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Abstract. Can we model the temporal evolution of topics in Web im-
age collections? If so, can we exploit the understanding of dynamics to
solve novel visual problems or improve recognition performance? These
two challenging questions are the motivation for this work. We propose a
nonparametric approach to modeling and analysis of topical evolution in
image sets. A scalable and parallelizable sequential Monte Carlo based
method is developed to construct the similarity network of a large-scale
dataset that provides a base representation for wide ranges of dynam-
ics analysis. In this paper, we provide several experimental results to
support the usefulness of image dynamics with the datasets of 47 top-
ics gathered from Flickr. First, we produce some interesting observations
such as tracking of subtopic evolution and outbreak detection, which can-
not be achieved with conventional image sets. Second, we also present
the complementary benefits that the images can introduce over the asso-
ciated text analysis. Finally, we show that the training using the temporal
association significantly improves the recognition performance.

1 Introduction

This paper investigates the discovery and use of topical evolution in Web image
collections. The images on the Web are rapidly growing, and it is obvious to
assume that their topical patterns evolve over time. Topics may rise and fall in
their popularity; sometimes they are split or merged to a new one; some of them
are synchronized or mutually exclusive on the timeline. In Fig.1, we download
apple images and their associated timestamps from Flickr, and measure the
similarity changes with some canonical images of apple’s subtopics. As Google
trends reveal the popularity variation of query terms in the search volumes, we
can easily observe the affinity changes of each subtopic in the apple image set.

The main objectives of this work are as follows. First, we propose a non-
parametric approach to modeling and analysis of temporal evolution of topics
in Web image collections. Second, we show that understanding image dynamics
is useful to solve novel problems such as subtopic outbreak detection and to im-
prove classification performance using the temporal association that is inspired
by studies in human vision [2,19,21]. Third, we present that the images can be a
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Fig. 1. The Google trends-like visualization of the subtopic evolution in the apple im-
ages from Flickr (fruit : blue, logo: red, laptop: orange, tree: green, iphone: purple). We
choose the cluster center image of each subtopic, and measure the average similarity
with the posterior (i.e. a set of weighted image samples) at each time step. The fruit
subtopic is stable along the timeline whereas the iphone subtopic is highly fluctuated.

more reliable and delicate source of information to detect topical evolution than
the texts.

Our approach is motivated by the recent success of the nonparametric meth-
ods [13,20] that are powered by large databases. Instead of using sophisticated
parametric topic models [3,22], we represent the images with timestamps in the
form of a similarity network [11], in which vertices are images and edges con-
nect the temporally related and visually similar images. Thus, our approach is
able to perform diverse dynamics analysis without solving complex inference
problems. For example, a simple information-theoretic measure of the network
can be used to detect subtopic outbreaks, which point out when the evolution
speed is abruptly changed. The temporal context is also easily integrated with
the classifier training in a framework of the Metropolis-Hastings algorithm.

The network generation is based on the sequential Monte Carlo (i.e. particle
filtering) [1,9]. In the sequential Monte Carlo, the posterior (i.e. subtopic dis-
tribution) at a particular time step is represented by a set of weighted image
samples. We track similar subtopics (i.e. clusters of images) in consecutive pos-
teriors along the timeline, and create edges between them. The sampling based
representation is quite powerful in our context. Since we deal with unordered
natural images on the Web, any Gaussian or linearity assumption does not hold
and multiple peaks of distributions are unavoidable. Another practical advan-
tage is that we can easily control the tradeoff between accuracy and speed by
managing the number of samples and parameters in the transition model. The
proposed algorithm is easily parallelizable by running multiple sequential Monte
Carlo trackers with different initialization and parameters. Our approach is also
scalable and fast. The computation time is linear with the number of images.

For evaluation, we download more than 9M images of 47 topics from Flickr.
Most standard datasets in computer vision research [7,18] have not yet consid-
ered the importance of temporal context. Recently, several datasets have intro-
duced spatial contexts as fundamental cues to recognition [18], but the support
for temporal context has still been largely ignored. Our experiments clearly show
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that our modeling and analysis is practically useful and can be used to under-
stand and simulate human-like visual experience from Web images.

1.1 Related Work

The temporal information is one of the most obvious features in video or au-
ditory applications. Hence, here we review only the use of temporal cues for
image analysis. The importance of temporal context has long been recognized in
neuroscience research [2,19,21]. Wide range of research has supported that the
temporal association (i.e. liking temporally close images) is an important mecha-
nism to recognize objects and generalize visual representation. [21] tested several
interesting experiments to show that temporally correlated multiple views can
be easily linked to a single representation. [2] proposed a learning model for 3D
object recognition by using the temporal continuity in image sequences.

In computer vision, [16] is one of the early studies that use temporal context
in active object recognition. They used a POMDP framework for the modeling of
temporal context to disambiguate the object hypotheses. [5] proposed a HMM-
based temporal context model to solve scene classification problems. For the
indoor-outdoor classification and the sunset detection, they showed that the
temporal model outperformed the baseline content-based classifiers.

As the Internet vision emerges as an active research area in computer vision,
timing information starts to be used in the assistance of visual tasks. Surpris-
ingly, however, the dynamics or temporal context for Web images has not yet
been studied a great deal, contrary to the fact that the study of the dynamic
behaviors of the texts on the Web has been one of active research areas in data
mining and machine learning communities [3,22]. We briefly review some notable
examples using timestamp meta-data for visual tasks. [6] developed an annota-
tion method for personal photo collections, and the timestamps associated with
the images were used for better correlation discovery between the images. [12]
proposed a landmark classification for an extremely large dataset, and the tem-
poral information was used for the constraints to remove misclassification. [17]
also used the timestamp as an additional feature to develop an object and event
retrieval system for online image communities. [10] presented a method to geolo-
cate a sequence of images taken by a single individual. Temporal constraints from
the sequence of images were used as a strong prior to improve the geolocation
accuracy.

The main difference between their work and ours is that they considered the
temporal information as additional meta-data or constraints to achieve their
original goals (i.e. annotations in [6], classification and detection in [12,17], and
the geolocation of images in [10]). However, our work considers the timestamps
associated with images as a main research subject to uncover dynamic behav-
iors of Web images. To our best knowledge, there have been very few previous
attempts to tackle this issue in computer vision research.
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2 Network Construction by Sequential Monte Carlo

2.1 Image Description and Similarity Measure

Each image is represented by two types of descriptors, which are spatial pyramids
of visual words [14] and HOG [4]. We use the codes provided by the authors of
the papers. A dictionary of 200 visual words is formed by K-means to randomly
selected SIFT descriptors [14]. A visual word is densely assigned to every pixel
of an image by finding the nearest cluster center in the dictionary. Then visual
words are binned using a two-level spatial pyramid. The oriented gradients are
computed by Canny edge detection and Sobel mask [4]. The HOG descriptor
is then discretized into 20 orientation bins in the range of [0◦,180◦]. Then the
HOG descriptors are binned using a three-level spatial pyramid. The similarity
measure between a pair of images is the cosine similarity, which is calculated by
the dot product of a pair of L2 normalized descriptors.

2.2 Problem Statement

The input of our algorithm is a set of images I = {I1, I2, ..., IN} and associated
tags of taken time T = {T1, T2, ..., TN}. The main goal is to generate an N ×N
sparse similarity network G = (V , E ,W) by using the Sequential Monte Carlo
(SMC) method. Each vertex in V is an image in the dataset. The edge set E
is created between the images that are visually similar and temporally distant
with a certain interval that is assigned by the transition model of the SMC
tracker (Section 2.3). The weight set W is discovered by the similarity between
descriptors of images (Section 2.1). For sparsity, each image is connected to its
k-nearest neighbors with k = a log N , where a is a constant (e.g. a =10).

2.3 Network Construction Using Sequential Monte Carlo

Algorithm 1 summarizes the proposed SMC based network construction. For
better readability, we follow the notation of condensation algorithm [9]. The
output of each iteration of the SMC is the conditional subtopic distribution (i.e.
posterior) at every step, which is approximated by a set of images with relative
importance denoted by {st, πt} = {s(i)

t , π
(i)
t , i = 1, . . . , M}. Note that our SMC

does not explicitly solve the data association during the tracking. In other words,
we do not assign a subtopic membership to each image in st. However, it can be
easily obtained later by applying clustering to the subgraph of st.

Fig.2 shows a downsampled example of a single iteration of the posterior
estimation. At every iteration, the SMC generates a new posterior {st, πt} by
running transition, observation, and resampling.

The image data are severely unbalanced on the timeline. (e.g. There are only
a few images within a month in 2005 but a large number of images within even
a week in 2008). Thus, in our experiments, we bin the timeline by the number
of images instead of a fixed time interval. (e.g. The timeline may be binned by
every 3000 images instead of a month). The function τ(Ti, m) is used to indicate
the timestamp of the m-th image later from the image at Ti.
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Fig. 2. An overview of the SMC based network construction for the jaguar topic. The
subtopic distribution at each time step is represented by a set of weighted image samples
(i.e. posterior) {st, πt}. In this example, a posterior of the jaguar topic consists of image
samples of animal, cars, and football subtopics. (a) The transition model generates new
posterior candidates s′t from st−1. (b) The observation model discovers π′

t of s′t and the
resampling step computes {st, πt} from {s′t, π′

t}. Finally, the network is constructed
by similarity matching between two consecutive posteriors st−1 and st.

Initialization. The initialization samples the initial posterior s0 from the prior
p(x0) at T0. p(x0) is set by a Gaussian distribution N(T0, τ

2(T0, 2M/3)) on the
timeline, which means that 2M numbers of images around T0 have nonzero
probabilities to be selected as one of s0. The initial π0 is uniformly set to 1/M .

Transition Model. The transition model generates posterior candidates s′t
rightward on the timeline from the previous {st−1, πt−1} (See Fig.2.(a) for an
example). Each image s

(i)
t−1 in st−1 recommends mi numbers of images that are

similar to itself as candidates set s′t for the next posterior. A more weighted image
s
(i)
t−1 is able to recommend more images for s′t. (

∑
i mi = 2M and mi ∝ π

(i)
t−1).

At this stage, we generate 2M candidates (i.e. |s′t| = 2M), and the observation
and resampling steps reduce it to be |st| = M while computing weights πt.

Similarly to condensation algorithm [9], the transition consists of deterministic
drift and stochastic diffusion. The drift describes the transition tendency of the
overall s′t (i.e. how far the s′t is located from the st−1 on the timeline). The
diffusion assigns a random transition of an individual image. The drift and
the diffusion are modeled by a Gaussian distribution N(μt, σ

2) and a Gamma
distribution Γ(α, β), respectively. The final transition model is the product of
these two distributions [8] in Eq.1. The asterisk of P

(i)∗
t (x) in Eq.1 means that it

is not normalized. Renormalization is not required since we will use importance
sampling to sample images on the timeline with the target distribution (See the
next subsection with Fig.3 for the detail).

P
(i)∗
t (x) = N(x; μt, σ

2) × Γ(x; α(i)
t−1, β

(i)
t−1) (1)
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Algorithm 1. The SMC based network generation
Input: (1) A set of images I sorted by timestamps T . (2) Start time T0 and end time

Te. (3) Posterior size M . (4) Parameters for drift : (�Mµ, σ2).
Output: Network G

Initialization:
1: draw s

(i)
0 ∼ N(T0, τ

2(T0, 2M/3)), π
(i)
0 = 1/M for i = 1, . . . , M .

while μt < Te, (μ0 = T0 and μt = μt−1 + τ (μt−1,�Mµ)). do
[Transition]

for all s
(i)
t−1 ∈ st−1 with x(i) = ∅ do

repeat
3: draw x ∼ N(x; μt, σ

2)×Γ(x;α
(i)
t−1, β

(i)
t−1) (α

(i)
t−1 ∝ 1/π

(i)
t−1, β

(i)
t−1 = μt/α

(i)
t−1).

4: x(i) ← x with probability of w(s
(i)
t−1, x).

until |x(i)| = mi = 2M × π
(i)
t−1. Then, s′t ← x(i).

end for
[Observation]

4: Compute self-similarity graph Wt of s′t. Row-normalize Wt to W̃t.

5: Compute the stationary distribution π′
t by solving π′

t = W̃
T

t π′
t.

[Resampling]
6: Resample {st, πt}Mi=1 from {s′t, π′

t} by systematic sampling and normalize πt.
7: G←Wt(st, st),Wt−1,t(st−1, st), and then convert G into a k-NN graph.

end while

In sum, for each s
(i)
t−1, we sample an image x using the distribution of Eq.1,

which constrains the position of x on the timeline. In addition, x is required
to be visually similar to its recommender. Thus, the sample x is accepted with
probability of w(s(i)

t−1, x), which is the cosine similarity between the descriptors
of s

(i)
t−1 and x. This process is repeated until mi number of samples are accepted.

In Eq.1, the mean μt of N(μt, σ
2) is updated at every step as μt = μt−1 +

τ(μt−1,�Mµ) where �Mµ is the control parameter for the speed of the tracking.
The higher �Mµ, the further st is located from st−1 and the fewer the steps are
executed until completion. The variance σ2 of N(μt, σ

2) controls the spread of
st along the timeline. A higher σ2 results in a st that includes images with a
longer time range.

A Gamma distribution Γ(α, β) is usually used to model the time required for
α occurrences of events that follow a Poisson process with a constant rate β.
In our interpretation, given an image stream, we assume that the occurrence of
images of each subtopic follows the Poisson process with β. Then, Γ(α(i)

t−1, β
(i)
t−1)

of Eq.1 indicates the time required for the next α images that have the same
subtopic with s

(i)
t−1 in the image stream. Based on this intuition, the α

(i)
t−1 for

each s
(i)
t−1 is adjustively selected. A smaller α

(i)
t−1 is chosen for the image s

(i)
t−1

with higher π
(i)
t−1 since the similar images to a more weighted s

(i)
t−1 are likely to

occur more frequently in the dataset. The mean of Gamma distribution of each
s
(i)
t−1 is aligned with the mean of the sample set μt. Therefore, β

(i)
t−1 = μt/α

(i)
t−1

since the mean of Gamma is αβ.
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Fig. 3. An example of sampling images on the timeline during (a) the initialization
and (b) the transition. From top to bottom: The first row shows the image distribu-
tions along the timeline. The images are regarded as the samples ({x(r)}Rr=1) from a
proposal distribution Q∗(x). They are equally weighted (i.e. Q∗(x(r)) = 1). The sec-
ond row shows the target distribution P ∗(x). (e.g . Gaussian in (a) and the product
of Gaussian and Gamma in (b)). The third row shows the image samples weighted by
P ∗(x(r))/Q∗(x(r)). The fourth row shows the images chosen by systematic sampling [1].

The main reason to adopt the product model rather than the mixture model
in Eq.1 is as follows. The product model only has a meaningful probability for an
event when none of its component distribution has a low probability. (i.e. if one
of two distributions has zero probability, their product does as well). It is useful
in our application that the product with the Gaussian of the drift prevents the
sampled images from severely spreading along the timeline by setting almost
zero probability for the image outside the 3σ from μt.

Sampling Images with Target Distribution. In the initialization and the
transition, we sample a set of images on the timeline from a given target distri-
bution P ∗(x). (e.g. Gaussian in the initialization and the product of Gaussian
and Gamma in the transition). Fig.3 shows our sampling method, which can be
viewed as an importance sampling [15]. The importance sampling is particularly
useful for the transition model since there is no closed form of the product of
Gaussian and Gamma distributions and its normalization is not straightforward.

Observation Model. The goal of the observation model is to generate weights
π′

t for the s′t. First, the similarity matrix Wt of s′t is obtained by computing
pairwise cosine similarity of s′t. The π′

t is the stationary distribution of Wt

by solving π′
t = W̃

T

t π′
t where W̃t is row-normalized from Wt so that w̃ij =

wij/
∑

k wik.

Resampling. The final posterior {st, πt} = {s(i)
t , π

(i)
t }M

i=1 is resampled from
{s′t, π′

t} by running the systematic sampling [1] on π′′
t . Then πt is normalized so

that their sum is one. The network G stores Wt(st, st) and the similarity matrix
Wt−1,t(st−1, st) between two consecutive posteriors st−1 and st. As discussed
in section 2.2, each vertex in G is connected to only its k-nearest neighbors.
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3 Analysis and Results

3.1 Flickr Dataset

Table 1 summarizes 47 topics of our Flickr dataset. The topic name is identical
to the query word. We downloaded all the images containing the query word.
They are the images shown when a query word is typed in Flickr’s search box
without any option change. For the timestamp, we use the date taken field of
each image that Flickr provides.

We generate the similarity network of each topic by using the proposed SMC
based tracking. The runtime is O(NM) where M is constant and M � N (i.e.
1000 ≤ M ≤ 5000 in our experiments). The network construction is so fast that,
for example, it took about 4 hours for the soccer topic with N = 1.1 × 106

and M = 5, 000 in a matlab implementation on a single PC. The analysis of
the network is also fast since most network analysis algorithms depend on the
number of nonzero elements, which is O(N log N).

3.2 Evolution of Subtopics

Fig.4 shows the examples of the subtopic evolution of two topics, big+ben and
korean. As we discussed in previous section, the SMC tracker generates the pos-
terior sets {s0, . . . , se}. Five clusters in each posterior are discovered by applying
spectral clustering to the subgraph Gt of each st in an unsupervised way. Ob-
viously, the dynamic behavior is one of intrinsic properties of each topic. Some
topics such as big+ben are stationary and coherent whereas others like korean
are highly diverse and variant.

Outbreak Detection of Subtopics. The outbreak detection is important
in Web mining since it reflects the change of information flows and people’s
interests. We perform the outbreak detection by calculating an information-
theoretic measure of link statistics. Note that the consecutive posterior sets are

Table 1. 47 topics of our Flickr dataset. The numbers in parentheses indicate the
numbers of downloaded images per topic. 9,751,651 images are gathered in total.

Nation brazilian(119,620), jewish(165,760), korean(254,386), swedish(94,390),
spanish(322,085)

Place amazon(160,008), ballpark(340,266), big+ben(131,545), grandcanyon(286,994),
pisa(174,591), wall+street(177,181), white+house(241,353)

Animal butterfly+insect(69,947), cardinals(177,884), giraffe+zoo (53,591), jaguar(122,615),
leopard(121,061), lobster(144,596), otter(113,681), parrot(175,895),
penguin(257,614), rhino(96,799), shark(345,606)

Object classic+car(265,668), keyboard(118,911), motorbike(179,855), pagoda(128,019),
pedestrian(112,116), sunflower(165,090), television(157,033)

Activity picnic(652,539), soccer(1,153,969), yacht(225,508)
Abstract advertisement(84,521), economy(61,593), emotion(119,899), fine+art(220,615),

horror(157,977), hurt(141,249), politics(181,836)
Hot topic apple(713,730), earthquake(65,375), newspaper(165,987), simpson(106,414),

starbucks(169,728), tornado(117,161), wireless(139,390)
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Fig. 4. Examples of subtopic evolution of korean and big+ben topics. Each column
shows the clusters of each st. From top to bottom, we show top three out of five clusters
of each st with average images (the first row) and top-four highest ranked images in the
cluster (the second row). The big+ben is relatively stationary and coherent whereas
the korean topic is highly dynamic and contains diverse subtopics such as sports, food,
buildings, events, and Korean War Memorial Park.

linked in our network. (i.e. st−1 is connected to st, which is linked to st+1.) The
basic idea of our outbreak detection is that if the subtopic distributions at step
t− 1 and t+1 are different each other, then the degree distribution of st to st−1

(ft,t−1) and the degree distribution of st to st+1 (ft,t+1) are dissimilar as well.
For example, suppose that the dominant subtopic of st−1 is fruit apple but the
dominant one of st+1 is iphone. Then, the degree of a fruit apple image i in st

has high ft,t−1(i) but low ft,t+1(i). On the other hand, an iphone image j in st

has high ft,t+1(j) but low ft,t−1(i). Both ft,t−1 and ft,t+1 are |st|×1 histograms,
each element of which is the sum of edge weights of a vertex in st with st−1 and
st+1, respectively. In order to measure the difference between ft,t−1 and ft,t+1,
we use Kullback-Leibler (KL) divergence in Eq.2.

DKL(ft,t+1 ‖ ft,t−1) =
∑

i∈st

ft,t+1(i) log
ft,t+1(i)
ft,t−1(i)

(2)

Fig.5.(a) shows an example of KL divergence changes along the 142 steps of apple
tracking. The peaks of KL divergence indicate the radical subtopic changes from
st−1 to st+1. We observed the highest peak at the step t∗ = 63, where st∗ is
distributed in [May-2007, Jun-2007]. Fig.5.(b) represents ten subtopics of st∗−1,
st∗ , and st∗+1, which are significantly different each other.

3.3 Comparison with Text Analysis

In this section, we empirically compare the image-based topic analysis with the
text-based one. One may argue that the similar observations can be made from
both images and the associated texts. However, our experiments show that the
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Fig. 5. The outbreak detection of subtopics. (a) The variation of KL divergences for
the apple topic. The highest peak is observed at the step t∗=63 ([May-2007, Jun-2007]
with the median of 11-Jun-2007). (b) The subtopic changes around the highest peak.
Ten subtopics of st∗−1, st∗ , and st∗+1 are shown from top to bottom. In each set, the
first row shows average images of top 15 images and the bottom row shows top four
highest ranked ones in each subtopic. In st∗−1 and st∗ , several subtopics about Steve
Jobs’s presentation are detected but disappear in st∗+1. Rather, crowds in street (i.e.
1st ∼ 4th clusters) and iphone (i.e. 6,8,10-th clusters) newly emerge in st∗+1.

associated texts do not overshadow the importance of information from the im-
ages. First of all, 13.70% of images in our dataset have no tags. It may be natural
since the Flickr is oriented toward image sharing and thus text annotations are
much less cared by users. In order to compare the dynamic behaviors detected
from images and texts, we apply the outbreak detection method in previous sec-
tion to both images and their associated tags. The only difference between them
is the features: the spatial pyramids of SIFT and HOG for images and term
frequency histograms for texts. Fig.6.(a) shows an example of outbreak detec-
tion using images and texts for the grandcanyon topic, which is one of the most
stationary and coherent topics in our dataset (i.e. no matter when the images
are taken, the majority of them are taken for the scene of the Grand Canyon).
The image-based analysis is able to successfully detect its intrinsic stationary
behavior. However, the text tags are highly fluctuated mainly because tags are
subjectively assigned by different users with little consensus. This is a well-known
noise source of the images from the Web image search, and our result can be its
another supporting example from the dynamics view.

Another important advantage of image-based temporal analysis is that it con-
veys more delicate information that is hardly captured by text descriptions.
Fig.6.(b) shows two typical examples about periodic updates of objects and
events. For example, when a new iphone is released, the emergence of the iphone
subtopic can be detected in the apple via both images and texts. However, the
images can more intuitively reveal the upgraded appearance, new features, and
visual context around the new event.
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Fig. 6. The comparison between the topical analysis on the images and associated
text tags. (a) The variation of KL divergences for the grandcanyon topic. The KL
divergences of images are stationary along the timeline whereas those of texts are
highly fluctuated. (b) The subtopic changes around the two highest peaks A (05-Nov-
2007) and B (16-Aug-2009). Five subtopics of st∗−1, st∗ , and st∗+1 are shown from
top to bottom. Very little visual variation is observed between them. (c) 15 selected
images tagged by apple+new+iphone (the first row) and whitehouse+christmas (the
second row). They are sorted on the timeline.

3.4 Temporal Association for Classification

As pointed in neuroscience research [19,21], human perception tends to strongly
connect temporally smoothed visual information. Inspired by these studies, we
perform preliminary tests to see whether it holds in Web images as well; The sub-
topics that consistently appear along the timeline can be more closely related to
the main topic rather than the ones that are observed for only a short period.
For example, the fruit apple is likely to consistently exist in the apple image set,
which may be a more representative subtopic of the apple rather than a specific
model of an early Mac computer. In this experiment, we generate two training
sets from the extremely noisy Flickr images and compare their classification
performance; The first training set is constructed by choosing the images that
are temporally and visually associated, and the other set is generated by the
random selection without temporal context.

Since our similarity network links temporally close and visually similar im-
ages, dominant subtopics correspond to large clusters and their central images
map to hub nodes in the graph. The stationary probability is a popular ranking
measure, and thus the images with high stationary probabilities can be thought
of temporally and visually strengthened images. However, the proposed network
representation is incomplete in the sense that images are connected in an only
local temporal space. In order to cope with this underlying uncertainty, we gen-
erate training sets by the Metropolis-Hasting (MH) algorithm.
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We first compute the stationary probability πG of the network G. Since a
general suggestion for a starting point in the MH is to begin around the modes
of the distribution, we start from an image θo that has the highest πG(θ). From
a current θ vertex, we sample a next candidate point θ∗ from a proposal distri-
bution q(θ1, θ2) that is based on a random surfer model as shown in Eq.3; the
candidate is chosen by following an outgoing edge of the θ with probability λ,
but restarting it with probability 1− λ according to the πG. A larger λ weights
more the local link structure of the network while a smaller λ relies on πG more.
The new candidate is accepted with probability α in Eq.3 where w̃ij is the ele-
ment (i, j) in the row-normalized adjacency matrix of G. We repeat this process
until the desired numbers of training samples are selected.

α = min
(

πG(θ∗)q(θ∗, θt−1)
πG(θt−1)q(θt−1, θ∗)

, 1
)

where q(i, j) = λw̃ij + (1 − λ)πG(j) (3)

Fig. 7. Comparison of the binary classification performance between Temporal train-
ing and Random training. (a) Classification accuracies of selected 20 topics. (b) Cor-
responding Precision-Recall curves. The number (n, m) underneath the topic name
indicates the average precision of (Random, Temporal).
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We perform binary classification using the 128 nearest neighbor voting [20] in
which we use the same descriptors and the cosine similarity in section 2.1. We
generate the positive training set of each topic in two different ways; We sample
256 images by the MH method (called Temporal training) and randomly choose
the same number of images (called Random training). For the negative training
images, we randomly draw 256 images from the other topics of Flickr dataset.
For the test sets, we downloaded 256 top-ranked images for each topic from
Google Image Search by querying the same word in Table 1. The Google Image
Search provides relatively clean images in the highest ranking. Since we would
like to test whether the temporally associated samples are better generalization
of the topic, the Google test sets are more suitable to our purpose than the
images from the noisy Flickr dataset. In the binary classification test of each
topic, the positive test images are the 256 Google images of the topic and the
negative test images are 256 Google images that are randomly selected from the
other topics. Note that in each run of experiment, only the positive training
samples are different between Temporal and Random tests. The experiments are
repeated ten times, and the mean scores are reported.

Fig.7 summarizes the comparison of recognition performance between Tempo-
ral and Random training. Fig.7.(a) shows the classification rates for the selected
20 topics. The accuracies of Temporal training are higher by 8.05% on average.
Fig.7.(b) presents the corresponding precision-recall curves, which show that the
temporal association significantly improves the confidence of classification. The
Temporal training is usually better than the Random training in performance,
but the improvement is limited in some topics; In highly variant topics (e.g.
advertisement and starbucks), the temporal consistency is not easily captured.
In stationary and coherent topics (e.g. butterfly+insect and parrot), the random
sampling is also acceptable.

4 Discussion

We presented a nonparametric modeling and analysis approach to understand
the dynamic behaviors of Web image collections. A sequential Monte Carlo based
tracker is proposed to capture the subtopic evolution in the form of the similarity
network of the image set. In order to show the usefulness of the image-based
temporal topic modeling, we examined subtopic evolution tracking, subtopic
outbreak detection, the comparison with the analysis on the associated texts,
and the use of temporal association for recognition improvement. We believe that
this line of research has not yet fully explored and various challenging problems
still remain unsolved. In particular, more study on the temporal context for
recognition may be promising.
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