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M
ass-action kinetics are used in chemistry and chemical engineering to describe the dynamics

of systems of chemical reactions, that is, reaction networks [1], [2]. These models are a special

form of compartmental systems, which involve mass- and energy-balance relations [3]–[5].

Aside from their role in chemical engineering applications, mass-action kinetics have numer-

ous analytical properties that are of inherent inter-

est from a dynamical systems perspective. For

example, mass-action kinetics give rise to sys-

tems of differential equations having

polynomial nonlinearities. Polyno-

mial systems are notorious for their

intricate analytical properties even

in low-dimensional cases [6]–

[10]. Because of physical con-

siderations, however, mass-

action kinetics have special

properties, such as nonnega-

tive solutions, that are useful

for analyzing their behavior

[11]–[14].

With this motivation in

mind, this article has several

objectives. First, we provide a

general construction of the kinetic

equations based on the reaction

laws. We present this construction in

a state-space form that is accessible to

the systems and control community. This

presentation is based on the formulation given in

[11] and [15].

Next, we consider the nonnegativity of solutions to the kinetic

equations. Since the kinetic equations govern the concentrations of the species in the reaction network, it is

obvious from physical arguments that nonnegative initial conditions must give rise to trajectories that

remain in the nonnegative orthant. To demonstrate this fact, we show that the kinetic equations are essen-

tially nonnegative, and we prove that, for all nonnegative initial conditions, the resulting concentrations
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are nonnegative. A related result is mentioned in [11] and

[16]. In addition, we consider the realizability problem,

which is concerned with the inverse problem of construct-

ing a reaction network having specified essentially nonneg-

ative dynamics. In particular, we provide an explicit

construction of a reaction network for essentially nonnega-

tive polynomial dynamics involving a scalar state.

Next, we consider the reducibility of the kinetic equations.

In certain cases, such as in enzyme kinetics, kinetic equations

can be reduced in dimensionality by using constants involv-

ing initial concentrations. We provide a general statement of

this procedure.We then consider the stability of the equilibria

of the kinetic equations. To do this, we apply Lyapunov

methods to the kinetic equations, and we obtain results that

guarantee semistability, that is, convergence to a Lyapunov-

stable equilibrium that depends on the initial concentrations.

Semistability is the appropriate notion of stability for com-

partmental systems in general, and reaction networks in par-

ticular, where the limiting concentrationmay be nonzero and

may depend on the initial concentrations. Semistability

theory is developed in [17], which extends the linear semi-

stability results of [18] to nonlinear systems. Finally, we

revisit the zero deficiency result of [19] and [20], which pro-

vides rate-independent conditions that guarantee conver-

gence of the species concentrations. In this regard we have

two objectives. First, we present the zero deficiency result for

mass-action kinetics in standard matrix terminology, and,

second, we prove semistability using the techniques of [17].

REACTION NETWORKS

We begin by reviewing the general formulation of the

kinetic equations that describe chemical reactions with

mass-action kinetics. First, consider the familiar reaction

2H2 þO2 �!
k

2H2O: (1)

The quantities on the left-hand side of reaction (1) are the

reactants, the quantities on the right-hand side are the prod-

ucts, and k denotes the reaction rate. The reactants and prod-

ucts are collectively referred to as the species of the reaction.

Equation (1) can be rewritten as

X

3

j¼1

AjXj �!
k X

3

j¼1

BjXj, (2)

where X1, X2, and X3 denote the species H2, O2, and H2O,

respectively; A1 ¼ 2, A2 ¼ 1, A3 ¼ 0, B1 ¼ 0, B2 ¼ 0, and

B3 ¼ 2 are the stoichiometric coefficients; and k denotes the

reaction rate. Note that (2) can be written compactly using

the matrix-vector notation

AX�!
k

BX, (3)

where X ¼ ½X1 X2 X3�
T, A ¼ ½A1 A2 A3� ¼ ½2 1 0�, and B ¼

½B1 B2 B3� ¼ ½0 0 2�.

Next, consider the reversible reaction

Na2CO3 þ CaCl2 Ð
k1

k2
CaCO3 þ 2NaCl, (4)

which is a concise notation for the forward and backward

reactions

Na2CO3 þ CaCl2 �!
k1

CaCO3 þ 2NaCl, (5)

CaCO3 þ 2NaCl�!
k2

Na2CO3 þ CaCl2, (6)

where k1 and k2 are the reaction rates for the forward and

backward reactions, respectively. Now, let X1, X2, X3, and

X4 denote the species Na2CO3, CaCl2, CaCO3, and NaCl,

respectively, so that (4) can be written as

X1 þ X2 �!
k1

X3 þ 2X4, (7)

X3 þ 2X4 �!
k2

X1 þ X2, (8)

or, equivalently, as (3), whereX ¼ ½X1 X2 X3 X4�
T, k ¼ ½k1 k2�,

and

A ¼
1 1 0 0
0 0 1 2

� �

, B ¼
0 0 1 2
1 1 0 0

� �

:

Next, we formulate the kinetic equations for multiple

chemical reactions such as (7) and (8). Specifically, consider

s species X1, . . . ,Xs, where s � 1, whose interactions are gov-

erned by r reactions, where r � 1, comprising the reaction net-

work

X

s

j¼1

AijXj �!
ki
X

s

j¼1

BijXj, i ¼ 1, . . . , r, (9)

where, for i ¼ 1, . . . , r, ki > 0 is the reaction rate of the ith

reaction,
Ps

j¼1 AijXj is the reactant of the ith reaction, and
Ps

j¼1 BijXj is the product of the ith reaction. Note that each

reaction in the reaction network (9) is represented as being

irreversible. However, reversible reactions can be modeled by

including the reverse reaction as a separate reaction, as in the

case of reaction (4). Each stoichiometric coefficient Aij and Bij is

assumed to be a nonnegative integer. The reaction network

(9) can be written compactly inmatrix-vector form as

AX�!
k

BX; ð10Þ

where X ¼ ½X1 � � �Xs�
T is a column vector of species,

k ¼ ½k1 � � � kr�
T 2 ½0,1)r, and A and B denote the r3 s non-

negative matrices A ¼ ½Aij� and B ¼ ½Bij�.

To avoid vacuous cases, we assume that each species

X1, . . . ,Xs appears in the reaction network (10) with at least

one nonzero coefficientAij or Bij. This assumption is equiva-

lent to assuming that none of the columns of
�

A
B

�

is zero.

Furthermore, in special cases and only when specifically

mentioned, we allow ki ¼ 0, which effectively denotes the
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fact that the ith reaction is absent. Finally, we assume that,

for all i ¼ 1, . . . , r, rowi(A) 6¼ rowi(B) to avoid trivial

reactions of the form X1 �!
k

X1 or X1 þ X2 �!
k

X1 þ X2,

whose kinetics equations are _x1(t) ¼ 0 and _x1(t) ¼ 0,

_x2(t) ¼ 0, respectively.

THE LAW OF MASS ACTION

AND THE KINETIC EQUATIONS

To derive the dynamics of the reaction network, we invoke

the law of mass action [1], which states that, for an elementary

reaction, that is, a reaction in which all of the stoichiometric

coefficients of the reactants are one, the rate of reaction is

proportional to the product of the concentrations of the

reactants. In particular, consider the reaction

X1 þ X2 �!
k

bX3, (11)

where X1, X2, X3 are the species and b is a positive integer.

Then

_xi(t) ¼ �kx1(t)x2(t), xi(0) ¼ xi0, t � 0, i ¼ 1, 2, (12)

_x3(t) ¼ bkx1(t)x2(t), x3(0) ¼ x30, (13)

where xi(t), i ¼ 1, 2, 3, denotes the concentration of the spe-

cies Xi. Now, writing (1) as the elementary reaction

H2 þH2 þO2 �!
k

2H2O, (14)

the law of mass action implies that

_x1(t) ¼ �2kx21(t)x2(t), x1(0) ¼ x10, t � 0, (15)

_x2(t) ¼ �kx21(t)x2(t), x2(0) ¼ x20, (16)

_x3(t) ¼ 2kx21(t)x2(t), x3(0) ¼ x30, (17)

where x1(t), x2(t), and x3(t) denote the concentrations of H2,

O2, and H2O, respectively, at time t.

Similarly, let xi(t) denote the concentration of Xi, i ¼

1, . . . , 4, in (7) and (8), or, equivalently, the reversible reaction

(4). In this case, it follows from the law ofmass action that

_x1(t) ¼ �k1x1(t)x2(t)þ k2x3(t)x
2
4(t), x1(0) ¼ x10, t � 0, (18)

_x2(t) ¼ �k1x1(t)x2(t)þ k2x3(t)x
2
4(t), x2(0) ¼ x20, (19)

_x3(t) ¼ k1x1(t)x2(t)� k2x3(t)x
2
4(t), x3(0) ¼ x30, (20)

_x4(t) ¼ 2k1x1(t)x2(t)� 2k2x3(t)x
2
4(t), x4(0) ¼ x40: (21)

More generally, consider reaction (10) and, for j ¼ 1, . . . , s,

let xj(t) denote the concentration of the species Xj at time t.

Then, by applying the law of mass action, the dynamics of the

reaction network (10) are given by the kinetic equations

_x(t) ¼ (B� A)T½k � xA(t)�, x(0) ¼ x0, t � 0, (22)

where the notation k � xA is defined in ‘‘Matrix Notation’’ and

the notation xA is defined in ‘‘Vector-Matrix Exponentiation.’’

Defining K¼
D
diag(k1, . . . , kr), (22) can be written as

_x(t) ¼ (B� A)TKxA(t), x(0) ¼ x0, t � 0: (23)

Inmass-action kinetics the reaction order
Ps

j¼1 Aij of the ith

reaction is the sum of the stoichiometric coefficients of the

species appearing in the reactant of the ith reaction. Equation

(22), which is equivalent to [11, (4.7)], is a matrix-vector for-

mulation of mass-action kinetics. It can be seen that the

kinetic equations (22) are linear if and only if each row of A

contains exactly one 1 with the remaining entries equal to

zero, that is, if and only if each reaction is unimolecular. In this

case, it can be seen that xA ¼ Ax, and thus (22) becomes

_x(t) ¼ Mx(t), x(0) ¼ x0, t � 0, (24)

whereM 2 Rs3 s is defined by

M¼
D
(B� A)TKA: (25)

The reaction network (10) is not limited to closed sys-

tems for which conservation of mass holds. In fact, (10) can

also be used to represent open systems in which mass

removal andmass addition are allowed. For example, either

A ¼ 0 or B ¼ 0 (but not both) is allowed in the reaction

AX1 �!
k1

BX1. The kinetic equations for the reactions X1 �!
k1

0

and 0�!
k1

X1, which represent the removal and addition of

mass, are _x1(t) ¼ �k1x1(t) and _x1(t) ¼ k1 with solutions

x1(t) ¼ x1(0)e
�k1t and x1(t) ¼ k1tþ x1(0), respectively. The

reactions X1 �!
k1

2X1 and 2X1 �!
k1

3X1, which also represent

Matrix Notation

Avector x 2 Rp ¼ R
p31 is a p31 column vector, while the

set of p3q real matrices is denoted by R
p3q . For

x 2 Rp we write x �� 0 to indicate that every component of

x is nonnegative and x >> 0 to indicate that every compo-

nent of x is positive. In this case, we say that x is nonnega-

tive or positive, respectively. Likewise, A 2 Rp3 q is

nonnegative or positive if every entry of A is nonnegative or

positive, respectively, which is written as A �� 0 or A >> 0,

respectively. Let ½0,1)n and (0,1)n denote the nonnegative

and positive orthants of Rn, respectively; that is, if x 2 Rn,

then x 2 ½0,1)n and x 2 (0,1)n are equivalent, respec-

tively, to x �� 0 and x >> 0.

For vectors x , y 2 Rp and matrices A,B 2 Rp3q we use

x � y and A � B to denote component-by-component and

entry-by-entry multiplication, respectively. The p3p identity

matrix is written as Ip . The vector ½1, 1, . . . , 1�T is written as e.

The transposes of x 2 Rp and A 2 Rp3q are denoted by xT

and AT, respectively. For a matrix A 2 Rp3q , rowi (A) and

colj (A) denote the i th row and j th column of A, respectively.

Finally, R(A) and N (A) denote the range and null spaces of

A 2 Rp3q , respectively, q(A) denotes the spectral radius of

A, and spec (A) denotes the spectrum of A.
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the addition of mass, have the kinetics _x1(t) ¼ k1x1(t) and

_x1(t) ¼ k1x
2
1(t) with solutions x1(t) ¼ x1(0)e

k1t and x1(t) ¼

x1(0)=(1� k1x1(0)t), respectively. Note that the latter solu-

tion has finite escape time since it exists only on the interval

½0, 1=(k1x1(0))). Finally, the reactions X�!
k

Y and 2X�!
k

2Y,

although stoichiometrically equivalent, have different ki-

netic equations, namely, _x(t) ¼ �kx(t), _y(t) ¼ kx(t) and _x(t) ¼

�kx2(t), _y(t) ¼ kx2(t), respectively. We adopt the convention

that the law of mass action applies to the reaction involving

the minimum number of molecules necessary for the reac-

tion to occur.

Example 1

Consider the reaction network

X1 �!
k1

X2, (26)

X2 �!
k2

X1, (27)

so that s ¼ 2, r ¼ 2, and A and B are given by

A ¼
1 0
0 1

� �

, B ¼
0 1
1 0

� �

: (28)

The kinetic equations are thus given by

_x1(t) ¼ �k1x1(t)þ k2x2(t), x1(0) ¼ x10, t � 0, (29)

_x2(t) ¼ k1x1(t)� k2x2(t), x2(0) ¼ x20, (30)

that is, in linear system form (24), where

M ¼
�k1 k2
k1 �k2

� �

: (31)

n

Example 2

Consider the reaction network

X1 þ X2 �!
k1

2X1, (32)

2X1 �!
k2

X1 þ X2, (33)

so that s ¼ 2, r ¼ 2,

A ¼
1 1
2 0

� �

, B ¼
2 0
1 1

� �

: (34)

The kinetic equations are thus given by

_x1(t) ¼ k1x1(t)x2(t)� k2x
2
1(t), x1(0) ¼ x10, t � 0, (35)

_x2(t) ¼ �k1x1(t)x2(t)þ k2x
2
1(t), x2(0) ¼ x20: (36)

n

Example 3

The Lotka-Volterra reaction is given by

X1 �!
k1

2X1, (37)

X1 þ X2 �!
k2

2X2, (38)

X2 �!
k3

0, (39)

where x1 and x2 denote prey and predator species, respectively,

so that s ¼ 2 and r ¼ 3. Furthermore,A and B are given by

A ¼
1 0
1 1
0 1

2

4

3

5, B ¼
2 0
0 2
0 0

2

4

3

5: (40)

Consequently, the kinetic equations have the form

_x(t) ¼
1 �1 0

0 1 �1

� �
k1x1(t)

k2x1(t)x2(t)

k3x2(t)

2

6

4

3

7

5
,

x(0) ¼
x10

x20

� �

, t � 0, (41)

that is,

_x1(t) ¼ k1x1(t)� k2x1(t)x2(t), x1(0) ¼ x10, t � 0, (42)

_x2(t) ¼ �k3x2(t)þ k2x1(t)x2(t), x2(0) ¼ x20: (43)

n

Vector-Matrix Exponentiation

For x ¼ ½x1 . . . xq �
T 2 Rq and nonnegative A ¼ ½Aij � 2 R

p3 q ,

xA denotes the element of Rp whose i th component for

i ¼ 1, . . . ,p is the product xAi1

1 � � � x
Aiq

q : For example, if

A ¼
1 2

3 4

� �

;

then

xA ¼
x1x

2
2

x3
1 x

4
2

" #

:

We define 00 ¼
D
1. The matrix exponentiation operation

has many convenient properties [21], [S1]. For example, if

A,B 2 Rp3 q then x ðAþBÞ ¼ xAxB . If B 2 Rn3 p , then (xA)B ¼

xBA. Furthermore, (x � y )A ¼ (xA) � (yA) ¼ xAyA. Note that

x Ip ¼ x and x�A � (xA) ¼ e. Alternatively, if A 2 Rp3p then

x�Ip � xA ¼ xA�Ip . Furthermore, if det A 6¼ 0, x >> 0, and

y >> 0, then xA ¼ y implies that x ¼ yA�1

. In addition,

log xA ¼ A log x and eA log x ¼ xA, while xA ¼ y implies

A log x ¼ log y , where, for x ¼ ½x1, . . . , xs �
T 2 (0,1)p , log x

denotes the vector in R
p whose i th component is log xi .

Finally, if f (x ) ¼ xA then f 0(x ) ¼ diag(xA)A½diag(x )��1
, where

diag(x1, x2, . . . , xn)¼
D

x1
.
.

.

xn

" #

:

For x ¼ ½x1, . . . , xs �
T 2 Rp , ex denotes the vector in R

p

whose i th component is exi . Throughout the article ‘‘log’’

denotes natural logarithm.
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Example 4

Awidely studied reaction network [21] involves the interaction

of a substrate S and an enzyme E to produce a product P by

means of an intermediate species C. The reactions are given by

Sþ EÐ
k1

k2
C�!

k3
Pþ E (44)

so that s ¼ 4 and r ¼ 3. Letting X1 ¼ S, X2 ¼ C, X3 ¼ E, and

X4 ¼ P, the corresponding reaction network can bewritten as

X1 þ X3 �!
k1

X2, (45)

X2 �!
k2

X1 þ X3, (46)

X2 �!
k3

X3 þ X4: (47)

It thus follows that A and B are given by

A ¼
1 0 1 0
0 1 0 0
0 1 0 0

" #

, B ¼
0 1 0 0
1 0 1 0
0 0 1 1

" #

: (48)

Consequently, the kinetic equations have the form

_x(t) ¼

�1 1 0

1 �1 �1

�1 1 1

0 0 1

2

6

6

4

3

7

7

5

k1x1(t)x3(t)

k2x2(t)

k3x2(t)

2

6

4

3

7

5
,

x(0) ¼

x10
x20
x30
x40

2

6

4

3

7

5
, t � 0, (49)

that is,

_x1(t) ¼ k2x2(t)� k1x1(t)x3(t), x1(0) ¼ x10, t � 0, (50)

_x2(t) ¼ �(k2 þ k3)x2(t)þ k1x1(t)x3(t), x2(0) ¼ x20, (51)

_x3(t) ¼ (k2 þ k3)x2(t)� k1x1(t)x3(t), x3(0) ¼ x30, (52)

_x4(t) ¼ k3x2(t), x4(0) ¼ x40: (53)

n

NONNEGATIVITY OF SOLUTIONS

Since the states of the kinetic equations (22) represent con-

centrations, it is natural to expect that, for nonnegative

initial concentrations, the concentrations remain nonnega-

tive for as long as the solution exists. In this section, we

show that this property holds for the class of essentially

nonnegative systems, and then we show that the kinetic

equations (22) are in fact essentially nonnegative.

Definition 1

Let f ¼ ½f1 � � � fn�
T
: ½0,1)n ! R

n. Then f is essentially nonneg-

ative if, for all i ¼ 1, . . . , n, fi(x) � 0 for all x 2 ½0,1)n such

that xi ¼ 0, where xi denotes the ith component of x.

It is easy to see that the linear function f (x) ¼ Mx, where

M 2 Rn3 n, is essentially nonnegative if and only if all of the off-

diagonal entries of M are nonnegative. In this case, we say that

M is essentially nonnegative. In the terminology of [22] it follows

thatM is essentially nonnegative if andonly if�M is aZ-matrix.

For the following definitions and results, we consider

the system

_x(t) ¼ f (x(t)), x(0) ¼ x0, t 2 ½0,Tx0 ), (54)

where f : D ! R
n is locally Lipschitz,D is an open subset of

R
n, x0 2 D, and ½0,Tx0 ), where 0 < Tx0 � 1, is the maximal

interval of existence for the solution x( � ) of (54). A subset

U � D is invariant with respect to (54) if x0 2 U implies that

x(t) 2 U for all t 2 ½0,Tx0 ). The following technical result is

needed. For this result, Be(x) denotes the open ball centered at

x 2 Rn with radius e > 0.

Lemma 1

Consider the dynamical system (54), and let U 	 D be closed

relative toD. Then the following statements are equivalent:

i) For all x2U, limh!0þ infy2Ukxþhf (x)�yk=h¼0, where

k�k denotes the Euclidean vector norm on Rn.

ii) U is an invariant set with respect to (54).

Proof

Assume that i) holds. To show ii), let x0 2 U. Since f ( � ) is

Lipschitz continuous it follows that there exist e > 0 and

L > 0 such that, for all x, y 2 B2e(x0),

kf (x)� f (y)k � Lkx� yk: (55)

Let T 2 ½0,Tx0 ) be such that s(t, x), s(t, y) 2 B2e(x0) for all

t 2 ½0,T) and x, y 2 Be(x0) where s(t, x) 2 D denotes the solu-

tion to (54) at time t and initial condition x. Now, it follows

from Gronwall’s lemma [23, p. 81] that, for all x, y 2 Be(x0)

and t 2 ½0,T),

ks(t, x)� s(t, y)k � eLtkx� yk: (56)

Next, let t1 2 ½0,T) be such that ks(t, x0)� x0k < e=3 for all

t 2 (0, t1), and define u(t)¼
D
dist(s(t, x0),U)¼

D
infy2Uks(t, x0)�

yk. Note that since x0 2 U, it follows that u(0) ¼ 0 and

u(t) � ks(t, x0)� x0k < e=3 for all t 2 (0, t1).Now, let t 2 (0, t1)

and yt 2 U be such that ks(t, x0)� ytk� u(t) � e=3.Hence,

kyt � x0k ¼ kyt � s(t, x0)þ s(t, x0)� x0k

� ks(t, x0)� x0k þ ks(t, x0)� ytk

� ks(t, x0)� x0k þ u(t)þ e=3

< e:

Now, for all h > 0 such that tþ h � t1, since ks(t, x0)�

x0k < e=3 < e and kyt � x0k < e, it follows from (56) that

u(tþ h) ¼ inf
z2U

ks(tþ h, x0)� zk

� inf
z2U

fks(tþ h, x0)� s(h, yt)k þ ks(h, yt)� yt � hf (yt)k

þ kyt þ hf (yt)� zkg

¼ ks(tþ h, x0)� s(h, yt)k þ ks(h, yt)� yt � hf (yt)k

þ dist(yt þ hf (yt), U)

� eLhks(t, x0)� ytk þ ks(h, yt)� yt � hf (yt)k

þ dist(yt þ hf (yt), U), (57)
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which implies that

u(tþ h)� u(t)

h
�

eLh � 1

h

� �

u(t)þ
s(h, yt)� yt

h
� f (yt)

�

�

�

�

�

�

�

�

þ
dist(yt þ hf (yt),U)

h
:

Now, letting h�!0þ and using i) yields

lim sup
h�!0þ

u(tþ h)� u(t)

h
� Lu(t): (58)

Next, by Gronwall’s lemma [23, p. 81], it follows from (58)

that, for all t 2 (0, t1), 0 � u(t) � eLtu(0), and hence, since

u(0) ¼ 0, it follows that u(t) ¼ 0 for all t 2 (0, t1). Now, since

x0 2 U is arbitrary, it follows that, for every s1 > 0 such that

u(s1) ¼ 0, there exists h > 0 such that u(t) ¼ 0 for all

t 2 ½s1, s1 þ h). Next, let s¼
D
infft > 0 : u(t) > 0g and suppose,

ad absurdum, that s < Tx0 . Sinceu(t) ¼ 0 for all t 2 ½0, t1), it fol-

lows that s � t1 > 0 and, by the definition of s, u(t) ¼ 0 for all

t 2 ½0, s) or, equivalently, s(t, x0) 2 U for all t 2 ½0, s). Hence,

since s(s, x0) ¼ limt!s�s(t, x) and U is relatively closed with

respect to D, it follows that s(s, x0) 2 U. Therefore, u(s) ¼ 0,

which implies that there exists h > 0 such that u(t) ¼ 0 for all

t 2 ½s, sþ h), contradicting the definition of s. Thus, u(t) ¼ 0

for all t 2 ½0,Tx0 ), establishing the result.

Conversely, assume U is an invariant set with respect to

(54) so that, for all x0 2 U and h 6¼ 0,

dist(x0 þ hf (x0),U) � ks(h, x0)� x0 � hf (x0)k

¼ jhj
s(h, x0)� x0

h
� f (x0)

�

�

�

�

�

�

�

�

:

Now, the result follows by letting h�!0þ. h

The flow-invariant set result given by Lemma 1, which is

proved in [24], uses the fact that the vector field f in (54) is

Lipschitz continuous on D. This result is generalized in [25]

to the case where f is continuous onD and (54) has a unique

right maximally defined solution.

Theorem 1

Suppose that ½0,1)n 	 D. Then ½0,1)n is an invariant set

with respect to (54) if and only if f : D�!Rn is essentially

nonnegative.

Proof

Suppose f is essentially nonnegative, and let x 2 ½0,1)n. If

xi ¼ 0, then xi þ hfi(x) ¼ hfi(x) � 0 for all h � 0, whereas, if

xi > 0, then xi þ hfi(x) > 0 for all jhj sufficiently small. Thus,

xþ hf (x) 2 ½0,1)n for all h > 0 sufficiently small, and hence,

limh!0þ infy2½0,1)nkxþ hf (x)� yk=h ¼ 0. It now follows from

Lemma 1 that, with x(0) ¼ x, x(t) 2 ½0,1)n for all t 2 ½0,Tx0 ).

Conversely, suppose that ½0,1)n is invariant with respect

to (54). Let x(0) 2 ½0,1)n, let x(t), t 2 ½0,Tx0 ), denote the solu-

tion to (54), and suppose there exists i 2 f1, . . . , ng such that

xi(0) ¼ 0 and fi(x(0)) < 0. Then, since f is continuous, there

exists h > 0 sufficiently small such that fi(x(t)) < 0 for all

t 2 ½0, h). Hence, xi(t) is decreasing on ½0, h) and therefore

x(t) 62 ½0,1)n for all t 2 ½0, h), which is a contradiction. h

Proposition 1

Define f : Rs ! R
s by f (x) ¼ (B� A)T(k � xA). Then f is

locally Lipschitz and essentially nonnegative.

Proof

Since f is continuously differentiable it follows that f is locally

Lipschitz. Next, let x 2 ½0,1)s. For j 2 f1, . . . , sgwehave

fj(x) ¼ ½colj(B)� colj(A)�
T

k1x
row1(A)

.

.

.

krx
rowr(A)

2

6

4

3

7

5

¼
X

r

i¼1

Bijkix
rowi(A) �

X

r

i¼1

Aijkix
rowi(A):

Note that the first summation is nonnegative since x is non-

negative. Next, note that Aijkix
rowi(A) contains the factor

Aijx
Aij

j . Now, to verify Definition 1, let xj ¼ 0. If Aij > 0, then

Aijx
Aij

j ¼ Aij(0
Aij ) ¼ 0, while, if Aij ¼ 0, then Aijx

Aij

j ¼ limxj!0

0(x0j ) ¼ limxj!00(1) ¼ 0. Consequently, the second summa-

tion is zero for all nonnegative A1j, . . . ,Arj whenever xj ¼ 0.

Thus, f is essentially nonnegative. h

Theorem 2

½0,1)s is an invariant set with respect to (22).

Proof

The result is an immediate consequence of Theorem 1 and

Proposition 1. h

Corollary 1

Consider the linear kinetic reaction (24), where M ¼

(B� A)TKA and A has exactly one nonzero entry in each

row. Then f (x) ¼ Mx is essentially nonnegative, and ½0,1)s

is an invariant set with respect to (24).

Proof

Since A is nonnegative, K is nonnegative and diagonal, and

A has exactly one nonzero entry in each row, it follows that

ATKA is diagonal. Now, since BTKA is nonnegative it fol-

lows thatM is essentially nonnegative, and hence f (x) ¼ Mx

is essentially nonnegative. The invariance of ½0,1)s is a

direct consequence of Theorem 2. h

In the linear case f (x) ¼ Mx, whereM 2 Rn3 n is essentially

nonnegative, Theorem 1 implies the following result [3], [26].

For this special caseweprovide a separate, self-containedproof.

Proposition 2

Let M 2 Rn3 n. Then M is essentially nonnegative if and

only if eMt �� 0 for all t � 0.

Proof

To prove necessity, note that, sinceM is essentially nonneg-

ative it follows that Ma ¼
D
Mþ aIn is nonnegative, where

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 2, 2009 at 20:41 from IEEE Xplore.  Restrictions apply. 



66 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2009

a¼
D
�minfM11, . . . ,Mnng. Hence, eMat �� 0 for all t � 0,

and thus eMt ¼ e�ateMat �� 0 for all t � 0. Conversely, sup-

pose eMt �� 0 for all t � 0, and supposeM is not essentially

nonnegative, that is, there exist distinct i, j such thatMij < 0.

Now, since eMt ¼
P1

k¼0 (k!)
�1tkMk, it follows that

½eMt�ij ¼ (In)ij þ tMij þ o(t),

where oðtÞ=t ! 0 as t ! 0. Thus, for i 6¼ j, it follows that

½eMt�ij < 0 for all t sufficiently small, which is a contradic-

tion. Hence,M is essentially nonnegative. h

Example 1, Continued

For the kinetic equations (24) withM given by (31) it can be

seen that M ¼
�

�k1 k2
k1 �k2

�

is essentially nonnegative. The

exponential ofM is given by

eMt ¼ I2 þ
1� e�(k1þk2)t

k1 þ k2
M,

which is nonnegative for all t � 0. Consequently, if x(0) is

nonnegative, then the solution x( � ) of (24) given by x(t) ¼

eMtx(0) is nonnegative for all t � 0. n

Examples 2,3,4, Continued

It can be seen that the function f for each of these examples

is essentially nonnegative. n

REALIZATION OF MASS-ACTION KINETICS

In this section, we consider the realization problem, which is

concerned with the construction of a reaction network

whose dynamics are given by specified kinetic equations. In

this case, the reaction network is a realization of the kinetic

equations. Note that the polynomial

f (x) ¼
X

m

i¼0

aix
i (59)

in the real scalar x is essentially nonnegative if and only if

a0 � 0.

Theorem 3

Consider the system (54), where n ¼ 1 and f : R! R is an

essentially nonnegative polynomial of degree m of the form

(59). Then there exists a reaction network of the form (10)

with s ¼ 1 and r � mþ 1, and with stoichiometric coefficient

matrices A and B having nonnegative integer entries such

that f (x) ¼ (B� A)T(k � xA).

Proof

For i ¼ 1, . . . , m, defineA,B, and k 2 ½0,1)mþ1 as

Ai ¼
D
i, Bi ¼

D
(iþ sign ai), ki ¼

D
jaij, (60)

where sign 0¼
D
0. Note that A �� 0 and, since a0 � 0, it fol-

lows that B �� 0. Then the dynamics of the reaction net-

work (10) are given by the kinetic equation

_x(t) ¼ (B� A)T(k � xA(t))

¼
X

m

i¼0

(Bi � Ai)kix
Ai (t)

¼
X

m

i¼0

(sign ai)jaijx
i(t)

¼
X

m

i¼0

aix
i(t)

¼ f (x(t)):

Hence, (10) is a realization of (22), where f is given by (59). h

To demonstrate Theorem 3, let m ¼ 3. Then a realization

of _x1(t) ¼ a3x
3
1(t)þ a2x

2
1(t)þ a1x1(t)þ a0 is given by the reac-

tion network

0 �!
a0

X1, (61)

X1 �!
ja1j

(1þ sign a1)X1, (62)

2X1 �!
ja2j

(2þ sign a2)X1, (63)

3X1 �!
ja3j

(3þ sign a3)X1, (64)

where we follow the convention that any reaction with rate

constant zero is removed from the network to avoid trivial

reactions of the form aX1 �!
0

bX1.

If n � 2 and f is an essentially nonnegative multivariate

polynomial in x1, . . . , xn, then there does not necessarily exist

a reaction network such that f (x) ¼ (B� A)T(k � xA). For

example, consider the case n ¼ 2 and the dynamic equations

_x1(t) ¼ x22(t)� 2x32(t)þ x42(t), x1(0) ¼ x10, t � 0, (65)

_x2(t) ¼ 0, x2(0) ¼ x20: (66)

Then

f (x1, x2) ¼
x22 � 2x32 þ x42

0

� �

is essentially nonnegative. However, (65), (66) cannot be real-

ized as a reaction network. To see this, suppose that (65), (66)

are the kinetic equations for a reaction network of r reactions

involving the species X1 and X2. Since f ( � , � ) is independent

of x1, it follows that the reaction networkmust have the form

aiX2�!
ki

biX1 þ ciX2, (67)

where ai, bi, and ci are nonnegative integers and ki � 0 for

all i ¼ 1, . . . , r. Now, it follows from the law of mass action

that the kinetic equations for (67) are given by

_x1(t) ¼
X

r

i¼1

bikix
ai
2 (t), x1(0) ¼ x10, t � 0, (68)

_x2(t) ¼
X

r

i¼1

(ci � ai)kix
ai
2 (t), x2(0) ¼ x20: (69)

Comparing (65) with (68), it follows that ai 2 f2, 3, 4g

for all i ¼ 1, . . . , r. Furthermore,
P

i2R biki ¼ �2, where
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R¼
D
fi 2 f1, . . . , rg : ai ¼ 3g, which is a contradiction since

bi � 0 and ki � 0 for all i ¼ 1, . . . , r.

Next, we present a necessary and sufficient condition

that guarantees a reaction network realization such that

f (x) ¼ (B� A)T(k � xA).

Theorem 4

Consider the system (54), where n > 1 and f : Rn ! R
n is a

multivariate polynomial. Then there exists a reaction net-

work of the form (10) with s ¼ n such that

f (x) ¼ (B� A)T(k � xA), where the stoichiometric coefficient

matrices A and B have nonnegative integer entries, if and

only if for each j 2 f1, . . . , ng, fj(x1, x2, . . . , xj�1, 0, xjþ1, . . . , xn)

is a multivariate polynomial with nonnegative coefficients.

Proof

To prove sufficiency, let j 2 f1, . . . , ng. By assumption, fj(x)

is a sum of terms either of the form

ajx
p1
1 x

p2
2 � � � x

pj
j � � � xpnn , (70)

where pi � 0 for all i ¼ 1, . . . , n and pj > 0, or of the form

bjx
q1
1 � � � x

qj�1

j�1x
qjþ1

jþ1 � � � x
qn
n , (71)

with bj > 0. Next, note that the reaction

X

n

i¼1

piXi �!
jajj

(pj þ sign aj)Xj þ
X

n

i¼1, i 6¼j

piXi, (72)

contributes the term (70) to _xj and no terms to _xi for all

i ¼ 1, . . . , n such that i 6¼ j. Similarly, the reaction

X

n

i¼1

qiXi �!
bj

Xj þ
X

n

i¼1, i6¼j

qiXi, (73)

contributes the term (71) to the rate of _xj and zero terms to

_xi for all i ¼ 1, . . . , n, i 6¼ j. Hence, for all j ¼ 1, . . . , n, each

term of fj(x) can be realized as a valid reaction which estab-

lishes sufficiency.

Toprovenecessity, let x 2 ½0,1)s and let j 2 f1, . . . , sg. Then

fj(x) ¼
X

r

i¼1

(Bij � Aij)kix
rowi(A):

Let xj ¼ 0. If Aij > 0, then xrowi(A) and hence (Bij � Aij)

kix
rowi(A) ¼ 0, whereas, if Aij ¼ 0, then

(Bij � Aij)kix
rowi(A) ¼ lim

xj�!0þ
Bijkix

Ai1

1 � � � x
Ai(j�1)

j�1 x0j x
Ai(jþ1)

jþ1 � � � xAin
n :

Hence,

fj(x) ¼
X

i2I j

Bijkix
Ai1

1 � � � x
Ai(j�1)

j�1 x
Ai(jþ1)

jþ1 � � � xAin
n ,

where I j ¼
D
fi 2 f1, . . . ,rg :Aij ¼ 0g, establishing the result. h

REDUCIBILITY OF THE KINETIC EQUATIONS

In this section, we provide a technique for reducing the num-

ber of kinetic equations needed to model the dynamics of the

reaction network (10). The reduced-order kinetic equations

model a subset of the species appearing in the original reaction

network. This technique is based on the fact that, while x(t),

t � 0, is confined to the nonnegative orthant for nonnegative

initial conditions, the structure of the kinetic equations (22)

impose an additional constraint on the allowable trajectories.

To state this result we define the stoichiometric subspace S by

S ¼
D
R((B� A)T), which is a subspace of Rs. The dimension of

this subspace is given by q¼
D
rank((B� A)T) ¼ rank(B� A),

which is the rank of the reaction network. Note that

q � minfr, sg. The following result shows that the solution of

the kinetic equations (22) is confined to an affine subspace that

is parallel to the stoichiometric subspace. For convenience, we

let P 2 Rs3 s denote the unique orthogonal projector whose

range is S, and define P? ¼
D
Is � P. In terms of the generalized

inverse ( � )þ, P is given by P ¼ (B� A)T½(B� A)T�þ ¼

(B� A)þ(B� A). Note that, if z 2 Rs, then Pz ¼ z if and only if

z 2 S, and thereforeP?z ¼ 0 if and only if z 2 S.

Proposition 3

Suppose x(0) 2 ½0,1)s. Then, for all t 2 ½0,Tx(0)), the solution

x( � ) of (22) satisfies

x(t) 2 (x(0)þ S) \ ½0,1)s: (74)

Proof

It follows from Proposition 1 that, for all t 2 ½0,Tx(0)), x(t) is

confined to the nonnegative orthant. To show that x(t) 2

x(0)þS for all t2½0,Tx(0)), note that _x(t)2S for all t2½0,Tx(0)),

which implies that d=dtP?½x(t)�x(0)�¼ P? _x(t)¼0 for all

t2½0,Tx(0)). Hence, P?½x(t)�x(0)� is constant for all t2½0,Tx(0)).

Thus, for all t2½0,Tx(0)), it follows that P?½x(t)�x(0)�¼

P?½x(0)�x(0)�¼0, and hence, x(t)� x(0)2S, as required. h

Corollary 2

Suppose x(0) 2 ½0,1)s. Then (x(0)þ S)\ ½0,1)s is an invari-

ant set with respect to (22).

Proof

Let x̂(0) 2 (x(0)þ S) \ ½0,1)s so that x̂(0) ¼ x(0)þ w, where

w 2 S, and let x̂( � ) denote the corresponding solution to

(22). Then, since x̂(0) 2 ½0,1)s, it follows from Proposition 3

that, for all t 2 ½0,Tx̂(0)),

x̂(t) 2 (x̂(0)þ S) \ ½0,1)s

¼ (x(0)þ wþ S) \ ½0,1)s

¼ (x(0)þ S) \ ½0,1)s,

establishing the invariance. h

Proposition 3 shows that the solution x( � ) of the kinetic

equations (22) is confined to the stoichiometric compatibility

class (x(0)þ S) \ ½0,1)s, which is a q-dimensional manifold
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with boundary. (The set (x(0)þ S) \ (0,1)s is a positive

stoichiometric compatibility class.) This fact suggests that the

dynamics of the reaction network can be represented by a

set of q species. In fact, the following result shows that, if

q < s, then the number of species can be reduced from s to q.

Since q � minfr, sg, this reduction is always possible when

r < s. For convenience, the following result assumes that

the species x1, . . . , xs are labeled such that the first q col-

umns of B� A are linearly independent.

Proposition 4

Assume that q < s. Furthermore, partition A ¼ ½A1 A2� and

B ¼ ½B1 B2�, where A1,B1 2 R
r3 q, and assume that

rank(B1 � A1) ¼ q. In addition, let F 2 Rq3 (s�q) satisfy

A2 � B2 ¼ (A1 � B1)F. Finally, partition x ¼ ½x̂T1 x̂T2 �
T, where

x̂1 ¼
D
½x1 � � � xq�

T and x̂2 ¼
D
½xqþ1 � � � xs�

T. Then

x̂2(t) ¼ FTx̂1(t)þ c, x̂2(0) ¼ x̂20, t � 0, (75)

where c¼
D
x̂2(0)� FTx̂1(0) 2 R

s�q, and x̂1( � ) satisfies

_̂x1(t) ¼ (B1 � A1)
T½k � x̂A1

1 (t) � (FTx̂1(t)þ c)A2 �,

x̂1(0) ¼ x̂10, t � 0: (76)

Proof

Left multiplying (22) by ½FT � Is�q� yields _̂x2(t) ¼ FT _̂x1(t),

which implies (75). Next, note that _̂x1(t) ¼ (B1 � A1)
T

½k � xA(t)� ¼ (B1 � A1)
T½k � x̂A1

1 (t) � x̂A2

2 (t)�, which, with (75),

yields (76). h

Example 1, Continued

Note that s¼ 2, r¼ 2, and q¼ 1< s, and thus Proposition 4

can be applied with F¼�1. It thus follows that x2(t)¼

�x1(t)þc for all t� 0, where c¼
D
x1(0)þx2(0). Applying

Proposition 4 with x̂1 ¼ x1 and x̂2 ¼ x2, (76) yields the scalar

kinetic equation

_x1(t)¼�(k1þk2)x1(t)þ k2c, x1(0)¼ x10, t� 0, (77)

which is essentially nonnegative. A reduced reaction net-

work realization for this kinetic equation is given by

0 �!
k2c

X1, (78)

X1 �!
k1þk2

0, (79)

for which q ¼ s ¼ 1 and r ¼ 2. n

Example 2, Continued

Note that s ¼ 2, r ¼ 2, and q ¼ 1 < s, and thus Proposition 4

can be applied with F ¼ �1. It thus follows that

x2(t) ¼ �x1(t)þ c for all t � 0, where c¼
D
x1(0)þ x2(0).

Applying Proposition 4 with x̂1 ¼ x1 and x̂2 ¼ x2, (76) yields

the scalar kinetic equation

_x1(t) ¼ �(k1 þ k2)x
2
1(t)þ k1cx1(t), x1(0) ¼ x10, t � 0, (80)

which is essentially nonnegative. A reaction network real-

ization for this reduced-order kinetic equation is given by

X1 �!
k1c

2X1, (81)

2X1 �!
k1þk2

X1, (82)

for which q ¼ s ¼ 1 and r ¼ 2. n

Example 3, Continued

Note that s ¼ 2, r ¼ 3, and q ¼ 2 ¼ s, and thus reduction is

not possible. n

Example 4, Continued

Note that s ¼ 4, r ¼ 3, and q ¼ 2 < s, and thus Proposition 4

can be applied with F ¼
�

0 �1
�1 �1�. It thus follows that x3(t) ¼

�x2(t)þ c1 and x4(t) ¼ �x1(t)� x2(t)þ c2 for all t � 0, where

c1¼
D
x2(0)þ x3(0) and c2¼

D
x1(0)þ x2(0)þ x4(0). Applying

Proposition 4with x̂1 ¼ ½x1 x2�
T and x̂2 ¼ ½x3 x4�

T, (76) yields

_x1(t) ¼ �k1c1x1(t)þ k2x2(t)þ k1x1(t)x2(t), x1(0) ¼ x10, t � 0,

(83)

_x2(t) ¼ k1c1x1(t)� (k2 þ k3)x2(t)� k1x1(t)x2(t), x2(0) ¼ x20,

(84)

which is essentially nonnegative. The dynamics of the sys-

tem (83) and (84) are discussed in [21] and the references

given therein. A reaction network realization for these

reduced-order kinetic equations are given by

X1 �!
k1c1

X2, (85)

X2 �!
k2

X1, (86)

X2 �!
k3

0, (87)

X1 þ X2 �!
k1

2X1, (88)

for which q ¼ s ¼ 2 and r ¼ 4: n

Example 4, Continued

We now show that not every reduced-order kinetic equation

can be realized as a reaction network. For convenience, we rela-

bel the species of Example 4 as X1 ¼ S, X2 ¼ P, X3 ¼ C, and

X4 ¼ E. The reaction network (45)–(46) can nowbewritten as

X1 þ X4 �!
k1

X3, (89)

X3 �!
k2

X1 þ X4, (90)

X3 �!
k3

X4 þ X2, (91)

whose kinetic equations are

_x1(t) ¼ �k1x1(t)x4(t)þ k2x3(t), x1(0) ¼ x10, t � 0, (92)

_x2(t) ¼ k3x3(t), x2(0) ¼ x20, (93)

_x3(t) ¼ k1x1(t)x4(t)� (k2 þ k2)x3(t), x3(0) ¼ x30, (94)

_x4(t) ¼ �k1x1(t)x4(t)þ (k2 þ k2)x3(t), x4(0) ¼ x40: (95)

Since s ¼ 4, r ¼ 3, and q ¼ 2 < s, Proposition 4 can be

applied with x̂1 ¼ ½x1 x2�
T, x̂2 ¼ ½x3 x4�

T, and F ¼
�

�1 1
�1 1

�

. It

thus follows that x3(t) ¼ �x1(t)� x2(t)þ c1 and x4(t) ¼

x1(t)þ x2(t)þ c2 for all t � 0, where c1 ¼
D
x1(0)þ x2(0)þ x3(0)
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and c2 ¼
D
x4(0)� x1(0)� x2(0). By applying Proposition 4, it

follows from (76) that

_x1(t) ¼ �k1x
2
1(t)� k1x1(t)x2(t)� (k1c2 þ k2)x1(t)

� k2x2(t)þ k2c1, x1(0) ¼ x10, t � 0, (96)

_x2(t) ¼ �k3x1(t)� k3x2(t)þ k3c1, x2(0) ¼ x20, (97)

which have nonnegative solutions as long as the initial condi-

tions coincide with the initial conditions of the original kinetic

equations (92)–(95). However, due to the terms �k2x2 and

�k3x1, (96), (97)arenotessentiallynonnegative,andhence, there

exist initial conditions such that solutions become negative.

Therefore, (96), (97)arenot realizablebya reactionnetwork. n

The following result presents conditions that guarantee

nonnegativity of the solutions to the reduced-order kinetic

equations (76).

Proposition 5

Assume that q < s. Furthermore, partition A ¼ ½A1 A2� and

B ¼ ½B1 B2�, where A1,B1 2 R
r3 q, and assume that rank(B1�

A1) ¼ q. In addition, let F 2 Rq3 (s�q) satisfy A2 � B2 ¼

(A1 � B1)F. Finally, partition x¼½x̂T1 x̂
T
2 �

T, where x̂1¼
D
½x1 ���xq�

T

and x̂2¼
D
½xqþ1 ���xs�

T. Then, for all x̂1(0)2½0,1)q and c2Rs�q

such that cþFTx̂1(0)2½0,1)s�q, the solution x̂1ðtÞ to (76) is

nonnegative for all t�0.

Proof

With x̂2(0) ¼ cþ FTx̂1(0), it follows from Proposition 4 that

the solution to (22) is given by ½x̂T1 (t) x̂
T
2 (t)�

T for all t � 0,

where x̂2(t) is given by (75). Hence, since x̂1(0) �� 0 and

x̂2(0) �� 0, it follows that x̂1(t) �� 0 for all t � 0. h

STABILITY ANALYSIS

Wenow consider the stability of equilibria of the kinetic equa-

tions (22). First, we define several notions of stability for the

system (54), where f : D ! R
n is locally Lipschitz continuous

on D and D � R
n is open. Note that, since f ( � ) is Lipschitz

continuous, it follows that, for all x0 2 D, (54) has a unique

solution on the maximum interval of existence ½0,Tx0 ). If

xe 2 D satisfies f (xe) ¼ 0, then xe is an equilibrium of (54).

Definition 2

Let U � D be invariant with respect to (54), and let xe 2 U be

an equilibrium of (54). Then xe is Lyapunov stable with

respect to U if, for every relatively open subset Ue of U con-

taining xe there exists a relatively open subset Ud of U con-

taining xe such that, if x(0) 2 Ud, then the solution x( � ) of

(54) satisfies x(t) 2 Ue for all t 2 ½0,1). Furthermore, xe is

semistable with respect to U if xe is Lyapunov stable with

respect to U and there exists a relatively open neighborhood

Ue � U of xe such that, for every x(0) 2 Ue, limt!1x(t) is a

Lypunov stable equilibrium with respect to U. In addition,

xe is asymptotically stablewith respect to U if xe is Lyapunov

stable with respect to U and there exists a relatively open

subset Ud of U containing xe such that, if x(0) 2 Ud, then

limt!1x(t) ¼ xe. Finally, xe is globally asymptotically stablewith

respect toU if the previous statement holdswithUd ¼ U.

Next, we define equilibria for the kinetic equations (22).

Definition 3

Avector xe 2 ½0,1)s satisfying

(B� A)T(k � xAe ) ¼ 0 (98)

is an equilibrium of (22). If, in addition, xe 2 (0,1)s, then xe
is a positive equilibrium of (22).

Let E denote the set of equilibria of (22), and let Eþ � E

denote the set of positive equilibria of (22). The following

result can be used to obtain additional equilibria from

known equilibria.

Proposition 6

Let z 2 N (A) and let k 2 (0,1). If xe 2 E, then kz � xe 2 E.

Furthermore, if xe 2 Eþ, then kz � xe 2 Eþ.

Proof

Note that

(B� A)TK(kz � xe)
A ¼ (B� A)TK((kz)A � xAe )

¼ (B� A)TK(kAz � xAe )

¼ (B� A)TKxAe :

The proof for the case xe 2 Eþ is identical. h

Note that if xe is an equilibrium but not a positive equilib-

rium, then at least one of the species has zero concentration

for this solution. Furthermore, it can be seen that xe ¼ 0 is an

equilibrium of (22) if and only if (22) has no reaction of the

form 0 �!
k

C, whereC is a nonzero product and k > 0.

Example 1, Continued

For this example E ¼ f(x1, x2) 2 ½0,1)2 : x2 ¼ (k1=k2)x1g. n

Example 2, Continued

For this example E ¼ f(x1, x2) 2 ½0,1)2 : x1 ¼ 0 or x2 ¼ (k2=

k1)x1g. For the reduced system (80) E ¼ f0, k1c=(k1 þ k2)g. n

Example 3, Continued

For this example E ¼ f(0, 0), (k3=k2, k1=k2)g. n

Example 4, Continued

For this example E ¼ f(x1, x2, x3, x4) 2 ½0,1)4 : x2 ¼ 0 and

x1x3 ¼ 0g. For the reduced system (83), (84), if c1 ¼ x2(0)þ

x3(0) > 0, then E ¼ f(0, 0)g, whereas, if c1 ¼ x2(0)þ x3(0) ¼

0, then E ¼ f(x1, 0) : x1 � 0g. n

Next we analyze the stability of equilibria of the kinetic

equations (22) by means of Lyapunov methods. The follow-

ing standard result [23, p. 193] concerns Lyapunov and

asymptotic stability.

Theorem 5

Let U � D be invariant with respect to (54), and let

xe 2 U satisfy f (xe) ¼ 0. Let V : U ! R be a continuously
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differentiable function and assume that V(xe) ¼ 0, V(x) > 0

for all x 2 Unfxeg, and _V(x)¼
D
V0(x)f (x) � 0 for all x 2 U.

Then xe is Lyapunov stable with respect to U. If, in addition,
_V(x) < 0 for all x 2 Unfxeg, then xe is asymptotically stable

with respect to U. Finally, if V is proper, that is, V�1(K) is

relatively compact with respect toD for all compact subsets

K of R, and _V(x) < 0 for all x 2 Unfxeg, then xe is globally

asymptotically stable with respect to U.

Note that if U ¼ ½0,1)s, then V is proper if and only if V

is radially unbounded. The following result given in [17]

provides a sufficient condition for semistability.

Theorem 6

Assume that U � D is closed and invariant with respect to (54),

and suppose that every trajectory with x(0) 2 U of (54) is

bounded. Furthermore, letV : U ! R be a continuously differ-

entiable function such that _V(x) � 0 for all x 2 U. Finally, letM

denote the largest invariant subset of fx 2 U : _V(x) ¼ 0g. If

every element of M is a Lyapunov stable equilibrium with

respect toU, then every solution to (54)with x(0) 2 U converges

to an equilibrium that is semistablewith respect toU.

STABILITY OF LINEAR KINETICS

First we consider the linear case, that is, the case in which

(54) is of the form

_x(t) ¼ Mx(t), x(0) ¼ x0, t � 0, (99)

where M 2 Rn3 n. In this case, the following results hold. An

equilibrium xe of (99) is Lyapunov stable (respectively, semi-

stable) if and only if every equilibrium xe of (99) is Lyapunov

stable (respectively, semistable). Furthermore, if an equilib-

rium of (99) is asymptotically stable, then xe ¼ 0. Thus, all

three types of stability can be characterized independently of

the equilibrium. Specifically, the equilibrium xe ¼ 0 of (99) is

asymptotically stable if and only if every eigenvalue ofM has

negative real part; an equilibrium xe of (99) is semistable if

and only if every eigenvalue of M has negative real part or is

zero and, if M is singular, the zero eigenvalue is semisimple;

and an equilibrium xe of (99) is Lyapunov stable if and only if

every eigenvalue of M has nonpositive real part and every

eigenvalue with zero real part is semisimple [27, pp. 437, 438].

Now, we specialize the above results to (24) withM given

by (25). The following result follows from results given in

[22, pp. 135, 136, 153–155]. However, we provide proofs

based on Theorem 5 and Theorem 6. For these proofswe con-

struct a linear Lyapunov function that can be interpreted as

the mass of the system. To do this, let li > 0, i ¼ 1, . . . , s,

denote the molecular mass of the ith species, and define

l¼
D
½l1 � � �ls�

T. Then the function V(x) ¼ lTx represents the

total mass of the system. Note that arbitrary constants li > 0

can be used, and thus ‘‘mass’’ need not be interpreted liter-

ally. Note that V is a positive-definite function with respect

to ½0,1)s. We note that the following result makes no use of

the structure of M except that it is essentially nonnegative.

For the proof of this result, recall that �M is an M-matrix if

and only if �M is a Z-matrix and every eigenvalue ofM has

nonnegative real part [5, Definition 2.10].

Proposition 7

Consider the following statements:

i) There exists l >> 0 such that MTl �� 0:

ii) M is Lyapunov stable.

iii) M is semistable.

iv) There exists l �� 0 such that l 6¼ 0 and MTl �� 0.

Then i) implies ii), ii) is equivalent to iii), and iii) implies iv).

Furthermore, the following statements are equivalent:

v) M is asymptotically stable.

vi) There exists l >> 0 such that MTl << 0

vii) There exists l �� 0 such that MTl << 0.

Proof

Define V(x)¼
D
lTx so that V(0) ¼ 0 and V(x) > 0 for all

x 2 ½0,1)snf0g. Furthermore, _V(x) ¼ lTMx � 0 for all

x 2 ½0,1)s, which proves that i) implies ii). The equivalence

of ii) and iii) follows from [28, Thrm. 3.2]. To show that iii)

implies iv), note that since M is semistable it follows that

�MT is anM-matrix. Hence, it follows from [29, p. 119] that

there exist a scalar a > 0 and a nonnegative matrix Q �� 0

such that a � q(Q) andMT ¼ Q� aIs. Now, sinceQ �� 0, it

follows from [22, Thrm. 1.1] that q(Q) 2 spec(Q), and hence,

there exists l �� 0 such that l 6¼ 0 and Ql ¼ q(Q)l. Thus,

MTl ¼ Ql� al ¼ (q(Q)� a)l �� 0, which proves that

there exists l �� 0 such that l 6¼ 0 andMTl �� 0.

To show the equivalence of v)–vii), first suppose there

exists l �� 0 such that MTl << 0. Now, there exists suffi-

ciently small e > 0 such that MT(lþ ee) << 0 and

lþ ee >> 0, where e¼
D
½1, 1, . . . , 1�T, which proves that vii)

implies vi). Since vi) implies vii), it follows that vi) and vii)

are equivalent. Now, suppose vi) holds, that is, there exists

l >> 0 such that MTl << 0, and consider the Lyapunov

candidate V(x) ¼ lTx, where x 2 ½0,1)s. Computing the

Lyapunov derivative yields _V(x) ¼ lTMx < 0 for all x 2

Because of physical considerations, mass-action kinetics

have special properties, such as nonnegative solutions,

that are useful for analyzing their behavior.
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½0,1)snf0g, and hence it follows that M is asymptotically

stable. Thus, vi) implies v). Next, suppose thatM is asymp-

totically stable. Hence, �M�T �� 0, and thus, for every

r 2 (0,1)s, it follows that l¼
D
�M�Tr �� 0 satisfies

MTl << 0, which proves that v) implies vii). h

Example 1, Continued

Choosing l ¼ ½1=k1 1=k2 �
T >> 0, it follows that Ml ¼ 0.

Hence,M is semistable. n

STABILITY OF NONLINEAR KINETICS

The following result uses the Lyapunov function

V(x) ¼ lTx to analyze the stability of the zero solution of

(22). Recall that xe ¼ 0 is an equilibrium of (22) if and only if

A has no zero rows, that is, if and only if 0 is not a reactant of

the reaction network (10).

Proposition 8

Assume that xe ¼ 0 is an equilibrium of (22) and suppose

there exists l >> 0 such that Bl �� Al. Then xe is Lyapu-

nov stable with respect to ½0,1)s. If, in addition, Bl << Al,

then xe is globally asymptotically stable with respect to

½0,1)s.

Proof

Define V(x)¼
D
lTx so that V(0) ¼ 0 and V(x) > 0 for all

x 2 ½0,1)snf0g. Since (B� A)l �� 0, it follows that
_V(x) ¼ lT(B� A)T(k � xA) � 0 for all x 2 ½0,1)s. Hence,

Theorem 5 implies that xe ¼ 0 is Lyapunov stable with

respect to ½0,1)s. Now suppose that Bl << Al. Then
_V(x) < 0 for all x 2 ½0,1)snf0g. Since V is proper, it follows

from Theorem 5 that xe ¼ 0 is globally asymptotically stable

with respect to ½0,1)s. h

Example 1, Continued

Let l ¼ ½1=k1 1=k2 �
T so that (A� B)l ¼ 0. It thus follows

from Proposition 8 that xe ¼ 0 is Lyapunov stable. Since the

kinetic equations are linear it follows from Proposition 7

thatM is both Lyapunov stable and semistable. n

Example 2, Continued

First note that, because of the structure of the set of equili-

bria, none of the equilibria are asymptotically stable. Next,

we consider an equilibrium xe of the form (0, e), where

e > 0. By linearizing the system about this equilibrium, it

can be seen that this equilibrium is not Lyapunov stable.

Hence, it remains to determine the stability of an equilib-

rium of the form (d, k2d=k1), where d � 0. To do this, let U be

the closed set U ¼
D
f(x1, x2) 2 ½0,1)2 : x2 � ax1 � 0g, where

a > k2=k1. Note that U is invariant since (d=dt)(x2 � ax1) is

negative on the set f(x1, x2) : x2 ¼ ax1, x2 � 0g, while the

point (0, 0) is an equilibrium. Note that all of the equilibria

contained in U are of the form (d, k2d=k1).

Next, define the Lyapunov candidateV : U �! R by

Vd(x) ¼
1

2
(x1 � dþ x2 � k2d=k1)

2 þ
1

2
(k1x2 � k2x1)

2: (100)

Then, for all d � 0, it follows that Vd(d, k2d=k1) ¼ 0 and

Vd(x) > 0 for all x 2 Unf(d, k2d=k1)g. Since _Vd(x) ¼ �(k1 þ k2)

x1(k1x2 � k2x1)
2 � 0 for all x 2 U, it follows that the equilibrium

(d, k2d=k1) is Lyapunov stable with respect to U for all d � 0.

Finally, to show semistability, defineU(x) ¼ x1 þ x2, which sat-

isfies U(0) ¼ 0, U(x) > 0 for all x 2 Unf0g, and _U(x) ¼ 0 for

all x 2 U. Hence, every trajectory in U is bounded. Next, note

that _V�1
d (0) ¼ f�1(0), which shows that _V�1

d (0) is an invariant

set. Thus, the largest invariant setM contained in _V�1
d (0) \ U

is the set of equilibria f(d, k2d=k1) : d � 0g, all of which are

Lyapunov stable. Hence, by Theorem 6, the kinetic equations

are semistable with respect to U. n

Example 3, Continued

By linearizing the kinetic equations about the origin, it can

be seen that the origin is not Lyapunov stable. To analyze

the stability of the equilibrium xe ¼ (k3=k2, k1=k2), consider,

as in [30, p. 115], the function U : (0,1)2 ! R defined by

U(x) ¼ k2(x1 þ x2)� k3 ln x1 � k1 ln x2, which satisfies
_U(x) ¼ 0 for all x 2 (0,1)2. It can be seen from the form of

the gradient and the Hessian of U that x ¼ xe is an isolated

local minimizer of U. Hence V(x) ¼ U(x)�U(xe) satisfies

V(xe) ¼ 0 and V(x) > 0 for all x 2 Dnfxeg, where D is an

open neighborhood of xe. Hence, the equilibrium xe ¼

(k3=k2, k1=k2) is Lyapunov stable with respect to (0,1)2.

Since the solutions consist of closed orbits [30], this equilib-

rium is not semistable. n

Example 4, Continued

For this example let l ¼ ½1 2 1 1�T >> 0 so that (A� B)l ¼

0. It thus follows from Proposition 8 that xe ¼ 0 is Lyapunov

stable with respect to ½0,1)4. For the reduced kinetic equa-

tions (83), (84), with x2(0)þ x3(0) > 0, it follows that x1 ¼

x2 ¼ 0 is the only equilibrium. Now, consider the radially

unbounded Lyapunov function V(x1,x2)¼ (1=2)k3x
2
2þ(1=2)

k1c1(x1þx2)
2. Since _V(x1,x2)�0 for all x1,x2�0, global

asymptotic stability follows from the invariant set theorem. n

THE ZERO DEFICIENCY THEOREM

In this section, we analyze the stability of positive equilibria of

the kinetic equations (22) using the zero deficiency theorem

[19], [20]. This result provides a sufficient condition for Lyapu-

nov stability and semistability based on the structure of the

reaction network and independent of the value of the rate con-

stants. The following definitions are required. A complex is

either a reactant or a product. For example, in Example 3, the

complexes include the reactants X1, X1 þ X2, and X2 as well

as the products 2X1, 2X2, and 0. Letm � 1 denote the number

of distinct complexes of the reaction network (including the

reactant or product zero if present), and denote the complexes

by their corresponding vectors c1, . . . , cm of stoichiometric
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coefficients. Obviously,m � 2r. We can identify each complex

with a row of A or B so that ci 2 R
13 s. Thus, m is the number

of distinct rows of
�

A
B

�

. In examples 1, 2, 3, 4 the number of

complexes is 2, 2, 6, and 3, respectively. In particular, Example

4 involves the complexes c1 ¼ ½1 0 1 0�, c2 ¼ ½0 1 0 0 �, and

c3 ¼ ½0 0 1 1 � corresponding to Sþ E, C, and Pþ E, respec-

tively. For the following definition, ‘‘ci ! cj’’ denotes the reac-

tion ciX�!
kl

cjX, where we assume kl > 0. Recall that reactions

of the form c ! c are not allowed.

It is useful to represent the reaction network by a

directed graph. Consider a directed graph C havingm verti-

ces and r edges such that the ith vertex represents the com-

plex ci, and there exists a directed edge from vertex i to

vertex j if and only if the reaction network contains the reac-

tion ci ! cj. Each edge of C is numbered according to the

reaction that it represents.

Definition 4

Let ci and cj be complexes of the reaction network (10). Then

ci and cj are directly linked if either ci ! cj or cj ! ci. Further-

more, ci and cj are indirectly linked if there exist complexes

ci1 , . . . , cip such that ci is directly linked to ci1 , ci1 is directly

linked to ci2 , . . . , cip is directly linked to cj. Finally, ci and cj
are linked if either ci and cj are directly linked or ci and cj are

indirectly linked.

The statement that complexes ci and cj are linked is an

equivalence relation on the set of complexes. This relation

induces a partitioning of the set of complexes into disjoint link-

age classes. These linkage classes are the connected components

of C. Let ‘ denote the number of linkage classes of C, and

denote these linkage classes by C1, . . . , C‘. Since the reactant

and product in each reaction belong to the same linkage class,

it follows that ‘ � r. Furthermore, since each linkage class ofC

contains at least two complexes it follows that ‘ � m=2.

As noted in the section ‘‘Reducibility of the Kinetic Equa-

tions,’’ the rank q ¼ rank(B� A) of the reaction network (22)

satisfies q � minfr, sg. The following result provides a

bound for q that is sometimes better. Some additional nota-

tion is needed. For i ¼ 1, . . . , ‘, let mi denote the number of

complexes in Ci so that
P‘

i¼1 mi ¼ m. Furthermore, for

convenience we order the complexes c1, . . . , cm so that

C1 ¼ fc1, . . . , cm1g, C2 ¼ fcm1þ1, . . . , cm2g, and so forth. Next,

we reorder the reactions so that the first r1 rows of ½A B�

include the complexes in C1, rows r1 þ 1, . . . , r1 þ r2 of ½A B�

include the complexes in C2, and so forth. Hence,
P‘

i¼1 ri ¼ r.

For i ¼ 1, . . . , ‘, define the rank qi of the linkage class Ci to be

the number of linearly independent rows in the submatrix of

B� A comprised of the rows of ½A B� corresponding to the

complexes in Ci. Note that q �
P‘

i¼1 qi. For i ¼ 1, . . . , ‘, it can

be seen that mi � ri þ 1, and thus m � rþ ‘. If qi ¼ mi � 1,

then the linkage class Ci has full rank.

Lemma 2

Let i 2 f1, . . . , ‘g. Then qi � mi � 1. Furthermore, qi ¼ mi � 1

if and only if the complexes in Ci are the vertices of an

(mi � 1)-dimensional simplex in ½0,1)s.

Proof

For notational convenience, let i ¼ 1 and order the first

m1 � 1 reactions so that, for j ¼ 1, . . . ,m1 � 1, the jth reac-

tion is either cj ! cjþ1 or cjþ1 ! cj. The span of the first m1

rows of B� A is thus equal to the span of fc2 � c1, . . . ,

cm1
� cm1�1g. Furthermore, since C1 is a linkage class, it fol-

lows that rows m1 þ 1, . . . , r1 of B� A are contained in the

span of the firstm1 rows of B� A. Thus, q1 � m1 � 1.

Next, note that the spanoffc2 � c1, . . . , cm1
� cm1�1g is equal

to the span of fc2 � c1, c3 � c1, . . . , cm1
� c1g, which has dimen-

sionm1 � 1 if and only if the complexes in C1 are the vertices of

an (m1 � 1)-dimensional simplex in ½0,1)s [31, pp. 7, 12]. h

In the terminology of [31], an affine subspace is the trans-

late of a subspace. Furthermore, the affine hull of a set S is

the smallest affine subspace that contains S. It can be seen

that Ci has full rank if and only if the subspace parallel to the

affine hull of Ci has dimensionmi � 1.

Proposition 9

q � m� ‘.

Proof

As noted above, q�
P‘

i¼1 qi, while Lemma 2 implies that

qi �mi�1. Therefore, q�
P‘

i¼1 qi �
P‘

i¼1 ðmi�1Þ¼m� ‘. h

Definition 5

The deficiency d of the reaction network (10) is

d¼
D
m� ‘� q: (101)

It follows from Proposition 9 that the deficiency of a reac-

tion network is a nonnegative integer. If the deficiency of a

reaction network is zero, then the reaction network has zero

deficiency. It can be seen that a reaction network has defi-

ciency zero if and only if i) every linkage class has full rank,

and ii) for every pair Ci, Cj of distinct linkage classes, the

subspaces parallel to the affine hulls of the linkage classes

Ci, Cj have trivial intersection.

Example 1, Continued

For this reaction network,m¼ 2, ‘¼ 1, q¼ 1, and thus d¼ 0. n

Example 2, Continued

For this reaction network,m¼ 2, ‘¼ 1, q¼ 1, and thus d¼ 0. n

Example 3, Continued

For this reaction network,m¼ 6, ‘¼ 3, q¼ 2, and thus d¼ 1. n

Example 4, Continued

For this reaction network,m¼ 3, ‘¼ 1, q¼ 2, and thus d¼ 0. n

Now define the matrix C2Rm3s whose rows are c1, ... ,cm.

Furthermore, let Â, B̂2Rr3m be the matrices whose rows are

unit coordinate vectors inRm and that satisfy

A¼ ÂC, B¼ B̂C: (102)
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It follows that

B� A ¼ (B̂� Â)C: (103)

Note that

N (B̂� Â)T
	 


� N (B� A)T
� �

: (104)

Next, observe that Âij ¼ 1 if and only if the complex cj is

the reactant of the ith reaction, that is, if and only if the ith

edge of C originates from vertex j. Similarly, B̂ij ¼ 1 if and

only if the ith edge ofC terminates at vertex j. Consequently,

the matrix (B̂� Â)T is the incidence matrix of the directed

graph C (see [32, p. 24]).

The following result gives some properties of B̂� Â and

shows that the reverse inclusion of (104) holds if d ¼ 0.

Proposition 10

The following statements hold:

i) rank(B̂� Â) ¼ m� ‘.

ii) d ¼ dim½R((B̂� Â)T) \ N (CT)�.

iii) If l 2 Rs, then eAl ¼ ÂeCl and eBl ¼ B̂eCl.

iv) d ¼ 0 if and only if N ((B� A)T) ¼ N ((B̂� Â)T).

Proof

Statement i) follows from the fact that the rank of the inci-

dence matrix of a directed graph C is equal to the difference

between the number of vertices and the number of connected

components of C [32, Proposition 4.3]. Here, we provide a

self-contained proof. Consider the rows of B̂� Â corre-

sponding to C1. As in the proof of Lemma 2we order the first

m1�1 reactions so that, for j¼ 1, . . . ,m1�1, the jth reaction is

either cj ! cjþ1 or cjþ1 ! cj. Therefore, for j¼ 1, . . . ,m1�1, the

jth row of B̂� Â is either ej� ejþ1 or ejþ1� ej, where ej denotes

the jth unit coordinate vector in Rm. Thus, the first r1 rows of

B̂� Â have rank m1�1. Using a similar argument for each

linkage class and noting that rows of B̂� Â corresponding to

different linkage classes are linearly independent, it follows

that rank(B̂� Â)¼
P‘

i¼1 (mi�1)¼m� ‘:

Next, to prove ii) it follows from Sylvester’s theorem (see

[27, Fact 2.10.13]) that

q ¼ rank(B� A)

¼ rank CT(B̂� Â)T
	 


¼ rank (B̂� Â)T
	 


� dim R (B̂� Â)T
	 


\N (CT)
	 


¼ m� ‘� dim R (B̂� Â)T
	 


\N (CT)
	 


:

To prove iii), let j 2 f1, . . . , rg,Aj ¼ rowj(A), Bj ¼ rowj(B),

Âj ¼ rowj(Â), and B̂j ¼ rowj(Â). Now, since each row of B

corresponds to a unique row ofC, it follows that Bj ¼ rowkj (C)

for some kj 2 f1, . . . ,mg. Hence, Bj ¼ B̂jC, where B̂jk ¼ 1,

k ¼ kj, and B̂jk ¼ 0, k 6¼ kj. Thus,

eBjl ¼ eB̂jCl ¼ B̂je
Cl:

Similarly, we can show that Âje
Cl ¼ eAjl.

To prove iv), assume that d ¼ 0 and note that

rank (B� A)T
� �

þ dim N ((B� A)T)
� �

¼ r

and

rank (B̂� Â)T
	 


þ dim N ((B̂� Â)T)
	 


¼ r:

Since d ¼ 0, it follows from i) that rank((B� A)T) ¼ q ¼

m� ‘ ¼ rank(B̂� Â), and thus dim(N ((B̂� Â)T)) ¼ dim

(N((B� A)T)). Since N ((B̂� Â)T) � N ((B� A)T) it follows

that N ((B� A)T) ¼ N ((B̂� Â)T). The converse follows by

reversing the steps. h

Definition 6

Let ci and cj be complexes. Then there exists a direct path

from ci to cj if ci ! cj. Furthermore, there exists an indirect

path from ci to cj if there exist complexes ci1 , . . . , cip such that

ci ! ci1 ! ci2 ! � � � ! cip ! cj. Finally, there exists a path

from ci to cj if there exists either a direct path or an indirect

path from ci to cj.

Note that the existence of a path from ci to cj is stronger

than the statement that ci and cj are linked since the former

condition accounts for the directionality of the reactions.

Definition 7

The reaction network (10) is weakly reversible if, for all pairs

of complexes ci; cj, the existence of a path from ci to cj
implies the existence of a path from cj to ci.

Note that the existence of a path from ci to cj is equivalent

to the existence of a directed path from vertex i to vertex j

on the graph C. Consequently, weak reversibility is equiva-

lent to the requirement that every vertex or, equivalently,

every edge of C must be part of a directed cycle of C1 [32,

p. 25]. In the terminology of [33, pp. 357–358] and [34], weak

reversibility of (10) is equivalent to strong connectedness of

each connected component of C.

The following lemmas are needed. Furthermore, for

l ¼ 1, . . . , ‘, let vl 2 R
m (respectively, el 2 R

r) be such that

the jth component of vl (respectively, el) is one if the jth

To derive the dynamics of the reaction network,

we invoke the law of mass action.
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vertex (respectively, jth edge) of C belongs to the lth con-

nected component of C and zero otherwise. It is easy to see

that Âvl ¼ B̂vl ¼ el for all l ¼ 1, . . . , ‘, which implies that

vl 2 N (B̂� Â) for all l ¼ 1, . . . , ‘. Next, note that, since each

vertex of C1 belongs to exactly one connected component of

C, fv1, . . . , v‘g are linearly independent and hence, since

rank(B̂� Â) ¼ m� ‘, it follows that N (B̂� Â) is the span of

fv1, . . . , v‘g. Finally, note that

e
P‘

l¼1
hlvl ¼

X

‘

l¼1

ehlvl, (105)

where h1, . . . , h‘ 2 R.

Lemma 3

Let a 2 (0,1)r and define C¼
D
(B̂� Â)T (aeT � Â) 2 Rm3m.

Then the following statements hold:

i) The reaction network (22) is weakly reversible if and

only if there exists p2 (0,1)r such that (B̂� Â)Tp¼0.

ii) Assume that the reaction network (22) is weakly

reversible. Then rank C¼m� ‘ and there exists

p2 (0,1)m such that C(p �vl)¼ 0 for all l¼ 1, . . . ,‘.

iii) If the reaction network (22) has zero deficiency,

then rank½C v1 � � � v‘� ¼ m.

Proof

To prove i), note that it follows from [32, Thrms. 4.5, 5.2] that

N ((B̂� Â)T) is the span of fg1, . . . , gncg, where nc is the num-

ber of directed cycles of the graph C and gi is such that the

jth component of gi is one if the jth edge is part of ith

directed cycle of C and zero otherwise. Hence, if the reac-

tion network is weakly reversible, then every edge of C is

part of at least one directed cycle ofC. Now, a positive linear

combination of all the cycles ofC yields p 2 (0,1)r such that

(B̂� Â)Tp ¼ 0. To prove the converse, assume that the reac-

tion network is not weakly reversible or, equivalently, there

exists an edge (say the Jth edge) that does not belong to any

cycle of C1. Hence, it follows that the Jth component of all

vectors inN ((B̂� Â)T) is zero, which implies that there does

not exist p 2 (0,1)r such (B̂� Â)Tp ¼ 0.

To prove ii), note that �C
T is the Laplacian of the

weighted directed graph [34] obtained by assigning the

weight ai to the ith edge of C. There exists a permutation

matrix P 2 Rm3m such that Ĉ¼
D
P

T
CP and Ĉ ¼ block-

diag(Ĉ1, . . . , Ĉ‘), where Ĉl 2 R
ml 3ml , l ¼ 1, . . . , ‘, are such

that
P‘

l¼1 ml ¼ m and �Ĉ
T
l is the Laplacian of Cl. Weak

reversibility implies that each connected component of C is

strongly connected. [Note that �Ĉ
T is the Laplacian of C in

the case where the vertices are reordered such that the lth

connected component (linkage class) of C contains the verti-

ces (complexes) numbered as ml�1 þ 1, . . . ,ml, l ¼ 1, . . . , ‘,

where m0 ¼
D
0.] Hence, it follows from [34, Thrm. 1] that

rank Ĉl ¼ ml � 1 for all l ¼ 1, . . . , ‘, which implies that

rank C ¼ rank Ĉ ¼ m� ‘.

To prove the second assertion of ii), let l2f1,...,‘g, let

cl¼
D
�mini¼1,...,ml

ci, and let Xl¼
D
ClþclIml

, where ci denotes the

(i,i)th entry of Cl. Now, note that Xl is a nonnegative matrix

and, for i 6¼j, the (i,j)th entry of Xl is positive if and only if

there exists an edge from vertex j to vertex i of the linkage

class l. Hence, since the reaction network is weakly reversi-

ble, it follows from [33, Thrm. 6.2.24] that Xl is an irreducible

matrix [33, p. 361], which further implies that there exists

p̂l2(0,1)m such that Xlp̂l¼q(Xl)p̂l (see [33, Thrm. 8.4.4]).

Consequently, Ĉlp̂l¼(Xl�clIml
)p̂l¼(q(Xl)� cl)p̂l and, since

0¼e
T
Ĉlp̂l¼(q(Xl)�cl)e

Tp̂l and e
Tp̂l>0, it follows that

cl¼q(Xl). Thus, there exists a positive vector p̂l2R
m satisfy-

ing Ĉlp̂l¼0 for all l¼1,...,‘. Now, letting p̂¼½p̂T1 ���p̂
T
‘ �

T it can

be shown that p̂�(PTvl)¼½0���p̂Tl ���0�
T so that Ĉ(p̂�(PTvl))¼0.

Finally, taking p¼Pp̂ implies that C(p�vl)¼PĈP
T(p�vl)¼

PĈ(p̂�(PTvl))¼0, establishing the result.

To prove iii), let x 2 Rm be such that xT½C v1 � � � v‘� ¼ 0 or,

equivalently, x 2 N (CT) and xTvl ¼ 0 for all l ¼ 1, . . . , ‘.

Next, since N (B̂� Â) is the span of fv1, . . . , v‘g, it follows

that x 2 ½N (B̂� Â)�? ¼ R((B̂� Â)T). Hence, x 2 R((B̂�

Â)T) \N (CT), and, since the reaction network has zero defi-

ciency, it follows from ii) of Proposition 10 that x ¼ 0, which

proves that rank½C v1 � � �v‘� ¼ m. h

Lemma 4

Assume that the reaction network (22) has zero deficiency,

and assume that there exists a2 (0,1)r such that (B�A)Ta¼0.

Then l2Rs satisfies (B�A)T(a�eAl)¼0 if and only if l2S?.

Proof

Since the reaction network (22) has zero deficiency, it fol-

lows from iv) of Proposition 10 that N ((B� A)T) ¼

N ((B̂� Â)T), and hence, N ((B� A)T) is the span of

fg1, . . . , gncg defined in the proof of i) of Lemma 3. Further-

more, since a 2 N ((B� A)T) it follows that a ¼
Pnc

i¼1 bigi for

some bi 2 R, i ¼ 1, . . . , nc. Now, note that gi � el ¼ gi if the

ith cycle of C belongs to the lth linkage class of C and zero

otherwise. In both cases, (B� A)T(gi � el) ¼ (B̂� Â)T

(gi � el) ¼ 0 for all i ¼ 1, . . . , nc and l ¼ 1, . . . , ‘.

To prove necessity, let l 2 N (B� A). Hence, (B̂� Â)

Cl ¼ 0, which, since N (B̂� Â) is the span of fv1, . . . , v‘g,

implies that Cl ¼
P‘

l¼1 hlvl for some h1, . . . , h‘ 2 R. Hence,

it follows that

(B� A)T(a � eAl) ¼ (B� A)T(a � ÂeCl)

¼ (B� A)T a � Â
X

‘

l¼1

ehlvl

 !

¼
X

‘

l¼1

(B� A)T(a � ehlel)

¼
X

‘

l¼1

X

nc

i¼1

(B� A)T(bie
hl (gi � el))

¼ 0,

where iii) of Proposition 10 is used to obtain the first equality,

(105) is used to obtain the second equality, and the fact that

Âvl ¼ el for all l ¼ 1, . . . , ‘, is used to obtain the third equality.
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Conversely, assume that (B� A)T(a � eAl) ¼ 0, which

implies that (B̂� Â)T(a � eAl) ¼ 0. Hence,

0 ¼ (B̂� Â)T(a � ÂeCl) ¼ (B̂� Â)T(aeT � Â)eCl ¼ CeCl,

(106)

where C is defined in Lemma 3. Next, note that, for all

l ¼ 1, . . . , ‘,

Cvl ¼ (B̂� Â)T(aeT � Â)vl
¼ (B̂� Â)T(a � Âvl)

¼ (B̂� Â)T(a � el)

¼
X

nc

i¼1

bi(B̂� Â)T(gi � el)

¼ 0:

Furthermore, it follows from ii) of Lemma 3 that rankC ¼

m� ‘, which implies that N (C) is the span of fv1, . . . , v‘g.

Hence, it follows from (106) that eCl ¼
P‘

l¼1 e
hlvl for some

h1, . . . , h‘ 2 R, which implies that Cl ¼
P‘

l¼1 hlvl. Now, the

result follows by noting that (B� A)l ¼ (B̂� Â)Cl ¼
P‘

l¼1 hl(B̂� Â)vl ¼ 0. h

The following result shows that weak reversibility is a nec-

essary and sufficient condition for a reaction network with

zero deficiency to have at least one positive equilibrium.

Proposition 11

Assume that the reaction network (22) has zero deficiency.

Then the reaction network (22) is weakly reversible if and

only if it has a positive equilibrium.

Proof

To prove necessity, let xe be a positive equilibrium of (22).

Hence, it follows from iv) of Proposition 10 that

(B̂� Â)Tp ¼ 0,where p ¼ KxAe 2 (0,1)r. Now, it follows from

i) of Lemma 3 that the reaction network isweakly reversible.

To prove sufficiency, note that

(B̂� Â)T(k � xA) ¼ (B̂� Â)T(k � ÂxC)

¼ (B̂� Â)T(keT � Â)xC

¼ CxC,

where C¼
D
(B̂� Â)T(keT � Â). Now, it follows from ii) of

Lemma 3 that there exists a positive vector p 2 Rm such that

C(p � vl) ¼ 0 for all l ¼ 1, . . . , ‘. Next, we show that there

exists a positive vector x 2 Rs and scalars hl 2 R, l ¼ 1, . . . , ‘,

such that xC ¼ p � e
P‘

l¼1
hlvl . To see this, note that the exis-

tence of a positive vector x and scalars hl satisfying

xC ¼ p � e
P‘

l¼1
hlvl is equivalent to the existence of a solution

x to the equation C log x ¼ log pþ
P‘

l¼1 hlvl or, equivalently,

½C v1 � � � v‘�

log x
�h1

.

.

.

�h‘

2

6

6

6

4

3

7

7

7

5

¼ log p: (107)

Now, since the reaction network has zero deficiency, it fol-

lows from iii) of Lemma 3 that rank½C v1 � � �v‘� ¼ m, and

hence, (107) has a solution, which implies that there exists a

positive vector x and scalars hl such that xC ¼ p � e
P

‘

l¼1
hlvl .

Next, it follows from (105) that

(B� A)T(k � xA) ¼ CT
CxC ¼ CT

C p � e
P‘

l¼1
hlvl

� �

¼
X

‘

l¼1

ehlCT
C(p � vl) ¼ 0,

which implies that x is a positive equilibrium of the reac-

tion network (22). h

Next, we show that every positive stoichiometric com-

patibility class contains exactly one equilibrium for a

weakly reversibile reaction network with zero deficiency.

The following lemma is needed for this result.

Lemma 5

Let p, p̂ 2 (0,1)s, let X be a subspace of Rs, and define

X? ¼
D
fx 2 Rs

: xTy ¼ 0 for all y 2 Xg. Then there exists a

unique l 2 X? such that (p � el � p̂) 2 X .

Proof

Define u :Rs!R by u(x)¼
D
pTex�p̂Tx. It can be shown that

limkxk�!1u(x)¼1. Now, let r>0 and, since limkxk�!1u(x)¼

1, it follows that Cr¼
D
fx2Rs

:u(x)�rg is a compact set.

Hence, Ĉr¼
D
fx2X?

:u(x)�rg is also a compact set, which

implies that there exists l2X? such that u(l)�u(x) for all

x2Ĉr. Now, since X?¼Ĉr[fx2X
?
: u(x)>rg it follows that

u(l)�u(x) for all x2X?. Specifically, u(l)�u(lþhc) for all

h2R and c2X?. Thus, f (h)¼
D
u(lþhc) has a minimum at

h¼0, which implies that

0 ¼
df

dh









h¼0

¼
@u

@x









x¼l

c:

Hence, since c 2 X? is arbitrary, ð@u=@xÞjx¼l ¼ (p � el � p̂)

2 X , which establishes existence.

To prove uniqueness, let l̂ 2 X? be such that (p � el̂ � p̂)

2 X . Since l; l̂ 2 X? and (p � el � p̂), (p � el̂ � p̂) 2 X it fol-

lows that (l� l̂) 2 X? and ½p � (el � el̂)� 2 X , and hence,

0 ¼ (l� l̂)T½p � (el � el̂)� ¼
X

s

i¼1

pi(li � l̂i)(e
li � el̂i ): (108)

Next, since the exponential function is an increasing function, it

follows that (li � l̂i)(e
li � el̂i ) � 0 for all i ¼ 1, . . . , s, and, since

p 2 (0,1)s, it follows from (108) that (li � l̂i) (e
li � el̂i ) ¼ 0

for all i ¼ 1, . . . , s, or, equivalently, l ¼ l̂. h

The next result characterizes all positive equilibria of

zero-deficiency, weakly reversible reaction networks.

Proposition 12

Assume that the reaction network (22) has zero deficiency and

isweakly reversible, and let xe be a positive equilibrium. Then

Eþ ¼ fx 2 (0,1)s : log x� log xe 2 S?g: (109)

Furthermore, every positive stoichiometric compatibility

class contains exactly one equilibrium.
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Proof

Toprove that Eþ has the form (109), let xe be a positive equilib-

rium, let x 2 (0,1)s, and define l¼
D
log x� log xe. Then

(k � xA) ¼ (k � xA � x�A
e � xAe )

¼ (k � eA log x � e�A log xe � xAe )

¼ (k � eAl � xAe )

¼ (k � xAe � eAl):

Now, assume that x is also a positive equilibrium so that

(B� A)T(k � xAe � eAl) ¼ (B� A)T(k � xA) ¼ 0. Since xe is an

equilibrium, we have (B� A)T(k � xAe ) ¼ 0. It thus follows

from Lemma 4, with a ¼ k � xAe , that l 2 S?. Conversely,

assume that l 2 S?. Since (B� A)T(k � xAe ) ¼ 0, it follows

from Lemma 4 that 0 ¼ (B� A)T(k � xAe � eAl) ¼ (B� A)T

(k � xA), which shows that x is an equilibrium.

To prove the second assertion, let Sp ¼
D
fpþ x : x 2 Sg

denote a stoichiometric compatibility class, where

p 2 (0,1)s. Now, with X ¼ S, it follows from Lemma 5 that

there exists a unique l 2 S? such that (xe � e
l � p) 2 S or,

equivalently, (xe � e
l) 2 Sp. Now, the result follows by not-

ing that Eþ ¼ fxe � el : l 2 S?g 	 (0,1)s. h

We now have themain result of this section.

Theorem 7

If the reaction network (22) has zerodeficiency, then every pos-

itive equilibriumof (22) is semistablewith respect to (0,1)s.

Proof

Let xe be a positive equilibrium of (22) and define the Lya-

punov candidateV : (0,1)s ! R by

V(x)¼
D
X

s

i¼1

½xi( log xi � log xei)� (xi � xei)�,

where xi and xei are the ith components of x and xe, respec-

tively. It follows from the inequality log a � a� 1 for all

a > 0, with a ¼ xei=xi, that V(x) � 0 for all x 2 (0,1)s. Since

log a ¼ a� 1 if and only if a ¼ 1, it follows that V(x) ¼ 0 if

and only if x ¼ xe.

Next, for x 2 (0,1)s, define l¼
D
log x� log xe, and note

that it follows from log a � a� 1, a > 0, with a ¼ erowi(Bl)=

erowi(Al), that

eAl � ½(B� A)l� �� eBl � eAl, (110)

with equality holding in (110) if and only if ðB� AÞl ¼ 0.

Using (110), along with iii) and iv) of Proposition 10, yields

_V(x) ¼ lT(B� A)TKxA

¼ lT(B� A)TKeA log x

¼ lT(B� A)TK(eA log xe � eAl)

¼ lT(B� A)T
� �

� (eAl)T
� �

KxAe

¼ (KxAe )
T eAl � ½(B� A)l�
� �

� (KxAe )
T(eBl � eAl)

¼ (KxAe )
T(B̂� Â)eCl

¼ (B̂� Â)TKxAe

h iT
eCl

¼ 0, (111)

which proves that every positive equilibrium of (22) is

Lyapunov stable.

Next, assume that the reaction network (22) has zero

deficiency. If x 2 (0,1)s satisfies _V(x) ¼ 0, then it follows

from (111) that (KxAe )
T(eAl � ½(B� A)l�) ¼ (KxAe )

T(eBl � eAl).

Now, since KxAe >> 0, it follows from (110) that that

eAl � ½(B� A)l� ¼ eBl � eAl, which implies that (B� A)l ¼

0, and hence, ( log x� log xe) 2 S?. It now follows from

Proposition 12 that x is a positive equilibrium of (22) and, as

shown above, x is Lyapunov stable. Thus, every element of

the largest invariant set of fx 2 (0,1)s : _V(x) ¼ 0g is a Lya-

punov-stable equilibrium. Furthermore, for g > 0, let Ug

denote the closure of the connected component of

fx 2 (0,1)s : V(x) � gg containing xe. Since V( � ) is contin-

uous in (0,1)s and V(xe) ¼ 0, it follows that there exists

b > 0 such that Ub 	 (0,1)s and is compact. Now, with

U ¼ Ub, Theorem 6 implies every solution to (22) with

x(0) 2 Ub converges to an equilibrium that is semistable

with respect to Ub. Finally, the result follows from the defi-

nition of semistability with respect to ð0;1Þs and the fact

that Ub has a nonempty interior. h

The followingversionofTheorem7isproved in [19]and [20].

Theorem 8

Assume that the reaction network (22) has zero deficiency and

is weakly reversible. Then every positive stoichiometric com-

patibility class contains exactly one equilibrium. This equilib-

rium is asymptotically stable with respect to the positive

We consider the realizability problem, which is concerned with the

inverse problem of constructing a reaction network having specified

essentially nonnegative dynamics.
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stoichiometric compatibility class that it is contained in, and

there exist no nontrivial periodic orbits in (0,1)s.

Proof

The first assertion is a consequence of Propositions 11 and

12. The second assertation follows fromTheorem 7 and using

the facts that every positive stoichiometric compatibility

class is invariant, contains exactly one positive equilibrium,

andV(x(t)) is a (strictly) decreasing function on every nontri-

vial solution to (22) in (0,1)s, where V( � ) is the Lyapunov

function defined in the proof of Theorem 7. h

Note that the conclusions of Theorems 7 and 8 can be

strengthened without any additional assumptions. Specifi-

cally, [14] shows that, for every initial condition in the non-

negative orthant, the positive limit set is a subset of the set of

nonnegative equilibria. Furthermore, if every positive stoichi-

ometric compatibility class has no equilibria on its boundary,

then every equilibrium is globally asymptotically stable rela-

tive to its positive stoichiometric compatibility class.

Example 1, Continued

This reaction network has zero deficiency and is weakly

reversible. Theorem 8 thus implies that every positive stoichi-

ometric compatibility class contains exactly one equilibrium,

and this equilibrium is semistablewith respect to ½0,1)s. n

Example 2, Continued

This reaction network has zero deficiency and is weakly

reversible. Theorem 8 thus implies that every positive stoichi-

ometric compatibility class contains exactly one equilibrium,

and this equilibrium is semistablewith respect to ½0,1)s. n

Example 3, Continued

This reaction network has deficiency 1 and is not weakly

reversible. Hence, Theorem 8 does not apply. n

Example 4, Continued

Although this reaction network has zero deficiency, it is not

weakly reversible. Accordingly, Theorem 7 cannot be used

to conclude semistability. However, Lyapunov methods,

based on nontangency between the vector field and invari-

ant subsets of the level sets of the Lyapunov function

V(x) ¼ ax1 þ x2, where a 2 (1, 1þ k3=k2), can be used to con-

clude semistability of every equilibrium in Ê ¼ fx 2 ½0,1)4:

x1 ¼ 0, x2 ¼ 0, x3 > 0g. For details, see [17]. n

The following example is a modification of Example 4 to

includeweak reversibility.

Example 5

Consider a modification of Example 4 in which all reactions

are reversible, that is,

Sþ E Ð
k1

k2
CÐ

k3

k4
Pþ E (112)

so that s ¼ 4 and r ¼ 4. It thus follows thatA andB are given by

A ¼

1 0 1 0

0 1 0 0

0 1 0 0

0 0 1 1

2

6

6

4

3

7

7

5

, B ¼

0 1 0 0

1 0 1 0

0 0 1 1

0 1 0 0

2

6

6

4

3

7

7

5

, (113)

and the kinetic equations have the form

_x1(t) ¼ k2x2(t)� k1x1(t)x3(t), x1(0) ¼ x10, t � 0, (114)

_x2(t) ¼ �(k2 þ k3)x2(t)þ k1x1(t)x3(t)þ k4x3(t)x4(t),

x2(0) ¼ x20, (115)

_x3(t) ¼ (k2 þ k3)x2(t)� k1x1(t)x3(t)� k4x3(t)x4(t),

x3(0) ¼ x30, (116)

_x4(t) ¼ k3x2(t)� k4x3(t)x4(t), x4(0) ¼ x40: (117)

Since this network has zero deficiency and is weakly revers-

ible, Theorem 8 implies that every positive stoichiometric

compatibility class contains exactly one equilibrium, and

this equilibrium is semistable with respect to ½0,1Þs. n

CONCLUSIONS

In this article we presented a matrix-vector form of the

kinetic equations for the mass-action kinetics of arbitrary

reaction networks. We proved that these equations have

nonnegative solutions for all nonnegative initial conditions,

and we presented a procedure for reducing the order of

these equations for reaction networks with low-rank

dynamics. Next, we considered the stability of these equa-

tions, including asymptotic stability, semistability, and Lya-

punov stability. In particular, the notion of semistability was

shown to pertain to the kinetic equations for cases in which

the equilibrium towhich the network converges depends on

the initial concentrations.We proved the sufficient condition

for semistability given by Theorem 7 and due to [19] and

[20], and we stated and applied Lyapunov conditions for

each type of stability to four examples. Finally, we analyzed

the stability of positive equilibria of the kinetic equations

using the zero deficiency theorem of [19] and [20] and

proved semistability using the techniques of [17].
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