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Abstract—This paper addresses the harmonic stability caused 

by the interactions among the wideband control of power 

converters and passive components in an AC power-electronics-

based power system. The impedance-based analytical approach 

is employed and expanded to a meshed and balanced three-

phase network which is dominated by multiple current- and 

voltage- controlled inverters with LCL- and LC-filters. A method 

of deriving the impedance ratios for different inverters is 

proposed by means of the nodal admittance matrix, and thus the 

contribution of each inverter to the harmonic stability of the 

overall power system can be easily predicted through Nyquist 

diagrams. Time-domain simulations and experimental tests on a 

three-inverter-based power system are presented. The results 

validate the effectiveness of the theoretical approach.   

Index Terms—Current-controlled inverter, voltage-controlled 

inverter, impedance-based analysis, harmonic stability, power-

electronics-based power system 

I. INTRODUCTION 

The proportion of power electronics apparatus in electric 

power systems keeps growing in recent years, driven by the 

rapid development of renewable power sources and variable-

speed drives [1]. As a consequence, power-electronics-based 

power systems are becoming important components of 

electrical grids, such as renewable power plants [2], [3], 

microgrids [4], and electric railway systems [5]. These 

systems possess superior features to build the modern power 

grids, including the full controllability, the sustainability, and 

the improved efficiency, but bring also new challenges. High-

order harmonics tend to be aggravated by the high-frequency 

switching operation of power converters, which may trigger 

the parallel and series resonance in the power system [6]. The 

interactions of the wideband control systems for power 

converters with each other and with passive components may 

manifest instability phenomena of a power-electronics-based 

power system in the different frequency ranges [2]-[5]. 

Continuous research efforts have been made to investigate 

the instability in AC power-electronics-based power systems. 

However, many of the studies focus on the low-frequency 

oscillations caused by the constant power control for 

converters as constant power loads [7]-[9] or constant power 

generators [10], [11], the Phase-Locked Loop (PLL) for grid-

connected converters [12]-[14], and the droop-based power 

control for converters in islanded microgrids [15]-[17]. Apart 

from such oscillations associated with the outer power control 

and grid synchronization loops, the interactions of the fast 

inner current or voltage control loops may also result in 

harmonic instability phenomena, namely harmonic-frequency 

oscillations (typically from hundreds of Hz to several kHz), 

due to the inductive or capacitive behavior of converters in 

this frequency range [18]-[22]. Further, this harmonic 

instability may also be generated or magnified by the control 

of converters in interaction with harmonic resonance 

conditions introduced by the high-order power filters for 

converters and parasitic capacitors of power cables [23]-[26]. 

Such phenomena have been frequently reported in renewable 

energy systems and high-speed railway [2], [3], [5], [26]-[30], 

and are challenging the system stability and power quality. It 

is therefore important to develop the effective modeling and 

analysis approach for the harmonic stability problem in AC 

power-electronics-based power systems. 

A general analytical approach for the harmonic stability 

problem is to build the state-space model of the power system, 

and identify the oscillatory modes based on the eigenvalues 

and eigenvectors of the state matrix [31]. However, unlike 

conventional power systems where the dynamics are mainly 

determined by the rotating machines, the small time constants 

of power converters require the detailed models of loads and 

network dynamics in power-electronics-based power systems 

[7]. Thus, the formulation of the system matrices may become 

complicated, and the virtual resistors are usually needed to 

avoid the ill-conditioned problems [32]. To overcome these 

limits, the Component Connection Method (CCM) is 

introduced for the stability analysis of AC power systems 

including the High-Voltage Direct Current (HVDC) 

transmission lines [33]. The CCM is basically a particular 

form of state-space models, where the power system 

components and network dynamics are separately modeled by 

a set of two vector-matrix equations. This results in the 

sparsity of the state equations and reduces the computation 

burden of formulating the system transfer matrices. Further, 

the component interactions and the critical system parameters 

for the different oscillatory modes can be more easily 

determined [34], [35]. 
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Apart from the state-space analysis, the impedance-based 

approach, which is originally introduced for the design of 

input filters in DC-DC converters [36], provides another 

attractive way to analyze the harmonic stability problem. 

Similarly to the CCM, the impedance-based analysis is also 

built upon the models of components or subsystems. 

However, instead of systematically analyzing the 

eigenproperties of the state matrix as in the CCM and other 

state-space models, the impedance-based approach locally 

predicts the system stability at each Point of Connection (PoC) 

of component, based on the ratio of the output impedance of 

component and the equivalent system impedance [37]. Thus, 

the formulation of the system matrices can be avoided, and the 

contribution of each component to the system stability can be 

readily assessed in the frequency-domain. Also, the output 

impedance of component or subsystem can be accordingly 

reshaped to stabilize the overall power system [38]. Therefore, 

the impedance-based method provides a more straightforward 

and design-oriented stability analysis compared to the CCM 

and other state-space models. Several applications of the 

impedance-based approach for the harmonic stability analysis 

can be found in AC power-electronics-based power systems, 

e.g. the cascaded sour-load inverter system [39], the parallel 

grid-connected converters with LCL-filters [22], and the 

parallel uninterruptible power supply inverters with LC-filters 

[25]. However, in all these cases, the network dynamics are 

often overlooked which affect the derivation of the equivalent 

system impedance, and few of them have considered the 

systems with multiple voltage- and current-controlled 

converters. 

This paper attempts to fill in this gap by expanding the 

impedance-based analysis to a three-phase meshed and 

balanced power system, where a voltage-controlled and two 

current-controlled inverters with LC- and LCL-filters are 

interconnected. The harmonic instability that results from the 

interactions among the inner voltage and current control loops 

of these inverters and passive components is studied, while the 

dynamic impacts of the outer power control and grid 

synchronization loops are neglected by designing the control 

bandwidth lower than the system fundamental frequency. By 

the help of the nodal admittance matrix, a simple method of 

deriving the impedance ratio at the PoC of inverters is 

proposed to assess how each inverter contributes to the 

harmonic instability of the power system. The theoretical 

analysis in the frequency-domain is performed based on the 

linearized models of inverters with inner control loops. The 

results are further validated by the nonlinear time-domain 

simulations and experimental tests on a three-inverter-based 

power system. 

II. SYSTEM MODELING AND ANALYSIS TECHNIQUES 

This section first describes the structure of the built power-

electronics-based power system in this work, and then reviews 

the CCM and the impedance-based approach for modeling and  
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Fig.  1.  Simplified one-line diagram of a three-phase power-electronics-based 

AC power system.   

 

analysis of harmonic stability in the power system. 

A. System Description 

Fig. 1 shows a simplified one-line diagram for the balanced 

three-phase power-electronics-based power system which is 

considered in this work, where a voltage-controlled and two 

current-controlled inverters are interconnected as a meshed 

power network through power cables. The voltage-controlled 

inverter regulates the system frequency and voltage amplitude. 

The current-controlled inverters operate with unity power 

factor. In such a system, the presence of shunt capacitors in 

the LC- and LCL-filters of inverters and power cables brings 

in resonant frequencies, which may interact with the inner 

voltage and current control loops of voltage- and current-

controlled inverters resulting in the harmonic-frequency 

oscillations and unexpected harmonic distortion. On the other 

hand, the dynamic interactions between the inner control loops 

of inverters may also trigger the existing resonant frequencies 

in the power system. This consequently necessitates the use of 

CCM or impedance-based analysis to reveal how inverters 

interact with each other and with the harmonic resonance 

conditions in the system. 

Since this work is concerned with the harmonic instability 

owing to the dynamics of inner control loops, the DC-link 

voltages of inverters are assumed to be constant. Also, the grid 

synchronization loop for the current-controlled inverters is 

designed with the bandwidth lower than system fundamental 

frequency, thus only the subsynchronous oscillation may be 

induced by grid synchronization [12]-[14]. Under these 

assumptions, only the inner voltage and current control loops 

are modeled in this work. The previous studies have shown 

that the inner control loops themselves can be simply modeled 

by the single-input and single-output transfer functions in the 

stationary αβ-frame [20], [25]-[27], [39]-[43]. 

B. CCM 

Fig. 2 shows the block diagram of the CCM applied for the 

built power system, where the CCM decomposes the overall 

system into three subsystems by inverters and the connection  
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Fig.  2.  Block diagram of the CCM applied for the built power system.   

 

network. Two current-controlled inverters are modeled by the 

Norton equivalent circuits [22], while the voltage-controlled 

inverter is represented by the Thevenin equivalent circuit [23]. 

Consequently, the composite inverter model can be derived in 

the following 

  

( ) ( ) ( )y s u s d s s s
cl cd

G ( ) G ( )  (1) 

 

where y(s) and d(s) are the output vector and disturbance 

vector of inverters, respectively. 

  
T

1 2 3
( ) [ ( ), ( ), ( )]

g g
y s V s i s i s  (2) 

 
* * * T

1 2 3( ) [ ( ), ( ), ( )]g gu s V s i s i s  (3) 

 
Gcl (s) and Gcd (s) denote the closed-loop reference-to-output 

and the closed-loop disturbance-to-output transfer matrices, 

respectively, which depict the unterminated dynamic behavior 

of inverters seen from the PoC and can be given by 

  

,1 ,2 ,3diag[ ( ), ( ), ( )]clv cli cliG s G s G ssclG ( )  (4) 

 

,1 oi,2 ,3diag[ ( ), ( ), ( )]ov oiZ s Y s Y sscdG ( )  (5) 

 

where Gclv,1(s), Gcli,2(s), and Gcli,3(s) are the voltage and current 

reference-to-output transfer functions of voltage- and current-

controlled inverters, respectively. Zov,1(s), Yoi,2(s), and Yoi,3(s) 

are the closed-loop output impedance and admittances of the 

voltage- and current-controlled inverters, respectively. 

The dynamic of the connection work can be represented by 

the transfer matrix Gnw (s) as 

  

( ) ( )d s y s s
nw

G ( )  (6) 

 

Thus, the closed-loop response of the overall power system 

can be derived as  

 

  1
( ) ( )y s u s

 s s s
nw cd cl

I+G ( )G ( ) G ( )  (7) 

 

where the transfer matrix [I + Gnw(s)Gcd(s)]
-1 predicts the 

harmonic instability of the power system, provided that the 

unterminated behavior of inverters Gcl (s) are stable. In 

addition to the eigenvalues technique, the transfer matrix can 

also be evaluated in the multivariable frequency-domain by 

means of the generalized Nyquist stability criterion [44], [45]. 

It is obvious that the main superior feature of the CCM 

compared to the other state-space models is to decompose the 

power system into multiple decentralized feedback loops by 

inverters, and thus the effect of inverters controllers and the 

associated physical components on the system oscillatory 

modes is more intuitively revealed. Further, the decentralized 

stabilizing control loops may be developed by means of the 

CCM [46]. 

C. Impedance-Based Approach 

Fig. 3 depicts the equivalent circuits of the voltage- and 

current-controlled inverters applied for the impedance-based 

analysis. It is interesting to note that this approach also 

separately models the internal dynamics of inverters by means 

of the output impedance and admittance. However, differently 

from the CCM, there is no need of stacking the reference-to-

output and disturbance-to-output transfer functions of 

inverters as transfer matrices in the impedance-based approach 

[38]. Instead, the impact of a given inverter on the overall 

system stability is determined by a minor feedback loop 

composed by the ratio of the inverter output impedance or 

admittance, Zov,1 or Yoi,m and the equivalent impedance or 

admittance for the rest of the system, Zlv,1 or Yli,m [40]. Further, 

due to the scalar type models for inner control loops of 

inverters, the impedance ratios can also be depicted by single-

input and single-output transfer functions [39], which 

significantly simplify the harmonic stability analysis 

compared to the CCM and other state-space models. Hence, 

the impedance-based approach is preferred in this work. 

From Fig. 3, the closed-loop transfer functions of inverters 

can be derived as follows 

  

1
,1*

,11

,1

( ) 1
( )

( )( )
1

( )

clv
ov

lv

V s
G s

Z sV s

Z s




 
(8) 

 

,*
,

,

( ) 1
( )

( )( )
1

( )

gm

cli m
oi mgm

li m

i s
G s

Y si s

Y s




 
(9) 

 

It is clear that if the unterminated dynamic behavior of 

inverters, Gclv,1 and Gcli,m are stable, the stability of voltage and 

current at the PoC of inverters will be dependent on the minor 

feedback loops composed by the following impedance ratios 

 

,1 ,

,1 ,

( ) ( )
( ) , ( )

( ) ( )

ov oi m

mv mc

lv li m

Z s Y s
T s T s

Z s Y s
   (10) 

 

which are also termed as the minor feedback loop gains [40]. 

Based on these minor feedback loop gains, the specifications  
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Fig.  3.  Impedance-based equivalent models for (a) the voltage- and (b) 

current-controlled inverters. 

 

of inverters output impedances to preserve the system stability 

can be derived. 

III. MODELING OF INVERTERS 

A. Voltage-Controlled Inverters 

Fig. 4 depicts the simplified one-line diagram of voltage-

controlled inverter and the multiloop voltage control scheme. 

The control system is implemented in the stationary frame, 

including the inner Proportional (P) current controller and 

outer Proportional Resonant (PR) voltage controller. It is 

worth mentioning that the three-phase inverters without 

neutral wire can be transformed into two independent single-

phase systems in the stationary αβ-frame [42]. Further, due to 

the assumptions of the constant DC-link voltage and balanced 

three-phase operation, the voltage-controlled inverter can be 

linearized based on the LC-filter and modeled as a real scalar 

system by single-input and single-output transfer functions 

[23]-[25], [42], [43]. 
Fig. 5 shows the block diagram of the multiloop voltage 

control system, where the following two transfer functions are 

used to describe the effect of the inverter output voltage 

VPWM,1 and grid current ig1 on the filter inductor current iL1, 

respectively. 

  

,1

,1 ,1 ,1 ,1

( )1
( ) , ( )

( ) ( ) ( ) ( )

Cf

Li ii

Lf Cf Lf Cf

Z s
Y s G s

Z s Z s Z s Z s
 

 
 (11) 

where ZLf,1(s) and ZCf,1(s) are the impedances of the filter 

inductor and capacitor, respectively. Thus, the dynamic 

behavior of the inner current control loop can be given by 

  

,1 *

1 1 1

,1 ,1

( ) ( )
( ) ( ) ( )

1 ( ) 1 ( )

c ii
L L g

c c

T s G s
i s i s i s

T s T s
 

 
 (12) 

**

 

Fig.  4.  Voltage-controlled inverter with the multiloop control scheme. 
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Fig.  5.  Block diagram of the multiloop voltage control system. 

 

where Tc,1(s) is the open-loop gain of the inner current control 

loop, which is expressed as 

  

,1( ) ( ) ( ) ( )c ci PWM LiT s G s G s Y s  (13) 

  
1.5

( ) , ( ) sj T s

ci pi PWM
G s K G s e

   (14) 

  

where Gci(s) is the P current controller and GPWM(s) depicts the 

effect of the digital computation delay (Ts) and the Pulse 

Width Modulation (PWM) delay (0.5Ts) [42]. Then, by 

including the outer voltage control loop, the voltage reference-

to-output transfer function and closed-loop output impedance 

are derived in the following 

  
*

1 ,1 1 ,1 1( ) ( ) ( ) ( ) ( )clv ov gV s G s V s Z s i s   (15) 

 

,1 ,1

( ) ( )
( ) , ( )

1 ( ) 1 ( )

v oi
clv ov

v v

T s Z s
G s Z s

T s T s
 

 
 (16) 

 

,1

,1 ,1

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

vi ci PWM Cf

v

Lf Cf ci PWM

G s G s G s Z s
T s

Z s Z s G s G s


 
 (17) 

 

,1 ,1

,1 ,1

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

Cf Lf ci PWM

oi

Lf Cf ci PWM

Z s Z s G s G s
Z s

Z s Z s G s G s

  
 

 (18) 

 

2 2

1

( ) rv
vi pv

K s
G s K

s
 


 (19) 

 

where Gvi (s) is the PR voltage controller and ω1 denotes the 

system fundamental frequency. Tv (s) is the open-loop gain of  



the control system. Zoi(s) is the open-loop output impedance 

obtained with the outer voltage control loop open and the 

inner current loop closed. 

B. Current-Controlled Inverters 

Fig. 6 shows the simplified one-line diagram of the current-

controlled inverters and the associated control system. The 

grid-side inductor current of the LCL-filter is controlled for 

the inherent resonance damping effect of the computation and 

modulation delays [47]. The PR controller in the stationary 

αβ-frame is adopted for grid current control. The synchronous 

reference frame PLL is used for grid synchronization [48].  

It is important to mention that the PLL has an important 

effect on the output admittance of inverter in addition to the 

current control loop. The inclusion of PLL effect will 

introduce an unbalanced three-phase inverter model which 

needs to be described by transfer matrices [12]. However, it 

has been found in recent studies that the PLL only affects the 

output admittance within its control bandwidth where the 

negative resistance behavior may be introduced [14], and this 

problem can be avoided by reducing the bandwidth of PLL 

[13]. Hence, in this work, the bandwidth of the PLL is 

designed to be lower than the system fundamental frequency 

in order not to bring in any harmonic-frequency oscillations. 

Thus, the current control loop itself is linearized based on the 

LCL-filter and is modeled as a real scalar system.  

Fig. 7 depicts the block diagram of the grid current control 

loop. The LCL-filter in itself is a two-input and single-output 

system, where the PoC voltage Vm and inverter output voltage 

VPWM,m are the two inputs and grid current igm is the output. 

Thus, the following two transfer functions are used to model 

the LCL-filter plant.  
  

,

, ( ) 0

,

, , , , , ,

( )
( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

m

gm

gi m

PWM m V s

Cf m

Cf m Lf m Lg m Lf m Cf m Lg m

i s
Y s

V s

Z s

Z s Z s Z s Z s Z s Z s



 

 

 (20) 

  

,

,

( ) 0

, ,m

, , , , , ,

( )
( )

( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

PWM m

gm

o m

m V s

Lf m Cf

Cf m Lf m Lg m Lf m Cf m Lg m

i s
Y s

V s

Z s Z s

Z s Z s Z s Z s Z s Z s



 



 

 (21) 

  

where ZLf,m(s), ZLg,m(s) and ZCf,m(s) denote the impedances of 

the LCL-filter inductors and capacitor, respectively. Yo,m(s) is 

the open-loop output admittance. From Fig. 7, the closed-loop 

response of the current control loop can be derived as follows 
  

*

, ,
( ) ( ) ( ) ( ) ( )

gm cli m gm oi m m
i s G s i s Y s V s   (22) 

  

, ,

, ,

, ,

( ) ( )
( ) , ( )

1 ( ) 1 ( )

c m o m

cli m oi m

c m c m

T s Y s
G s Y s

T s T s
 

 
 (23) 

**

 

Fig.  6.  Current-controlled inverter (m=2, 3) with grid current control scheme. 

  

*

 

Fig.  7.  Block diagram of the grid current control loop.   

  

where Gcli,m(s) and Yoi,m(s) are the current reference-to-output 

transfer function and closed-loop output admittance, 

respectively. Tc,m(s) is the open-loop gain of current control 

loop, which is given by 

  

, ,( ) ( ) ( ) ( )c m cgi PWM gi mT s G s G s Y s  (24) 

  

2 2

1

( )
rgi

cgi pgi

K s
G s K

s
 


 (25) 

  

where Gcgi(s) is the PR current controller. 

IV. ANALYSIS OF HARMONIC STABILITY 

To perform the impedance-based analysis of harmonic 

stability in the built power system, a method of deriving the 

impedance ratio at each PoC of inverter is proposed in this 

section. It is noted from Fig. 3 that the equivalent system 

impedance seem from the PoC of inverter is indispensable in 

the impedance ratio. Hence, an equivalent system impedance 

derivation procedure is developed by the help of the nodal 

admittance matrix and used in the following analysis. 

A. System Equivalent Circuit 

Fig. 8 depicts the impedance-based equivalent circuit for 

the power system shown in Fig. 1. The power cables are 

represented as the Π-section models to include the effect of 

parasitic capacitors. Also, to facilitate the formulation of nodal 

admittance matrix, the Thevenin model of voltage-controlled 

inverter is converted to the Norton circuit where Yov,1=1/Zov,1. 

To obtain the equivalent system impedance at each PoC of 

inverter, the system nodal admittance matrix (Ync) including 

the closed-loop output admittances of inverters, as highlighted 
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Fig.  8.  Impedance-based equivalent circuit for the built power system.   

 

by the dot-dashed line in Fig. 8, is derived as 

  
*

,1 ,1 1 1

*

,2 2 2

*

,3 3 3

ov clv

cli g

cli g

Y G V V

G i V

G i V

   
      
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nc
Y  (26) 

  

,1

,2 ,1

,3 ,2

2

2

2

ov p p p

p oi p L p

p p oi p L

Y Y Y Y

Y Y Y Y Y

Y Y Y Y Y

   
      
     

ncY  (27) 

  

where Yp is the cable admittance, YL,1 and YL,2 are the 

admittances for loads 1 and 2 connected to Buses 2 and 3, 

respectively. Then, by inverting Ync, the nodal impedance 

matrix (Znc) is given by 
  

11 12 13

1

21 22 23

31 32 33

Z Z Z

Z Z Z

Z Z Z



 
    
  

nc ncZ Y  (28) 

  

where the elements are expanded in (29). 

It is worth noting that the diagonal elements of the nodal  

impedance matrix are the equivalent system impedances 

seen from the equivalent current sources of inverters, which 

include the closed-loop output impedances of inverters and the 

equivalent system impedances at the PoC of inverters. 

Consequently, the equivalent system impedances at the PoC 

of inverters can be derived by the following relationship 
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Further, comparing the term Z11 in (30) with (8), it is seen that 

the closed-loop response of the voltage-controlled inverter can 

also be expressed by 
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G s Z s Y s
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where Z11Yov,1 is the closed-loop gain of the minor feedback 

loop. Similarly, the closed-loop responses of the current-

controlled inverters can also be found by means of the nodal 

admittance matrix (Yno) derived at the PoC of inverters, which 

is highlighted by the dashed line in Fig. 8. 
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Together with (26), (28) and (29), the closed-loop response of 

the equivalent current sources can be derived as 
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Comparing (33) with (9), it can be found that the second and 

third diagonal elements of the closed-loop transfer matrix 

YnoZnc represent the closed-loop gains of the minor feedback 

loops for the current-controlled inverters. 

B. Impedance-Based Analysis 

Table I lists the main electrical parameters of the studied 

power system. Table II gives the parameters of the voltage and 

current controllers for inverters. The cables use the same Π-

section models, and two current-controlled inverters are also 

designed with the same parameters for the sake of simplicity.  

Fig. 9 shows the frequency responses of inner control loop 

gains, Tv(s) and Tc,m(s), for the voltage- and current-controlled 

inverters, respectively. The stable unterminated dynamic 

behaviors of inverters at the PoC are observed with the 

controllers parameters listed in Table II. This provides a 

theoretical basis for using the minor feedback loops to assess 

the harmonic stability of the power system. 

 
TABLE I 

MAIN ELECTRICAL PARAMETERS OF POWER SYSTEM 
 

Electrical Constants Values (p.u.a) 

Power cables 

(Π-section) 

Series inductance (Lp) 0.005 

Seres resistance (Rp) 0.013 

Shunt capacitance (Cp) 0.01 

RL load 1, 2 
Resistance (R1=R2) 0.12 

Inductance (L1 =L2) 5.06 

Voltage-controlled 

inverter 1 

Filter inductor (Lf,1) 0.03 

Filter capacitor (Cf,1) 0.13 

DC-link voltage (Vdc,1) 1.88 

Current-controlled 

inverter 2, 3 

Filter inductor (Lf,2 = Lf,3) 0.3 

Filter capacitor (Cf,2 = Cf,3) 0.024 

Filter inductor (Lg,2 = Lg,3) 0.035 

DC-link voltage (Vdc,2 =Vdc,3) 1.88 

Active power (P2 = P3) 0.1 

Reactive power (Q2 = Q3) 0 

a. System PU base voltage: 400 V, base frequency: 50 Hz, and base power: 

10 kVA. 

 

TABLE II 

CONTROLLER PARAMETERS OF INVERTERS 
 

Controllers parameters Values 

Voltage-controlled 

inverter 1 

Current controller Kpi 8 

Voltage controller  
Kpv 0.1 

Krv 100 

Sampling period Td,1 100 μs 

Current-controlled 

inverter 2, 3 

Current controller   
Kpgi,2= Kpgi,3 15 

Krgi,2= Krgi,3 600 

Sampling period Td,2= Td,3 100 μs 
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Fig.  9.  Frequency responses for the open-loop gains of the voltage-controlled 

inverter, Tv(s), and the current-controlled inverters, Tc(s). 

 

Fig. 10 depicts the Nyquist diagrams of the minor feedback 

loop gains of the voltage- and current-controlled inverters. 

Since the impedance ratios are described by single-input and 

single-output transfer functions, the Nyquist stability criterion 

can be directly used to evaluate the interactions among the 

inner control loops of inverters and the network dynamics. It 

is seen that the minor feedback loop for the voltage-controlled 

inverter is unstable whereas the minor feedback loops for the 

current-controlled inverters are stable. This implies that the 

impedance interaction at the PoC of the voltage-controlled 

inverter (Bus 1) causes the harmonic instability in the power 

system, and the admittance interactions at the PoC of current-

controlled inverters have no contribution to the harmonic 

instability. 

Fig. 11 shows the Nyquist diagrams of the minor feedback 

loop gains after adjusting the controller parameters for the 

voltage-controlled inverter. In this case, the proportional gains 

of the P current controller and the PR voltage controller are 

reduced (Kpi =5, Kpv=0.05). It is clear that all minor feedback 

loops become stable. This fact again indicates that the voltage-

controlled inverter with the controller parameters given in 

Table II causes the harmonic instability in the power system 

even if it has a stable unterminated dynamic behavior. 

V. SIMULATION AND EXPERIMENTAL RESULTS 

To validate the impedance-based stability analysis in the 

frequency-domain, the power system in Fig. 1 is built in the 

nonlinear time-domain simulations by using MATLAB and 

PLECS Blockset, and the experimental tests. 

A. Simulation Results 

Fig. 12 shows the simulated grid currents of inverters with 

the electrical constants and controller parameters given in 

Tables I and II. The simulated bus voltages are shown in Fig. 

13. It is seen that the harmonic-frequency oscillation occurs in 

the power system, which is confirms the frequency-domain 
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Fig.  10.  Nyquist plots of the minor feedback loop gains of inverters in the 

unstable case (a) Full view. (b) Zoom on (-1, j0). 

 

analysis in Fig. 10. 

In contrast, Fig. 14 shows the simulated grid currents of 

inverters after reducing the proportional gains of controllers 

for the voltage-controlled inverter (Kpi=5, Kpv=0.05). The 

simulated voltage at each bus of the system is shown in Fig. 

15. It is obvious that the harmonic instability phenomenon 

shown in Figs. 12 and 13 becomes stabilized in this case. 

This agrees well with the theoretical analysis in Fig. 11 and 

also verifies that the harmonic instability in the power system 

is caused by the voltage-controlled inverters rather than the 

current-controlled inverters. 

B. Experimental Results 

Fig. 16 shows a hardware picture of the built power-

electronics-based power system in laboratory. Three Danfoss 

frequency converters are employed to operate as a voltage- 

controlled inverter and two current-controlled inverters. The  
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Fig.  11.  Nyquist plots of the minor feedback loop gains of inverters in the 

stable case (a) Full view. (b) Zoom on (-1, j0). 

 

control algorithms of inverters are implemented in DS1006 

dSPACE system, where the DS5101 digital waveform output 

board is adopted to generate switching pulses in synchronous 

with the sampling circuit [42]. The current transducer LA 55-

P and voltage transducer LV 25-P are used to acquire current 

and voltage signals, respectively, for the digital control 

circuit.  

In the experimental tests, the bus voltages of the power 

system and grid currents of inverters are recorded by using 

the digital oscilloscope with the 250-kS/s sampling rate and 

the 100-kHz effective bandwidth. The current probe with the 

100-kHz bandwidth is adopted for the current measurement. 

The differential mode voltage probe with the 25-MHz 

bandwidth and maximum 1000-V Root Mean Square (RMS) 

is used for voltage measurement. 

First, the unstable case that is based on the controller 

parameters given in Table II is tested. Figs. 17 and 18 depict 



 

Fig.  12.  Simulated grid currents of inverters in the unstable case. 

 

 

Fig.  13.  Simulated bus voltages in the unstable case. 

 

the measured grid currents of inverters and the measured bus 

voltages, respectively. It is observed that the same harmonic-

frequency oscillation arises in the experimental test as in the 

simulation results shown in Figs. 12 and 13. Further, in both 

the simulation and experimental test, this harmonic-frequency 

oscillation propagates into the whole power system and leads 

to the unexpected harmonic disturbance to the current control 

loops of the current-controlled inverters. Consequently, even 

though no unstable condition is brought by the current-

controlled inverters, as shown in Fig. 10, the harmonic- 

frequency oscillations are still present in the grid currents of 

current-controlled inverters. Hence, it is difficult to identify 

the source of harmonic instability in the power system by 

merely observing the simulations and experimental results. 

The impedance-based analysis in the frequency-domain thus 

 

Fig.  14.  Simulated grid currents of inverters in the stable case. 

 

 

Fig.  15.  Simulated bus voltages in the stable case. 

 

 

Fig.  16.  Hardware picture of the built laboratory test setup. 
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Fig.  17.  Measured grid currents of inverters in the unstable case. 

 

 

Fig.  18.  Measured bus voltages in the unstable case. 

 

becomes important to reveal how each inverter contributes to 

the harmonic stability of the power system. 

Then, the stable case with the reduced proportional gains 

of the controllers for the voltage-controlled inverters (Kpi=5, 

 

Fig.  19.  Measured grid currents of inverters in the stable case. 

 

 

Fig.  20.  Measured bus voltages in the stable case. 

 

Kpv=0.05) is tested. Figs. 19 and 20 show the measured grid 

currents of inverters and bus voltages, respectively, where the 

stable operation of the power system is clearly observed. This 

matches well with the simulations results shown in Figs. 14 



and 15 and further validates the impedance-based stability 

analysis in Fig. 11. Together with Figs. 17 and 18, the 

experimental tests points out that the interaction between the 

voltage control loop of the voltage-controlled inverter and the 

rest of network results in harmonic-frequency oscillations 

propagating into the power system. 

VI. CONCLUSIONS 

This paper has discussed a modeling and analysis procedure 

for the harmonic stability problem in AC power-electronics-

based power systems. Two attractive stability analysis 

methods, i.e., the CCM and impedance-based approach have 

been briefly reviewed, and have found that the impedance-

based approach provides a more computationally efficient and 

design-oriented analysis tool than the CCM. The impedance-

based approach was expanded to a three-phase meshed and 

balanced network, where the harmonic instability resulted 

from the interactions of the inner control loops for the voltage- 

and current-controlled inverters was studied. A method for 

deriving impedance ratios was developed based on the system 

nodal admittance matrix. Time-domain simulations and 

experimental results have shown that the proposed approach 

could be a promising way to address the harmonic instability 

in AC power-electronics-based power systems. 
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