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Abstract

We develop a general framework for analyzing the performance of an opportunistic spectrum sharing (OSS)
wireless system at the session level with Markovian arrivals and phase-type service times. The OSS system consists
of primary or licensed users of the spectrum and secondary users that sense the channel status and opportunistically
share the spectrum resources with the primary users in a coverage area. When a secondary user with an active
session detects an arrival of a primary session in its current channel, the secondary user leaves the channel quickly
and switches to an idle channel, if one is available, to continue the session. Otherwise, the secondary session is
preempted and moved to a preemption queue. The OSS system is modeled by a multi-dimensional Markov process.
We derive explicit expressions for the related transition rate matrices using matrix-analytic methods. We also obtain
expressions for several performance measures of interest, and present both analytic and simulation results in terms of
these performance measures. The proposed OSS model encompasses a large class of specific models as special cases,
and should be useful for modeling and performance evaluation of future opportunistic spectrum sharing systems.

Index Terms

Opportunistic spectrum sharing (OSS), Primary users, Secondary users, Multi-dimensional Markov process, MAP,
PH distribution.
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I. INTRODUCTION

Studies of wireless spectrum usage [1], [2] have shown that large portions of the allocated spectrum are highly

underutilized. Frequency agile radios (FARs) are cognitive radios that are capable of detecting idle frequency

channels and opportunistically making use of them without causing harmful interference to the primary users [3],

[4]. In a scenario of opportunistic spectrum sharing (OSS), the FARs are called secondary users and the owners of

the allocated spectrum are the primary users. By allowing secondary users to reclaim idle channels, much higher

spectrum efficiency can be achieved [5]. Opportunistic spectrum sharing techniques offer the potential for higher

spectrum reuse in commercial, government, and military applications.

In the OSS system, the spectrum usage of the secondary users is contingent on the requirement that the interference

to the primary users must be limited to a certain threshold. A number of opportunistic spectrum access (OSA)

schemes have been developed recently in the literature [6]–[10]. In [6], a sensing-based approach is studied for

channel selection in spectrum agile communication systems. In [7], a multi-channel OFDMA technique is proposed

for OSA networks. In [8], an admission control algorithm in conjunction with a power control scheme is proposed

for cognitive wireless networks such that QoS requirements of all admitted secondary users are satisfied. In [9],

an adaptive spectrum detection mechanism based on Bayes criterion is proposed for cognitive radio networks in

dynamic traffic environments. In [10], collaborative sensing is investigated as a means to improve the performance

of sensing-based opportunistic spectrum access in fading channels.

To obtain analytical results for performance evaluation in wireless cellular networks, and even in general commu-

nications networks, interarrival and holding time variables are often assumed to be independent and exponentially

distributed. However, recent field and simulation studies have suggested that the exponential assumption may not

be appropriate for many wireless and cellular systems [11], [12], especially for those based on IP traffic. Internet

traffic typically exhibits burstiness and self-similar characteristics at multiple time scales, which cannot be captured

by Poisson models. In [13], Poisson models are observed to severely underestimate the burstiness of TCP traffic

taken from trace data over a wide range of time scales from the packet level to the session level. In [14], an MMPP

(Markov Modulated Poisson Process) traffic model is proposed that mimics the hierarchical behavior of the packet

generation process by Internet users. Such Markovian models (cf. [15], [16]) are able to approximately capture the

LRD (Long Range Dependence) characteristics of Internet traffic, since the effect of LRD on queueing performance

becomes negligible beyond a finite number of time-scales.
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In the present paper1, we analyze the performance an OSS wireless system at the call or session level2 Call

arrivals are modeled by a Markovian arrival process (MAP), which captures the correlation of interarrival times

among primary users, among secondary users, as well as between the two types of users. The Markovian arrival

process (MAP) has been found to provide a good representation for bursty and correlated traffic arising in modern

networks [17]–[22]. The MAP encompasses a rich class of point processes as special cases, including the Poisson

process, the MMPP, the PH-renewal process, etc. Channel holding times are modeled using the phase-type (PH)

distribution, which can be characterized as the absorption time of a Markov process with one absorbing state.

Each state of the Markov process represents one of the phases. The PH distribution generalizes a large class of

useful distributions, including the exponential, Erlang, hyper-exponential, hypoexponential, and Coxian distributions.

Applications of the PH distribution to modeling service times can be found in [22], [23].

The general OSS system model proposed here is represented by a multi-dimensional Markov process. We derive

explicit analytical results for the relevant call level system performance metrics using matrix-analytic methods

(cf. [20], [21], [24]). Matrix-analytic methods have also been used for performance analysis of telecommunication

systems at the packet level (cf. [25], [26]). The remainder of the paper is organized as follows. Section II describes

the OSS system model. Section III develops a multi-dimensional Markovian model and constructs a set of matrix

expressions to evaluate the system performance. Section IV develops a recursive solution for the multi-dimensional

Markovian model. Special cases of the model are discussed in Section II. Section VI derives several performance

measures of interest and discusses their application to network design. Section VII presents numerical results in

terms of the obtained performance measures. Finally, Section VIII concludes the paper.

II. SYSTEM MODEL

Consider a wireless network operating over a given service area. The network owns the license for spectrum usage

and hence is referred to as the primary system. The users of this network are the primary users. Calls generated

by primary users constitute the primary traffic (PT) stream. Next, consider a secondary wireless network in the

same service area, which opportunistically shares spectrum resource with the primary system. Calls generated by

secondary users constitute the secondary traffic (ST) stream. The system consisting of the primary and secondary

systems is called an opportunistic spectrum sharing (OSS) system [5]. The proposed OSS system model can be

applied to both infrastructured and infrastructureless wireless networks.

In the OSS system, the spectrum availability for the secondary users depends on the spectrum occupancy of the

1This work was supported in part by the National Science Foundation under Grants CNS-0520151. Part of this work has been presented

in [17].
2In this paper, the terms “call” and “session” are used interchangeably.



3

primary users. A distinct feature of a well-designed OSS system is that the secondary users have the capability to

sense channel usage and switch between different channels using appropriate mechanisms, without causing harmful

interference to the primary users. This switching between different channels is sometimes called “spectrum mobility”

or “spectrum handoff.” Such functionality could be realized with the help of cognitive radios [3]. Secondary users

detect the presence or absence of signals from primary users and maintain records of the channel occupancy status.

The detection mechanism may involve collaboration with other secondary users (cf. [9]) and/or information exchange

with a base station (BS) associated with the secondary system.

In the proposed model, we assume a perfect signal detection mechanism3. Secondary users opportunistically

access the channels that are free. If a secondary call arrives when all channels are occupied, the call is considered

to be blocked from the system. On the other hand, when a secondary user in service detects an arrival of a PT

call in its current channel, it immediately leaves the channel and switches to an idle channel, if one is available,

to continue the call. If at that time all the channels are occupied, the ST call is preempted and placed in a queue,

which we refer to as the preemption queue. The ST call remains in the preemption queue until either the waiting

time of the call expires (and the call leaves the system) or a PT/ST call releases a channel. In the latter case, the

ST call at the head of the queue immediately occupies the vacated channel. In the primary system, the PT calls

operate as if there are no ST calls in the OSS system. When a PT call arrives, it occupies a free channel if one is

available; otherwise, it is blocked.

The aggregate arrival process, consisting of PT and ST call arrivals, to the OSS system is modeled by a general

MAP, which can capture correlation between interarrival times. The MAP is a generalization of the Poisson process

in which the arrivals are governed by an underlying m-state Markov chain. Let g0
ij , i 6= j, 1 ≤ i, j ≤ m, be the

transition rate from state i to state j in the underlying Markov chain without an arrival. Let gP
ij and gS

ij , 1 ≤ i, j ≤ m,

be the transition rates from state i to state j in the underlying Markov chain with a PT call arrival and an ST call

arrival, respectively. The matrix G0 = [g0
ij ] has nonnegative off-diagonal and negative diagonal elements. Both the

matrices GP = [gP
ij ] and GS = [gS

ij ] have nonnegative elements. The matrix G = G0 +GP +GS is the irreducible

infinitesimal generator of the m-state Markov chain and the sojourn time in state i is exponentially distributed with

parameter λi, 1 ≤ i ≤ m. At the end of the sojourn in state i, there are three possible transitions (cf. [22]):

• to state j with probability q0
ij , j 6= i, 1 ≤ i, j ≤ m, without any call arrival;

• to state j with probability qP
ij , 1 ≤ i, j ≤ m, with a PT call arrival;

• to state j with probability qS
ij , 1 ≤ i, j ≤ m, with a ST call arrival.

3Unreliable spectrum sensing is considered in [27], but with Poisson arrivals and exponential service.
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For each fixed i, the following relation holds:

m∑
j=1(j 6=i)

q0
ij +

m∑
j=1

qP
ij +

m∑
j=1

qS
ij = 1. (1)

Further, we have g0
ij = λiq

0
ij for j 6= i, gP

ij = λiq
P
ij , gS

ij = λiq
S
ij and g0

ii = −λi, where 1 ≤ i, j ≤ m. Note that

(G0 + GP + GS)e = 0 holds, where e is a column vector of 1’s.

Let π be the stationary probability vector of the generator G. Then we have πG = 0 and πe = 1. The arrival

rate of the MAP is λP = πGP e for PT calls, and λS = πGSe for ST calls. For special cases when m = 1,

the MAP reduces to a Poisson process with rate λ1, consisting of two independent Poisson arrival processes with

rates λ1q
P
11 and λ1q

S
11, respectively. When both GP and GS are diagonal matrices, the MAP reduces to an MMPP,

which has been extensively used to describe superposition of data or packetized voice streams [18], [19].

The channel holding times of PT and ST calls, denoted by ZP and ZS , respectively, are assumed to follow

phase-type (PH) distributions with n phases, denoted by PH(αP ,TP ) and PH(αS ,TS), respectively, where αP

and αS are row vectors of dimension n, and TP and TS are square matrices of dimension n [20], [21]. The

distribution function of ZP is given by

FZP
(t) = P{ZP ≤ t} = 1−αP exp(TP t)e. (2)

The exit vector is T0
P = −TPe, where, similarly, e is a column vector of all 1’s of appropriate size. If we denote

state n+ 1 as the absorbing state with initial probability αP
n+1, then we have αPe+αP

n+1 = 1, where [αP , α
P
n+1]

is the initial probability vector. Similarly, the distribution function of ZS is given by

FZS
(t) = P{ZS ≤ t} = 1−αS exp(TSt)e, (3)

with T0
S = −TSe and αSe+ αS

n+1 = 1.

As mentioned above, when an ongoing ST call vacates its channel and no other channels are available, it joins

the preemption queue. The maximum waiting time of an ST call in the preemption queue, denoted by Ψmax, is

assumed to follow a PH distribution with r phases, denoted by PH(θ,Θ), where θ is a row vector of dimension

r, and Θ is a square matrix of dimension r. The distribution function of Ψmax is given by

FΨmax(t) = P{Ψmax ≤ t} = 1− θ exp(Θt)e, (4)

with Θ0 = −Θe and θe+ θr+1 = 1.

III. ANALYSIS AND MATRIX CONSTRUCTION

We define a set of tuples

S− , {(i, ip, u,SiP
,SiS

,SiQ
)},
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where 1 ≤ i ≤ 2M ; 0 ≤ iP ≤ M ; 1 ≤ u ≤ m. The element SiP
is defined to be empty if iP = 0; otherwise,

SiP
, (SP

1 , S
P
2 , ..., S

P
iP

) with 1 ≤ SP
j ≤ n, 1 ≤ j ≤ iP . Define îM , min{i,M}. The element SiS

is defined

to be empty if îM − iP = 0; otherwise, SiS
, (SS

1 , S
S
2 , ..., S

S
îM−iP

), with 1 ≤ SS
k ≤ n, 1 ≤ k ≤ îM − iP .

Finally, the element SiQ
is defined to be empty if i − îM = 0; otherwise, SiQ

, (SQ
1 , S

Q
2 , ..., S

Q

i−îM
), with

1 ≤ SQ
l ≤ n, 1 ≤ l ≤ i − îM . We then consider a stochastic process {X(t) : t ≥ 0}, defined on the state space

S = {(0, u) : 1 ≤ u ≤ m} ∪ S−.

The state (0, u) represents the state with no call in the system and the arrival process is in phase u. The element i

represents the total number of calls in service and preempted ST calls in the preemption queue. Since the state (0, u)

represents an empty system, the state (i, ip, u,SiP
,SiS

,SiQ
) implies that there is at least one call in the system.

When an ST node detects an arrival of PT call in its current channel and at that time all the channels are occupied,

the ST call becomes a preempted ST call and moves to the preemption queue. Clearly, the maximum number of

preempted ST calls is M , which corresponds to the limiting case that all the M ongoing calls are ST calls and are

eventually preempted to the preemption queue due to the arrivals of PT calls. Thus, we have 1 ≤ i ≤ 2M .

In state (i, iP , u,SiP
,SiS

,SiQ
), there are totally i calls in the system (including the ST calls in the preemption

queue), îM calls in service with iP calls being PT calls, and i− îM ST calls in the queue. The arrival process is in

phase u, the jth (0 ≤ j ≤ iP ) PT call among the iP PT calls is being served in phase SP
j ; the kth (1 ≤ k ≤ îM−iP )

ST call among the îM − iP ST calls is being served in phase SS
k , and the lth (1 ≤ l ≤ i − îM ) preempted ST

call among the i − îM preempted ST calls in the preemption queue was served in phase SQ
l immediately before

it was preempted. Note that in state (i, ip, u,SiP
,SiS

,SiQ
) with i = 2M , the element SiS

is empty since in this

case iP = M (all M channels are occupied by PT calls). When 1 ≤ i ≤M , SiQ
is empty since in this case there

are no preempted ST calls in the system. One can show that {X(t)} is a continuous-time Markov process with

infinitesimal generator

Q =



E0 B0

D1 E1 B1

. . .
. . .

. . .

D2M−1 E2M−1 B2M−1

D2M E2M


, (5)

where Ei (0 ≤ i ≤ 2M ) is a matrix representing the absence of transitions from the state in which there are i calls

in the system; Bi (0 ≤ i ≤ 2M − 1) is a matrix representing the transition rates due to the arrival of a PT or ST

call when there are i calls in the system; and Di (1 ≤ i ≤ 2M ) denotes a departure of a call when there are i calls

in the system.

Next, we introduce the following notations (cf. [22]):
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• Ik is an identity matrix of dimension k and I(k, s) = Ik ⊗ · · · ⊗ Ik︸ ︷︷ ︸
s

(k, s = 1, 2, · · · ) is the Kronecker product

of s identity matrices Ik; I(k, 0) , 1.

• WP (s) = TP ⊕ · · · ⊕TP︸ ︷︷ ︸
s

is the Kronecker sum of s square matrices TP , which represents the service phases

of the s PT calls that are in service; WP (0) , 0.

• WS(s) = TS ⊕ · · · ⊕TS︸ ︷︷ ︸
s

is the Kronecker sum of s square matrices TS , which represents the service phases

of the s ST calls that are in service; WS(0) , 0.

• WQ(s) = TS ⊕ · · · ⊕TS︸ ︷︷ ︸
s

is the Kronecker sum of s square matrices TS , which represents the service phases

of the s preempted ST calls immediately before they are preempted; WQ(0) , 0. Note that WQ(s) has the

same form as WS(s).

• VP (s) =
∑s−1

k=0 I(n, k) ⊗ T0
P ⊗ I(n, s − k − 1) represents service completion of one of the s PT calls in

service.

• VS(s) =
∑s−1

k=0 I(n, k) ⊗ T0
S ⊗ I(n, s − k − 1) represents service completion of one of the s ST calls in

service.

Expressions for these matrices are derived below.

A. Construction of Block Matrices Bi

If 0 ≤ i ≤M − 1, Bi is an (i+ 1)× (i+ 2) block matrix given by

Bi =



BP
i,0 BS

i,0

BP
i,1 BS

i,1

. . .
. . .

BP
i,i BS

i,i


, (6)

where BP
i,j = GP⊗I(n, j)⊗αP⊗I(n, i−j), 0 ≤ j ≤ i, represents the transition rates corresponding to the arrival of

a PT call when there are i calls in the system, among which j are PT calls; and BS
i,j = GS⊗I(n, j)⊗I(n, i−j)⊗αS ,

0 ≤ j ≤ i, represents transition rates corresponding to the arrival of an ST call when there are i calls in the system,

among which j are PT calls. Clearly, when i = 0, we have B0 = [GP ⊗αP GS ⊗αS ].

If M ≤ i ≤ 2M − 1, Bi is a (2M − i+ 1)× (2M − i) block matrix given by4

4Note that in the matrix Bi and the following Di, 0 denotes a submatrix with the same size to its associated BP
i,j and DP

i,j (or DS
i,j ),

respectively.
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Bi =



BP
i,i−M

BP
i,i−M+1

. . .

BP
i,M−1

0


, (7)

where BP
i,j = GP ⊗ I(n, j)⊗αP ⊗ I(n, i− j), i−M ≤ j ≤M − 1, represents state transition rates corresponding

to the arrival of a PT call when there are i calls in the system (including the preempted ST calls in the preemption

queue), among which j are PT calls.

B. Construction of Block Matrices Di

If 1 ≤ i ≤M , Di is an (i+ 1)× i block matrix given by

Di =



DS
i,0

DP
i,1 DS

i,1

. . .
. . .

DP
i,i−1 DS

i,i−1

DP
i,i


, (8)

where in each row of Di, the element DP
i,j = Im ⊗VP (j) ⊗ I(n, i − j), 1 ≤ j ≤ i, represents transition rates

corresponding to a PT call departure when there are i calls in the system, among which j are PT calls; and the

element DS
i,j = Im⊗ I(n, j)⊗VS(i− j), 0 ≤ j ≤ i− 1, represents transition rates corresponding to the departure

of an ST call when there are i calls in the system, among which j are PT calls. Clearly, when i = 1, we have

D1 =

 Im ⊗T0
S

Im ⊗T0
P

 .
If M + 1 ≤ i ≤ 2M , Di is a (2M − i+ 1)× (2M − i+ 2) block matrix given by

Di =



DP
i,i−M DS

i,i−M

DP
i,i−M+1 DS

i,i−M+1

. . .
. . .

DP
i,M−1 DS

i,M−1

DP
i,M 0


, (9)

where in each row of Di, the element DP
i,j = Im⊗VP (j)⊗I(n, i− j), i−M ≤ j ≤M , represents state transition

rates corresponding to the departure of a PT call when there are i calls in the system with M calls receiving service,

among which j are PT calls; and the element DS
i,j = Im ⊗ I(n, j)⊗VS(i− j), i−M ≤ j ≤ M − 1, represents

transition rates corresponding to the departure of an ST call when there are i calls in the system with M calls

receiving service, among which j are PT calls.
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C. Construction of Block Matrices Ei

If 0 ≤ i ≤M , Ei is an (i+ 1)× (i+ 1) block diagonal matrix given by

Ei = diag{Ei,0,Ei,1, . . . ,Ei,i}. (10)

where Ei,j , 0 ≤ j ≤ i, represents the absence of state transitions when there are i calls receiving service, among

which j are PT calls, and is given by

Ei,j =


G0 ⊕WP (j)⊕WS(i− j), 0 ≤ i ≤M − 1, 0 ≤ j ≤ i;

(G0 + GS)⊕WP (j)⊕WS(i− j), i = M, 0 ≤ j ≤M − 1;

(G0 + GS + GP )⊕WP (j)⊕WS(i− j), i = M, j = M.

(11)

Clearly, when i = 0, we have E0 = E0,0 = G0. If M + 1 ≤ i ≤ 2M , Ei is a (2M − i+ 1)× (2M − i+ 1) block

diagonal matrix given by

Ei = diag{Ei,i−M ,Ei,i−M+1, . . . ,Ei,M}, (12)

where Ei,j , i−M ≤ j ≤M , represents the absence of state transitions when there are i calls in the system with

M calls receiving service, among which at least j calls are PT calls, and is given by

Ei,j =


(G0+GS)⊕WP(j)⊕WS(M−j)⊕WQ(i−M), M+1≤ i≤2M−1, i−M≤j≤M−1;

(G0+GS +GP)⊕WP(j)⊕WS(M−j)⊕WQ(i−M), M + 1 ≤ i ≤ 2M, j = M.

(13)

IV. COMPUTATION OF STATIONARY STATE PROBABILITY VECTOR

In this section, we derive the stationary state probability vector of the Markov process {X(t)} and provide a

recursive computational algorithm. Let p(0, u) and p(i, iP , u,SiP
,SiS

,SiQ
) denote the stationary probability of

the system in states (0, u) and (i, iP , u,SiP
,SiS

,SiQ
), respectively. Let pi, 0 ≤ i ≤ 2M , be the stationary

state probability vector of the system in equilibrium when there are i calls in the system. The sequence of

elements in the vectors pi, 0 ≤ i ≤ 2M , is ordered lexicographically based on the probabilities p(0, u) and

p(i, iP , u,SiP
,SiS

,SiQ
). For example, when i = 0, p0 = (p(0, 1), p(0, 2), · · · , p(0,m)). Thus, the stationary

probability vector of the system is P = (p0,p1, · · · ,pM ,pM+1, · · · ,p2M ), where pi, 0 ≤ i ≤M , is a probability

vector of level i with dimension (i + 1)mni, and pi, M + 1 ≤ i ≤ 2M , is a probability vector of level i with

dimension (2M − i + 1)mni. From the equilibrium conditions PQ = 0 (where 0 is a row vector of all zeros of

appropriate dimension) and Pe = 1, we have

p0E0 + p1D1 = 0; p2M−1B2M−1 + p2ME2M = 0;

pi−1Bi−1 + piEi + pi+1Di+1 = 0, 1 ≤ i ≤ 2M − 1. (14)
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Solving the above equations, we obtain the following recurrence formula:

p2MC2M = 0; pi = pi+1Di+1(Ci)−1, 0 ≤ i ≤ 2M − 1, (15)

where

C0 = −E0, and Ci = −Ei −Di(Ci−1)−1Bi−1, 1 ≤ i ≤ 2M. (16)

We point out that the recursive solution approaches used in [22], [28], [29] are not applicable here since the block-

matrix structures are different. Following the above recursive equations, the stationary probability vector P can be

computed numerically. We summarize the algorithm for computing the stationary state probability vector as follows:

• Step 1: Compute the matrices Ci recursively from i = 0 to i = 2M , by using (16).

• Step 2: Compute probability vectors pi recursively from i = 2M to i = 0, by using (15).

• Step 3: Normalize the probability vector pi, 0 ≤ i ≤ 2M , by using P ← P ∗ = P
P e . The obtained vector P ∗

is the final stationary probability vector.

Remark 1: The proposed performance model can encompass a large class of specific models as special cases,

such as a model with MAP arrivals and exponentially distributed service, a model with MMPP arrivals and Erlang-

distributed service, a model with Poisson arrivals and hypoexponential service, etc. In the first case, the service

time parameters become (cf. [17]): n = 1, αP = 1, TP = −µP , T0
P = µP , αS = 1, TS = −µS , T0

S = µS .

Remark 2: The computational complexity of the model is mainly due to computing the matrix inverse in (15)

and (16). Since the complexity of matrix inversion is, in general, O(i3) for an i× i matrix [30], the complexity of

the recursive algorithm given above is given by

O

(
M∑
i=0

(i+ 1)3m3n3i +
2M∑

i=M+1

(2M − i+ 1)3m3n3i

)
= O(M3m3n6M ). (17)

In particular, when n = 1, the complexity of the model is O(M3m3). In this case, the model can be solved feasibly

when M is on the order of a few hundred channels and m is on the order of ten. When n > 1, the computational

complexity grows exponentially with the number of channels M and only models with moderate values for n and

M (e.g., n = 2 and M on the order of ten) can be solved in practice using today’s computers. The complexity

could be reduced by exploiting the block structure of the system generator matrix in the matrix inversion step would

have complexity less than O(i3), but the overall complexity would still be exponential in M when n > 1. The

only way to reduce this factor would be to simplify the model in some way, thereby trading off model accuracy

for reduced computational complexity. Investigation of such approximations is an interesting issue, but beyond the

scope of the present paper.
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V. SPECIAL CASES

The proposed framework can encompass a large class of specific frameworks as special cases, such as modeling a

system by considering Poisson arrival process and exponentially distributed service times, the MMPP arrival process

and Erlang-distributed service times, MAP arrival process and hypoexponential service times, etc. Here we present

two simple special cases: (A) Poisson call arrivals and exponential exponential service; (B) MAP call arrivals and

exponential service.

A. Poisson arrivals and exponential service

This is the simplest model class in the proposed generic framework. In this case, we have m = 1, λP = λ1q
P
11,

λS = λ1q
S
11, G0 = −(λP + λS), GP = λP , and GS = λS . The MAP is reduced to a Poisson process with rate

λP +λS , which consists of two independent Poisson processes with PT call arrival rate λP and ST call arrival rate

λS . On the other hand, we have n = 1, αP = 1, TP = −µP , T0
P = µP , αS = 1, TS = −µS , T0

S = µS . The

PH-distributions are reduced to exponential distributions with parameters µP and µS , respectively.

From the previous construction of matrices in Section III, we can simplify Bi, Ei and Di as follows: If 0 ≤ i ≤

M − 1, Bi is an (i+ 1)× (i+ 2) matrix given by

bi = [λP Ii+1 0] + [0 λSIi+1]. (18)

If M ≤ i ≤ 2M − 1, Bi is an (2M − i+ 1)× (2M − i) matrix given by

Bi = λP

 I2M−i

0

 . (19)

If 1 ≤ i ≤M , Di is an (i+ 1)× i matrix given by

Di =

 µSdiag{i, i− 1, . . . , 1}

0

+

 0

µP diag{1, . . . , i− 1, i}}

 , (20)

If M + 1 ≤ i ≤ 2M , Di is a (2M − i+ 1)× (2M − i+ 2) matrix given by

Di = [µP diag{i−M, . . . ,M − 1,M},0] + [0 µSdiag{2M − i, 2M − i− 1, . . . , 1} 0]. (21)

If 0 ≤ i ≤M , Ei is an (i+ 1)× (i+ 1) matrix given by

Ei = diag[Ei,0, Ei,1, . . . , Ei,i], (22)

where Ei,j , 0 ≤ j ≤ i, is given by

Ei,j =


−[λP + λS + jµP + (i− j)µS ], 0 ≤ i ≤M − 1, 0 ≤ j ≤ i;

−[λP + jµP + (i− j)µS ], i = M, 0 ≤ j ≤M − 1;

−MµP , i = M, j = M.

(23)
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If M + 1 ≤ i ≤ 2M , Ei is a (2M − i+ 1)× (2M − i+ 1) matrix given by

Ei = diag[Ei,i−M , Ei,i−M+1, . . . , Ei,i−M+1], (24)

where Ei,j , i−M ≤ j ≤M , is given by

Ei,j =

 −[λP + jµP + (M − j)µS ], M + 1 ≤ i ≤ 2M − 1, i−M ≤ j ≤M − 1;

−MµP , M + 1 ≤ i ≤ 2M, j = M.
(25)

By using the proposed recursive computational algorithm, the stationary probability vector of this special case can

be easily solved.

B. MAP arrivals and exponential service

In this case, only service times are simplified as n = 1, αP = 1, TP = −µP , T0
P = µP , αS = 1, TS = −µS ,

T0
S = µS . From the previous construction of matrices in Section III, we can simplify Bi, Ei and Di and solve the

stationary probability vector. We omit the details here, readers with interests are referred to [17].

VI. PERFORMANCE MEASURES

After obtaining the stationary state probability vector, we can determine various performance measures of interest.

A. Blocking Probabilities

The ST blocking probability, denoted by BS , is defined as the probability that all M channels are occupied by

either PT or ST sessions and is given by

BS =
2M∑

i=M

pie. (26)

The PT blocking probability, denoted by BP , is defined as the probability that all M channels are occupied by PT

sessions and is given by

BP =
2M∑

i=M

pi|iP =Me, (27)

where the steady-state probability vector pi|iP =M represents the value of pi given that iP = M .

B. Total Channel Utilization and Carried Traffic

The total channel utilization, denoted by η, is defined as the ratio of the mean number of occupied channels to

the total number of channels. We find that

η =
1
M

2M∑
i=1

îMpie. (28)
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The carried PT load, NP , is obtained as

NP =
M∑
i=1

i∑
iP =0

iPpie+
2M∑

i=M+1

M∑
iP =i−M

iPpie =
2M∑
i=1

iPpie. (29)

The last equation is obtained using the fact that number of PT calls iP can only be a number between 0 and i when

1 ≤ i ≤M , and between i−M and M when M + 1 ≤ i ≤ 2M , which are implicitly included in the structure of

the steady-state probability vector pi. For example, when i = 2M , iP can only be M ; when i = 2M − 1, iP can

only be M − 1 or M . Similarly, the carried ST load, NS , is obtained as

NS =
M∑
i=1

i∑
iP =0

(i− iP )pie+
2M∑

i=M+1

M∑
iP =i−M

(M − iP )pie =
2M∑
i=1

[îM − iP ]pie. (30)

The total carried traffic is given by TCT = NP +NS =
∑2M

i=1 îMpie = Mη.

C. Mean Number of Preempted ST Calls and Preemption Ratio

The mean number of preempted ST calls in equilibrium, which can be used to evaluate the performance of the

secondary system and design an appropriate range of system parameters is given by NQ =
∑2M

i=M+1(i−M)pie.

As mentioned earlier, when an ST call that vacates its channel cannot find an idle channel, it is moved to the

preemption queue. The mean preemption ratio of the ongoing ST calls in equilibrium is defined as the ratio of the

mean number of preempted ST calls to the mean total number of ST calls in the system, i.e., γ = NQ

NSQ
, where

NSQ = NS +NQ =
M∑
i=1

i∑
iP =0

(i− iP )pie+
2M∑

i=M+1

M∑
iP =i−M

(i− iP )pie =
2M∑
i=1

(i− iP )pie. (31)

D. Perceived and Actual Waiting Times

As mentioned in Section II, preempted ST calls remaining in the preemption queue either reconnect back in

first-come first-served (FCFS) order as channels become available or leave the system when their maximum waiting

times expire. Consider a given preempted ST call, referred to as the test call. The probability that l preempted ST

calls are waiting in the preemption queue, upon the arrival of the test call, is given by pi|i=M+le, 0 ≤ l ≤M − 1.

Note that the condition 0 ≤ l ≤ M − 1 implies M ≤ i ≤ 2M − 1. The test call reconnects to the system only if

l+ 1 calls leave the system, either releasing a channel or a position in the queue, before its maximum waiting time

expires.

Let ϕl, 0 ≤ l ≤M−1, denote the time interval, in steady-state, between a transition to a state (i, ip, u,SiP
,SiS

,SiQ
(l+

1)) until a transition to a new state (i − 1, i′p, u
′,S′iP

,S′iS
,SiQ

(l)), due to either the service completion of an

ongoing PT or ST call, or the departure of a queued ST call due to expiry of its maximum waiting time, where

SiQ
(l) , (SQ

1 , S
Q
2 , ..., S

Q
l ) with 1 ≤ SQ

k ≤ n, 1 ≤ k ≤ l. If a PT call leaves, then i′p = ip−1, while the elements

in SiS
remain the same; if an ongoing ST call leaves, then the elements in SiS

are reduced by 1 while i′p = ip; if
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a queued ST call leaves, then both iP and the elements in SiS
remain the same. When a PT or ST call leaves the

system, the head-of-line ST call in the preemption queue reconnects to the system and the remaining queued ST

calls advance by one position in the queue. Similarly, the dropping of a queued ST call leads to the advancement,

by one position, of each of the remaining queued ST calls that were behind it.

We define a new performance metric, perceived waiting time of the test call with queue size l, defined by

Ψper(l) , ϕ0 + ϕ1 + · · ·+ ϕl,

to represent the queueing behavior of the preempted ST calls. Recall that the maximum waiting time of a ST

call in the preemption queue Ψmax is assumed to follow a PH distribution with dimension r and is represented by

PH(θ,Θ). To compute the perceived waiting time of preempted ST calls Ψper(l), the residual channel holding times

of the ongoing PT and ST calls must be determined. By [21, theorem 2.2.3], the residual channel holding times

of the ongoing PT and ST calls, denoted by YP and YS , follow PH-distributions with dimension n, represented

by PH(βP ,TP ) and PH(βS ,TS), respectively, where βP = βP (TP + T0
PαP ) and βPe = 1 and also βS =

βS(TS + T0
SαS) and βSe = 1. The following theorem characterizes the perceived waiting time distribution (a

proof is provided Appendix A).

Theorem 1: The perceived waiting time of the test call given that the preemption queue is of size l, Ψper(l),

follows a PH distribution of order nM (rl+1−1)
r−1 , represented as PH(ωper(l),Ωper(l)), where M is the number of

channels shared by the PT and ST calls, and

ωper(l) =

[
a0, (1− a0e)a1, (1− a0e)(1− a1e)a2, · · · ,

l−1∏
u=0

(1− aue)al

]
, (32)

Ωper(l) =



A00 A01 A02 A03 · · · A0,l−1 A0l

A11 A12 A13 · · · A1,l−1 A1l

A22 A23 · · · A2,l−1 A2l

. . .
...

...

Al−1,l−1 Al−1,l

Al,l


, (33)
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where

a0 = [βP ⊗ · · · ⊗ βP︸ ︷︷ ︸
iP

⊗βS ⊗ · · · ⊗ βS︸ ︷︷ ︸
M−iP

], (34)

au = [βP ⊗ · · · ⊗ βP︸ ︷︷ ︸
iP

⊗βS ⊗ · · · ⊗ βS︸ ︷︷ ︸
M−iP

⊗θ ⊗ · · · ⊗ θ︸ ︷︷ ︸
u

], 1 ≤ u ≤ l, (35)

A00 = TP ⊕ · · · ⊕TP︸ ︷︷ ︸
iP

⊕TS ⊕ · · · ⊕TS︸ ︷︷ ︸
M−iP

, (36)

Auu = TP ⊕ · · · ⊕TP︸ ︷︷ ︸
iP

⊕TS ⊕ · · · ⊕TS︸ ︷︷ ︸
M−iP

⊕Θ⊕ · · · ⊕Θ︸ ︷︷ ︸
u

, 1 ≤ u ≤ l, (37)

Auv = −
v−1∑
k=u

(Auk · e)av, 0 ≤ u ≤ l − 1, u+ 1 ≤ v ≤ l, (38)

and iP is the number of PT calls in service, and u is the number of preempted ST calls in the preemption queue.

Note that matrices Auv can be obtained recursively from Au,u+1 to Au,l.

The actual waiting time of the test call is the minimum of its maximum waiting time and its perceived waiting

time, i.e.,

Ψact(l) = min{Ψmax,Ψper(l)}. (39)

Using [21, theorem 2.2.9], we can obtain the following result.

Corollary 1: The actual waiting time of the test call, Ψact(l), follows a PH distribution with dimension rnM (rl+1−1)
r−1 ,

represented by PH(ωact(l),Ωact(l)), where ωact(l) and Ωact(l) are given by

ωact(l) = [θ ⊗ ωper(l)], and Ωact(l) = Θ⊕Ωper(l). (40)

The complementary distribution function of Ψact(l) can be obtained as

Pr(Ψact(l) > t) = 1− P (Ψact(l) ≤ t) = ωact(l) exp(Ωact(l)t)e. (41)

Since the number of queued ST calls seen by the test call lies between 0 and M − 1, the complementary

distribution function of the mean actual waiting time of the preempted ST calls, can be calculated as

P{Ψact > t} =
M−1∑
l=0

P (Ψact(l) > t) · pi|i=M+le =
M−1∑
l=0

ωact(l) exp(Ωact(l)t)e · pi|i=M+le. (42)

From (42), the non-central moments, Ψk
act, can be obtained as

Ψk
act = (−1)kk!

M−1∑
l=0

ωact(l)(Ωact(l))−ke · pi|i=M+le, k ≥ 1. (43)

When k = 1, we obtain the mean actual waiting time of the preempted ST calls, Ψact.

Remark 3: Given a constraint on the channel utilization η, the results derived above can be used to design an

optimal ST arrival rate that minimizes the ST blocking probability BS . Alternatively, one could fix the value of BS

below a predefined threshold and maximize carried ST load NS due to a tradeoff between BS and NS (see Figs.

1 and 3 in Section VII).
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VII. NUMERICAL RESULTS

In this section, we present both numerical and simulation results in terms of the obtained performance measures

under the following parameter settings5: M = 5, m = 2, n = 2, r = 2. The MAP parameters are set as:

GP =

 0.2λ1 0.2λ1

0.15λ2 0.25λ2

 , GS =

 0.25λ1 0.3λ1

0.2λ2 0.35λ2

 , G0 =

 −λ1 0.05λ1

0.05λ2 −λ2

 ,
where we set λ1 = λ2 = λ for simplicity. The parameters of the various PH distributions are set as follows:

αP = [0.5 0.5], αS = [0.5 0.5], θ = [0.5 0.5],

TP =

 −5 3

4 −6

 , TS =

 −6 4

5 −7

 , Θ =

 −3 2

2 −4

 .
The proposed system model was simulated in MATLAB. Each simulated data point was averaged over 1,000 trials

and the associated 95% confidence intervals were computed.

Fig. 1 shows the impact of the call arrival rates λP and λS (through the MAP parameter λ) on the PT and

ST call blocking probabilities BP and BS . As expected, when the MAP parameter λ is increased, λP and λS

increase linearly, leading to an increase in both BP and BS . For high call arrival rates, the performance of the

secondary system deteriorates due to the lack of available channels. Note that the analytical results are validated

by the simulation results. In Fig. 2, we compare the channel utilization of the OSS system with the single primary

system6. We observe that the OSS system has a much higher channel utilization than the single primary system. We

also observe that the channel utilization of the OSS system η increases as the call arrival rate is increased through

the MAP parameter λ. This is intuitive, since the larger the call arrival rate, the higher the channel utilization.

In Fig. 3, we observe the relationship between different types of carried traffic and the traffic arrival rate. The

carried PT and ST loads both increase as the arrival rate parameter λ increases. Note the total carried traffic

corresponds to the sum of the carried PT and ST carried loads. In Fig. 4, we observe that the number of preempted

ST calls in the preemption queue increases when the MAP parameter λ increases. This is because when λ increases,

the PT call arrival rate λP increases linearly, leading to more ongoing ST calls being preempted. Fig. 4 validates

the result derived in Section VI-C, i.e., the total number of ST calls is equal to the sum of the ST calls in service

and the preempted ST calls.

Fig. 5 shows the mean preemption ratio of the ongoing ST calls γ as a function of the call arrival rate through

λ. As λ increases, the mean preemption ratio γ increases. As more PT calls enter the system, fewer channels

5Here we choose small values of M , m, n, and r to keep the computational complexity small, while retaining the salient characteristics of

MAP and PH distributions.
6The single primary system is obtained by suppressing the ST call arrivals, i.e., converting the contribution of qS

ij , 1 ≤ i, j ≤ m to that of

q0ij , j 6= i, 1 ≤ i, j ≤ m, and forcing qS
ij to 0.
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are available for ST calls. Thus, a vacated ST call from its current channel has a smaller chance of obtaining an

idle channel to continue its call, leading to a greater chance of generating a preempted ST call. Fig. 6 shows the

complementary distributions of different waiting times (under iP = 3, l = 2). The relationship of the actual waiting

time of the test call Ψact(l) with respect to the maximum waiting time Ψmax and the perceived waiting time Ψper(l)

agrees with intuition.

VIII. CONCLUSIONS

We formulated a general performance model for an opportunistic spectrum sharing (OSS) wireless system. The

OSS system consists of two types of users: primary and secondary. Primary calls have preemptive priority over

secondary calls; a preempted secondary call attempts to resume service on an available channel, or waits in a

preemption queue in the event that all channels are occupied. Arrivals of calls or sessions from both types of

users are modeled by a Markovian arrival process (MAP), while channel holding times are modeled by phase-type

distributions. Using matrix-analytic methods, computational algorithms are developed and performance metrics of

interest are derived

The OSS system model encompasses a large class models as special cases and is useful for performance evaluation

and design of future OSS systems. Although the model assumes that secondary users can perfectly detect the

presence of primary users in a channel, the impact of unreliable spectrum sensing [27] could, in principle, be

incorporated into the model. When the service distribution is nonexponential, the computational complexity of

the model grows exponentially in the number of channels. To evaluate such scenarios, it would be worthwhile to

investigate computationally efficient approximations to the general model proposed here.

APPENDIX

A. Proof of Theorem 1

When the test call arrives to find l, 0 ≤ l ≤ M − 1, queued ST calls, without loss of generality, the system

state is assumed to consist of a total of i calls, among which are iP PT calls and M − iP ST calls in service and

l queued ST calls in the preemption queue. ¿From Section VI-D, the time variable ϕl can be derived from any of

the following three events: (1) service completion of an ongoing PT call; (2) service completion of an ongoing ST

call; and (3) dropping of a queued ST call. The event that occurs first triggers the transition to a new system state.

For each event, any call that completes or drops first triggers a state transition. Since the maximum waiting time of

a queued ST call and the residual channel holding times of the ongoing PT and ST calls all follow PH-distributions

with representations PH(θ,Θ), PH(βP ,TP ) and PH(βS ,TS), respectively, by applying [21, theorem 2.2.9], it can
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be easily shown that ϕl follows a PH distribution PH(al,All) with

al = [βP ⊗ · · · ⊗ βP︸ ︷︷ ︸
iP

⊗βS ⊗ · · · ⊗ βS︸ ︷︷ ︸
M−iP

⊗θ ⊗ · · · ⊗ θ︸ ︷︷ ︸
l

], 0 ≤ l ≤M − 1, (44)

All = TP ⊕ · · · ⊕TP︸ ︷︷ ︸
iP

⊕TS ⊕ · · · ⊕TS︸ ︷︷ ︸
M−iP

⊕Θ⊕ · · · ⊕Θ︸ ︷︷ ︸
l

, 0 ≤ l ≤M − 1. (45)

The dimension of the PH variable ϕl can be calculated as

niP · nM−iP · rl = nMrl. (46)

Based on [24, theorem 2.6.1], the perceived waiting time of the test call, Ψper(l) , ϕ0 + ϕ1 + · · · + ϕl, follows

the PH distribution with representation PH(ωper(l),Ωper(l)), where

ωper(l) = [ξ0, ξ1, ξ2, · · · , ξl], (47)

and Ωper(l) has the form given in (33). By repeatedly applying [24, theorem 2.6.1], we obtain

ξ0 = a0, ξ1 = (1− ξ0e)a1 = (1− a0e)a1,

ξ2 = (1− ξ0e− ξ1e)a2 = (1− a0e)(1− a1e)a2, · · · · · ·

ξl = (1− ξ0e− ξ1e− · · · − ξl−1e)al =
l−1∏
u=0

(1− aue)al;

and

Au,u+1 = −Auueau+1, Au,u+2 = −(Auue+Au,u+1e)au+2, · · · · · ·

Aul = −(Auue+Au,u+1e+ · · ·+Au,l−1e)al =
l−1∑
k=u

(Auke)al.

From equations (47) and (46), we can calculate the dimension of the PH variable Ψper(l) as

nMr0 + nMr1 + nMr2 + · · ·+ nMrl =
nM (rl+1 − 1)

r − 1
. (48)

REFERENCES

[1] M. McHenry, “Frequency agile spectrum access technologies,” in Proc. FCC Workshop on Cognitive Radio, May 2003.

[2] G. Staple and K. Werbach, “The end of spectrum scarcity,” IEEE Spectrum, vol. 41, pp. 48–52, March 2004.

[3] S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Sel. Areas Commun., vol. 23, pp. 201–220, Feb. 2005.

[4] A. E. Leu, M. McHenry, and B. L. Mark, “Modeling and analysis of interference in listen-before-talk spectrum access schemes,” Int. J.

Network Mgmt, vol. 16, pp. 131–147, July 2006.

[5] S. Tang and B. L. Mark, “Performance analysis of a wireless network with opportunistic spectrum sharing,” in Proc. IEEE Globecom’07,

pp. 4636–4640, Nov. 2007.

[6] X. Liu and S. Shankar N., “Sensing-based opportunistic channel access,” Mobile Networks and Applications, vol. 11, pp. 577–591, Aug.

2006.

[7] P. Pawelczak, R. V. Prasad, and R. Hekmat, “Waterfilling may not good neighbors make,” in Proc. IEEE ICC’07, June 2007.



18

[8] L. Le and E. Hossain, “QoS-aware spectrum sharing in cognitive wireless networks,” in Proc. of IEEE Globecom’07, pp. 3563–3567, Nov.

2007.

[9] S. Tang and B. L. Mark, “An adaptive spectrum detection mechanism for cognitive radio networks in dynamic traffic environments,” in

Proc. IEEE Globecom’08, (New Orleans, LA), Nov. 2008.

[10] A. Ghasemi and E. S. Sousa, “Opportunistic spectrum access in fading channels through collaborative sensing,” Journal of Communications,

vol. 2, pp. 71–82, March 2007.

[11] M. Rajaratnam and F. Takawira, “Nonclassical traffic modeling and performance analysis of cellular mobile networks with and without

channel reservation,” IEEE Trans. Veh. Technol., vol. 49, no. 3, pp. 817–834, 2000.

[12] Y. Fang and I. Chlamtac, “A new mobility model and its application in the channel holding time characterization in PCS networks,” in

Proc. IEEE INFOCOM’99, pp. 20–27, Mar. 1999.

[13] V. Paxson and S. Floyd, “Wide area traffic: The failure of Poisson modeling,” IEEE/ACM Trans. Netw., vol. 3, pp. 226–244, June 1995.

[14] L. Muscariello, M. Mellia, M. Meo, M. Marsan, and R. Cigno, “An MMPP-based hierarchical model of Internet traffic,” in Proc. of IEEE

ICC’04, pp. 2143–2147, June 2004.

[15] A. T. Andersen and B. F. Nielsen, “A Markovian approach for modeling packet traffic with long-range dependence,” IEEE J. Selected

Areas in Comm., vol. 16, no. 5, pp. 719–732, 1998.

[16] A. Horvath and M. Telek, “Markovian modeling of real data traffic: Heuristic phase type and MAP fitting of heavy tailed and fractal like

samples,” in Performance Evaluation of Complex Systems: Techniques and Tools, IFIP Performance’02, LNCS Tutorial Series, vol. 2459,

pp. 405–434, Springer-Verlag, 2002.

[17] S. Tang and B. L. Mark, “Modeling an opportunistic spectrum sharing system with correlated arrival process,” in Proc. IEEE WCNC’08,

pp. 3297–3302, 2008.

[18] H. Heffes and D. Lucantoni, “A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer

performance,” IEEE J. Selected Areas in Comm., vol. 4, no. 6, pp. 856–868, 1986.

[19] W. Fischer and K. S. Meier-Hellstern, “The Markov-Modulated Poisson Process (MMPP) cookbook,” Performance Evaluation, vol. 18,

no. 2, pp. 867–885, 1993.

[20] L. Breuer and D. Baum, An Introduction to Queueing Theory and Matrix-Analytic Methods. Springer, Dec. 2005.

[21] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models. Johns Hopkins University Press: Baltimore, MD, 1981.

[22] A. S. Alfa and W. Li, “A homogeneous PCS network with Markov call arrival process and phase type cell residence time,” Wireless

Networks, vol. 8, no. 6, pp. 597–605, 2002.

[23] A. Jayasuriya, D. Green, and J. Asenstorfer, “Modelling service time distribution in cellular networks using phase-type service distributions,”

in Proc. of IEEE ICC’01, pp. 440–444, June 2001.

[24] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA/SIAM Series on Statistics and

Applied Probability, 1999.

[25] L. B. Le, E. Hossain, and A. S. Alfa, “Delay statistics and throughput performance for multi-rate wireless networks under multiuser

diversity,” IEEE Trans. Wireless Commun., vol. 5, pp. 3234–3243, Nov. 2006.

[26] L. B. Le, E. Hossain, and M. Zorzi, “Queueing analysis for GBN and SR ARQ protocols under dynamic radio link adaptation with

non-zero feedback delay,” IEEE Trans. Wireless Commun., vol. 6, pp. 3418–3428, Sep. 2007.

[27] S. Tang and B. L. Mark, “Modeling and analysis of opportunistic spectrum sharing with unreliable spectrum sensing,” IEEE Trans. Wireless

Commun., 2009 (to appear).

[28] D. P. Gaver, P. A. Jacobs, and G. Latouche, “Finite birth-and death models in randomly changing environments,” Adv. Applied Prob.,

vol. 16, pp. 715–731, 1984.



19

[29] S. Tang and W. Li, “An adaptive bandwidth allocation scheme with preemptive priority for integrated voice/data mobile networks,” IEEE

Trans. Wireless Commun., vol. 5, pp. 2874–2886, Oct. 2006.

[30] P. Mishra, “Order-recursive Gaussian elimination,” IEEE Trans. on Aerospace and Electronic Systems, vol. 32, pp. 396–400, Jan. 1996.



20

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

The MAP parameter λ

B
lo

ck
in

g 
pr

ob
ab

ili
tie

s

 

 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

C
al

l a
rr

iv
al

 r
at

es

B
P
 − Analytic

B
S
 − Analytic

B
P
 − Simulation

B
S
 − Simulation

λ
S

λ
P

Fig. 1. PT and ST call blocking probabilities vs. call arrival rates.
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Fig. 2. Total channel utilization vs. call arrival rate (via parameter λ).
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Fig. 4. Number of different types of ST calls vs. call arrival rate (via parameter λ).
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Fig. 5. Preemption ratio vs. call arrival rate (via parameter λ).
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Fig. 6. Complementary distributions of different waiting times (under iP = 3, l = 2).


