þ: ð43Þ

Henceforth, their first derivatives can be stated as

follows

oAj

os
¼ e2

oAj

os2
: ð44Þ

For simplicity, the above solvability conditions of

PDE (42) can be transformed into the ordinary form.

To gain this objective, the following modified phases

can be utilized

h1ðs1; s2Þ ¼ s2 ~r1 � w1ðs2Þ;
h2ðs1; s2Þ ¼ s2 ~r2 � w2ðs2Þ;
h3ðs1; s2Þ ¼ s2 ~r3 � w3ðs2Þ:

ð45Þ

Substituting (43)–(45) into (42) and isolating the

real and imaginary portions to obtain the following

ME

a1
dh1
ds

¼ 1

2
½f1 cos h1 � a1ðD6 � 2r1Þ�;

da1
ds

¼ 1

2
½f1 sin h1 � a1ðD7 þ c1Þ�;

a2
dh2
ds

¼ 1

2-
f2 cos h2 � a2 3a g2 � 2-r2 þ

1

4
ðD2a

2
3 þ D3a

2
1Þ

� �� �
;

da2
ds

¼ 1

2-
ðf2 sin h2 � - a2c2Þ;

a3
dh3
ds

¼ 1

2x
f3 cos h3 þ

x a3
2

4r3 þ
1

2
D2a3ðD4a

2
3 � a22Þ � D5a

2
1

� �� �
;

da3
ds

¼ 1

2x
ðf3 sin h3 � x a3c3Þ;

ð46Þ

where the terms Dn ðn ¼ 1; 2; :::; 7Þ are given in

Appendix (I).
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The modulation equations system (46) may be

numerically solved through the planes anhn and

according to the arbitrary initial conditions a1ð0Þ ¼
0:01; a2ð0Þ ¼ 0:1; a3ð0Þ ¼ 0:08; and

h1ð0Þ ¼ h2ð0Þ ¼ h3ð0Þ ¼ 0.

A comparison between the numerical solutions and

the approximate ones is graphed in Fig. 2. The

portions of this figure are drawn according to the

following data of the system’s parameter [27]

f1 ¼ f2 ¼ f3 ¼ 0:01� 10�6; c1 ¼ 0:002; c2 ¼ 0:003; c3 ¼ 0:0012;

- ¼ 0:01; x ¼ 0:15; l ¼ 0:000003; g ¼ 0:0001; b ¼ 0:01

a ¼ 0:01; c ¼ 0:00003; r1 ¼ r2 ¼ �0:003; r3 ¼ 0:003:

The inference from the figure’s portions reveals

high consistency among these solutions; meanwhile, it

confirms an excellent accuracy of the approximate

solutions. The subsequent parameters were considered

for the comparison as shown in Fig. 2.

5 Chaotic motion

In the mentioned dynamical system, tiny adjustments

to the system’s parameters can have an impact on the

system’s behavior. Hence, the system offered three

different types of motion as we will describe below.

The bifurcation diagrams of the variables X and Z, and

the spectrum of Lyapunov exponents (LEs of

kn; n ¼ 1; 2; :::; 6) versus the excitation amplitude f1
were simulated to display the kinds of these motions

[28]. Figure 3a, b shows the bifurcation diagrams of X

and Z, and Fig. 3c displays the spectrum LEs that

describe different types of motion. According to the

below three figures, we have three ranges of the

excitation amplitude f1, every range refers to different

kind of system’s motion. The first range at

f1 2 ½0; 0:04065�, we noticed in this range of values,

the spectrum of LEs lines are approximately under the

Fig. 2 The numerical and approximate solutions comparison
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axis k ¼ 0 or equal to zero, which indicated that the

motion is in a quasi-periodic sequence and it is seen

also in the bifurcation diagram of X; Z for the same

range of f1 especially in Fig. 3a, the system exhibits

nearly as a line. The second range is founded at

f1 2 ð0:04065; 0:23�. It is noticed that, there is more

than one LEs spectrum that has a positive value like

the blue and red lines. Hence, the system behavior is a

hyper-chaotic motion as it is obviously observed in the

bifurcation diagrams for the aforementioned second

range. Finally, we can observe from the third range of

f1 2 ð0:23; 0:5� that only one spectrum has a positive

value. Therefore, the system is in the chaotic phase as

seen at the same time in the bifurcation diagrams of X

and Z.

The phase portraits and Poincaré maps are plotted

in Fig. 4, where the blue curves denote the phase

portraits and the red dots symbolize the Poincaré

maps. The figures were depicted for different values of

the excitation amplitude f1 to show the various three

motions of the system.

In Fig. 4a, we consider a value f1 ¼ 0:0005 that lies

in the first range of the excitation amplitude. The red

dots pattern of the Poincaré map shows approximately

a closed curve for both variables X and Z, which leads

to the previous conclusion of the quasi-periodic

movement of the system.

The red dots at f1 ¼ 0:24 as in Fig. 4b start to

diverge randomly because of the chaotic state which

appeared in the third range of values of f1. In the same

way, in Fig. 4c, the system at f1 ¼ 0:11 behaves as the

hyper-chaotic motion as in the second range of f1.

Therefore, the red dots are in a very messy distribution

unlike in the previous two figures.

6 The piezoelectric transducer

In this portion of the study, we pursued to take the

advantage of producing electrical energy by integrat-

ing a piezoelectric device with our mentioned dynam-

ical model, which is one of the energy harvesting

devices. The piezoelectric device consists of dielectric

materials, which can be polarized due to the mechan-

ical stress that comes from the vibrations of the

dynamical model in our case when these materials are

polarized; an electric field is generated. This process is

called the piezoelectric effect. So, electrical energy

from mechanical energy using the merge between the

piezoelectric device and the dynamical model is

produced. The electrical energy is generated by the

energy harvesting device which may be used for many

different purposes, including environmental monitor-

ing like habitat monitoring (light, temperature, and

humidity), structural monitoring, and medical remote

sensing such as emergency medical response moni-

toring, pacemaker, defibrillator, military applications,

and aerospace.

The piezoelectric transducer is merged with our

dynamical model specifically with the mass m1 and

loaded with the resistance RL, in which the influence of

various system parameters on the energy production is

checked. In Fig. 5, the effect of different values of the

damping coefficient c1ð¼ 0:002; 0:005; 0:008Þ,

Fig. 3 The bifurcation diagrams of X; Z, and their spectrum of

LEs
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Fig. 4 The phase portraits and Poincare maps of X; Z
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capacitance cpð¼ 0:001; 0:004; 0:007Þ, and the load

resistance RLð¼ 500; 700; 900Þ on the time histories

of output voltage and power is drawn. We logically

concluded that the output voltage and the power

decrease with the increasing of c1 and cp. It is observed

that the output voltage rises as the load resistance

increases in accordance with Ohm’s Law [29], and in

contrast, as RL grows, the output power falls.

Simultaneously, the effect of other parameters

which, increase the productivity of electrical energy

is studied, as shown in Fig. 6. Moreover, the impact of

various values of the excitation amplitude

f1ð¼ 0:0005; 0:0007; 0:0009Þ, natural frequency

x1ð¼ 2:5; 3:5; 4:5Þ, and the coupling coefficient cð¼
0:0003; 0:0009; 0:0015Þ is examined. The rising of

the mentioned parameters yields, the output voltage

and power growth as time passed.

Fig. 5 The time histories of the output voltage, and power at different values of damping coefficient c1, capacitance cp, and load

resistance RL
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7 Steady-state solutions and stability analysis

This section of the research covers the steady-state

solutions and the stability analysis of the dynamical

model according to the resonance response curves.

When transient processes are eliminated as a result of

the system’s dampening, steady-state vibrations are

apparent [30]. We presumed that the amplitudes’ and

phases’ time derivatives are equal to zero in modula-

tion Eq. (46). Therefore, these equations are trans-

formed from a system of ODE to a system of algebraic

equations as follows

Fig. 6 The behavior of v and P versus s, when varying of excitation amplitude f1, natural frequency x1, and coupling coefficient c
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f1 cos h1 � a1ðD6 � 2r1Þ ¼ 0;

f1 sin h1 � a1ðD7 þ c1Þ ¼ 0;

f2 cos h2 � a2 3a g2 � 2-r2 þ
1

4
ðD2a

2
3 þ D3a

2
1Þ

� �
¼ 0;

f2 sin h2 � - a2c2 ¼ 0;

f3 cos h3 þ
xa3
2

4r3 þ
1

2
D2a3ðD4a

2
3 � a22Þ � D5a

2
1

� �
¼ 0;

f3 sin h3 � x a3c3 ¼ 0:

ð47Þ

The following set of nonlinear algebraic equations

is a relation between the amplitudes an and the

detuning parameters rn after getting rid of the

modified phases hn from Eq. (47)

f 21 ¼ a21f½D6 � 2r1�2 þ ½D7 þ c1�2g;

f 22 ¼ a22 -2c22 þ 3a g2 � 2-r2 þ
1

4
ðD2a

2
3 þ D3a

2
1Þ

� �2( )
;

f 23 ¼ x2a23 2r3 þ
1

4
D2a3ðD4a

2
3 � a22Þ � D5a

2
1

� �2
þc23

( )
:

ð48Þ

The stability of steady-state vibrations is a unique

and significant feature of the topic of this study.

Consequently, we will examine the system’s behavior

in the immediate vicinity of the fixed locations to

understand this issue. The fixed point analogous to the

steady-state solution is asymptotically stable in the

perspective of Lyapunov if and only if the real

components of all eigenvalues are negative [31].

Fig. 7 Resonance curves of the amplitudes an; n ¼ 1; 2; 3 versus r1; and r2 ¼ �0:002; r3 ¼ �0:001
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We will illustrate the stability of the fixed points

through the resonance response curves which can be

plotted using the numerical solutions of Eq. (48). In

Figs. 7 and 8, we noticed that all fixed points for the

ranges of r1 and r2 are stable. In contrast and as shown
in Fig. 9, the influence of r3 on the stability of the

fixed points is obvious, in which the fixed points of

some areas lost their stability and turn into unsta-

ble fixed points. It must be noted that the stable fixed

points are represented with blue points while the red

ones are used to refer to the unstable ones.

8 Conclusion

The nonlinear motion of a 3DOf dynamical system

consisting of two linked components: The first one is

connected to a PE device, while the other is a nonlinear

damped pendulum, has been investigated. The gov-

erning equations are obtained using Lagrange’s equa-

tions and are solved analytically using the multiple

scale methodology till the third-order approximation.

These solutions are confirmed numerically and sup-

ported with graphs. All the obtained external reso-

nance cases are examined and the modulation

Fig. 8 The amplitudes an vs r2; at r1 ¼ 0:001; r3 ¼ �0:001
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equations are achieved. The bifurcation diagrams,

Poincaré maps, and the spectrum of Lyapunov expo-

nents are depicted and explored that the system acted

in three different movements: a quasi-periodic, hyper-

chaotic, and chaotic motion. It is noted that we can get

high output voltage and power by controlling the

values of excitation amplitude, natural frequency,

coupling coefficient, capacitance, damping coeffi-

cient, and load resistance. The influences of these

parameters are represented graphically to be more

comprehensible. Moreover, the stability of the system

using the resonance response curves is drawn and

analyzed to clarify the stable and unstable fixed points.

The significance of the investigated dynamical system

is due to its uses in diverse applications including

medical remote sensing like emergency medical

response monitoring, and environmental applications;

for example, temperature and humidity monitoring.
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Appendix I

f31 ¼
~f2e

i p2s0

2ð-2 � p22Þ
�

~bx4A2
3e

2ixs0

ð-2 � 4x2Þ2ðx2 � 1Þ

� 2~bx4A3A3

-2ðx2 � 1Þ þ
~bx4A3A1e

iðx�1Þs0

ðx2 � 1Þ2½-2 � ðx2 � 1Þ2�

þ
~bx4A3A1e

iðxþ1Þs0

ðx2 � 1Þ2½-2 � ðx2 þ 1Þ2�

þ ½4x4 � 5x2 � 3-ð-þ 2Þ � 2�A2A
2
1e

ið-þ2Þs0

4ð-þ 1Þð-� xþ 1Þð-þ xþ 1Þðx2 � 1Þ2

þ ½4x4 � 5x2 � 3-ð-� 2Þ � 2�A2A
2

1e
ið-�2Þs0

4½ð-� 1Þ3 � x2ð-� 1Þ�ðx2 � 1Þ2

� 3xð-þ xÞA2A
2
3e

ið-þ2xÞs0

4-ð-þ 2xÞ

þ 3xð-� xÞA2A
2

3e
ið-�2xÞs0

4-ð-� 2xÞ ;

f32 ¼ xA1A2A3e
ið-þxþ1Þs0 ½6-4 þ 12-3ðxþ 1Þ

� xð2xðxþ 1Þ � 1Þðx2 � 1Þ
þ -2ð2xð13� 4xðx� 1ÞÞ þ 4Þ
� 2-ðxþ 1Þðx ðxð4x� 1Þ � 7Þ
þ 1Þ�=½-ð-� xþ 1Þðx� 1Þðxþ 1Þ2

ð-þ xþ 1Þð2-þ xþ 1Þð-þ 2xÞ�
þ xA2A3A1e

ið-þx�1Þs0 ½6-4 þ 12-3ðx� 1Þ
þ xð2xðx� 1Þ � 1Þðx2 � 1Þ
þ -2ð2xð4xðxþ 1Þ þ 13Þ þ 4Þ þ 2-ðx� 1Þ
ðxð4x2 þ x� 7Þ � 1Þ�=½-ð-
þ 2xÞðx2 � 1Þð-2 � ð-þ x� 1Þ2Þðx2 � ð-� 1Þ2Þ�;

f33 ¼ xA2A1A3e
ið-�x�1Þs0 ½�6-4 þ 12-3ðxþ 1Þ

þ xð2xðxþ 1Þ � 1Þðx2 � 1Þ
þ -2ð2xð4xðx� 1Þ � 13Þ � 4Þ
� 2-ðxþ 1Þðxðxð4x� 1Þ � 7Þ þ 1Þ� =½-ð-
� 2xÞð-� x� 1Þð2-� x� 1Þðx� 1Þ
� ðxþ 1Þ2ð-þ x� 1Þ�
þ xA1A2A3e

ið-�xþ1Þs0 ½2-ð-þ 1Þð3-ð-þ 1Þ � 1Þ
þ x� 2-xð2-þ 3Þð3-
þ 2Þ þ 2x2ð4-ð-þ 2Þ þ 1Þ
þ x3ð8-2 þ 6-� 3Þ � 2x4ð4-þ 1Þ þ 2x5�
=½-ð-� 2xÞð-� xþ 1Þð-þ xþ 1Þ
� ðx2 � 1Þð-2 � ð-� xþ 1Þ2Þ� þ CC;

u31 ¼
~f3e

i p3 s0

2ðx2 � p23Þ
þ p21

~f1e
i p1 s0

2ð1� p21Þðx2 � p21Þ

� ½-2ð4x2 � 3Þ þ 18x4 � 79x2 þ 12�A3
1e

3 i s0

6ðx2 � 9Þð-2 � 4Þðx2 � 1Þ3

� ð-2 þ x2 � 2Þ~bA2

-ðx2 � 1Þ f ð-þ 1Þ4A1e
ið-þ1Þs0

ð-þ 2Þ½ð-þ 1Þ2 � x2�2

þ ð-� 1Þ4A1e
ið-�1Þs0

ð-� 2Þ½ð-� 1Þ2 � x2�2
g

� ~bA2A3e
ið-þxÞs0 ½4-2x4 þ 4-3x5 þ x6 � x8

þ -ðx2 � 1Þð-5 þ 4-4x� 2x5Þ
þ -4x2ð6x2 � 5Þ�=f-ðx2 � 1Þð-þ 2xÞ

½x2 � ð-þ xÞ2�½ð-þ xÞ2 � 1�g
� ~bA2A3e

ið-�xÞs0 ½4-2x4 � 4-3x5 þ x6 � x8

þ -ðx2 � 1Þð-5 � 4-4xþ 2x5Þ
þ -4x2ð6x2 � 5Þ�=f-ðx2 � 1Þð-� 2xÞ

� ½x2 � ð-� xÞ2�½ð-� xÞ2 � 1�g

� ð-2 � 49x2ÞA3
3e

3 i xs0

48ð-2 � 4x2Þ ;
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u32 ¼ �A2
1A3e

iðxþ2Þs0f-4ð3x2 � 2Þ þ -2

� ½xðxð2xðx� 9Þ � 45Þ � 12Þ þ 20� þ x½xðxðx
� ð3xðxþ 6Þ þ 7Þ þ 36Þ þ 132Þ þ 48� � 48g=

f2ð-2 � 4Þðx2 � 1Þ2½ðxþ 1Þ2 � -2�½x2

� ðxþ 2Þ2�g þ A
2

1A3e
iðx�2Þs0f-4ð3x2 � 2Þ

þ -2½xðxð2xðxþ 9Þ � 45Þ þ 12Þ þ 20�
þ x½xðxðxð3xðx� 6Þ þ 7Þ � 36Þ þ 132Þ

� 48� � 48g=f2ð-2 � 4Þðx2 � 1Þ2½x2 � ðx
� 2Þ2ð-� xþ 1Þð-þ x� 1Þ�g � A1A

2
3e

ið2xþ1Þs0

f-4ð2x2 � 1Þ þ -2ð1þ 6x� 4x2ð4x
þ 1Þðxþ 2Þ þ x2½xðxð50x2 þ 96xþ 39Þ þ 6Þ

þ 5�g=f2ðx2 � 1Þð4x2 � -2Þ½ðxþ 1Þ2

� -2�½x2 � ð2xþ 1Þ2�g � A1A
2
3e

ið2x�1Þs0

f-4ð2x2 � 1Þ þ -2ð1� 6x� 4x2ð4x � 1Þðx
� 2Þ þ x2½xðxð50x2 � 96xþ 39Þ � 6Þ þ 5�g=

f2ðx2 � 1Þð4x2 � -2Þ½ðx� 1Þ2 � -2�
� ½x2 � ð2x� 1Þ2�g;

D1 ¼
‘x1

~RL ~c ~l

x1 ~cp ~RL � i
; D2 ¼

6x2ð-2 � x2Þ
ð-2 � 4x2Þ ;

D3 ¼
2½8þ 3-4 � 19x2 þ 15x4 � 4x6 þ -2ð4x4 þ 2x2 � 9Þ�

ðx2 � 1Þ2½-4 þ ðx2 � 1Þ2 � 2-2ðx2 þ 1Þ�
;

D4 ¼
ð-2 þ 8x2Þ

12-2
;

D5 ¼ x2ðx2 � 1Þ2ð3x2 � 4Þ � -6ð3x2 � 2Þ þ -4ðx4 � 2x2 � 6Þ
� -2ðx6 þ 14x4 � 19x2 � 4Þ�=-2ðx2 � 1Þ2½ð-2 � 1Þ2

� 2x2ð-2 � 1Þ þ x4;

D6 ¼
‘x2

1R
2
L c l

ðx2
1c

2
pR

2
L þ 1Þ ; D7 ¼

‘x1RL c l

ðx2
1c

2
pR

2
L þ 1Þ :

u33 ¼ � ½2x4 þ 18-þ 19-2 þ 6-3 � 2x2ð4-2 þ 6-þ 3Þ þ 5�A1A
2
2e

ið2-þ1Þs0

ðx2 � 1Þ½x2 � ð-þ 1Þ2�½x2 � ð2-þ 1Þ2�

� ½2x4 � 18-þ 19-2 � 6-3 � 2x2ð4-2 � 6-þ 3Þ þ 5�A1A
2
2e

ið2-�1Þs0

ðx2 � 1Þ½x2 � ð-� 1Þ2�½x2 � ð2-� 1Þ2�

� xð-þ xÞð2-þ xÞð3-þ xÞA2
2A3e

ið2-þxÞs0

-ð-þ 2xÞ½x2 � ð2-þ xÞ2�

þ xð2-� xÞð3-2 � 4-xþ x2ÞA2
2A3e

ið2-�xÞs0

-ð-� 2xÞ½x2 � ð2-� xÞ2�

þ A1e
i s0

2-2ðx2 � 1Þ4
f½3ð-

4 � 12-2 þ 32Þ � x2ð4-4 � 47-2 þ 136Þ � 6x4ð3-2 � 8Þ�A1A1

ð-2 � 4Þ
þ ð½2ðx2 � 1Þ2ð2-2ð5� 8-2 þ 3-4

þ x2ð3-2 � 11Þ þ 2x4ð-2 þ 4Þ � 2x6�A2A2

=½x4 þ ð-2 � 1Þ2 � 2x2ð-2 þ 1Þ�Þ
þ ð½-2ð-2 � 1Þ2 � x2ð2-6 þ 7-4 � 16-2 � 3Þ
þ x4ð2-4 � 7-2 þ 8Þ
� x6ð2-2 þ 7Þ þ 2x8�A3A3Þg þ CC;
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