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Cellular processes are governed and coordinated by a multitude of biopathways. A pathway can
be viewed as a complex network of biochemical reactions. The dynamics of this network largely

determines the functioning of the pathway. Hence the modeling and analysis of biochemical

networks dynamics is an important problem and is an active area of research. Here we review

quantitative models of biochemical networks based on ordinary di®erential equations (ODEs).
We mainly focus on the parameter estimation and sensitivity analysis problems and survey the

current methods for tackling them. In this context we also highlight a recently developed

probabilistic approximation technique using which these two problems can be considerably

simpli¯ed.
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1. Introduction

Cellular processes are driven by networks of biochemical reactions. These networks are

often termed biopathways, and they can be loosely classi¯ed into signaling pathways,

metabolic pathways, and gene regulatory networks. Cells rely on the tight coordination

of these pathways to achieve proper functioning. Here we mainly focus on signaling

pathways, though the models and techniques we present can be applied to other types

of networks as well. With the help of signaling pathways, a cell senses changes in its

environment or internal state. This information is then passed on via cascades of

biochemical reactions to the appropriate mechanisms which respond by modifying the

metabolic and transcriptional activities. This in turn modi¯es the behavior of the cell.

Consequently, the dynamics of biopathways play a crucial role in determining

cellular functions. A nice example is the biopathway controlling the circadian
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rhythm.1 It arises from the oscillatory expression levels of a number of genes and the

periods of the oscillations roughly equal 24 h. Figure 1 depicts the Drosophila

circadian rhythm pathway composed of interlocking feedback loops that regulate the

concentrations of the relevant transcription factors which in turn control the

expression levels of many other genes which then leads to physiological rhythms.2

Other well-known examples are: the apoptosis pathway inducing programmed cell

death,3 the EGF-NGF pathway determining the choice between cell di®erentiation

and cell proliferation,4 the Wnt signaling pathway governing the expressions of

developmental genes,5 and the NF-�B pathway which regulates in°ammatory

responses.6 There are literally hundreds of such pathways associated with basic

cellular functions and many diseases arise due to the malfunctioning of signaling

pathways.7,8 For example, a dysfunction in the apoptosis pathway can lead to

cancer.9 Misregulation of the Wnt pathway can lead to a variety of degenerative

diseases such as Alzheimer's disease.10

Thus the systematic study of the dynamics of biopathways is a crucial task and

has given rise to a rich body of research. Our goal here is to highlight a restricted but

signi¯cant portion of this research.

1.1. Plan and scope of the paper

A rich variety of mathematical formalisms have been developed to study the dynamics

of biopathways. It is next to impossible to address even a signi¯cant portion of them in

Fig. 1. The Drosophila circadian rhythm pathway model.2
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a tutorial paper. Hence we shall focus here on one major mathematical formalism,

namely Ordinary Di®erential Equations (ODEs). Even here, a thorough survey of all

the facets, including recent developments, is too formidable a task. Hence we shall

concentrate on a major barrier that ODE-based approaches must overcome, namely,

the parameter estimation problem. In addition, from among the many analysis

techniques that have been��� and are being��� developed for ODEs-based models, we

shall address the key technique of sensitivity analysis. Following this, we shall describe

a novel probabilistic approximation technique that we have developed ��� in collab-

oration with David Hsu11 ��� using which both the parameter estimation and sensi-

tivity analysis tasks can be considerably eased.

In the next section we introduce the notions of model construction, calibration,

validation and analysis. In Sec. 3, we provide a brief overview of the prevalent

modeling formalisms. In Sec. 4, we discuss model calibration, also known as

parameter estimation. This is followed by a brief discussion of model validation in

Sec. 5. In Sec. 6, we turn to important model analysis techniques with the main focus

on sensitivity analysis. Finally, we present a recently developed probabilistic

approximation method by which a system of ODEs modeling a biochemical network

is approximated as a dynamic Bayesian network,11. In the concluding section, we

summarize the contents of the paper and sketch some future research directions.

Fig. 2. Overview of some of the important signaling pathways.8
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2. Biopathway Modeling

A variety of modeling approaches have been proposed in recent years to study the

dynamics of signaling pathways.12,13 The Boolean network model is often used in

qualitative studies,14 while typical quantitative formalisms are ODEs,15 Petri nets of

various kinds,2,16 and process algebra�based languages such as � and PRISM.17,18

Regardless of the type of the formalism used, a typical modeling e®ort involves the

following steps:

(1) Model construction. Fix the model scope and accordingly build the network of

the major players and their interactions.

(2) Model calibration. Divide the available experimental data relevant to the

dynamics into training data and test data. Then calibrate (i.e. estimate) the

unknown model parameters so that the calibrated model reproduces the training

data well.

(3) Model validation. Con¯rm the predictive abilities of the calibrated model by

matching the behaviors produced by the calibrated model to the test data. An

obvious requirement is that the model must be validated using data that was not

used for training it.

(4) Model analysis. Perform various analysis tasks on the validated model in order

to gain biological insights and generate interesting hypotheses.

In Step 1, an initial model is usually constructed based on the literature and pathway

databases such as Reactome.19 In collaborative e®orts, one also depends crucially on

the guidance of biologists. In Steps 2 and 3, the experimental data will often consist

of the time series of species concentrations. Step 2 is also known as the parameter

estimation step, which we discuss in more detail in Sec. 4. In practice, model con-

struction will involve a cyclic work°ow. In Step 2, if one is unable to estimate

parameters which ¯t the training data well, one may have to go back to Step 1 and

re¯ne the model structure and add further structural details that had been left out.

Similarly, for Step 3, if the model cannot be validated, one will have to go back to

Step 1 and re¯ne the model. One could also try to acquire more experimental data

concerning the structure and dynamics. If we still cannot get through Step 2 and

Step 3 this could be the basis for proposing missing links, cross-talks, feedback loops,

etc. which can then guide further experiments.

3. Modeling Formalisms

We now review some well-established quantitative models. They can be stochastic or

non-stochastic and in particular, deterministic. In practice, deterministic models are

used more frequently due to their simplicity and scalability. However, when the

concentrations of species are low, the variability of reaction processes will increase

and may signi¯cantly in°uence the system's behavior. For example, the development

of phage � infected Escherichia coli cells is determined by a switch point. Two small
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quantities of proteins competitively control this switch. As a result, the develop-

mental outcome is probabilistic and a deterministic model in this setting leads to

misleading conclusions.20

3.1. Stochastic models

Stochastic modeling involves tracking the number of molecules of each type in a

chemical mix, where these numbers change as the mix evolves through chemical

reactions. A basic assumption here is that one is working with a well-stirred mixture

in a ¯xed volume and that the system is in thermodynamic (but not chemical)

equilibrium. Consequently one need not track the locations and velocities of the

individual molecules.

In stochastic modeling, one describes the state of the system by a vector

XðtÞ ¼ ðX1ðtÞ;X2ðtÞ; . . . ;XNðtÞÞ, where XiðtÞ is the number of molecules of species i

at time t. The states of the system evolve according to the sequence of reactions that

takes place starting from the initial state Xð0Þ. Which reaction will occur next and

when it will occur are both determined probabilistically. This induces, for each time

point, a probability distribution over the possible system states. The Chemical

Master Equation (CME), a stochastic di®erential equation, can be used to capture

the time evolution of this probability distribution.12 However, except for trivially

small systems, the CME does not admit analytical solutions. Hence one must resort

to stochastic simulations. This can be computationally very expensive due to the fact

that the CME speci¯es a probability density function over the system states and the

number of system states will be in general exponential in the number of species.

Gillespie's algorithm and its variants are often used for stochastic simulations.21�25

By examining the statistical properties of the resulting set of trajectories one may

infer ��� approximately ��� properties of the stochastic dynamics speci¯ed by the

CME. In the recent past, e±cient techniques to numerically solve the CME directly

have also been studied.26

A number of languages have been developed to describe the stochastic dynamics

of a biochemical network. A prominent example is the � language.17,27 It can com-

pactly and appealingly describe large biopathways. The basic idea is to use agents to

describe the players in the pathway such as proteins, protein complexes and genes

respectively. Each agent will have a number of sites with associated internal states

that can represent the status of post-translational modi¯cations (e.g. phosphoryl-

ation) or bindings with other agents. One then formulates rules to specify how the

states of the agents are modi¯ed by the reactions. The rules are su±ciently expressive

to capture bindings, dissociations, and modi¯cations to the state of a site as well as

the production and degradation of molecular species.

As an example, consider a system consisting of a protein P with two phosphor-

ylatable sites x and y and an enzyme E with a binding site z. Correspondingly, there

will be two agents, P ðx; yÞ and EðzÞ. The internal states of sites x and y will be

denoted as `u' (unphosphorylated), and `p' (phosphorylated). InitiallyP ðx � u; y � uÞ
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where x � u says that the site x of P ðx; yÞ is currently unphosphorylated. Suppose E

can bind to P at x or y and catalyze the phosphorylation the site and then unbind from

P . This is captured by the following rules:

EðzÞ;P ðxÞ $ Eðz!1Þ;P ðx!1Þ ð1Þ

Eðz!1Þ;P ðx � u!1Þ ! Eðz!1Þ; P ðx � p!1Þ ð2Þ

EðzÞ;P ðyÞ $ Eðz!1Þ;P ðy!1Þ ð3Þ

Eðz!1Þ;P ðy � u!1Þ ! Eðz!1Þ; P ðy � p!1Þ ð4Þ

where \!" denotes the binding and \1" is used to identify the binding pair. Note that

the rules follow the \don't care, don't write" convention, e.g. in rule (1), site y and the

internal state of site x are left unspeci¯ed in P 's interface.

Given the initial number of copies of each agent, the time evolution of the system

can be generated through stochastic simulations using a rule-based variant of

Gillespie's algorithm. For further details we refer the reader to Danos et al.28

In the stochastic modeling approaches discussed above, the dynamics of a bio-

chemical network is given by an underlying Continuous Time Markov Chain

(CTMC). Thus a � model may be viewed as a succinct and understandable

description of a large and complex CTMC. Languages such as PRISM and PEPA

take a similar approach but with a less elaborate syntax.29,30

PRISM was originally created to aid the formal veri¯cation of CTMC models

arising in various domains.29 Subsequently it has also been used to model and analyze

biopathways.18,31 The modeling language uses variables and modules. In biopathway

applications, the values of variables will represent the discrete concentration levels of

species. A module contains a number of variables together with update rules for

modifying them. Each rule describes how the values of variables involved in a

reaction are updated under particular conditions. PRISM allows dynamical prop-

erties of the system under study to be speci¯ed as formulas taken from various

temporal logics such as Linear Temporal Logic (LTL),32 Probabilistic Continuous

Temporal Logic (PCTL),33 and Continuous Stochastic Logic (CSL).34 The PRISM

tool will then verify (or falsify) in an automated fashion whether the PRISM model

satis¯es the property.35 Here is an example of a PCTL formula:

ðA < 2Þ ) P>0:2½trueU
½0;4�ðAB ¼ 3Þ� ð5Þ

It says \if protein A's concentration level is currently less than 2, then the probability

of the complex AB's concentration level being 3 within the next 4 seconds is greater

than 0.2."

A common limitation of stochastic models is scalability. Since stochastic simu-

lations are computationally intensive, realistic pathways cannot be handled. For

instance, verifying the PRISM model of the ERK pathway, which consists of just 11

species, requires the computational power of a 90-node grid.36 An equally serious

problem is that in stochastic modeling (as in the ODE-based approaches we shall

soon address), each reaction will have a rate constant associated with it. Roughly
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speaking this constant captures the probability (often described as an exponential

distribution over time) of the reaction occurring at time �t starting t. In all the

approaches we have mentioned, these rate constants are assumed to be known. If

they are not, which is often the case, the simulations are carried out after ¯xing the

rate constant values more or less arbitrarily. Encouragingly, this fundamental

parameter estimation problem is beginning to be tackled.37�40

3.2. Deterministic models

We now turn to non-stochastic models. The ¯rst one to be considered, namely ODEs,

will play a prominent role in the subsequent parts of the paper.

3.2.1. Ordinary di®erential equations

An implicit assumption in this setting is that in the pathway under study, all the

molecular species in the pathway are abundantly available. The idea then is to use an

ODE to capture the concentration level changes of a molecular species using the

reactions it takes part in as a reactant or product. The formulation of the ODE is

guided by the kinetic law governing the reaction.15 For example, assuming that the

reactant molecules are spatially homogeneous, the mass action law states that the

rate of a reaction is proportional to the concentrations of reacting species. A

reversible binding process of two species can now be described using mass action law

as follows:

Aþ BÐ
v2

v1
AB ð6Þ

where A and B are substrates, AB denotes the formed complex, and v1 and v2
represents the association rate and dissociation rate respectively. By the mass action

law, we have:

v1 ¼ k1 �A �B

v2 ¼ k2 �AB

where k1 and k2 are so-called rate constants. This leads to the system of ODEs:

dA

dt
¼ �k1 � A � Bþ k2 � AB

dB

dt
¼ �k1 � A � Bþ k2 � AB

dAB

dt
¼ k1 � A � B� k2 � AB

On the other hand, the enzyme catalyzed reactions such as protein phosphoryl-

ation are often modeled using Michaelis�Menten kinetics. Equation (7) below shows

the reaction network involving a simple enzyme catalyzation.

S þ E!
v
P þ E ð7Þ
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where S denotes substrate, E denotes enzyme, P denotes product, and v is the

reaction rate. Under suitable assumptions, the kinetics of this reaction scheme is

expressed by the Michaelis�Menten equation:

v ¼
k � S � E

Km þ S
ð8Þ

where k and Km are constants. This then leads to the ODE:

dP

dt
¼

k � S � E

Km þ S
ð9Þ

Depending on the biochemical context one may also use many other kinetic laws

such Hill equation, etc.13 Consequently, a biopathway can be modeled as a system of

ODEs of the form:

dxi

dt
¼ fiðxðtÞ;pÞ ð10Þ

where the vector xðtÞ represents the concentrations of species at time t, and the

vector p refer to the rate constants of the reactions. Given the initial values of the

variables, the values of the rate constants and suitable continuity assumptions, a

system of ODEs will have a unique solution.41 Hence in principle ODE-based models

can be used to predict system behavior by solving a standard initial value problem.

However, the ODE systems describing biopathway dynamics will be high-dimen-

sional and nonlinear and hence they will not admit closed form solutions. Instead,

one will have to resort to numerical integration methods to get approximate

solutions. A standard approach is to use a ¯nite di®erence method to numerically

approximate the solution of a system of di®erential equations. To illustrate the idea

consider:

x 0ðtÞ ¼ lim
�!0

xðtþ �Þ � xðtÞ

�
; ð11Þ

then a reasonable approximation of the derivative at t would be

x 0ðtÞ �
xðtþ �Þ � xðtÞ

�
ð12Þ

for a su±ciently small �. Since x 0ðtÞ is known, given the initial condition xð0Þ, we can

iteratively compute xðtÞ for any t as follows:

xðtþ �Þ ¼ xðtÞ þ � � x 0ðtÞ ð13Þ

This is the so-called explicit Euler's method. � must be very small to ensure high

accuracy as well as stability. Accordingly, if T is the maximal time point of interest

then T
�
, the required number of simulation steps will be a large number. This is

especially so for sti® ODE systems, in which the fast rates of changes of some vari-

ables ��� in comparison to others ��� require the step size to be very small. Many

ODE models of biochemical networks will be high dimensional and sti® and hence
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numerically solving them is a computationally demanding task. In the past decades,

many advanced ODE solvers have been developed to improve the performance of

numerical integration. Di®erent solvers are usually specialized for better performance

on speci¯c classes of ODEs. To deal with the ODE-based biopathway models,

methods such as Runge�Kutta and LSODA are often used.42,43

A number of techniques have been proposed to reduce the complexity of ODE-

based models. An obvious tactic is to include in the model only the species necessary

for the analysis task at hand. One can further simplify the model through abstrac-

tions justi¯ed by suitable assumptions. In fact, the Michaelis�Menten equation of

the simple enzyme catalyzation reaction above (Eq. (9)) is obtained by abstracting

mass action kinetics of the reaction scheme shown in Fig. 4(a) by assuming (i) the

concentration of substrate is much larger than the concentration of enzyme and (ii)

the reversible pair of reactions proceed much faster than the irreversible reaction.13

This idea has been extended to deal with any kinetic law that can be written as

a fraction of two polynomials.44 As a result, a complex rate equations such as the

one below:

voriginal ¼
V ð ½F16bP �

KF16bP
� ½DHAP �½GAP �

KF16bPKKeq
Þ

1þ ½F16bP �
KF16bP

þ ½DHAP �
KDHAP

þ ½GAP �
KGAP

þ ½F16bP �½GAP �
KF16bPKGAP

þ ½DHAP �½GAP �
KDHAPKGAP

ð14Þ

can be simpli¯ed as:

vsimplified ¼
K2½F16bP �

1þK1½F16bP �
ð15Þ

Another technique is to consider restricted class of ODEs. Speci¯cally, piecewise-

a±ne systems of ODEs have been used to model gene regulatory networks.12,45 The

restriction to piecewise-a±ne di®erential equations is guided by a number of factors.

Firstly, the rate of activation of a gene often follows a steep sigmoidal curve,12 much

like a step function. Secondly, this class of di®erential equations allows the quali-

tative properties of the system such as reachability, stability, and oscillations to be

analyzed without performing numerically integration.47,48 Third, one does not need

to know the exact values of the rate constants in order to qualitatively analyze the

system. Further exploitation of multi-a±ne systems can be found in Batt et al.45

3.2.2. Petri nets

Petri nets, proposed by Carl Adam Petri, is a mathematical model for the rep-

resentation and analysis of distributed computing systems.49 A Petri net consists of

three primitive elements ��� places, transitions, and directed arcs. In the context of

biopathway modeling, places will denote species while transitions represent the

biochemical reactions. The places are connected to the transitions (and vice versa)

via directed arcs to form the network. In the graphical representation, places are

drawn as circles; transitions are denoted by bars or boxes. The input places of a
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transition are the places from which there is an arc to it; its output places are those to

which an arc goes from it.

Places may carry a non-negative number of tokens, which are represented as block

dots inside the corresponding place. A distribution of tokens over the places of a net

is called a marking denoting the current state of the system. A transition is enabled

to ¯re at a marking of all its input places carry at least one token at the marking.

When a transition ¯res, it consumes one token from each of is input places and adds

one token to each of its output places.

Example 1. Figure 3 shows a Petri net model of the enzyme catalysis system. In

this example, the places E, S, P denote the enzyme, product and substrate,

respectively. The transition T represents the enzyme catalyzed reaction. The number

of tokens depicts the concentration level of a species. The initial marking is shown in

the left panel of Fig. 3. Transition T is enabled. After ¯ring T once, the resulting

marking is shown in the right panel of Fig. 3.

Many variants of Petri nets have been developed over the years to ¯t modeling

requirements arising in di®erent ¯elds.50 Timed Petri nets, stochastic Petri nets,

hybrid Petri nets, functional Petri nets, and hybrid functional Petri nets have been

deployed for describing the dynamics of biopathways.51 For instance, Ruths et al.

studied a MAPK and AKT signaling network downstream from EGFR in two breast

tumor cell lines using a stochastic Petri net model.16 Bonzanni et al. used a coarse-

grained quantitative Petri net to mimic the multicellular process of Caenorhabditis

elegans vulval development.52 The hybrid functional Petri net is a powerful exten-

sion which can capture both the discrete and continuous features of pathway

dynamics. This variant has been implemented in a software tool called Cell Illus-

trator,53 which has been used to analyze a number of biopathways.54,55

4. Model Calibration

The next important step in the model construction process is model calibration. The

quantitative formalisms we have described above will induce a large number of

parameters, namely the rate constants associated with the reactions and the initial

concentrations of the various species. Usually, the values of only a few of them will be

available in literature or can be directly measured experimentally. The remaining

S

E

P

T

S

E

P

T

Fig. 3. A Petri net example of the enzyme catalysis system.
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ones will have to be estimated using experimental data. This is the parameter esti-

mation problem and it arises in both stochastic and deterministic settings. Here, we

shall mainly focus on this problem in the context of the ODEs formalism. As pointed

out earlier, less work has been done on this problem in stochastic setting.

The goal of parameter estimation is to compute the values of unknown par-

ameters so that the resulting model can reproduce the experimental observations. A

common approach is to iteratively optimize the agreement between the model pre-

diction and available experimental data with the help of search techniques. Typi-

cally, the goodness-of-¯t of a parameter combination is evaluated by the weighted

sum of square error between model prediction and experimental data captured by the

following objective function:

fobjðpÞ ¼
X

i;j

!iðxi;j � yi;jðpÞÞ
2 ð16Þ

where p is the parameter set being tested, xi;j is the experimental observation of the

concentration of species xi at time point j, yi;jðpÞ is the corresponding prediction

generated using p, and !i is the normalization factor for xi which is usually the

inverse of the maximum value of xi.

In order to ¯nd the parameter set popt that has the minimum objective value, an

optimization algorithm repeatedly executes two steps: (1) guess the values of the

parameters; (2) evaluate the goodness-of-¯t of the guesses. For step (1), guesses may

be generated randomly in the ¯rst round but later guesses are usually guided by the

results of previous rounds. For step (2), to get the value of yi;j in Eq. (16), one will

have to simulate the ODE system up to the maximum time point for which exper-

imental observations are available. Consequently, for high-dimensional models

parameter estimation is a di±cult problem with no guarantees of success. The

algorithm is terminated if a su±ciently good ¯t to data has been achieved or if the

computational resources allocated for the task (typically running time) have been

exhausted.

A critical issue is how to make \clever" new guesses based on guesses that have

already been evaluated. In other words, how to search the solution space so that the

optimal solution��� or a good approximation of it��� can be found as fast as possible.

Di®erent algorithms use di®erent search methods. For instance, the Steepest

Descent56 method follows the direction of steepest descent on the hyper surface of the

objective function. The Levenberg�Marquardt method combines this idea with the

Newton methods.57 The Hooke and Jeeves (HJ) method remembers the descent

directions of previous searches and suggests a new direction to search.58 These

methods are usually classi¯ed as the local methods. In practice, they converge quite

fast. However, they su®er from the problem of getting trapped in local minima and

often return suboptimal solutions.59

To overcome this, a number of global methods have been proposed. For example,

algorithms such as the Genetic and Evolutionary Strategy (ES) algorithms try to

maintain a population of candidate solutions.60,61 In this population, biologically
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inspired operations such as recombination, crossover and mutation are performed on

selected members to produce the next generation of solutions. The idea of ES is

illustrated in Algorithm 1. In each iteration, � children solutions will be generated

from � parent solutions. Each child is obtained from two parents by random cross-

over of the parameters, or by using the midpoints of their respective parameter

values. The best � solutions from the combined set of parent and children solutions

are selected to be the parents for the next generation. The entire process then repeats

itself until no better solutions can be found, or the speci¯ed maximum number of

generations is reached.

Another global method called Particle Swarm Optimization (PSO) is inspired by

a °ock of birds or a school of ¯sh searching for food.62 It maintains a population

(swarm) of candidate solutions whose members are called particles. Each particle has

a position and velocity associated with it. The particles are moved around in the

solution space iteratively by changing their positions and velocities. In each round of

the algorithm, the movement of a particle is determined by its velocity which in turn

is guided by its best known position as well as the entire swarm's best known position

(relative to the global objective function).

Comparisons of the global methods can be found in Moles et al.59 A variant of ES

called Stochastic Ranking Evolutionary Strategy (SRES) appears to outperform

many commonly used global methods.63 Further attempts to improve the perform-

ance of SRES have been reported in recent papers.64,65

For signaling pathway models, Koh et al. proposed a decompositional approach

for high-dimensional models.66 By exploiting the structure of a pathway and the

distribution of available experimental data, the global model is decomposed into

components and parameter estimation is performed for each component separately

using the SRES method mentioned above. The key point is that a component model

will be often much smaller than the global model. However, independent estimates

Algorithm 1. (�þ �)-ES.
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from di®erent components for a shared parameter may be in con°ict. To reconcile

these con°icts, each component is represented as a factor graph, a standard prob-

abilistic graphical model. The resulting factor graphs are then combined using the

probabilistic inference technique called belief propagation to obtain the maximally

likely parameter values that are globally consistent.67 The belief propagation tech-

nique has also been used by Koh et al. to update parameter estimates when new

experimental data becomes available.68

4.1. Model identi¯ability

In case it is not ��� even theoretically ��� possible to estimate a unique set of par-

ameters from the given observations, the model is said to be non-identi¯able. In the

present context, it is tempting to assume that there is a unique set of \true" par-

ameters associated with a biopathway model and to expect that a parameter esti-

mation procedure will ¯nd them. In practice, this will be possible only for small

idealized models. For large models accompanied by limited and noisy experimental

observations, multiple sets of parameter values will ¯t the training data.69�71 This is

so since the landscape of the high-dimensional search space may have many optimal

valleys rather than a broad funnel leading to a single optimum.72

Inadequate and noisy experimental data is a major cause of non-identi¯ability in

practical settings. For instance, we recall the following simple system of ODEs

describing the reversible binding of two species shown in Sec. 3.2.1.

dA

dt
¼ �k1 � A � Bþ k2 � AB

dB

dt
¼ �k1 � A � Bþ k2 � AB

dAB

dt
¼ k1 � A � B� k2 � AB

If the only data available is regarding the steady state values of A, B, and AB,

then we can only determine the ratio of k1 and k2 and not the individual values of k1
and k2.

Thus, in order achieve identi¯ability, we need to measure more species, with

higher sampling frequency, under more stimulation conditions, and as accurately as

possible. This can be a very expensive and even infeasible proposition. To mitigate

this problem, strategies for optimally selecting species and the time points at which

to measure their concentrations have been proposed.73,74 It is also worth noting that

many non-identi¯able models can be partially identi¯able.75 In other words, a subset

of the parameters may be identi¯able and the resulting model might yield meaningful

information about the system dynamics. For example, crucial insights about the

ErbB signaling have been gained using a partially identi¯ed model.76 Finally, as a

pragmatic approach, one can maintain maximal likelihood estimates of parameter

values that are consistent with the current model and its experimental data. One can
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then update these estimates in a principled manner using Bayesian inferencing

methods when new data becomes available.68

5. Model Validation

In many existing approaches, the model construction process is terminated after the

calibration step. However, it is important to assess whether the model has been

\over-¯tted" in that the calibrated model can only predict the training data and not

much else. To ensure this, test data must be available consisting of experimental

observations that were not used for estimating the parameters. Apart from quanti-

tative data, it can also include qualitative observations such as oscillations and

bistability.77 Using such data, the calibrated model must be simulated to see if it

produces good ¯tness with the test data.

6. Model Analysis

Assuming that an ODE-based model has been constructed, calibrated and validated,

we turn to some of the major analysis methods that can be applied.

6.1. Sensitivity analysis

Sensitivity analysis studies how variations in the input a®ects the output of the

model.78 Here the input can be the initial state or parameters of the model and the

output the time pro¯le of a chosen species. Sensitivity analysis is a powerful tech-

nique and can be used for79: (i) drug target selection,80 (ii) biomarker selection,81 (iii)

experiment design,65 (iv) model reduction,82 and (v) robustness analysis.83

The basic idea is to de¯ne the sensitivity coe±cient sij to be the normalized ¯rst

order derivative of the model output oi with respect to the model parameter pj:

sij :¼
@oi

@pj
�
pj

oi
�

@ lnðoiÞ

@ lnðpjÞ
ð17Þ

Centered di®erence approximation techniques can be employed to compute sen-

sitivity coe±cients sij as follows
84:

sij ¼
@oi

@pj
�
pj

oi
�

oiðpj þ�pjÞ � oiðpj ��pjÞ

2�pj
�
pj

oi
ð18Þ

Often pj is a rate constant or the initial concentration of a species and oi is a

characteristic of the system response. For instance, we may de¯ne oi to be the

transient concentration of a particular species (usually the endpoint of signal

transduction) at a speci¯c time point t.85 In this case, the sensitivity sij will become

time dependent and can be denoted as sijðtÞ. One may then plot sijðtÞ and further

investigate how the sensitivities evolve over time.86 Furthermore, depending on the

dynamical properties of the system being studied, many other characteristics of the

output response can be used such as: the amplitude and time of the response peak,
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the duration of the response,87 the integration of the response curve,88 the amplitude,

period and phase of oscillation,86,89,90 the steady-state levels,91 and the deviation

from the observations.92

Local sensitivity analysis as described earlier, assesses the e®ects of perturbations

within a small local region around a speci¯c point in parameter space. However, as

discussed earlier, the values of many parameters have to be estimated from noisy and

limited data. Hence it is possible for local sensitivity analysis to yield di®erent con-

clusions based on di®erent sets of estimated values. In addition, changes in cellular

environments may induce variations of model parameters which in turn will lead to

di®erent local sensitivities. Therefore, it is important to do sensitivity analysis in a

more global manner by exploring the e®ects of perturbations within a large region of

parameter space.

6.1.1. Global sensitivity analysis

Various global methods have been recently developed for biopathway models.78,79

These methods assess the overall e®ects of parameters on the model output by

simultaneously perturbing all the parameters within a parameter space. A common

Monte Carlo scheme adopted by many of them can be described as follows:

(1) draw a representative number of samples from the parameter space,

(2) simulate the system for each sampled combination of parameters,

(3) derive the global sensitivities of parameters by a statistical or information the-

oretic analysis of the simulation results.

In step (3), the global sensitivities are measured in di®erent ways depending on the

method used. For instance, the partial rank correlation coe±cient (PRCC) analysis

calculates the global sensitivities from the Pearson correlation coe±cients between

model output and input parameters.93 The global sensitivities calculated by Bentele

et al. is a weighted average of the local sensitivities of sampled values of parameters,

where the weights are determined by a Boltzmann distribution function of the error

between model simulation and experimental data.82 Sobol's method estimates the

partial variances of the model output for input parameters and de¯nes the global

sensitivities as the ratio of the related partial variances to the overall variance of the

model output.94 In multi-parametric sensitivity analysis (MPSA), the sampled

parameter sets are classi¯ed into two classes based on the objective value of each

sample, which measures the error between experimental data and prediction generated

by selected parameters.92 The global sensitivities are then evaluated as the Kolmo-

gorov�Smirnov statistic of cumulative frequency curves of the parameter values

associated with the two classes. There have also been attempts to derive global sen-

sitivities via information theoretic analysis. For example, Ludtke et al. treated the

pathway system as a `communication channel' and quanti¯ed the associations between

input parameters andmodel output by decomposing their mutual information.95More

information on global sensitivity analysis can be found in Saltelli's book.78
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For large models, step (1) of the above scheme will require a large number of

samples. Consequently, carrying out global sensitivity analysis is very time con-

suming. To get around of this, e±cient sampling methods have been proposed. For

instance, Latin hypercube sampling (LHS) is a method requiring fewer samples while

guaranteeing that individual parameter ranges are evenly covered.96 Instead of

random sampling, heuristic sampling using optimization algorithms has also been

used.97 Finally, Zhang and Rundell have advocated the reuse of the computational

e®ort invested during parameter estimation to improve the performance of global

sensitivity analysis.96

6.2. Perturbation optimization

The control of cellular mechanisms by means of genetic modi¯cations or drug

treatment is an important goal. Many applications are based on such a strategy

ranging from therapeutic98 to metabolic engineering99 and synthetic biology.100 For

example, L-threonine, an amino acid widely used in cosmetics and pharmacy, has

been produced from E. coli through biosynthetic pathways.101 The productivity of

such substances can be improved by mutating genes encoding pathway components.

To achieve this goal, one has to determine which genes to mutate. The number of

possibilities is large, and it will be impossible to test them one by one. Instead, onemust

use computational models, on which in silico perturbation e®ects can be simulated and

examined. We term this kind of model analysis perturbation optimization.

Mathematically, perturbation optimization is a combinatorial optimization pro-

blem: maximize fðxÞ subject to cðxÞ, where the decision variable x denotes a per-

turbation, the objective function f quanti¯es the changes in the outputs w.r.t to the

perturbation, and c is a set of constraints specifying the requirements that must be

met to ensure cells continue to survive and have proper functioning. A perturbation

can be the mutation of a set of genes leading to changes of initial conditions or kinetic

parameters in the model. To combat the combinatorial explosion of solution space for

large models, many optimization methods have been used in recent years including

linear programming, bilevel optimization, mixed integer nonlinear programming,

and dynamic optimization.102

6.3. Model checking

The veri¯cation technique called model checking is a powerful automated method to

verify that critical hardware and software computing systems behave as intended.35

The model checking framework has been applied ��� mainly in stochastic settings ���

to biopathways models.103�105

Brie°y, the model checking procedure operates as follows. Given a model M with

initial state s, a model checker decides if a property written as a temporal logic

formula � is satis¯ed, denoted as M; s � �. This can be done by: (1) constructing

a ¯nite labeled state-transition system corresponding to M in which each state
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represents a possible con¯guration and each transition represents an evolution of the

system from one con¯guration to another and (2) verify whether � is satis¯ed by

exhaustively exploring the state-transition system. In stochastic settings, both the

model and the property to be veri¯ed will be cast in a probabilistic language.

Speci¯callyM will be a CTMC and a probabilistic model checker will decide whether

M satis¯es � with probability at least �. However, the state space explosion

phenomenon (the number of states to be explored is exponential in the number of

variables in the system) limits their use to small models. A more pragmatic approach

is to use a statistical or Monte Carlo framework.106,107 Here, a ¯nite number of

sample trajectories are drawn from the model. Each sample trajectory is evaluated to

determine whether it satis¯es �, and the number of satisfying and non-satisfying

traces is used to determine whether M; s � P��ð�Þ. This approach scales well and

though the results are approximate, bounds on the probability of producing an

incorrect answer can be provided.

7. A Probabilistic Approximation Approach

Our goal here is to present an approximation technique using which an ODE-based

model of a biopathway can be represented as a Dynamic Bayesian Network (DBN).

As pointed out earlier, ODE systems will not admit closed-form solutions and hence

one will have to resort to numerical simulations to perform analysis. In particular,

tasks such as parameter estimation and sensitivity analysis and perturbation analysis

will entail a large number of simulations. Second, the experimental data used for

training and testing models will be often cell population�based and have limited

precision. Hence there will be a large gap between the precision obtained through

numerical simulations and that of experimental data. Further, to simulate the model

and compare with such data, one must resort to Monte Carlo methods to ensure that

su±ciently many values from the distribution of parameters and initial concen-

trations are being sampled. As a result, model calibration, validation, and analysis

will require the repeated generation of a large number of numerical simulations.

Consequently it is very di±cult to handle large ODE-based pathway models. To

address these challenges we have (in collaboration with our colleague David Hsu)

developed the means for approximating the dynamics of an ODE-based pathway

model as a DBN.108 Using the DBN approximation, one can then e±ciently perform

parameter estimation and other analysis tasks by exploiting standard Bayesian

inferencing techniques. Indeed, as the case studies we discuss below show, the one

time cost of constructing the DBN can be easily amortized by carrying out multiple

analysis tasks on the DBN approximation.

7.1. Dynamic Bayesian networks

Before proceeding to the approximation procedure, we ¯rst recall the notion of a

DBN.109 It consists of a directed acyclic graph in which the nodes are grouped into
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layers with each layer representing a time point. In the simple version of DBNs we

need, there will only be a ¯nite number of layers corresponding to the time points

f0; 1; . . . ;Tg and the nodes in layer t� 1 will be connected to only nodes in the layer

t. The DBN will have a set of random variables X ¼ fX1;X2; . . . ;Xng associated

with it. For each X 2 X and each time point t, there will be a unique node X t in the

time layer t which will be used to capture the value assumed by X at time t. Further

the connectivity structure between two adjacent time slices will be invariant in the

sense if there is an edge from X t�1 to Y t then there will be an edge from X t 0�1 to Y t 0

for every t 0 2 f1; 2; . . . ;Tg. Next, if there is an edge from node X t�1 to Y t then X t�1

is said to be a parent node of Y t. Finally, each node will have a conditional prob-

ability table (CPT) associated with it to specify the local probabilistic dynamics of

the DBN. If fZ t�1
1 ;Z t�1

2 ; . . . ;Z t�1
k g is the set of parent nodes of X t then a typical

entry in the CPT of X t will be of the form PrðX t ¼ v j Z t�1
1 ¼ v1;Z

t�1
2 ¼ v2; . . . ;

Z t�1
k ¼ vkÞ ¼ p. This will denote that the conditional probability of X t assuming the

value v (i.e. X assuming the value v at time t) is p given that the value assumed by

Z t�1
j (i.e. the value assumed by Zj at time t� 1) is vj for 1 	 j 	 k.

Two successive time slices of a DBN are shown in Fig. 4(c). The annotations will

become clear once we explain below the procedure for deriving a DBN from an ODE

system.

7.2. The approximation procedure

We ¯rst discretize the time domain and the value space. This is motivated by the fact

that the values of the variables are experimentally observed only for a ¯nite number

of time points and that too with only limited precision. Hence we assume the

dynamics is of interest only for discrete time points, f0; 1; . . . ;Tg. Assuming that the

minimum and maximum values of the variables and rate constants are known, we

next partition the range of each variable xi into a set of intervals Ii according to the

precision of observations. The range of each rate constant rj is also discretized into a

¯nite set of intervals Ij. The initial values as well as the rate constants of the ODE

system are described as distributions (usually uniform) over certain intervals de¯ned

by the discretization. For unknown parameters, they are assumed to be uniformly

distributed over all their intervals.

The second step is to sample the initial states of the system su±ciently many

times, according to the initial distribution and generate a trajectory by numerical

integration for each sampled initial state. The resulting set of trajectories is then

treated as an approximation of the dynamics of ODE system.

A key idea is to compactly store the generated set of trajectories as a DBN. This is

achieved by means of a simple counting procedure that exploits the network struc-

ture. In the present setting, there will be one node x t
i (r

t
j) corresponding to each

variable xi (rate constant rj) to capture in which interval the value of xi (rj) falls at

time t. Next, Paðx t
iÞ, the set of parent nodes of the node x

t
i is determined as follows.

The node x t�1
k ðr t�1

j Þ will be in Paðx t
iÞ i® xkðrjÞ appears in the equation for xi. On the
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other hand, r t�1
j will be the only parent of the parameter node r tj since the rate

constant values will not change once their initial values have been ¯xed.

Example 2. In Fig. 4, we show a simple enzymatic reaction network, its ODE

model and the structure of its DBN approximation for two successive time points.

As indicated in Fig. 4(c), a typical entry in the CPT of x t
i will be of the form

Prðx t
i ¼ Ijz t�1

1 ¼ I1; z
t�1
2 ¼ I2; . . . ; z

t�1
l ¼ IlÞ ¼ p with Paðx t

iÞ ¼ fz t�1
1 ; z t�1

2 ; . . . ; z t�1
l g

being the set of parents of x t
i. Such an entry means that p is the probability that the

value of xi falls in the interval I at time t, given that the value of zu was in Iu at time

t� 1 for each z t�1
u in Paðx t

iÞ. The probability p is calculated through simple

counting: Suppose N trajectories are generated. Record the number of the trajec-

tories from this collection for which their value of zu fell in the interval Iu for each zu
in fz1; z2; . . . ; zlg at time t� 1. Suppose this number is J. Then determine for how

many of these J trajectories, the value of xi fell in the interval I at time t. If this

number is J 0, then p is set to be J 0

J
.

For the ODE models of biochemical networks, one may assume that the vector

¯eld de¯ned by the ODE system is a C 1 (continuously di®erentiable) function on a

compact space. This is due to the fact that the concentration levels of the species are

restricted to a bounded set of values and the kinetics of the biochemical reactions (i.e.

the vector ¯eld of the ODE system) are captured by laws such as mass law and

Michaelis�Menton described by (low degree) polynomials or rational functions

which are naturally C 1 functions. As a result, the solution to the system of ODEs will

exist. Further it will be continuous and hence measurable. As a result, the dis-

cretization and initial distribution will let us represent the generated family of tra-

jectories as a ¯nite state Markov chain. Supposing there are n variables and m rate

constants. Then each state of this Markov chain will be of the form ððI1; I2; . . . ;

In; Inþ1; Inþ2; . . . ; InþmÞ; tÞ. The probability of this state holding at time point t 0 will

be 0 if t 6¼ t 0. On the other hand the probability of this state holding at t will be the

(well-de¯ned) probability measure of the set of trajectories which have the value of

(a) (b) (c)

Fig. 4. (a) The enzyme catalytic reaction network. (b) The ODE model. (c) The DBN approximation for

two successive time slices.
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xi (rj) falling in the interval Ii (Inþj) at t. This Markov chain will however be of size

exponential in n. Hence we impose independence assumptions obtained from the

network structure and derive the DBN as a factored ��� and much more succinct ���

representation of this Markov chain. A more detailed account of this construction

can be found in Liu et al.11

It is worth noting that our approximation technique applies to ODEs whose

vector ¯elds are C 1 functions over compact spaces. In this sense it can be applied in

other settings as well. However we have so far focused on models of biochemical

networks, a setting in which these restrictions are naturally satis¯ed.

Since the trajectories are grouped together through the discretization, this

method bridges the gap between the accuracy of the results obtained by ODE

simulation and the limited precision of experimental data used for model develop-

ment. More crucially, many interesting pathway properties can be analyzed e±-

ciently through standard Bayesian inference techniques, instead of resorting to large

scale numerical simulations. In particular we can perform:

. Probabilistic inference. Given initial state as evidence, Bayesian inference

techniques such as the Factored Frontier algorithm can be used to approximately

but e±ciently infer the marginal probability of each species' concentration at a

given time point.110

. Parameter estimation. The DBN approximation enables a two-stage parameter

estimation method. In the ¯rst stage, one infers the marginal distributions of the

species at di®erent points in the DBN. The mean values of each marginal distri-

bution are then computed and compared with the time series training data.

Standard optimization methods are then used for searching in the discretized

parameter space, resulting in a maximum likelihood estimate of a combination of

intervals of parameter values. In the second stage, by treating the result of the ¯rst

stage as the drastically reduced search space, one can further estimate — if

necessary — point values for unknown parameters.

. Global sensitivity analysis. To perform global sensitivity analysis, Monte Carlo

samples are drawn from the discretized parameter space. Simulation trajectories

are approximated by the mean of marginal distributions inferred from the DBN by

presenting the selected combination of intervals of parameter values as evidence.

The DBN approximation framework has been used to successfully study a number of

large biochemical networks. Here we consider two models taken from the BioModels

database,111 namely, the EGF-NGF signaling pathway and the segmentation clock

network.11 Although the parameter values for these models are known, to mimic

realistic biopathways models, in each case we designated a subset of the parameters

as `unknown', and constructed the DBN approximation accordingly. Speci¯cally, 20

of the 48 parameters for the EGF-NGF model and 40 of the 75 parameters for the

segmentation clock network were singled out to be unknown. After discretizing time

domain and the ranges of each variable and unknown parameters, approximately
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three million trajectories were generated for each model to build the DBNs. We then

synthesized experimental time series data and divided them into the training and

test data sets. The unknown parameters were then estimated using the training data

and the resulting models were validated using the test data. We also performed

global sensitivity analysis using synthesized data. For the EGF-NGF model it took

around 4 h to construct the DBN approximation while the total running time

of performing parameter estimation and global sensitivity analysis was reduced

(in comparison to ODE-based methods) from 23 h to 0.6 h. For the clock segmen-

tation network model it took around 3.5 h to construct the DBN approximation

while the total running time of performing parameter estimation and global sensi-

tivity analysis was reduced from 82 h to 3.3 h. More details can be found in Liu et al.11

Our method has also been used in a \live" setting. In collaboration with biologists

and clinicians it was used to study the complement system, which is the frontline

defense mechanism of the human immune system.112 The activation of complement

system is necessary for the clearance of bacteria and apoptotic cells. However,

insu±cient or excessive complement activation will lead to immune-related diseases.

We built a computational model involving the enhancement and suppression

mechanisms that regulate complement activity. The schematic representation and

reaction network diagram of the model is shown in Fig. 5. It consists of 42 species, 45

reactions and 85 kinetic parameters with 71 of the parameters being unknown. Based

on in vivo experimental data, the DBN approximation method was used to estimate

(a)

Fig. 5. (a) Simpli¯ed schematic representation of the complement system. (b) Reaction network diagram
of the ODEs model.
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the unknown rate constants (model calibration). The model was then validated

with the help of previously published data. By performing global sensitivity analysis

on the DBN approximation as well as in silico perturbation experiments on the

validated ODE model, interesting hypotheses about the regulatory mechanisms of

the complement system were derived, which were then experimentally con¯rmed.

Speci¯cally, the combined computational and experimental study highlighted the

importance of infection-mediated microenvironmental perturbations, which alter the

pH and calcium levels. It also revealed that the inhibitor, C4BP, induces di®erential

inhibition on the classical and lectin complement pathways and acts mainly by

facilitating the decay of the C3 convertase. These results helped to elucidate the

regulatory mechanisms of the complement system and can potentially contribute to

the development of complement-based immunomodulation therapies. The resulting

ODE-based model has been added to the BioModels database.111

These results show that this probabilistic approximation method achieves a good

tradeo® between e±ciency and accuracy. More importantly it can handle large

pathways models that most of the current ODE-based approaches will not be able to

cope with.

(b)

Fig. 5. (Continued)
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8. Conclusion

Computational modeling and analysis is essential for understanding biopathway

dynamics at the system level. Here we have reviewed the prevalent stochastic and

deterministic quantitative models for representing pathways. With the focus on

ODE-based models, we have then discussed the methods for estimating unknown

model parameters and described three important analysis techniques, namely, sen-

sitivity analysis, perturbation optimization and model checking. After highlighting

the challenges faced when dealing with ODE-based models we have presented a

promising probabilistic approximation method.

We are currently improving and augmenting this approximation technique in a

number of ways. Firstly, the construction of the DBN approximation for large

pathway models is computationally intensive. However, many components of this

construction can be easily parallelized. Thus motivated, research is underway to

mapping this process onto Graphics Processing Units (GPUs). A preliminary study

of the Thrombin-MLC pathway which has 105 species (we assumed 163 parameters

to be unknown) shows that the GPU implementation scales well with the problem

size. In comparison, a 10-PC cluster failed to deal with this large model.113 We are

also beginning to study the means for implementing the parameter estimation and

sensitivity analysis tasks on the GPU platform. Finally, work is underway for doing

probabilistic model checking on the DBN approximations.

From a broader perspective, the material presented here is a core component of

computational systems biology. Although this ¯eld is making excellent progress

many challenges remain. A key one is the inherently incremental and incomplete

nature of the model construction process. Biologists will continue to decipher new

cellular mechanisms and additional experimental data will be constantly generated.

In this light, a computational model is at best a consistent record of what is currently

known about a particular process. Thus incorporating new knowledge and data into

an existing model without having to redo model construction, calibration, and

validation processes is a fundamental challenge. A recent attempt has been made to

integrate new data to an existing model using belief propagation techniques.68 More

advanced approaches that can integrate component models when cross talks are

discovered and for assimilating changes made to the pathway structure need to be

explored.

Another challenge is to develop modeling frameworks that can integrate sto-

chastic and deterministic features. This will considerably expand the range of

applicability of modeling techniques. Current techniques force one to choose sto-

chastic or deterministic methods in a mutually exclusive fashion. Yet another fun-

damental challenge is to develop multi-scale modeling and analysis methods using

which one can connect the dynamics of molecular mechanisms governing single cell

behaviors to multi-cell functionalities. For instance, it is known that noise and sto-

chasticity in gene expressions and other cellular events can cause genetically identical

cells to exhibit variability in cellular states.114 Such variations can have signi¯cant
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impact on cellular functioning and phenotype.115 Hence it is vital to bridge the gap

between the single cell dynamics and the emergent functionalities of a collection of

cells. It is worth noting in this context that initial attempts are being made with

systems such as cell death and di®erentiation.3,52
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