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Abstract Coronaviruses are a large family of viruses that cause different symptoms, from
mild cold to severe respiratory distress, and they can be seen in different types of animals
such as camels, cattle, cats and bats. Novel coronavirus called COVID-19 is a newly emerged
virus that appeared in many countries of the world, but the actual source of the virus is not
yet known. The outbreak has caused pandemic with 26,622,706 confirmed infections and
874,708 reported deaths worldwide till August 31, 2020, with 17,717,911 recovered cases.
Currently, there exist no vaccines officially approved for the prevention or management of
the disease, but alternative drugs meant for HIV, HBV, malaria and some other flus are
used to treat this virus. In the present paper, a fractional-order epidemic model with two
different operators called the classical Caputo operator and the Atangana–Baleanu–Caputo
operator for the transmission of COVID-19 epidemic is proposed and analyzed. The repro-
duction number R0 is obtained for the prediction and persistence of the disease. The dynamic
behavior of the equilibria is studied by using fractional Routh–Hurwitz stability criterion and
fractional La Salle invariant principle. Special attention is given to the global dynamics of the
equilibria. Moreover, the fitting of parameters through least squares curve fitting technique
is performed, and the average absolute relative error between COVID-19 actual cases and
the model’s solution for the infectious class is tried to be reduced and the best fitted values
of the relevant parameters are achieved. The numerical solution of the proposed COVID-19
fractional-order model under the Caputo operator is obtained by using generalized Adams–
Bashforth–Moulton method, whereas for the Atangana–Baleanu–Caputo operator, we have
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used a new numerical scheme. Also, the treatment compartment is included in the population
which determines the impact of alternative drugs applied for treating the infected individu-
als. Furthermore, numerical simulations of the model and their graphical presentations are
performed to visualize the effectiveness of our theoretical results and to monitor the effect
of arbitrary-order derivative.

1 Introduction

In the present world, more and more attention has been given to the research of epidemic
diseases such as HIV, HBV, Ebola, H1N1 and malaria, and it is a big challenge to control
the spread of epidemic diseases among the population. On the one hand, while the world
continues to fight existing infectious diseases, on the other hand, changing world conditions
causes the emergence of different types of viruses. The most recent and newest of these
viruses is the novel coronavirus, which is called COVID-19, that appeared in early 2020 and
is still not fully controlled. While up to now the biological origin of the disease is unclear,
the first cases were traced back to December 2019 in the city of Wuhan in China. It is a
virus that can cause lung disease and, when left untreated, causes diseases such as severe
acute respiratory failure syndrome. Coronaviruses are viruses that most people encounter
instantly in their lives. Human coronaviruses often cause mild to moderate upper respiratory
diseases. Coronaviruses have three subgroups known as alpha, beta and gamma; there is also
a fourth new group called delta coronaviruses, SARS-CoV. Human coronaviruses were first
detected in the mid-1960s. Until 2020, the virus, which appeared only in Saudi Arabia, Qatar
and Jordan, caused the death of three people. The case, which was reported in Wuhan city
with 11 million population in Hubei province in China on December 31, 2019, has been
found to be infected with a novel coronavirus that has never been seen before. According
to the World Health Organization (WHO) reports [1], this virus is thought to be transmitted
from animals to humans, such as SARS-CoV and MERS-CoV. Nowadays, the disease has
been transmitted from person to person, and on August 31, 2020, the number of confirmed
infected cases has reached 26,622,706 with almost 874,708 deaths worldwide so far. When
the patients who were died were examined, the majority of them were found to be elderly
patients or patients diagnosed with chronic heart, lung and kidney, Parkinson’s and diabetes.
Coronaviruses can cause diseases in many different creatures. However, SARS-CoV can
infect humans, monkeys and animals such as Himalayan civet cat, raccoon dog, cat, dogs
and rodents. It can be transmitted easily like flu through the removal of viruses that come
into contact with the mouth and nose after touching the infected material.

While mathematical models do not provide a cure for a given infectious disease, they
can be used to replicate possible scenarios of the dynamic at hand. At present, all sectors in
the world such as medical bodies, politicians, armies, law enforcement, business, chemists,
physicists, engineers and many others are putting their efforts to help stop the spread of
COVID-19; mathematicians are not left behind. New mathematical models that could be
used for simulation, with the aim to predict the future behavior of the spread and flatten the
curve of infection and deaths, are developed. Zu et al. [2] proposed and studied transmis-
sion patterns of COVID-19 in the mainland of China and the efficacy of different control
strategies: a data- and model-driven study. They constructed a compartmental model and
based on reported data from the National Health Commission of PR China during January
10–February 17, 2020; they estimated the model parameters. At the end, they predicted the
epidemic trend and transmission risk of COVID-19. With the help of sensitivity analysis
method, they also estimated the efficacy of several intervention strategies. In their study,
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they have found that the quarantine measures adopted by the Chinese government since Jan-
uary 23, 2020, were necessary and effective. Postponing the relaxation of isolation, early
diagnosis, patient isolation, broad close-contact tracing and strict monitoring of infected per-
sons could effectively control COVID-19 epidemic. Atangana [3], in his paper, modeled the
spread of COVID-19 with new fractal–fractional operators with the aim of proposing the
question: Can the lockdown save mankind before vaccination? He suggested a mathematical
model taking into account the possibility of transmission of COVID-19 from dead bodies to
humans and the effect of lockdown. In his paper, he considered three cases. The first case
suggested that there is transmission from dead to the living (medical staffs as they perform
postmortem procedures on corpses and direct contacts with during burial ceremonies). This
case has no equilibrium points except for disease free equilibrium, a clear indication that care
must be taken when dealing with corpses due to COVID-19. In the second case, he removed
the transmission rate from dead bodies. This case showed an equilibrium point, although the
number of deaths, carriers and infected grew exponentially up to a certain stability level.
In the last case, he incorporated a lockdown and social distancing effect, using the next-
generation matrix. He achieved a zero-reproduction number, with number of deaths, infected
and carriers decaying very rapidly. This is a clear indication that if lockdown recommenda-
tions are observed, the threat of COVID-19 can be reduced to zero in few months. He used
Italy’s data to guide the construction of the mathematical model. To include non-locality
into mathematical formulas, differential and integral operators were suggested. Properties
and numerical approximations were presented in details. Finally, the suggested differential
and integral operators were applied to the model. Tang et al. [4] studied the effectiveness
of quarantine and isolation that determined the trend of COVID-19 epidemic in the final
phase of the current outbreak in China. In their study, they have seen that the uncertainty
analyses reveal that the epidemic is still uncertain, and it is important to continue enhancing
the quarantine and isolation strategy and improving the detection rate in mainland China that
helped the country to tackle with COVID-19 outbreak during its peak time. On the one side,
researchers are continuously working toward the development for the cure of COVID-19,
while on the other side mathematicians proposed many models for the spread and control
of COVID-19 that have been used for some decision making. Ahmet et al. [5] analyzed a
mathematical model of coronavirus disease (COVID-19) by using numerical approaches and
logistic model. In their paper, they have reviewed and introduced some models for COVID-
19 that included important questions about the global health care and suggested important
notes. They suggested three well-known numerical techniques for the solution of proposed
equations; these are Euler’s method, Runge–Kutta method of order two (RK2) and of order
four (RK4). Results based on the suggested numerical techniques and provided approximate
solutions gave important key answers to this global issue. They have obtained the results for
two countries, namely Turkey and Iraq. More interestingly, for both countries, Turkey and
Iraq, the basic reproduction numbers R0 have been reported recently by several groups; a
research estimation by April 9, 2020, revealed that R0 for Turkey is 7.4 and for Iraq is 3.4,
which are noticeably increased from the beginning of the pandemic. Thus, they investigated
the forecasting epidemic size for Turkey and Iraq using the logistic model. They concluded
that the suggested model is a reasonable description of this epidemic disease. One key driver
of the spread is direct contact with infected patients, object or corpses from COVID-19.
While the world is still waiting for a possible vaccine, measures have been initiated in coun-
tries around the world such as lockdown, self-isolation and social distancing. Mathematical
models rely on mathematical tools called differential and integral operators. Several have
been suggested in the last decades as researchers recognized the complexity of nature and
inadequacies of existing differential and integral operators. Chen et al. [6] developed a mathe-
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matical model which investigates the transmission dynamics of COVID-19. They considered
in their model four compartments as bats, hosts, reservoir and people network to point out the
infection source. Munster et al. [7] examined the key questions for effect analysis of COVID-
19. Corman et al. [8] designed a workflow diagram to model the process in the absence of
available COVID-19 isolates or original patient specimens. Sookaromdee et al. [9] devel-
oped a quadratic model that can help better understand how the disease can be controlled and
managed. Shen et al. [10] presented a mathematical model to analyze COVID-19 processes
and evaluated the basic reproduction number. They also compared the results with the severe
acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) results
and pointed out that the fatality rate (FR) of COVID-19 is lower than the FR of the SARS
and MERS. Kucharski et al. [11] estimated the median reproduction number between 1.6 and
2.9 and concluded that COVID-19 has still important potential for ongoing human-to-human
transmission which is the most significant issue. Zhou et al. [12] estimated and evaluated the
basic reproduction number of COVID-19 in their study in the range (2.2–3.0). This has con-
cluded that the disease is controllable with moderate–high transmissibility. Ming et al. [13]
proposed an extended form of basic SIR epidemic model to overcome the burdens faced by
healthcare system during COVID-19 transmission in Wuhan, China. Meanwhile, many stud-
ies have also dealt with how the virus first appeared in some regions where a huge number of
people can be affected seriously such as USA [14], Vietnam [15], Thailand, Japan and South
Korea [16]. Tang et al. [17] estimated the transmission risk of COVID-19 and its implication
for public health interventions. Their estimations, which are based on likelihood and model
analysis, show that the control reproduction number is high as 6.47 (95% CI 5.71–7.23).
They have performed the sensitivity analysis of their study and suggested that the disease can
be controlled by reducing the contact among the people, using quarantine procedure and iso-
lation of the population. Peng et al. [18] provided epidemic analysis of COVID-19 in China
by dynamical modeling. Wu et al. [19] provided a modeling approach for the nowcasting and
forecasting the potential domestic and international spread of COVID-19 outbreak originated
in Wuhan, China. They have estimated the size of the epidemic in Wuhan on the basis of the
number of cases exported from Wuhan to cities outside mainland China and forecasted the
extent of the domestic and global public health risks of epidemics, accounting for social and
non-pharmaceutical prevention interventions. Tang et al. [20] provided an updated estimation
of the risk of transmission of the novel coronavirus (COVID-19). By using time-dependent
contact and diagnose rates, they refitted their previously proposed dynamics transmission
model [17] to the data available and re-estimated the effective daily reproduction ratio that
better quantifies the evolution of the interventions. They have estimated that the effective
daily reproduction ratio has fallen below 1 and when the epidemics will peak. They have
shown with their updated results that disease can be controlled by using the self-isolation
strictly and persistence. Nadima et al. [21] proposed a COVID epidemic model for its trans-
mission and control. They have calculated the R0 and Rc analytically. They have investigated
the detailed stability analysis of their proposed model. Further, with their results they have
found that the burden of disease spread can be reduced if the quarantined individuals can be
managed properly than the isolated individuals.

Fractional calculus is a common field trying to understand the real-world phenomena
that is modeled with non-integer-order derivatives. Using these types of operators, more
effective and up-to-date studies have been revealing over time. In this context, fractional
calculus theory and its illustrative applications are attracting attention all over the world day
by day. New fractional operators that have different features have been defined and have
been used extensively to model real-life problems. The emergence of the new operators in
the literature can be considered as a result of the reproduction of new problems that model
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different types of real-life events. Fractional derivative operators that address the kind of
nonlinear differential equations can be stated as non-local. There exist nowadays many types
of fractional derivatives with and without singular kernels. The fractional derivative begins
with Leibniz’s question in 1695. The list of the existing fractional derivatives is long. With
singular kernels, we have the Caputo derivative [22], Riemann–Liouville derivative [22] and
the Katugampola derivative [23]. Without singular kernels, we have two types: the fractional
derivative with exponential kernel known as Caputo–Fabrizio fractional derivative (CF) [24]
and the fractional derivative with Mittag–Leffler kernel known as the Atangana–Baleanu
fractional derivative (ABC) [25]. Because of effective properties, fractional calculus has
found wide applications to model dynamics processes in many well-known fields of science,
finance [26,27], engineering, biology, medicine and many others [28–46]. The importance
of dealing with fractional-order derivatives is the involvement of memory and hereditary
properties that gives a more realistic way to model COVID-19 epidemics. Due to the memory
effect, the non-integer models integrate all previous information from the past that makes
it able to predict and translate the epidemic models more accurately. Saeedian et al. [47]
formulated SIR epidemic model with the inclusion of memory effect and studied its behavior
along the memory effect on the disease spread with the help of fractional derivatives. Ucar
et al. [48] provided the dynamics of a kind of smoking model and its community health by
considering the ABC fractional operator. Going by the antecedents, we have seen clearly that
modeling of physical and real-life scenarios with the fractional-order derivatives is much more
accurate when compared with the integer-order cases. This assertion has been demonstrated
in a number of research papers, monographs and books, see, for example, [49–58]. In view of
these achievements, we are motivated in this research work to model and analyze COVID-19
epidemics for disease transmission using the Caputo and ABC fractional-order operators.
The choice of using the Caputo derivative is due to the fact that if the given function is a
constant, then the Caputo derivative of that function gives zero. Primarily, the Caputo operator
computes an ordinary differential equation, followed by a fractional integral to obtain the
desired order of fractional derivative. More importantly, the Caputo fractional differential
equation (FDO) permits the use of local initial conditions to be included in the derivation
of the model. Furthermore, models with integer-order derivatives can be used to capture
dynamical systems of infectious disease, when only the initial conditions are used to forecast
future behaviors of the spread. However, when the scenario is unpredictable or cannot be
described adequately, maybe due to some uncertainties which are inherent to many physical
and real-world processes, integer-order derivatives and integrals are both deficient. In the
case of COVID-19, there are many uncertainties, many unknowns and much misinformation
that make it very difficult to really provide a suitable mathematical model with classical
differentiation. In general, non-local operators are more suitable for such situations, as they
are able to capture non-localities and some memory effects depending on whether power law,
fading memory or crossover effects are included.

The potential aim of present study is to design, with the help of epidemiological modeling,
a mathematical model for understanding transmission dynamics of COVID-19 using actual
cases of the pandemic in Pakistan. Primarily, we aim to obtain the basic reproductive number
and equilibria in preventing the epidemic spread in the country. Our motivation emerges from
a number of recently conducted research studies [44,59–61] in the literature focused on deter-
ministic modeling of different diseases in various countries. Each of these studies consists of
compartmental modeling; however, none investigates the inclusion of treatment class and its
effects on the control of the epidemic. The COVID-19 model, in the present study, is based
on the assumption of continuous treatment of affected individuals. The research findings of
the present study may help governments and public health authorities to formulate strategic
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plans to reduce the immunization gaps and thus prevent the outbreaks in the future. More-
over, a number of new studies related to COVID-19 mathematical modeling are appearing
nowadays wherein the proposed model can be considered a good addition with consideration
of treatment class within those studies, thereby increasing interest of researchers belonging
to the field of fractional calculus modeling and mathematical epidemiology.
In the current paper, we consider the dynamical transmission process of novel coronavirus
by using the Caputo and Atangana Baleanu fractional derivatives. In Sect. 1, we introduce
the novel model, some related papers stated in the literature and fractional-order derivatives
used in our paper. Section 2 provides some preliminary results required for the formulation of
proposed mathematical model. In Sect. 3, we define the mathematical model of COVID-19
and present the fundamental structure of the fractional-order model. In Sect. 4, we present
the existence and the uniqueness of the solutions of the fractional-order coronavirus model.
Also, in this section, we discuss the mathematical analysis of the proposed fractional-order
COVID-19 epidemic model along with equilibrium points and the stability of equilibrium
points. In Sect. 5, we fit the parameters by considering the real data which have been reported
in Pakistan and determine the exact parameters which we use in the simulations. In Sects. 6
and 7, we describe the numerical simulation technique namely Adams–Bashforth scheme and
its application to the stated model according to the Caputo and Atangana–Baleanu operators,
respectively. In Sect. 8, we illustrate our main results by the graphical representations and
discuss the memory trace. We give the conclusions and perspectives in Sect. 9.

2 Preliminaries

In this section, we give the fundamental definitions that can be used throughout the paper.
These definitions generally explain the fractal–fractional derivative in the power kernel sense
and Mittag–Leffler kernel sense.

Definition 1 A real function ϕ(t), t > 0 is said to be in the space Cq , q ∈ R, if there exists
a real number ε > q, such that ϕ(t) = tεϕ1(t), where ϕ1(t) ∈ C[0,∞) and it is said to be
in the space Cn

q , if and only if ϕn(t) ∈ Cq , n ∈ N .

Definition 2 The Riemann–Liouville form of fractional integral operator of order ϑ > 0 of
a function ϕ : (0,∞) → R is given by

RL
0 D

−ϑ

t ϕ(t) =
1

Γ (ϑ)

∫ t

0
(t − τ)ϑ−1ϕ(τ)dτ, t > 0, (1)

or

RL
0 I

ϑ

t ϕ(t) =
1

Γ (ϑ)

∫ t

0
(t − τ)ϑ−1ϕ(τ)dτ, t > 0,

RL
0 I

0
t ψ(τ) = ψ(τ), (2)

where ϑ > 0 and Γ (.) is a well-known gamma function.

Definition 3 [62] The Riemann–Liouville form of fractional derivative of order ϑ > 0 of a
function ϕ : (0,∞) → R is given by

RL
0 D

ϑ

t ϕ(t) =

⎧
⎨
⎩

1
Γ (n−ϑ)

(
d
dt

)n ∫ t

0
ϕ(τ)

(t−τ)ϑ−n+1 dτ, 0 ≤ n − 1 < ϑ < n, n = [ϑ],(
d
dt

)n

ϕ(t), ϑ = n ∈ N .
(3)
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Definition 4 The Caputo fractional derivative of order ϑ > 0 of a function ϕ : (0,∞) → R

is given by

C
0 D

ϑ

t ϕ(t) =

⎧
⎨
⎩

1
Γ (n−ϑ)

∫ t

0
(d/dτ)n

ϕ(τ)

(t−τ)ϑ−n+1 dτ , 0 ≤ n − 1 < ϑ < n, n = [ϑ], n ∈ N ,(
d
dt

)n

ϕ(t), ϑ = n, n ∈ N ,
(4)

where the operator C
0 D

ϑ

t
satisfies:

C
0 D

ϑ

t
RL
0 I

ϑ

t
ϕ(t) = ϕ(t) and RL

0 I
ϑ

t
C
0 D

ϑ

t
ϕ(t) = ϕ(t) −

∑n−1
v=0

ϕ(v)(u)
v!

(t − u)v, t > u.

Definition 5 [63] The left and right Atangana–Baleanu (ABC) fractional derivatives in the
frame of Caputo are given as, respectively:

ABC
a Dϑ

t {ϕ(t)} =
ℵ(ϑ)

1 − ϑ

∫ t

a

ϕ′(k)Eϑ

(
λ(t − k)ϑ

)
dk, (5)

and
ABC
b Dϑ

t {ϕ(t)} =
−ℵ(ϑ)

1 − ϑ

∫ b

t

ϕ′(k)Eϑ

(
λ(k − t)ϑ

)
dk, (6)

where Eϑ (z) is Mittag–Leffler function, 0 < ϑ < 1, ℵ(ϑ) is an arrangement function and
λ = − ϑ

1−ϑ
.

Definition 6 The corresponding integral of the Atangana–Baleanu fractional derivative is
defined as

AB
0 Iϑt {ϕ (t)} =

1 − ϑ

ℵ (ϑ)
ϕ (t) +

ϑ

Ŵ (ϑ)ℵ (ϑ)

∫ t

0
ϕ (τ) (t − τ)ϑ−1 dτ, (7)

where ℵ (ϑ) is defined in Eq. (5).

Definition 7 The Laplace transform of the Caputo fractional derivative of a function ϕ(t) of
order ϑ > 0 is defined as

L

[
C
0 D

ϑ

t ϕ (t)
]

= sϑϕ(s) −

n−1∑

v=0

ϕ(v)(0)sϑ−v−1. (8)

Definition 8 The Laplace transform of the function tϑ1−1 Eϑ,ϑ1(±λtϑ ) is defined as

L
[
tϑ1−1 Eϑ,ϑ1(±λtϑ )

]
=

sϑ−ϑ1

sϑ ∓ λ
, (9)

where Eϑ,ϑ1 is the two-parameter Mittag–Leffler function with ϑ, ϑ1 > 0. Further, the
Mittag–Leffler function satisfies the following equation [64]

Eϑ,ϑ1 ( f ) = f Eϑ,ϑ+ϑ1 ( f ) +
1

Γ (ϑ1)
. (10)

3 Mathematical model formulation

Modeling the dynamics of infectious diseases has become a topic of much interest in recent
years. Such efforts are useful in disease control and in the prevention of outbreaks. In the
modeling transmission dynamics of a communicable disease, it is common to divide the
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population into disjoint classes, namely compartments whose sizes change with time. We
formulated a fractional-order compartmental model for the recently emerged virus, namely
COVID-19, and then analyzed it. For the understanding of COVID-19 transmission dynam-
ics, the total population N (t) is divided into eight sub-population compartments, namely
susceptible, exposed, quarantined, asymptomatic, symptomatic, isolated, treated and recov-
ered such that N (t) = S (t) + E (t) + Q (t) + A (t) + I (t) + P (t) + T (t) + R(t) for all
t. When a person is healthy and susceptible to the disease (denoted by S), exposed, when
the person is in a latent period but not yet infectious (denoted by E), quarantined, refers
to the separation of COVID-19 infected individuals from the general population when the
population are infected but not infectious (denoted by Q), asymptomatic, those individuals
in the population who does not show the symptoms but are in incubation period (denoted by
A), symptomatic, when the individual got the infection and is infectious to others (denoted by
I ), isolated, describes those COVID-19-infected individuals who are separated from the pop-
ulation become symptomatic infectious (denoted by P) and recovered population (denoted
by R). Therefore, the proposed model in ordinary differential equations takes the following
form [17,21]:

dS

dt
= Λ −

S
(
δ I + μQδQ + μAδA + μPδP

)

N − Q − P
− λS,

dE

dt
=

S
(
δ I + μQδQ + μAδA + μPδP

)

N − Q − P
− (α1 + r1 + λ) E,

dQ

dt
= α1 E − (r2 + β1 + λ) Q,

dA

dt
= kr1 E − (β2 + λ) A,

dI

dt
= (1 − k) r1 E − (α2 + β3 + ρ + λ) I,

dP

dt
= r2 Q + α2 I − (σ + β4 + λ) P,

dT

dt
= γ I − (λ + β5) T,

dR

dt
= β1 Q + β2 A + β3 I + β4 P + β5T − λR.

(11)

For the infected individuals from the groups quarantined, asymptomatic, symptomatic or
isolated, the transmission coefficients are δ, δμQ , δμA and δμP , respectively. We consider the
δ as a transmission rate along with the modification factors for quarantinedμQ , asymptomatic
μA and isolated μP individuals. The exposed population decreases with quarantine at a rate
of α1, and becomes asymptomatic and symptomatic at a rate r1 and dies with natural death
at a rate λ. The quarantined population is reduced by growth of clinical symptom at a rate
of r2 and transferred to the isolated class. β1 is the recovery rate of quarantine individuals,
and λ is the natural death rate of quarantined population. The exposed individuals become
asymptomatic at a rate r1 by a proportion k. The recovery rate of asymptomatic individuals is
β2, and the natural death rate is λ. The symptomatic individuals are produced by a proportion
of (1 − k) of exposed class after the exposer of clinical symptoms of COVID-19 by exposed
individuals. α2 is the isolation rate of the symptomatic individuals; β3 is the recovery rate and
natural death at a rate λ. The isolated individuals are come from quarantined community at
a rate r2 and symptomatic group at a rate α2. The recovery rate of isolated individuals is β4,
disease-induced death rate is σ , and natural death rate is λ. The symptomatic individuals join
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the treatment class at a rate γ and recover at a rate β5 with natural death rate λ. Furthermore,
quarantined, asymptomatic, symptomatic, isolated and treated individuals recover from the
disease at rates β1, β2, β3, β4, and β5, respectively, and this population is reduced by a natural
death rate λ.

The above ordinary differential model (11) is further extended to a fractional-order system
of order ϑ , 0 < ϑ ≤ 1, including a recruitment rate of susceptible individuals into the region
as Λ per unit time and λ, being the natural death rate. Thus, the proposed model in Caputo
or Atangana–Baleanu-type fractional derivatives of order ϑ , 0 < ϑ ≤ 1, is given by

∗
0 D

ϑ
t S = Λ−

S
(
δ I + μQδQ + μAδA + μPδP

)

N − Q − P
− λS,

∗
0 D

ϑ
t E =

S
(
δ I + μQδQ + μAδA + μPδP

)

N − Q − P
− (α1 + r1 + λ) E,

∗
0 D

ϑ
t Q = α1 E − (r2 + β1 + λ) Q,

∗
0 D

ϑ
t A = kr1 E − (β2 + λ) A,

∗
0 D

ϑ
t I = (1 − k) r1 E − (α2 + β3 + ρ + λ) I,

∗
0 D

ϑ
t P = r2 Q + α2 I − (σ + β4 + λ) P,

∗
0 D

ϑ
t T = γ I − (λ + β5) T,

∗
0 D

ϑ
t R = β1 Q + β2 A + β3 I + β4 P + β5T − λR,

(12)

with non-negative initial conditions

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, Q(0) = Q0 ≥ 0, A(0) = A0 ≥ 0,

I (0) = I0 ≥ 0, P(0) = P0 ≥ 0, T (0) = T0 ≥ 0, R(0) = R0 ≥ 0.
(13)

4 Stability analysis

In this section, the stability analysis of the proposed model (12) is discussed. Stability analysis
of a system in epidemiology and immunology determines the behavior of the system in
disease transmission. By stability analysis, one knows when and where the disease spreads
by calculating the threshold quantity known as basic reproduction number denoted by R0.

4.1 Positivity and boundedness

In this subsection, the positivity and boundedness of the solution for the proposed model (12)
is given, after that the basic reproduction number is obtained. Finally, the existence conditions
and the stability results for both the equilibria are provided. Let R8

+ =
{
ϕ(t) ∈ R8 : ϕ(t) ≥

0} and ϕ(t) = [S (t) , E (t) , Q (t) , A (t) , I (t) , P (t) , T (t) , R (t)]T . For the proof of the
main theorem about the non-negativity of the solutions for model (12), we recall the following
lemma.

Lemma 1 (Generalized Mean Value Theorem [65,66]). Supposing that ϕ(t) ∈ C[a, b] and

Caputo fractional derivative C
0 D

ϑ

t
ϕ(t) ∈ C(a, b] for 0 < ϑ ≤ 1, then

ϕ(t) = ϕ(ω) +
1

Γ (ϑ)

C
0 D

ϑ

t ϕ(τ)(t − ω)ϑ ,

with 0 ≤ τ ≤ t,∀ t ∈ (a, b].
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Remark 1 Suppose that ϕ(t) ∈ C[0, b] and Caputo fractional derivative C
0 D

ϑ

t
ϕ(t) ∈ (0, b]

for 0 < ϑ ≤ 1. It is clear from Lemma 1 that if C
0 D

ϑ

t
ϕ(t) ≥ 0,∀ t ∈ (0, b], then the

function ϕ(t) is non-decreasing and if C
0 D

ϑ

t
ϕ(t) ≤ 0,∀ t ∈ (0, b], then the function ϕ(t) is

non-increasing for all t ∈ [0, b].

Theorem 1 The solution of the proposed fractional-order model (12) along initial conditions

(13) is unique and bounded in R8
+.

Proof The existence and uniqueness of the solution of systems (12)–(13) on the time interval
(0,∞) can be obtained by the process discussed in the work of Lin [66]. Subsequently, we
have to explain the non-negative region R8

+ is positively invariant region. From model (12),
we find

C
0 D

ϑ

t S|S=0 = Λ ≥ 0,

C
0 D

ϑ

t E |E=0 =
S
(
δ I + μQδQ + μAδA + μPδP

)

N − Q − P
≥ 0,

C
0 D

ϑ

t Q|Q=0 = α1 E ≥ 0,

C
0 D

ϑ

t A|A=0 = kr1 E ≥ 0,

C
0 D

ϑ

t I |I=0 = (1 − k) r1 E ≥ 0,

C
0 D

ϑ

t P|P=0 = r2 Q + α2 I ≥ 0,

C
0 D

ϑ

t T |T =0 = γ I ≥ 0,

C
0 D

ϑ

t R|R=0 = β1 Q + β2 A + β3 I + β4 P + β5T ≥ 0.

(14)

If (S (0) , E (0) , Q (0) , A (0) , I (0) , P (0) , T (0) , R (0)) ∈ R8
+, then according to Eqs.

(14) and Remark 1, the solution [S (t) , E (t) , Q (t) , A (t) , I (t) , P (t) , T (t) , R (t)] cannot
escape from the hyperplanes S = 0, E = 0, Q = 0, A = 0, I = 0, P = 0, T = 0 and
R = 0. Also on each hyperplane bounding the non-negative orthant, the vector field points
into R8

+, i.e., the domain R8
+ is a positively invariant set. ⊓⊔

In the next theorem, we will show the boundedness of the solution to the proposed model
(12).

Theorem 2 The region

A =
{
(S(t), E(t), Q(t), A(t), I (t), P(t), T (t), R(t)) ∈ R8

+|

0 < S(t) + E(t) + Q(t) + A(t) + I (t) + P(t)+ T (t) + R(t) ≤ Λ
λ

} is a positive invari-

ant set for system (12).

Proof For the proof of the theorem, we have from system (12)

C
0 D

ϑ

t N (t) = Λ − λN (t) − (ρ + γ ) I (t) − σ P(t).

This implies,
C
0 D

ϑ

t N (t) ≤ Λ− λN (t) . (15)

Applying the Laplace transform to Eq. (15), we get

sϑΦ (N )− sϑ−1Φ (0) ≤
Λ

s
− λΦ (N ) ,
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which further gives

Φ (N ) ≤
s−1

sϑ + λ
Λ +

sϑ−1

sϑ + λ
N (0) .

From Eqs. (8) and (9), we infer that if (S0, E0, Q0, A0, I0, P0, T0, R0) ∈ R8
+, then

N (t) ≤ Λtϑ Eϑ,ϑ+1
(
−λtϑ

)
+ Eϑ,1

(
−λtϑ

)
N (0)

≤
(Ω − δ)

λ

(
λtϑ Eϑ,ϑ+1

(
−λtϑ

))
+ Eϑ,1

(
−λtϑ

)

≤
Λ

λ

1

Γ (1)

≤
Λ

λ
.

This shows that the total population N (t) , i.e., the subpopulations S (t) , E (t) , Q (t) ,

A (t) , I (t) , P (t) , T (t) and R (t), are bounded. This proves the boundedness of the solution
of system (12). ⊓⊔

4.2 Determining the equilibria and their stabilities

The equilibrium points are obtained by equating to zero the right-hand side of system (12),
as

Λ −
S
(
δ I + μQδQ + μAδA + μPδP

)

N − Q − P
− λS = 0,

S
(
δ I + μQδQ + μAδA + μPδP

)

N − Q − P
− (α1 + r1 + λ) E = 0,

α1 E − (r2 + β1 + λ) Q = 0,

kr1 E − (β2 + λ) A = 0,

× (1 − k) r1 E − (α2 + β3 + ρ + λ) I = 0,

r2 Q + α2 I − (σ + β4 + λ) P = 0,

γ I − (λ + β5) T = 0,

β1 Q + β2 A + β3 I + β4 P + β5T − λR = 0.

(16)

After simplification, the DFE, namely DF =
(
S0, 0, 0, 0, 0, 0, 0, 0

)
, where S0 = Λ

λ
and EE

DE = (S∗, E∗, Q∗, A∗, I ∗, P∗, T ∗, R∗), where

S∗ =
Λ

ψ∗ + λ
, E∗ =

ψ∗S∗

g1
, Q∗ =

α1ψ
∗S∗

g1g2
, A∗ =

kr1ψ
∗S∗

g1g3
, I ∗ =

(1 − k)r1ψ
∗S∗

g1g4
,

P∗ =
kr1ψ

∗S∗(r2α1g4 + (1 − k)r1α2g2

g1g2g4g5
, T ∗ =

γ (1 − k)r1ψ
∗S∗

g1g4g6
,

R∗ =
ψ∗S∗

[
(β1α1g3g4g5g6 + kr1β2g2g4g5g6 + (1 − k) r1β3g2g3g5g6

]

λg1g2g3g4g5g6

+
ψ∗S∗

[
(g3g6β4kr1 (r2α1g4 + (1 − k) r1α2g2) + γ (1 − k) r1g2g3g5

]

λg1g2g3g4g5g6
,
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with

g1 = α1 + r1 + λ, g2 = r2 + β1 + λ, g3 = β2 + λ, g4 = α2 + β3 + ρ + λ,

g5 = σ + β4 + λ, g6 = λ + β5

and

ψ∗ =
δ
(
I ∗ + μQ Q∗ + μA A∗ + μP P∗

)

N∗ − Q∗ − P∗
.

4.3 Basic reproduction number

For the local stability of the disease-free equilibrium, we first compute the basic reproduction
number by using next-generation matrix method [67–70]. It is defined as the number of
cases occurring in a population which is completely susceptible by any infectious individual.
Biologically, if R0 < 1, then the infection will disappear, but if R0 > 1, the infection exists
and the disease persists. To determine R0 which is considered as the spectral radius of the
next-generation matrix

(
FV

−1
)
, we assemble the compartments which are infected from

system (12) and decomposing the right-hand side as H − Υ , where H is the transmission
part, expressing the production of new infection, and Υ is the transition part which describes
the change in state. Therefore,

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

S(δ I+μQδQ+μAδA+μP δP)
N−Q−P

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

and

Υ =

⎛
⎜⎜⎜⎜⎜⎜⎝

(α1 + r1 + λ) E

−α1 E + (r2 + β1 + λ) Q

−kr1 E + (β2 + λ) A

− (1 − k) r1 E + (α2 + β3 + ρ + λ) I

−r2 Q − α2 I + (σ + β4 + λ) P

−γ I + (λ + β5) T

⎞
⎟⎟⎟⎟⎟⎟⎠
.

By the next-generation matrix method [67–70], the matrices F and V at the disease-free

equilibrium point DF are obtained by F =
[
∂Hx (D

F )
∂ty

]
and V =

[
∂Υx (D

F )
∂ty

]
, 1 ≤ x, y ≤ 6.

This implies,

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 δμQ δμA δ δμP 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,
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V =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 + λ + r1 0 0 0 0 0
−α1 β1 + λ + r2 0 0 0 0
−kr1 0 β2 + λ 0 0 0

r1 (k − 1) 0 0 α2 + β3 + λ + ρ 0 0
0 −r2 0 −α2 β4 + λ + σ 0
0 0 0 −γ 0 β5 + λ

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Thus, we have the following expression for R0

R0 =
δr1 (1 − k)

(α1 + λ + r1) (α2 + β3 + λ + ρ)
+

α1δμQ

(α1 + λ + r1) (β1 + λ + r2)

+
δkμAr1

(β2 + λ) (α1 + λ + r1)
+

δμPα1r2

(α1 + λ + r1) (β1 + λ + r2) (β4 + λ + σ)

+
δμPα2r1 (1 − k)

(α1 + λ + r1) (β4 + λ + σ) (α2 + β3 + λ + ρ)
. (17)

4.4 Local stability of equilibria

In this subsection, we will provide the local stability results of equilibrium points in the form
of theorems with proofs.

Theorem 3 The disease-free equilibrium DF of the proposed fractional-order COVID-19

epidemic model is locally asymptotically stable if R0 < 1 and is unstable if R0 > 1.

Proof To study the stability criterion of disease-free equilibrium DF , the general Jacobian
matrix has been calculated at DF and is obtained as follows:

J

(
DF

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ 0 −μQδ −μAδ −δ −μP δ 0 0

0 −(α1 + λ + r1) μQδ μAδ δ μP δ 0 0

0 α1 −(β1 + λ+ r2) 0 0 0 0 0

0 kr1 0 −(β2 + λ) 0 0 0 0

0 r1 (1 − k) 0 0 −(α2 + β3 + λ + ρ) 0 0 0

0 0 r2 0 α2 −(β4 + λ+ σ) 0 0

0 0 0 0 γ 0 −(β5 + λ) 0

0 0 β1 β2 β3 β4 β5 −λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, the disease-free equilibrium DF is locally asymptotically stable if all the eigenvalues
ξi , i = 1, 2, . . . , 8, of the matrix J(DF ) satisfy the condition

∣∣∣arg
(

eig(J(DF )
)∣∣∣ = |arg(ξi )| > ϑ

π

2
, i = 1, 2, . . . , 8. (18)

We can evaluate these eigenvalues by solving the following characteristic equation
∣∣∣J
(

DF
)

− ξ Î

∣∣∣ = 0, (19)

where Î is an identity matrix and ξ is the eigenvalue. Therefore, we get an equation of the
form

δμPα1r2 (ξ + β2 + λ) (ξ + α2 + β3 + λ + ρ)

+ δμPα2r1 (1 − k) (ξ + β1 + λ + r2) (ξ + β2 + λ)

+ δμAkr1 (ξ + α2 + β3 + λ + ρ) (ξ + β4 + λ + σ) (ξ + β1 + λ + r2)

− (ξ + β2 + λ) (ξ + α2 + β3 + λ+ ρ) (ξ + β1 + λ + r2)

(ξ + β4 + λ + σ) (ξ + α1 + λ + r1) = 0, (20)
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which can be arranged as

δr1 (1 − k)

(ξ + α1 + λ + r1) (ξ + α2 + β3 + λ + ρ)
+

α1δμQ

(ξ + α1 + λ + r1) (ξ + β1 + λ + r2)

+
δkμAr1

(ξ + β2 + λ) (ξ + α1 + λ + r1)

+
δμPξ1r2

(ξ + α1 + λ + r1) (ξ + β1 + λ + r2) (ξ + β4 + λ+ σ)

+
δμPα2r1 (1 − k)

(ξ + α1 + λ + r1) (ξ + β4 + λ + σ) (ξ + α2 + β3 + λ + ρ)
= 1. (21)

Assigning that

�11(ξ) =
δr1 (1 − k)

(ξ + α1 + λ + r1) (ξ + α2 + β3 + λ + ρ)
,

�12(ξ) =
α1δμQ

(ξ + α1 + λ + r1) (ξ + β1 + λ + r2)
,

�13(ξ) =
δkμAr1

(ξ + β2 + λ) (ξ + α1 + λ + r1)
,

�14(ξ) =
δμPα1r2

(ξ + α1 + λ + r1) (ξ + β1 + λ + r2) (ξ + β4 + λ + σ)
,

�15(ξ) =
δμPα2r1 (1 − k)

(ξ + α1 + λ + r1) (ξ + β4 + λ + σ) (ξ + α2 + β3 + λ + ρ)
,

(22)

where �1(ξ) = �11(ξ)+�12(ξ)+�13(ξ)+�14(ξ)+�15(ξ), and taking ξ = a + ib, so
that Re (ξ) ≥ 0, then we can write

|�11(ξ)| ≤
δr1 (1 − k)

|ξ + α1 + λ+ r1| |ξ + α2 + β3 + λ + ρ|
≤ �11(a) ≤ �11(0),

|�12(ξ)| ≤
α1δμQ

|ξ + α1 + λ+ r1| |ξ + β1 + λ + r2|
≤ �12(a) ≤ �12(0),

|�13(ξ)| ≤
δkμAr1

|ξ + β2 + λ| |ξ + α1 + λ+ r1|
≤ �13(a) ≤ �13(0),

|�14(ξ)| ≤
δμPα1r2

|ξ + α1 + λ+ r1| |ξ + β1 + λ + r2| |ξ + β4 + λ + σ |
≤ �14(a) ≤ �14(0),

|�15(ξ)| ≤
δμPα2r1 (1 − k)

|ξ + α1 + λ+ r1| |ξ + β4 + λ + σ | |ξ + α2 + β3 + λ + ρ|
≤ �15(a) ≤ �15(0).

(23)

Therefore, we have�11(0)+�12(0)+�13(0)+�14(0)+�15(0) = �1(0) = R0 < 1, which
gives |�1(ξ)| ≤ 1. Hence, when R0 < 1, all the eigenvalues of �1(ξ) = 1 have negative
real parts. So, the DFE point is locally asymptotically stable when R0 < 1. Moreover, when
R0 > 1, which means �1(0) > 1,

lim
ξ→∞

�1(ξ) = 0.

This implies that there exists ξ∗ > 0 so that �1(ξ
∗) = 1, which means there exists a positive

eigenvalue ξ∗ > 0 of Eq. (19). Thus, it gives us if R0 > 1 the DFE (DF ) is unstable. ⊓⊔
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Lemma 2 [75] Define the following characteristic equation

D (ξ) = ξω + λ1ξ
ω−1 + λ2ξ

ω−2 + · · · + λω = 0. (24)

The following conditions make all the roots of the characteristic equation (24) satisfy Eq. (18):

1. For ω = 1, the condition for Eq. (24) is given as λ1 > 0.
2. For ω = 2, the conditions for Eq. (24) are either Routh–Hurwitz conditions or λ1 <

0, 4λ2 > λ2
1,

∣∣∣∣∣tan−1

(√
4λ2−λ2

1

λ1

)∣∣∣∣∣ > ϑ π
2 .

3. For ω = 3, if the discriminant of polynomial D (ξ) , namely �(D) is positive, the
following conditions are the necessary and sufficient conditions satisfy Eq. (18):

λ1 > 0, λ3 > 0, λ1λ2 > λ3,

if �(D) > 0.
4. If �(D) < 0, λ1 > 0, λ2 > 0, λ1λ2 = λ3, then condition Eq. (18) is satisfied for all

0 ≤ ϑ < 1.
5. For general ω, λω > 0 is the necessary for condition Eq. (18) to be satisfied.

Theorem 4 The endemic equilibrium DE of the proposed fractional-order COVID-19 epi-

demic model is locally asymptotically stable if R0 > 1 and unstable otherwise.

Proof The Jacobian matrix J
(
DE

)
evaluated at the endemic equilibrium is given by

J

(
DE

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− M
K

− λ 0 −σ1 −σ3 − δS∗

K
−σ2 0 0

M
K

−
(
α1 + λ + r1

)
σ1 σ3

δS∗

K
σ2 0 0

0 α1 −
(
β1 + λ+ r2

)
0 0 0 0 0

0 kr1 0 −
(
β2 + λ

)
0 0 0 0

0 r1 (1 − k) 0 0 −
(
α2 + β3 + λ + ρ

)
0 0 0

0 0 r2 0 α2 −
(
β4 + λ + σ

)
0 0

0 0 0 0 γ 0 −
(
β5 + λ

)
0

0 0 β1 β2 β3 β4 β5 −λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

where σ1 =
S∗ (M+K δμQ)

K 2 , σ2 =
S∗(M+K δμP )

K 2 , σ3 =
S∗δμA

K
, K = N − Q∗ − P∗

and M = δ
(
I + Q∗μQ + A∗μA + P∗μP

)
. By considering the characteristic equation∣∣∣J

(
DE

)
− ξ Î

∣∣∣ = 0, we have the following form

D (ξ) =
1

K 2
(ξ + λ)2 (ξ + β5 + λ)2

(
ξ4 + λ1ξ

3 + λ2ξ
2 + λ3ξ + λ4

)
= 0. (25)

Since the polynomial D (ξ) as given by Eq. (25) has all coefficients λ1, λ2, λ3 and λ4 positive
(see “Appendix”). Therefore, from condition (5) of Lemma 2 the positive equilibrium point(
DE

)
is locally asymptotically stable. This completes the proof of Theorem 4. ⊓⊔

4.5 Global stability of equilibria

The global existence of the solution for the fractional differential equation is a most important
concern and is carried out in the following section.

Theorem 5 [66] Assume that the function � : R+ × R8 → R8 satisfies the following

conditions in the global space:

1. The function �(t, ϕ(t)) is Lebesgue measurable with respect to t on R.

2. The function �(t, ϕ(t)) is continuous with respect to ϕ(t) on R8.
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3. The function
∂�(t,ϕ(t))

∂ϕ
is continuous with respect to ϕ(t) on R8.

4. ‖� (t, ϕ(t))‖ ≤ A + B ‖ϕ(t)‖ , for all most every t ∈ R and all ϕ(t) ∈ R8.

Here, A and B are two positive constants and ϕ (t) =
[

S (t) , E (t) , Q (t) , A (t) ,

I (t) , P (t) , T (t) , R (t)
]T

. Then, the initial value problem

C
0 D

ϑ

t ϕ(t) = �(t, ϕ(t)) , ϑ ∈ (0, 1],

ϕ(t0) = ϕ0, (26)

has a unique solution.

Lemma 3 ([76,77]) Let ϕ(t) ∈ R+ be a continuous and derivable function. Then, for any

time instant t ≥ 0,

C
0 D

ϑ

t

(
ϕ(t) − ϕ∗ − ϕ∗ln

ϕ(t)

ϕ∗

)
≤

(
1 −

ϕ∗

ϕ(t)

)
C
0 D

ϑ

t ϕ(t) (27)

and
1

2
C
0 D

ϑ

t ϕ
2(t) ≤ ϕ(t)C0 D

ϑ

t ϕ(t), (28)

where ϑ ∈ (0, 1).

Note that for ϑ = 1, the inequalities in (27) and (28) become equalities. Now, we provide
the global stability results of the equilibria in the following theorems by considering the
Lyapunov direct method.

Theorem 6 The disease-free equilibrium DF =
(
�
λ
, 0, 0, 0, 0, 0, 0, 0

)
of the proposed

model (12) is globally asymptotically stable if R0 < 1 and unstable when R0 > 1.

Proof To prove this, we can write the fractional-order system (12) as

dG

dt
= Ψ (G, H),

dH

dt
= Φ (G, H) , Φ (G, 0) = 0

where G = (S, R) ∈ R2 denotes the number of uninfected individual compartments and
H = (E, Q, A, I, P, T ) ∈ R6 denotes the number of infected individual compartments. The
global stability of the disease-free equilibrium is guaranteed if the following two conditions
are satisfied:

1. For dG
dt

= Ψ (G, 0), G∗ is globally asymptotically stable,

2. Φ (G, H) = X H − Φ̂ (G, H) , Φ̂ (G, H) ≥ 0 for (G, H) ∈ Π ,

where X = DHΦ (G∗, 0) is a Metzler matrix and Π is the positively invariant set with
respect to model (12). According to Castillo-Chavez et al. [78], we check for aforementioned
conditions. Now, we have from model (12)

Ψ (G, 0) =

[
� − λS

0

]
,

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−(α1 + λ + r1) μQδ μAδ δ μP δ 0 0

α1 −(β1 + λ + r2) 0 0 0 0 0

kr1 0 −(β2 + λ) 0 0 0 0

r1 (1 − k) 0 0 −(α2 + β3 + λ + ρ) 0 0 0

0 r2 0 α2 −(β4 + λ + σ) 0 0

0 0 0 γ 0 −(β5 + λ) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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and

Φ̂ (G, H) =

⎡
⎢⎢⎢⎢⎢⎣

(
1 − S

N−Q−P

) (
μQδQ + μAδA + δ I + μPδP

)

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦
.

Clearly, Φ̂ (G, H) ≥ 0 whenever the state variables are inside Π . Also, it is clear that
G∗ =

(
�
λ
, 0
)

is a globally asymptotically stable equilibrium of the system dG
dt

= Ψ (G, 0).

Hence, this proves that the disease-free equilibrium DF =
(
�
λ
, 0, 0, 0, 0, 0, 0, 0

)
of the

proposed model (12) is globally asymptotically stable. ⊓⊔

Theorem 7 The endemic equilibrium DE = (S∗, E∗, Q∗, A∗, I ∗, P∗, T ∗, R∗) of the pro-

posed model (12) is globally asymptotically stable if R0 > 1.

Proof To establish the global stability of the endemic equilibrium DE , we define a Lyapunov
function L(t) given by

L (t) = η1

(
S − S∗ − S∗ln

S

S∗

)
+ η2

(
E − E∗ − E∗ln

E

E∗

)

+ η3

(
Q − Q∗ − Q∗ln

Q

Q∗

)
+ η4

(
A − A∗ − A∗ln

A

A∗

)

+ η5

(
I − I ∗ − I ∗ln

I

I ∗

)
+ η6

(
P − P∗ − P∗ln

P

P∗

)

+ η7

(
T − T ∗ − T ∗ln

T

T ∗

)
+ η8

(
R − R∗ − R∗ln

R

R∗

)
,

where η1 = 1
λ
, η2 = (R0−1)

(a1+r1+λ)
> 0, when R0 > 1, η3 = 1

(r2+β1+λ)
, η4 = 1

(β2+λ)
,

η5 = 1
(a2+β3+λ+ρ)

, η6 = 1
(s+β4+λ)

, η7 = 1
(λ+β5)

, η8 = 1
λ

. This function L (t) is defined,
continuous and positive definite for all t = 0. It can be verified that the equality holds if and
only if S = S∗, E = E∗, Q = Q∗, A = A∗, I = I ∗, P = P∗, T = T ∗ and R = R∗. Now,
we have from Lemma 3

C
0 D

ϑ

t L (t) = C
0 D

ϑ

t

[
η1

(
S − S∗ − S∗ln

S

S∗

)
+ η2

(
E − E∗ − E∗ln

E

E∗

)]

+ C
0 D

ϑ

t

[
η3

(
Q − Q∗ − Q∗ln

Q

Q∗

)
+ η4

(
A − A∗ − A∗ln

A

A∗

)]

+ C
0 D

ϑ

t

[
η5

(
I − I ∗ − I ∗ln

I

I ∗

)
+ η6

(
P − P∗ − P∗ln

P

P∗

)]

+ C
0 D

ϑ

t

[
η7

(
T − T ∗ − T ∗ln

T

T ∗

)
+ η8

(
R − R∗ − R∗ln

R

R∗

)]

≤ η1

(
1 −

S∗

S

)
C
0 D

ϑ

t S (t)+ η2

(
1 −

E∗

E

)
C
0 D

ϑ

t E (t)

+ η3

(
1 −

Q∗

Q

)
C
0 D

ϑ

t Q (t) + η4

(
1 −

A∗

A

)
C
0 D

ϑ

t A (t)
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+ η5

(
1 −

I ∗

I

)
C
0 D

ϑ

t I (t) + η6

(
1 −

P∗

P

)
C
0 D

ϑ

t P (t)

+ η7

(
1 −

T ∗

T

)
C
0 D

ϑ

t T (t) + η8

(
1 −

R∗

R

)
C
0 D

ϑ

t R (t) .

This further implies from system (12)

C
0 D

ϑ

t L (t) ≤ η1

(
1 −

S∗

S

)(
� −

S
(
δ I + μQδQ + μAδA + μPδP

)

N − Q − P
− λS

)

+ η2

(
1 −

E∗

E

)(
S
(
δ I + μQδQ + μAδA + μPδP

)

N − Q − P
− (α1 + r1 + λ) E

)

+ η3

(
1 −

Q∗

Q

)
(α1 E − (r2 + β1 + λ) Q)

+ η4

(
1 −

A∗

A

)
(kr1 E − (β2 + λ) A)

+ η5

(
1 −

I ∗

I

)
((1 − k) r1 E − (α2 + β3 + λ + ρ) I )

+ η6

(
1 −

P∗

P

)
(r2 Q + α2 I − (σ + β4 + λ) P)

+ η7

(
1 −

T ∗

T

)
(γ I − (λ + β5) T )

+ η8

(
1 −

R∗

R

)
(β1 Q + β2 A + β3 I + β4 P + β5T − λR) . (29)

Using the endemic conditions given as

� −
S
(
δ I ∗ + μQδQ∗ + μ∗

AδA∗ + μPδP∗
)

N − Q∗ − P∗
= λS∗,

S∗
(
δ I ∗ + μQδQ∗ + μAδA∗ + μPδP∗

)

N − Q∗ − P∗
= (α1 + r1 + λ) E∗,

α1 E∗ = (r2 + β1 + λ) Q∗,

kr1 E∗ = (β2 + λ) A∗,

(1 − k)r1 E∗ = (α2 + β3 + λ + ρ) I ∗,

r2 Q∗ + α2 I ∗ = (σ + β4 + λ) P∗,

γ I ∗ = (λ + β5) T ∗,

β1 Q∗ + β2 A∗ + β3 I ∗ + β4 P∗ + β5T ∗ = λR∗,

in Eq. (29), we get

C
0 D

ϑ

t L (t) ≤ −
(S − S∗)2

S
−

(E − E∗)2

E
(R0 − 1) −

(Q − Q∗)2

Q
−

(A − A∗)2

A

−
(I − I ∗)2

I
−

(P − P∗)2

P
−

(T − T ∗)2

T
−

(R − R∗)2

R
. (30)

This implies,

C
0 D

ϑ

t L (t) ≤ 0.
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It follows that if R0 > 1, then we have from Eq. (30), C
0 D

ϑ

t
L (t) |(12) ≤ 0. Therefore,

L (t) is bounded and non-increasing. Further, we know that C
0 D

ϑ

t
L (t) |(12) = 0, if and

only if S = S∗, E = E∗, Q = Q∗, A = A∗, I = I ∗, P = P∗, T = T ∗ and R =

R∗. Also, the limit of L (t) exits as t → 8. Therefore, the maximum invariant set for

{(S∗, E∗, Q∗, A∗, I ∗, P∗, T ∗, E∗) ∈ R8
+ : C

0 D
ϑ

t
L (t) |(12) = 0} is the singleton set

{
DE

}
.

According to the LaSalle’s invariance principle [67–70], we know that all solutions in R8
+

converge to DE . Therefore, the endemic equilibrium of the proposed model (12) is globally
asymptotically stable when R0 > 1. This completes the proof of Theorem 7. ⊓⊔

5 Parameter estimation

Fitting of parameters is one of the important features during validation of an epidemiological
model. This creates confidence in the acceptance of the model in order to use it for future
prediction and to better understand the transmission dynamics of the underlying epidemic.
Thus, we aim to explain the fitting of parameters through least-squares curve fitting technique
in this section. Since there are 19 different parameters in the proposed model for COVID-19
pandemic, we have estimated two of the parameters, whereas the rest are best fitted based
upon the real cases of COVID-19 pandemic throughout Pakistan (source http://covid.gov.pk/
stats/pakistan). Two demographic parameters are � (recruitment rate) and λ (natural death
rate) which have been estimated. The average natural mortality rate of a Pakistani is 66.5
years (source https://www.worldlifeexpectancy.com/pakistan-life-expectancy) so this yields
λ = 1/(66.5 ∗ 365) per day. Further, the total population of Pakistan is 212.2M; it may
be assumed that �/λ, which is the limiting population when there is no existence of the
pandemic. In this way, � = 8.7424+03 per day. Daily cases of the pandemic are considered
from March 24 to April 20, 2020 during preparation of the research paper. As far as the initial
conditions are concerned, the total population of Pakistan is taken to be N (0) = 212.2M, the
initial exposed and quarantined population is taken as E(0) = 8,000,000, Q(0) = 6,000,000
and this further assists us to determine remaining initial conditions for the other state variables
with the help of the identity N (0) = S(0)+E(0)+Q(0)+ A(0)+ I (0)+P(0)+T (0)+R(0).
In this connection, we have obtained S(0) = 194,198,880, A(0) = 4,000,000, I (0) = 1000,
P(0) = 0, T (0) = 100 and R(0) = 20. There are 19 biological parameters which have been
estimated with the aid of least-square fitting method and this leads to yield a best fit of
the proposed COVID-19 model’s solution to the actual cases of the pandemic as shown in
Fig. 1. The average absolute relative error between COVID-19 actual cases and the model’s
solution for the infectious class is tried to be reduced and the best fitted values of the relevant
parameters have been achieved. Such a value for the error is approximately 6.6801e−02.
Figure 1 shows the real COVID-19 cases by blue solid circles, whereas the best fitted curve
of the model is shown by the black solid line. The biological parameters included in the
model are listed in Table 1 along with their best estimated values obtained via least-squares
technique. These parameters have finally produced the value of the basic reproduction number
equivalent to R0 = 2.1828 for the real COVID-19 cases in Pakistan from March 24 to April
20, 2020.
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Fig. 1 The daily COVID-19
cases time series in Pakistan from
March 24 to April 20, 2020, and
the best fitted curve from the
proposed model

Table 1 Estimated and best fitted values of the parameters used in the proposed COVID-19 model

Parameter Meaning Value Sources

� Recruitment rate 8.7424e+03 Estimated

λ Natural death rate 1/(66.5 ∗ 365) Estimated

μQ Modification factor for quarantined 0.124 Fitted

μA Modification factor for asymptomatic 0.956 Fitted

μP Modification factor for isolated 0.076 Fitted

ρ Rate of joining treatment class 0.2 Fitted

σ Diseases induced mortality rate 1e−03 Fitted

k Proportion of asymptomatic individuals 1e−04 Fitted

β1 Recovery rate from quarantined individuals 0.0000005539 Fitted

β2 Recovery rate from asymptomatic individuals 0.0000000196 Fitted

β3 Recovery rate from symptomatic individuals 0.0000001257 Fitted

β4 Recovery rate from isolated individuals 0.0000001086 Fitted

β5 Recovery rate from treated individuals 0.6461299316 Fitted

δ Transmission rate 0.7925264407 Fitted

α1 Rate at which the exposed individuals are diminished by quarantine 0.0000000032 Fitted

α2 Rate at which the symptomatic individuals are diminished by isolation 0.0000001257 Fitted

r1 Rate at which exposed become infected 0.0000230757 Fitted

r2 Rate at which quarantined individuals are isolated 0.0000076749 Fitted

γ Rate at which infected individuals are treated 0.0010169510 Fitted

6 Numerical scheme for the Caputo fractional COVID-19 model

This section of the paper focuses on the numerical simulation for the Caputo-type fractional-
order coronavirus model in Eq. (12). The Adams-type predictor–corrector method [71–73,
80] that is used to achieve numerical simulation of the nonlinear system is proposed to
obtain approximate solution of the mentioned model. The following form of Cauchy ordinary
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differential equation is considered with respect to the Caputo operator of order ϑ :

C
0 Dϑ

t ϕ (t) = �(t, ϕ (t)) , ϕ(p) (0) = ϕ
p
0 , 0 < υ ≤ 1, 0 < t ≤ τ, (31)

where p = 0, 1, . . . , n − 1, n = ⌈ϑ⌉. Equation (31) can be converted to the following
Volterra equation:

ϕ (t) =

n−1∑

p=0

ϕ
(p)
0

t p

p!
+

1

Ŵ (α)

∫ t

0
(t − s)α−1 �(s, ϕ (s)) ds. (32)

By using this mentioned predictor–corrector scheme associated with the Adam–Bashforth–
Moulton algorithm [72] to get the numerical solutions of the fractional coronavirus model,
we can take h = τ/N , t j = jh, and j = 0, 1, . . . , N ∈ Z+, by letting ϕ j ≈ ϕ

(
t j

)
, it can

be discretized as follows, i.e., the corresponding corrector formula [74]

Sk+1 =

k−1∑

j=0

S
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
q j,k+1

)

×

(
� −

S j

(
δ I j + μQδQ j + μAδA j + μPδPj

)

N − Q j − Pj

− λS j

)

+
hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
qk+1,k+1

)

×

(
� −

S P R
k+1

(
δ I P R

k+1 + μQδQ P R
k+1 + μAδAP R

k+1 + μPδP P R
k+1

)

N − Q P R
k+1 − Q P R

k+1

− λS P R
k+1

)
,

Ek+1 =

k−1∑

j=0

E
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
q j,k+1

)

×

(
S j

(
δ I j + μQδQ j + μAδA j + μPδPj

)

N − Q j − Pj

− (α1 + r1 + λ) E j

)

+
hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
qk+1,k+1

)

×

(
S P R

k+1

(
δ I P R

k+1 + μQδQ P R
k+1 + μAδAP R

k+1 + μPδP P R
k+1

)

N − Q P R
k+1 − Q P R

k+1

− (α1 + r1 + λ) E P R
k+1

)
,

Qk+1 =

k−1∑

j=0

Q
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
q j,k+1

) (
α1 E j − (r2 + β1 + λ) Q j

)

+
hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
qk+1,k+1

) (
α1 E P R

k+1 − (r2 + β1 + λ) Q P R
k+1

)
,

Ak+1 =

k−1∑

j=0

A
( j)
0

t
j

k+1

j !
+

1

Ŵ (ϑ)

k∑

j=0

(
q j,k+1

) (
kr1 E j − (β2 + λ) A j

)
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+
1

Ŵ (ϑ)

k∑

j=0

(
qk+1,k+1

) (
kr1 E P R

k+1 − (β2 + λ) AP R
k+1

)
,

Ik+1 =

k−1∑

j=0

I
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
q j,k+1

) (
(1 − k) r1 E j − (α2 + β3 + ρ + λ) I j

)

+
hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
qk+1,k+1

) (
(1 − k) r1 E P R

k+1 − (α2 + β3 + ρ + λ) I P R
k+1

)
,

Pk+1 =

k−1∑

j=0

P
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
q j,k+1

) (
r2 Q j + α2 I j − (σ + β4 + λ) Pj

)

+
hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
qk+1,k+1

) (
r2 Q P R

k+1 + α2 I P R
k+1 − (σ + β4 + λ) P P R

k+1

)
,

Tk+1 =

k−1∑

j=0

T
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
q j,k+1

) (
γ I j − (λ+ β5) T j

)

+
hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
qk+1,k+1

) (
γ I P R

k+1 − (λ + β5) T P R
k+1

)
,

Rk+1 =

k−1∑

j=0

R
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
q j,k+1

)

×
(
β1 Q j + β2 A j + β3 I j + β4 Pj + β5T j − λR j

)

+
hϑ

Ŵ (ϑ + 2)

k∑

j=0

(
qk+1,k+1

)

×
(
β1 Q P R

k+1 + β2 AP R
k+1 + β3 I P R

k+1 + β4 P P R
k+1 + β5T P R

k+1 − λR P R
k+1

)
,

where

q j,k+1 =

⎧
⎨
⎩

kϑ+1 − (k − ϑ) (k + 1)ϑ , if j = 0,
(k − j + 2)ϑ+1 + (k − j)ϑ+1 − 2 (k − j + 1)ϑ+1 , if 1 ≤ j ≤ k,

1, if j = k + 1.
(33)

Then, the required step is to determine the corresponding predictor formula ϕP R
k+1. We can

calculate the mentioned predictor formula as

S P R
k+1 =

k−1∑

j=0

S
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 1)

k∑

j=0

(
z j,k+1

)

×

(
� −

S j

(
δ I j + μQδQ j + μAδA j + μPδPj

)

N − Q j − Pj

− λS j

)
,

E P R
k+1 =

k−1∑

j=0

E
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 1)

k∑

j=0

(
z j,k+1

)
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×

(
S j

(
δ I j + μQδQ j + μAδA j + μPδPj

)

N − Q j − Pj

− (α1 + r1 + λ) E j

)
,

Q P R
k+1 =

k−1∑

j=0

Q
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 1)

k∑

j=0

(
z j,k+1

) (
α1 E j − (r2 + β1 + λ) Q j

)
,

AP R
k+1 =

k−1∑

j=0

A
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 1)

k∑

j=0

(
z j,k+1

) (
kr1 E j − (β2 + λ) A j

)
,

I P R
k+1 =

k−1∑

j=0

I
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 1)

k∑

j=0

(
z j,k+1

) (
(1 − k) r1 E j − (α2 + β3 + ρ + λ) I j

)
,

P P R
k+1 =

k−1∑

j=0

P
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 1)

k∑

j=0

(
z j,k+1

) (
r2 Q j + α2 I j − (σ + β4 + λ) Pj

)
,

T P R
k+1 =

k−1∑

j=0

T
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 1)

k∑

j=0

(
z j,k+1

) (
γ I j − (λ + β5) T j

)
,

R P R
k+1 =

k−1∑

j=0

R
( j)
0

t
j

k+1

j !
+

hϑ

Ŵ (ϑ + 1)

k∑

j=0(
z j,k+1

) (
β1 Q j + β2 A j + β3 I j + β4 Pj + β5T j − λR j

)
,

where

z j,k+1 = (k + 1 − j)ϑ − (k − j)ϑ .

7 Numerical scheme for the ABC fractional COVID-19 model

In this section, the proposed COVID-19 epidemic model under the ABC fractional derivative
of order ϑ is numerically simulated [79]. The method is used to obtain approximate solu-
tions of the proposed model. To provide the estimated solution by means of this algorithm,
the following nonlinear fractional differential equation with respect to the ABC fractional
derivative of order ϑ :

ABC
0 D

ϑ

t ϕ(t) = Ψ (t, ϕ(t)), 0 ≤ t ≤ τ (34)

with the following initial conditions

ϕ(v) (0) = ϕv0 , v = 0, 1, 2, . . . , [ϑ] − 1. (35)

Applying the fundamental theorem of fractional calculus, Eq. (34) can be converted to a
fractional integral equation as

ϕ (t) − ϕ (0) =
(1 − ϑ)

ℵ(ϑ)
Ψ (t, ϕ(t)) +

ϑ

Ŵ(ϑ)ℵ(ϑ)

∫ t

0
(t − t)ϑ−1Ψ (t, ϕ(t))dt. (36)
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At a given point tn+1, n = 0, 1, 2 . . . , we have from Eq. (36)

ϕ (tn+1)− ϕ (0) =
(1 − ϑ)

ℵ(ϑ)
Ψ (tn, ϕ(tn)) +

ϑ

ℵ(ϑ)Ŵ(ϑ)

∫ tn+1

0
(tn+1 − t)ϑ−1Ψ (τ, ϕ(τ))dτ,

=
(1 − ϑ)

ℵ(ϑ)
Ψ (tn, ϕ(tn))

+
ϑ

ℵ(ϑ)Ŵ(ϑ)

n∑

k=0

∫ tk+1

tk

(tn+1 − t)ϑ−1Ψ (τ, ϕ(τ))dτ . (37)

Within the interval
[
tk, tk+1

]
, the function Ψ (τ, ϕ (τ)), using the two-step Lagrange poly-

nomial interpolation, can be approximated as follows:

Zk (τ ) =
τ − tk−1

tk − tk−1
Ψ (tk, ϕ (tk))−

τ − tk

tk − tk−1
Ψ (tk−1, ϕ (tk−1))

=
Ψ (tk, ϕ (tk))

h
(τ − tk−1) −

Ψ (tk−1, ϕ (tk−1))

h
(τ − tk)

∼=
Ψ
(
tk, ϕk

)

h
(τ − tk−1) −

Ψ (tk−1, ϕk−1)

h
(τ − tk) . (38)

Under the approximation Eq.(38), we get from Eq.(37) as

ϕn+1 = ϕ (0) +
(1 − ϑ)

ℵ (ϑ)
Ψ (tn, ϕ (tn)) +

ϑ

ℵ (ϑ) × Ŵ (ϑ)

×

n∑

k=0

(
Ψ
(
tk, ϕk

)

h

∫ tk+1

tk

(τ − tk−1)(tn+1 − t)ϑ−1dτ

−
Ψ (tk−1, ϕk−1)

h

∫ tk+1

tk

(τ − tk)(tn+1 − t)ϑ−1dτ

)
. (39)

Without loss of generality, we consider

Gϑ,k,1 =

∫ tk+1

tk

(τ − tk−1)(tn+1 − t)ϑ−1dτ,

and

Gϑ,k,2 =

∫ tk+1

tk

(τ − tk)(tn+1 − t)ϑ−1dτ.

Therefore,

Gϑ,k,1 = hϑ+1 (n + 1 − k)ϑ (n − k + 2 + ϑ) − (n − k)ϑ (n − k + 2 + 2ϑ)

ϑ (ϑ + 1)
, (40)

and

Gϑ,k,2 = hϑ+1 (n + 1 − k)ϑ+1 − (n − k)ϑ (n − k + 1 + ϑ)

ϑ (ϑ + 1)
. (41)
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This implies from Eq. (39) after substituting Eqs. (40)–(41),

ϕn+1 = ϕ (0) +
(1 − ϑ)

ℵ (ϑ)
Ψ (tn, ϕ (tn)) +

ϑ

ℵ (ϑ)

n∑

k=0

×

(
hϑΨ

(
tk, ϕk

)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ (n − k + 2 + ϑ) − (n − k)ϑ (n − k + 2 + 2ϑ))

)

−
ϑ

ℵ (ϑ)

n∑

k=0

(
hϑΨ (tk−1, ϕk−1)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ+1 − (n − k)ϑ (n − k + 1 + ϑ))

)
.

(42)

Equation (42) gives the numerical scheme for Atangana–Baleanu fractional derivative in the
sense of Caputo. Using this scheme for the numerical solutions of the proposed fractional
coronavirus model, we get

Sn+1 = S (0) +
(1 − ϑ)

ℵ (ϑ)
Ψ (tn, S (tn)) +

ϑ

ℵ (ϑ)

n∑

k=0

×

(
hϑΨ (tk, Sk)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ (n − k + 2 + ϑ) − (n − k)ϑ (n − k + 2 + 2ϑ))

)

−
ϑ

ℵ (ϑ)

n∑

k=0

(
hϑΨ (tk−1, Sk−1)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ+1 − (n − k)ϑ (n − k + 1 + ϑ))

)
,

En+1 = E (0) +
(1 − ϑ)

ℵ (ϑ)
Ψ (tn, E (tn)) +

ϑ

ℵ (ϑ)

n∑

k=0

×

(
hϑΨ (tk, Ek)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ (n − k + 2 + ϑ) − (n − k)ϑ (n − k + 2 + 2ϑ))

)

−
ϑ

ℵ (ϑ)

n∑

k=0

(
hϑΨ (tk−1, Ek−1)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ+1 − (n − k)ϑ (n − k + 1 + ϑ))

)
,

Qn+1 = Q (0) +
(1 − ϑ)

ℵ (ϑ)
Ψ (tn, Q (tn)) +

ϑ

ℵ (ϑ)

n∑

k=0

×

(
hϑΨ (tk, Qk)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ (n − k + 2 + ϑ) − (n − k)ϑ (n − k + 2 + 2ϑ))

)

−
ϑ

ℵ (ϑ)

n∑

k=0

(
hϑΨ (tk−1, Qk−1)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ+1 − (n − k)ϑ (n − k + 1 + ϑ))

)
,

An+1 = A (0) +
(1 − ϑ)

ℵ (ϑ)
Ψ (tn, A (tn)) +

ϑ

ℵ (ϑ)

n∑

k=0

×

(
hϑΨ (tk, Ak)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ (n − k + 2 + ϑ) − (n − k)ϑ (n − k + 2 + 2ϑ))

)

−
ϑ

ℵ (ϑ)

n∑

k=0

(
hϑΨ (tk−1, Ak−1)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ+1 − (n − k)ϑ (n − k + 1 + ϑ))

)
,
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In+1 = I (0) +
(1 − ϑ)

ℵ (ϑ)
Ψ (tn, I (tn)) +

ϑ

ℵ (ϑ)

n∑

k=0

×

(
hϑΨ (tk, I k)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ (n − k + 2 + ϑ) − (n − k)ϑ (n − k + 2 + 2ϑ))

)

−
ϑ

ℵ (ϑ)

n∑

k=0

(
hϑΨ (tk−1, Ik−1)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ+1 − (n − k)ϑ (n − k + 1 + ϑ))

)
,

Pn+1 = P (0) +
(1 − ϑ)

ℵ (ϑ)
Ψ (tn, P (tn)) +

ϑ

ℵ (ϑ)

n∑

k=0

×

(
hϑΨ (tk, Pk)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ (n − k + 2 + ϑ) − (n − k)ϑ (n − k + 2 + 2ϑ))

)

−
ϑ

ℵ (ϑ)

n∑

k=0

(
hϑΨ (tk−1, Pk−1)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ+1 − (n − k)ϑ (n − k + 1 + ϑ))

)
,

Tn+1 = T (0) +
(1 − ϑ)

ℵ (ϑ)
Ψ (tn, T (tn)) +

ϑ

ℵ (ϑ)

n∑

k=0

×

(
hϑΨ (tk, T k)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ (n − k + 2 + ϑ) − (n − k)ϑ (n − k + 2 + 2ϑ))

)

−
ϑ

ℵ (ϑ)

n∑

k=0

(
hϑΨ (tk−1, Tk−1)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ+1 − (n − k)ϑ (n − k + 1 + ϑ))

)
,

Rn+1 = R (0) +
(1 − ϑ)

ℵ (ϑ)
Ψ (tn, R (tn)) +

ϑ

ℵ (ϑ)

n∑

k=0

×

(
hϑΨ (tk, Rk)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ (n − k + 2 + ϑ) − (n − k)ϑ (n − k + 2 + 2ϑ))

)

−
ϑ

ℵ (ϑ)

n∑

k=0

(
hϑΨ (tk−1, Rk−1)

Ŵ (ϑ + 2)
((n + 1 − k)ϑ+1 − (n − k)ϑ (n − k + 1 + ϑ))

)
,

8 Numerical simulations and discussion

In this section, we have investigated behavior of each state variable of the proposed COVID-
19 model under the two fractional-order operators called the Caputo (having singular kernel)
and Atangana–Baleanu–Caputo (having non-singular kernel). Profiles for the state variables
have been graphically obtained based upon variation in the fractional-order parameter ϑ and
the variation in some of the more important biological parameters of the model randomly
taken from Table 1. In addition to this, 3D meshes and contour plots are shown to capture
behavior of the basic reproduction number R0 in order to better understand the transmission
dynamics of the pandemic.

Figure 2 shows long-term behavior of the pandemic using the Caputo and the ABC oper-
ators. It has been observed that at the end of 60 days, the total number of symptomatic
individuals would reach about 1.372e+04 under the Caputo operator, whereas this number
gets 1.348e+04 for the ABC operator. Thus, ABC predicts about 240 more infectious cases in
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(a) (b)

Fig. 2 Long-term prediction for infectious population in Pakistan using the proposed COVID-19 model under
the a Caputo and b ABC operators with ϑ = 0.973

(a) (b)

Fig. 3 Profile for the susceptible population using the proposed COVID-19 model under the a Caputo and b

ABC operators with different values of ϑ

comparison with the prediction obtained under the Caputo operator. This seems to be in good
agreement with the ongoing situation of this pandemic. We have shown dynamical behavior
of each state variable from the proposed COVID-19 model in Figs. 3, 4, 5, 6, 7, 8, 9 and 10
for varying values of the fractional-order parameter ϑ . Figure 3 shows increasing behavior
of the susceptible population for decreasing values of ϑ with ABC operator predicting more
susceptibility. Similar sort of behavior is observed in quarantined and asymptomatic popu-
lation as depicted in Figs. 5 and 6, respectively. However, a different kind of behavior exists
for rest of the state variables of the model. Figure 7 depicts significance of the fractional-
order parameter ϑ for the symptomatic population of the model. This plot shows substantial
decrease in the number of infectious individuals for decreasing values of ϑ under both oper-
ators with Caputo predicting 490 more cases in comparison with ABC operator assuming
ϑ = 0.942. For behavior of isolated population, Fig. 8 depicts that for decreasing values of ϑ
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(a) (b)

Fig. 4 Profile for the exposed population using the proposed COVID-19 model under the a Caputo and b

ABC operators with different values of ϑ

(a) (b)

Fig. 5 Profile for the quarantined population using the proposed COVID-19 model under the a Caputo and
b ABC operators with different values of ϑ

in both operators, the number of isolated individuals decreases with 102 more people isolated
in case of Caputo when ϑ = 0.942. Under the treatment profile, Caputo operator predicts one
extra case as shown in Fig. 9 for ϑ = 0.942. Further, the Caputo operator suggests that 34
more symptomatic cases get recovered with ϑ = 0.942 in comparison with ABC operator.
However, we observed previously that the Caputo generates 490 additional infectious cases.
Thus, the ABC gives better agreement with real situation in this regard.

It can be observed from Fig. 11 that for increasing values of δ (transmission rate), the
symptomatic individuals increase under both operators with Caputo predicting 8923 cases,
whereas ABC predicts 7840 cases for δ = 0.85 at the end of the chosen time interval,
thereby recommending the use of ABC operator over the Caputo. Increasing values of ρ
(rate of joining treatment class) result in decreasing number of symptomatic individuals as
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(a) (b)

Fig. 6 Profile for the asymptomatic population using the proposed COVID-19 model under the a Caputo and
b ABC operators with different values of ϑ

(a) (b)

Fig. 7 Profile for the symptomatic population using the proposed COVID-19 model under the a Caputo and
b ABC operators with different values of ϑ

depicted in Fig. 12. For ρ = 0.6, Caputo in Fig. 12a predicts 3789 symptomatic cases,
whereas ABC in Fig. 12b suggests 3600 cases demonstrating effectiveness of ABC operator
over the Caputo.

Using some randomly chosen parameters from Table 1, we have shown transmission
behavior of the pandemic via basic reproduction number R0. As shown in Fig. 13, increasing
δ and decreasing β3 will produce R0 greater than 2 which is an alarming sign. Thus, reducing
transmission rate of the coronavirus is the most essential strategy in order to prevent the virus
further spread. Similar sort of behavior and description of the associated R0 in Figs. 14
and 15 can be interpreted based upon the biological parameters used for the analysis.
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(a) (b)

Fig. 8 Profile for the isolated population using the proposed COVID-19 model under the a Caputo and b

ABC operators with different values of ϑ

(a) (b)

Fig. 9 Profile for the treated population using the proposed COVID-19 model under the a Caputo and b ABC
operators with different values of ϑ

9 Conclusions

In this paper, modeling and analysis of the newly emerged coronavirus (COVID-19) trans-
mission dynamics have been provided in fractional-order derivatives with treatment class
for the infected population. The basic reproduction number R0 has been computed by the
next-generation matrix method which performs as a threshold parameter in the disease trans-
mission and determines whether the disease persists or vanishes from the population. The
positivity and boundedness of the solutions have been determined. Also, the stability condi-
tions of the equilibrium points for the proposed fractional-order system have been discussed.
Meanwhile, the global dynamics of the equilibria has been obtained by the Lyapunov func-
tional approach method. Based on the mathematical analysis, the disease-free equilibrium is
locally asymptotically stable when R0 < 1 that means the infection will die out in the popu-
lation. On the other hand, the infection spreads in the population when R0 > 1.Numerically,
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(a) (b)

Fig. 10 Profile for the recovered population using the proposed COVID-19 model under the a Caputo and b

ABC operators with different values of ϑ

(a) (b)

Fig. 11 Profile for the symptomatic I (t) population using the proposed COVID-19 model under the a Caputo
and b ABC operators with different values of δ (transmission rate) while taking ϑ = 0.853

the endemic equilibrium tends to be locally asymptotically stable when R0 > 1, which means
that the infection will persist in the population. Moreover, the fitting of parameters through
least-squares curve fitting technique has been done and the average absolute relative error
between COVID-19 actual cases and the model’s solution for the infectious class is tried to
be reduced, and the best fitted values of the relevant parameters have been achieved. Finally,
Adams–Bashforth–Moulton method has been applied to carry out the numerical simulations
for different values of the fractional-order ϑ of the proposed model. It has been demonstrated
that physical processes are better well described using the derivatives of fractional order
which are more accurate and reliable in comparison with the classical-order case. Hence, we
replace the integer-order time derivative with the Caputo-type fractional-order derivative and
Atangana–Baleanu fractional-order derivative. It has been shown that these operators have
many advantages over the existing non-integer-order types. Our choice of using the Caputo
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(a) (b)

Fig. 12 Profile for the symptomatic I (t) population using the proposed COVID-19 model under the a Caputo
and b ABC operators with different values of ρ (rate of joining treatment class) while taking ϑ = 0.926

(a) (b)

Fig. 13 Dynamical behavior of the basic reproduction number R0 for varying values of δ (transmission rate)
and β3 (recovery rate from symptomatic class)

and Atangana–Baleanu derivatives is because they allow traditional initial and boundary
conditions to be included in the formulation of the problem. We have formulated the model
based on the available information we gathered on media and in prints about the causative
agent and model of transmission of the virus disease. A number of numerical results showing
the behavior of the dynamics obtained for different instances of fractional-order have been
reported.

Although the fractional-order COVID-19 epidemic model based upon Caputo and ABC
operators provides sufficient information to understand the epidemic transmission process
and help to determine the crucial factors for its spread, for more detailed analysis one needs to
have new tools to disclose unnoticed behavior of such nonlinear epidemiological systems and
thus the operators known as Caputo–Fabrizio, Atangana–Gomez, Atangana beta derivative,
truncated M-derivative, fractal–fractional and others can be used in future research work. In
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(a) (b)

Fig. 14 Dynamical behavior of the basic reproduction number R0 for varying values of r1 (rate at which
exposed become infected) and r2 (rate at which quarantined are isolated)

(a) (b)

Fig. 15 Dynamical behavior of the basic reproduction number R0 for varying values of β1 (recovery rate
from quarantined class) and β2 (recovery rate from asymptomatic class)

addition to this, our future research would also devise new strategies for carrying out stabil-
ity analysis of the epidemiological models based upon non-autonomous nonlinear ordinary
differential equations with fractional-order derivatives.
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Appendix

The coefficients in Eq. (25) are given as

λ1 = K 2 (α1 + α2 + β1 + β2 + β3 + β4 + 6λ + r1 + r2 + ρ + σ)+ K M,

λ2 = 15 K 2 λ2 + K M α1 + K M α2 + K M β1 + K M β2 + K M β3 + K M β4

− M S α1 + 5 K M λ+ K M r1 + K M r2 + K M ρ + K M σ + K 2 α1 α2 + K 2 α1 β1

+ K 2 α1 β2 + K 2 α2 β1 + K 2 α1 β3

+ K 2 α2 β2 + K 2 α1 β4 + K 2 α2 β4 + K 2 β1 β2 + K 2 β1 β3 + K 2 β1 β4 + K 2 β2 β3

+ K 2 β2 β4 + K 2 β3 β4 + 5 K 2 α1 λ + 5 K 2 α2 λ + 5 K 2 β1 λ + 5 K 2 β2 λ+ 5 K 2 β3 λ

+ 5 K 2 β4 λ + K 2 α1 r2 + K 2 α2 r1 + K 2 α2 r2 + K 2 α1 ρ + K 2 β1 r1

+ K 2 β2 r1 + K 2 β2 r2 + K 2 β3 r1 + K 2 β3 r2 + K 2 β4 r1 + K 2 β4 r2

+ K 2 β1 ρ + K 2 β2 ρ + K 2 β4 ρ + K 2 α1 σ + K 2 α2 σ + K 2 β1 σ

+ K 2 β2 σ + K 2 β3 σ + 5 K 2 λ r1

+ 5 K 2 λ r2 + 5 K 2 λ ρ + 5 K 2 λ σ + K 2 r1 r2 + K 2 r1 ρ + K 2 r2 ρ

+ K 2 r1 σ + K 2 r2 σ + K 2 ρ σ − K S δ r1 − K S α1 δ μQ + K S δ k r1 − K S δ k μA r1,

λ3 = 20 K 2 λ3 + 10 K 2 α1 λ
2 + 10 K 2 α2 λ

2 + 10 K 2 β1 λ
2

+ 10 K 2 β2 λ
2 + 10 K 2 β3 λ

2 + 10 K 2 β4 λ
2 + 10 K 2 λ2 r1 + 10 K 2 λ2 r2

+ 10 K 2 λ2 ρ + 10 K 2 λ2 σ + 10 K M λ2 + K 2 α1 α2 β1

+ K 2 α1 α2 β2 + K 2 α1 α2 β4 + K 2 α1 β1 β2 + K 2 α1 β1 β3

+ K 2 α2 β1 β2 + K 2 α1 β1 β4 + K 2 α1 β2 β3

+ K 2 α1 β2 β4 + K 2 α2 β1 β4 + K 2 α1 β3 β4 + K 2 α2 β2 β4

+ K 2 β1 β2 β3 + K 2 β1 β2 β4 + K 2 β1 β3 β4

+ K 2 β2 β3 β4 + 4 K 2 α1 α2 λ + 4 K 2 α1 β1 λ + 4 K 2 α1 β2 λ

+ 4 K 2 α2 β1 λ + 4 K 2 α1 β3 λ + 4 K 2 α2 β2 λ

+ 4 K 2 α1 β4 λ + 4 K 2 α2 β4 λ + 4 K 2 β1 β2 λ + 4 K 2 β1 β3 λ

+ 4 K 2 β1 β4 λ+ 4 K 2 β2 β3 λ + 4 K 2 β2 β4 λ

+ 4 K 2 β3 β4 λ+ K 2 α1 α2 r2 + K 2 α2 β1 r1 + K 2 α1 β2 r2

+ K 2 α2 β2 r1 + K 2 α1 β3 r2 + K 2 α2 β2 r2 + K 2 α1 β4 r2

+ K 2 α2 β4 r1 + K 2 α2 β4 r2 + K 2 α1 β1 ρ + K 2 α1 β2 ρ

+ K 2 α1 β4 ρ + K 2 α1 α2 σ + K 2 β1 β2 r1 + K 2 β1 β3 r1

+ K 2 β1 β4 r1 + K 2 β2 β3 r1 + K 2 β2 β3 r2 + K 2 β2 β4 r1

+ K 2 β2 β4 r2 + K 2 β3 β4 r1 + K 2 β3 β4 r2 + K 2 β1 β2 ρ
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+ K 2 β1 β4 ρ + K 2 β2 β4 ρ + K 2 α1 β1 σ + K 2 α1 β2 σ

+ K 2 α2 β1 σ + K 2 α1 β3 σ + K 2 α2 β2 σ + K 2 β1 β2 σ

+ K 2 β1 β3 σ + K 2 β2 β3 σ + 4 K 2 α1 λ r2 + 4 K 2 α2 λ r1 + 4 K 2 α2 λ r2

+ 4 K 2 α1 λ ρ + 4 K 2 β1 λ r1 + 4 K 2 β2 λ r1 + 4 K 2 β2 λ r2

+ 4 K 2 β3 λ r1 + 4 K 2 β3 λ r2 + 4 K 2 β4 λ r1 + 4 K 2 β4 λ r2

+ 4 K 2 β1 λ ρ + 4 K 2 β2 λ ρ + 4 K 2 β4 λ ρ + 4 K 2 α1 λ σ

+ 4 K 2 α2 λ σ + 4 K 2 β1 λ σ + 4 K 2 β2 λ σ + 4 K 2 β3 λ σ

+ K 2 α2 r1 r2 + K 2 α1 r2 ρ + K 2 β2 r1 r2 + K 2 β3 r1 r2

+ K 2 β4 r1 r2 + K 2 β1 r1 ρ + K 2 β2 r1 ρ + K 2 β2 r2 ρ + K 2 β4 r1 ρ

+ K 2 β4 r2 ρ + K 2 α1 r2 σ + K 2 α2 r1 σ + K 2 α2 r2 σ

+ K 2 α1 ρ σ + K 2 β1 r1 σ + K 2 β2 r1 σ + K 2 β2 r2 σ

+ K 2 β3 r1 σ + K 2 β3 r2 σ + K 2 β1 ρ σ + K 2 β2 ρ σ

+ 4 K 2 λ r1 r2 + 4 K 2 λ r1 ρ + 4 K 2 λ r2 ρ + 4 K 2 λ r1 σ

+ 4 K 2 λ r2 σ + 4 K 2 λ ρ σ + K 2 r1 r2 ρ + K 2 r1 r2 σ + K 2 r1 ρ σ

+ K 2 r2 ρ σ + K M α1 α2 + K M α1 β1 + K M α1 β2

+ K M α2 β1 + K M α1 β3 + K M α2 β2 + K M α1 β4 + K M α2 β4 + K M β1 β2

+ K M β1 β3 + K M β1 β4 + K M β2 β3 + K M β2 β4 + K M β3 β4

− M S α1 α2 − M S α1 β2 − M S α1 β3 − M S α1 β4

+ 4 K M α1 λ + 4 K M α2 λ + 4 K M β1 λ + 4 K M β2 λ

+ 4 K M β3 λ + 4 K M β4 λ + K M α1 r2 + K M α2 r1 + K M α2 r2

+ K M α1 ρ + K M β1 r1 + K M β2 r1 + K M β2 r2 + K M β3 r1 + K M β3 r2

+ K M β4 r1 + K M β4 r2 + K M β1 ρ + K M β2 ρ + K M β4 ρ + K M α1 σ

+ K M α2 σ − 4 M S α1 λ + K M β1 σ + K M β2 σ + K M β3 σ

− M S α1 r2 − M S α2 r1 − M S α1 ρ − M S α1 σ + 4 K M λ r1 + 4 K M λ r2

+ 4 K M λ ρ + 4 K M λ σ + K M r1 r2 + K M r1 ρ + K M r2 ρ + K M r1 σ

+ K M r2 σ + K M ρ σ − K S β1 δ r1 − K S β2 δ r1 − K S β4 δ r1

+ M S α2 k r1 − 4 K S δ λ r1 − K S δ r1 r2 − K S δ r1 σ

− K S α1 α2 δ μQ − K S α1 β2 δ μQ − K S α1 β3 δ μQ

− K S α1 β4 δ μQ − 4 K S α1 δ λμQ + K S β1 δ k r1

+ K S β2 δ k r1 + K S β4 δ k r1 − K S α1 δ μP r2

− K S α2 δ μP r1 − K S α1 δ μQ ρ − K S α1 δ μQ σ

+ 4 K S δ k λ r1 + K S δ k r1 r2 + K S δ k r1 σ − K S α2 δ k μA r1

+ K S α2 δ k μP r1 − K S β1 δ k μA r1 − K S β3 δ k μA r1

− K S β4 δ k μA r1 − 4 K S δ k λμA r1 − K S δ k μA r1 r2

− K S δ k μA r1 ρ − K S δ k μA r1 σ,

λ4 = 15 K 2 λ4 + 10 K 2 α1 λ
3 + 10 K 2 α2 λ

3 + 10 K 2 β1 λ
3

+ 10 K 2 β2 λ
3 + 10 K 2 β3 λ

3 + 10 K 2 β4 λ
3 + 10 K 2 λ3 r1 + 10 K 2 λ3 r2

+ 10 K 2 λ3 ρ + 10 K 2 λ3 σ + 10 K M λ3 + 6 K M α1 λ
2

+ 6 K M α2 λ
2 + 6 K M β1 λ

2 + 6 K M β2 λ
2 + 6 K M β3 λ

2
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+ 6 K M β4 λ
2 − 6 M S α1 λ

2 + 6 K M λ2 r1 + 6 K M λ2 r2

+ 6 K M λ2 ρ + 6 K M λ2 σ + 6 K 2 α1 α2 λ
2 + 6 K 2 α1 β1 λ

2

+ 6 K 2 α1 β2 λ
2 + 6 K 2 α2 β1 λ

2 + 6 K 2 α1 β3 λ
2

+ 6 K 2 α2 β2 λ
2 + 6 K 2 α1 β4 λ

2 + 6 K 2 α2 β4 λ
2

+ 6 K 2 β1 β2 λ
2 + 6 K 2 β1 β3 λ

2 + 6 K 2 β1 β4 λ
2 + 6 K 2 β2 β3 λ

2

+ 6 K 2 β2 β4 λ
2 + 6 K 2 β3 β4 λ

2 + 6 K 2 α1 λ
2 r2 + 6 K 2 α2 λ

2 r1

+ 6 K 2 α2 λ
2 r2 + 6 K 2 α1 λ

2 ρ + 6 K 2 β1 λ
2 r1

+ 6 K 2 β2 λ
2 r1 + 6 K 2 β2 λ

2 r2 + 6 K 2 β3 λ
2 r1 + 6 K 2 β3 λ

2 r2

+ 6 K 2 β4 λ
2 r1 + 6 K 2 β4 λ

2 r2 + 6 K 2 β1 λ
2 ρ

+ 6 K 2 β2 λ
2 ρ + 6 K 2 β4 λ

2 ρ + 6 K 2 α1 λ
2 σ + 6 K 2 α2 λ

2 σ

+ 6 K 2 β1 λ
2 σ + 6 K 2 β2 λ

2 σ + 6 K 2 β3 λ
2 σ

+ 6 K 2 λ2 r1 r2 + 6 K 2 λ2 r1 ρ + 6 K 2 λ2 r2 ρ + 6 K 2 λ2 r1 σ

+ 6 K 2 λ2 r2 σ + 6 K 2 λ2 ρ σ + K M α1 α2 β1

+ K M α1 α2 β2 + K M α1 α2 β4 + K M α1 β1 β2 + K M α1 β1 β3

+ K M α2 β1 β2 + K M α1 β1 β4 + K M α1 β2 β3

+ K M α1 β2 β4 + K M α2 β1 β4 + K M α1 β3 β4 + K M α2 β2 β4

+ K M β1 β2 β3 + K M β1 β2 β4 + K M β1 β3 β4

+ K M β2 β3 β4 − M S α1 α2 β2 − M S α1 α2 β4

− M S α1 β2 β3 − M S α1 β2 β4 − M S α1 β3 β4 + 3 K M α1 α2 λ

+ 3 K M α1 β1 λ + 3 K M α1 β2 λ + 3 K M α2 β1 λ

+ 3 K M α1 β3 λ + 3 K M α2 β2 λ + 3 K M α1 β4 λ

+ 3 K M α2 β4 λ + 3 K M β1 β2 λ+ 3 K M β1 β3 λ + 3 K M β1 β4 λ

+ 3 K M β2 β3 λ + 3 K M β2 β4 λ + 3 K M β3 β4 λ

+ K M α1 α2 r2 + K M α2 β1 r1 + K M α1 β2 r2 + K M α2 β2 r1

+ K M α1 β3 r2 + K M α2 β2 r2 + K M α1 β4 r2 + K M α2 β4 r1

+ K M α2 β4 r2 + K M α1 β1 ρ + K M α1 β2 ρ + K M α1 β4 ρ

+ K M α1 α2 σ + K M β1 β2 r1 + K M β1 β3 r1 + K M β1 β4 r1

+ K M β2 β3 r1 + K M β2 β3 r2 + K M β2 β4 r1 + K M β2 β4 r2

+ K M β3 β4 r1 + K M β3 β4 r2 + K M β1 β2 ρ + K M β1 β4 ρ

+ K M β2 β4 ρ − 3 M S α1 α2 λ + K M α1 β1 σ + K M α1 β2 σ

+ K M α2 β1 σ + K M α1 β3 σ + K M α2 β2 σ − 3 M S α1 β2 λ − 3 M S α1 β3 λ

− 3 M S α1 β4 λ + K M β1 β2 σ + K M β1 β3 σ

+ K M β2 β3 σ − M S α1 α2 r2 − M S α2 β1 r1 − M S α1 β2 r2

− M S α2 β2 r1 − M S α1 β3 r2 − M S α1 β2 ρ − M S α1 β4 ρ

− M S α1 α2 σ − M S α1 β2 σ − M S α1 β3 σ + 3 K M α1 λ r2

+ 3 K M α2 λ r1 + 3 K M α2 λ r2 + 3 K M α1 λ ρ + 3 K M β1 λ r1 + 3 K M β2 λ r1

+ 3 K M β2 λ r2 + 3 K M β3 λ r1 + 3 K M β3 λ r2 + 3 K M β4 λ r1

+ 3 K M β4 λ r2 + 3 K M β1 λ ρ + 3 K M β2 λ ρ + 3 K M β4 λ ρ

+ 3 K M α1 λ σ + 3 K M α2 λ σ + 3 K M β1 λ σ
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+ 3 K M β2 λ σ + 3 K M β3 λ σ + K M α2 r1 r2 + K M α1 r2 ρ

+ K M β2 r1 r2 + K M β3 r1 r2 + K M β4 r1 r2 + K M β1 r1 ρ

+ K M β2 r1 ρ + K M β2 r2 ρ + K M β4 r1 ρ + K M β4 r2 ρ

+ K M α1 r2 σ + K M α2 r1 σ + K M α2 r2 σ + K M α1 ρ σ

− 3 M S α1 λ r2 − 3 M S α2 λ r1 + K M β1 r1 σ + K M β2 r1 σ

+ K M β2 r2 σ + K M β3 r1 σ + K M β3 r2 σ − 3 M S α1 λ ρ

+ K M β1 ρ σ + K M β2 ρ σ − 3 M S α1 λ σ − M S α2 r1 r2

− M S α1 r2 ρ − M S α1 ρ σ + 3 K M λ r1 r2 + 3 K M λ r1 ρ

+ 3 K M λ r2 ρ + 3 K M λ r1 σ + 3 K M λ r2 σ + 3 K M λ ρ σ

+ K M r1 r2 ρ + K M r1 r2 σ + K M r1 ρ σ + K M r2 ρ σ + K 2 α1 α2 β1 β2

+ K 2 α1 α2 β1 β4 + K 2 α1 α2 β2 β4

+ K 2 α1 β1 β2 β3 + K 2 α1 β1 β2 β4 + K 2 α1 β1 β3 β4

+ K 2 α2 β1 β2 β4 + K 2 α1 β2 β3 β4 + K 2 β1 β2 β3 β4

+ 3 K 2 α1 α2 β1 λ + 3 K 2 α1 α2 β2 λ + 3 K 2 α1 α2 β4 λ

+ 3 K 2 α1 β1 β2 λ+ 3 K 2 α1 β1 β3 λ

+ 3 K 2 α2 β1 β2 λ+ 3 K 2 α1 β1 β4 λ + 3 K 2 α1 β2 β3 λ

+ 3 K 2 α1 β2 β4 λ + 3 K 2 α2 β1 β4 λ + 3 K 2 α1 β3 β4 λ

+ 3 K 2 α2 β2 β4 λ + 3 K 2 β1 β2 β3 λ + 3 K 2 β1 β2 β4 λ

+ 3 K 2 β1 β3 β4 λ + 3 K 2 β2 β3 β4 λ − 6 K S δ λ2 r1

+ K 2 α1 α2 β2 r2 + K 2 α1 α2 β4 r2 + K 2 α2 β1 β2 r1

+ K 2 α1 β2 β3 r2 + K 2 α2 β1 β4 r1 + K 2 α1 β2 β4 r2

+ K 2 α2 β2 β4 r1 + K 2 α1 β3 β4 r2 + K 2 α2 β2 β4 r2

+ K 2 α1 β1 β2 ρ + K 2 α1 β1 β4 ρ + K 2 α1 β2 β4 ρ

+ K 2 α1 α2 β1 σ + K 2 α1 α2 β2 σ + K 2 β1 β2 β3 r1

+ K 2 β1 β2 β4 r1 + K 2 β1 β3 β4 r1 + K 2 β2 β3 β4 r1

+ K 2 β2 β3 β4 r2 + K 2 β1 β2 β4 ρ + K 2 α1 β1 β2 σ

+ K 2 α1 β1 β3 σ + K 2 α2 β1 β2 σ + K 2 α1 β2 β3 σ

+ K 2 β1 β2 β3 σ + 3 K 2 α1 α2 λ r2 + 3 K 2 α2 β1 λ r1

+ 3 K 2 α1 β2 λ r2 + 3 K 2 α2 β2 λ r1

+ 3 K 2 α1 β3 λ r2 + 3 K 2 α2 β2 λ r2 + 3 K 2 α1 β4 λ r2

+ 3 K 2 α2 β4 λ r1 + 3 K 2 α2 β4 λ r2 + 3 K 2 α1 β1 λ ρ

+ 3 K 2 α1 β2 λ ρ + 3 K 2 α1 β4 λ ρ + 3 K 2 α1 α2 λ σ

+ 3 K 2 β1 β2 λ r1 + 3 K 2 β1 β3 λ r1 + 3 K 2 β1 β4 λ r1

+ 3 K 2 β2 β3 λ r1 + 3 K 2 β2 β3 λ r2 + 3 K 2 β2 β4 λ r1

+ 3 K 2 β2 β4 λ r2 + 3 K 2 β3 β4 λ r1 + 3 K 2 β3 β4 λ r2

+ 3 K 2 β1 β2 λ ρ + 3 K 2 β1 β4 λ ρ + 3 K 2 β2 β4 λ ρ

+ 3 K 2 α1 β1 λ σ + 3 K 2 α1 β2 λ σ

+ 3 K 2 α2 β1 λ σ + 3 K 2 α1 β3 λ σ + 3 K 2 α2 β2 λ σ

+ 3 K 2 β1 β2 λ σ + 3 K 2 β1 β3 λ σ + 3 K 2 β2 β3 λ σ
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+ K 2 α2 β2 r1 r2 + K 2 α2 β4 r1 r2 + K 2 α1 β2 r2 ρ

+ K 2 α1 β4 r2 ρ + K 2 α1 α2 r2 σ + K 2 β2 β3 r1 r2 + K 2 β2 β4 r1 r2

+ K 2 β3 β4 r1 r2 + K 2 β1 β2 r1 ρ + K 2 β1 β4 r1 ρ

+ K 2 β2 β4 r1 ρ + K 2 β2 β4 r2 ρ + K 2 α2 β1 r1 σ + K 2 α1 β2 r2 σ

+ K 2 α2 β2 r1 σ + K 2 α1 β3 r2 σ + K 2 α2 β2 r2 σ

+ K 2 α1 β1 ρ σ + K 2 α1 β2 ρ σ + K 2 β1 β2 r1 σ

+ K 2 β1 β3 r1 σ + K 2 β2 β3 r1 σ + K 2 β2 β3 r2 σ

+ K 2 β1 β2 ρ σ + 3 K 2 α2 λ r1 r2 + 3 K 2 α1 λ r2 ρ + 3 K 2 β2 λ r1 r2

+ 3 K 2 β3 λ r1 r2 + 3 K 2 β4 λ r1 r2 + 3 K 2 β1 λ r1 ρ

+ 3 K 2 β2 λ r1 ρ + 3 K 2 β2 λ r2 ρ + 3 K 2 β4 λ r1 ρ

+ 3 K 2 β4 λ r2 ρ + 3 K 2 α1 λ r2 σ + 3 K 2 α2 λ r1 σ

+ 3 K 2 α2 λ r2 σ + 3 K 2 α1 λ ρ σ + 3 K 2 β1 λ r1 σ

+ 3 K 2 β2 λ r1 σ + 3 K 2 β2 λ r2 σ + 3 K 2 β3 λ r1 σ

+ 3 K 2 β3 λ r2 σ + 3 K 2 β1 λ ρ σ + 3 K 2 β2 λ ρ σ

+ K 2 β2 r1 r2 ρ + K 2 β4 r1 r2 ρ + K 2 α2 r1 r2 σ

+ K 2 α1 r2 ρ σ + K 2 β2 r1 r2 σ + K 2 β3 r1 r2 σ + K 2 β1 r1 ρ σ

+ K 2 β2 r1 ρ σ + K 2 β2 r2 ρ σ + 3 K 2 λ r1 r2 ρ + 3 K 2 λ r1 r2 σ

+ 3 K 2 λ r1 ρ σ + 3 K 2 λ r2 ρ σ + K 2 r1 r2 ρ σ

+ 6 K S δ k λ2 r1 − K S β1 β2 δ r1 − K S β1 β4 δ r1

− K S β2 β4 δ r1 + M S α2 β1 k r1 + M S α2 β2 k r1 − 3 K S β1 δ λ r1

− 3 K S β2 δ λ r1 − 3 K S β4 δ λ r1 − K S β2 δ r1 r2

− K S β4 δ r1 r2 − K S β1 δ r1 σ − K S β2 δ r1 σ + 3 M S α2 k λ r1

+ M S α2 k r1 r2 − 3 K S δ λ r1 r2 − 3 K S δ λ r1 σ − K S δ r1 r2 σ

− 6 K S α1 δ λ
2 μQ + K S β1 β2 δ k r1 + K S β1 β4 δ k r1

+ K S β2 β4 δ k r1 − K S α1 α2 δ μP r2 − K S α2 β1 δ μP r1

− K S α1 β2 δ μP r2 − K S α2 β2 δ μP r1 − K S α1 β3 δ μP r2

− K S α1 β2 δ μQ ρ − K S α1 β4 δ μQ ρ

− K S α1 α2 δ μQ σ − K S α1 β2 δ μQ σ − K S α1 β3 δ μQ σ

+ 3 K S β1 δ k λ r1 + 3 K S β2 δ k λ r1 + 3 K S β4 δ k λ r1

− 3 K S α1 δ λμP r2 − 3 K S α2 δ λμP r1

− 3 K S α1 δ λμQ ρ − 3 K S α1 δ λμQ σ

+ K S β2 δ k r1 r2 + K S β4 δ k r1 r2 + K S β1 δ k r1 σ

+ K S β2 δ k r1 σ − K S α2 δ μP r1 r2 − K S α1 δ μP r2 ρ

− K S α1 δ μQ ρ σ + 3 K S δ k λ r1 r2 + 3 K S δ k λ r1 σ

+ K S δ k r1 r2 σ − 6 K S δ k λ2 μA r1 − K S α1 α2 β2 δ μQ

− K S α1 α2 β4 δ μQ − K S α1 β2 β3 δ μQ

− K S α1 β2 β4 δ μQ − K S α1 β3 β4 δ μQ − 3 K S α1 α2 δ λμQ

− 3 K S α1 β2 δ λμQ − 3 K S α1 β3 δ λμQ

− 3 K S α1 β4 δ λμQ − K S α2 β1 δ k μA r1
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− K S α2 β4 δ k μA r1 + K S α2 β1 δ k μP r1 + K S α2 β2 δ k μP r1

− K S β1 β3 δ k μA r1 − K S β1 β4 δ k μA r1

− K S β3 β4 δ k μA r1 − 3 K S α2 δ k λμA r1 + 3 K S α2 δ k λμP r1

− 3 K S β1 δ k λμA r1 − 3 K S β3 δ k λμA r1

− 3 K S β4 δ k λμA r1 − K S α2 δ k μA r1 r2

+ K S α2 δ k μP r1 r2 − K S β3 δ k μA r1 r2 − K S β4 δ k μA r1 r2

− K S β1 δ k μA r1 ρ − K S β4 δ k μA r1 ρ − K S α2 δ k μA r1 σ

− K S β1 δ k μA r1 σ − K S β3 δ k μA r1 σ

− 3 K S δ k λμA r1 r2 − 3 K S δ k λμA r1 ρ − 3 K S δ k λμA r1 σ

− K S δ k μA r1 r2 ρ − K S δ k μA r1 r2 σ − K S δ k μA r1 ρ σ.
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