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Background: Since the invention of next-generation RNA sequencing (RNA-seq) technologies, they have become a

powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized

transcriptomic studies. The analysis of RNA-seq data at four different levels (samples, genes, transcripts, and exons)

involve multiple statistical and computational questions, some of which remain challenging up to date.

Results: We review RNA-seq analysis tools at the sample, gene, transcript, and exon levels from a statistical

perspective. We also highlight the biological and statistical questions of most practical considerations.

Conclusions: The development of statistical and computational methods for analyzing RNA-seq data has made

significant advances in the past decade. However, methods developed to answer the same biological question often rely

on diverse statistical models and exhibit different performance under different scenarios. This review discusses and

compares multiple commonly used statistical models regarding their assumptions, in the hope of helping users select

appropriate methods as needed, as well as assisting developers for future method development.

Keywords: RNA-seq; statistical modeling; differentially expressed genes; alternatively spliced exons; isoform

reconstruction and quantification

Author summary: In this review article, we provide an overview of the modeling and analysis of next-generation RNA

sequencing (RNA-seq) data from a statistical perspective. We summarize state-of-the-art computational methods for RNA-

seq data analysis at four different levels: sample, gene, transcript, and exon levels, and we focus on introducing and

explaining their common statistical assumptions, models, and techniques. We also provide references to books and original

papers for interested readers who would like to explore further technical details. Recommended readers include

computational researchers focusing on methodology development and applied bioinformaticians interested in understanding

the commonly used methods.

INTRODUCTION

RNA sequencing (RNA-seq) uses the next generation

sequencing (NGS) technologies to reveal the presence

and quantity of RNA molecules in biological samples.

Since its invention, RNA-seq has revolutionized tran-

scriptome analysis in biological research. RNA-seq does

not require any prior knowledge on RNA sequences, and

its high-throughput manner allows for genome-wide

profiling of transcriptome landscapes [1,2]. Researchers

have been using RNA-seq to catalog all transcript species,

such as messenger RNAs (mRNAs) and long non-coding

RNAs (lncRNAs), to determine the transcriptional

structure of genes, and to quantify the dynamic expression

patterns of every transcript under different biological

conditions [1].

Due to the popularity of RNA-seq technologies and the

increasing needs to analyze large-scale RNA-seq datasets,

more than two thousand computational tools have been

developed in the past ten years to assist the visualization,

processing, analysis, and interpretation of RNA-seq data.

The two most computationally intensive steps are data
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processing and analysis. In data processing, for organisms

with reference genomes available, short RNA-seq reads

are aligned (or mapped) to the reference genome and

converted into genomic positions; for organisms without

reference genomes, de novo transcriptome assembly is

needed. Regarding the reference-based alignment, the

RNA-seq Genome Annotation Assessment Project

(RGASP) Consortium has conducted a systematic

evaluation of mainstream spliced alignment programs

for RNA-seq data [3]. We refer interested readers to this

paper and do not discuss these alignment algorithms here,

as statistical models are not heavily involved in the

alignment step. In this paper, we focus on the statistical

questions engaged in RNA-seq data analyses, assuming

reads are already aligned to the reference genome.

Depending on the biological questions to be answered

from RNA-seq data, we categorize RNA-seq analyses at

four different levels, which require three different ways of

RNA-seq data summary. Sample-level analyses (e.g.,

sample clustering) and gene-level analyses (e.g., identify-

ing differentially expressed genes [4] and constructing

gene co-expression networks [5]) mostly require gene

read counts, i.e., number of RNA-seq reads mapped to

each gene. Note that we refer to a transcribed genomic

region as a “gene” throughout this review, and a multi-

gene family (multiple transcribed regions that encode

proteins with similar sequences) are referred to as

multiple “genes”. Transcript-level analyses, such as

RNA transcript assembly and quantification [6], often

need read counts of genomic regions within a gene, i.e.,

number of RNA-seq reads mapped to each region or each

region-region junction, or even the exact position of each

read. Exon-level analyses, such as identifying differential

exon usage [7], usually require read counts of exons and

exon-exon junctions. As these four levels of analyses use

different statistical and computational methods, we will

review the key statistical models and methods widely

used at each level of RNA-seq analysis (Figure 1), with an

emphasis on the identification of differential expression

and alternative splicing patterns, two of the most common

goals of RNA-seq experiments.

This review does not aim to exhaustively enumerate all

the existing computational tools designed for RNA-seq

data, but to discuss the strategies of statistical modeling

and application scopes of typical methods for RNA-seq

analysis. We refer readers to Refs. [1,8] for an introduc-

tion to the development of RNA-seq technologies, and

Ref. [9] for a comprehensive assessment of RNA-seq with

a comparison to microarray technologies and other

sequence-based platforms by the Sequencing Quality

Figure 1. RNA-seq analyses at four different levels: sample-level, gene-level, transcript-level, and exon-level. In the sample-level

analysis, the results are usually summarized into a similarity matrix, as introduced in the Section of Sample-level Analysis:

Transcriptome Similarity. Taking a 4-exon gene as an example, the gene-level analysis summarizes the counts of RNA-seq reads

mapped to genes in samples of different conditions, and it subsequently compares genes’ expression levels calculated based on

read counts; the transcript-level analysis focuses on reads mapped to different isoforms; the exon-level analysis mostly considers

the reads mapped to or skipping the exon of interest (the yellow exon marked by a red box in this example).
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Control (SEQC) project. For considerations in experi-

mental designs and more recent advances in computa-

tional tools, we refer readers to Ref. [10].

SAMPLE-LEVEL ANALYSIS:

TRANSCRIPTOME SIMILARITY

The availability of numerous public RNA-seq datasets

has created an unprecedented opportunity for researchers

to compare multi-species transcriptomes under various

biological conditions. Comparing transcriptomes of the

same or different species can reveal molecular mechan-

isms behind important biological processes, and help one

understand the conservation and differentiation of these

molecular mechanisms in evolution. Researchers need

similarity measures to directly evaluate the similarities of

different samples (i.e., transcriptomes) based on their

genome-wide gene expression data summarized from

RNA-seq experiments. Such similarity measures are

useful for outlier sample detection, sample classification,

and sample clustering analysis. When samples represent

individual cells, similarity measures may be used to

identify rare or novel cell types. In addition to gene

expression, it is also possible to evaluate transcriptome

similarity based on alternative splicing events [11].

Correlation analysis is a classical approach to measure

transcriptome similarity of biological samples [12,13].

The most commonly used measures are Pearson and

Spearman correlation coefficients. The analysis starts with

calculating pairwise correlation coefficients of normalized

gene expression between any two biological samples,

resulting in a correlation matrix. Users can visualize the

correlation matrix (usually as a heatmap) to interpret the

pairwise transcriptome similarity of biological samples, or

they may use the correlation matrix in downstream

analysis such as sample clustering.

However, a caveat of using correlation analysis to infer

transcriptome similarity is that the existence of house-

keeping genes would inflate correlation coefficients.

Moreover, correlation measures rely heavily on the

accuracy of gene expression measurements and are not

robust when the signal-to-noise ratios are relatively low.

Therefore, we have developed an alternative transcrip-

tome overlap measure, TROM [14], to find sparse

correspondence of transcriptomes in the same or different

species. The TROMmethod compares biological samples

based on their “associated genes” instead of the whole

gene population, thus leading to a more robust and sparse

transcriptome similarity result than that of the correlation

analysis. TROM defines the associated genes of a sample

as the genes that have z-scores (normalized expression

levels across samples per gene) greater than or equal to a

systematically selected threshold. Pairwise TROM scores

are then calculated by an overlap test to measure the

similarity of associated genes for every pair of samples.

The resulting TROM score matrix has the same dimen-

sions as the correlation matrix, with rows and columns

corresponding to the samples used in the comparison, and

the TROM score matrix can be easily visualized or

incorporated into downstream analyses.

Aside from the correlation coefficients and the TROM

scores, there are other statistical measures useful for

measuring transcriptome similarity in various scenarios.

First, partial correlation can be used to measure sample

similarity after eliminating the part of the sample

correlation attributable to another variable such as batch

effects or experimental conditions [15]. Second, with

evidence of a non-linear association between RNA-seq

samples, it is suggested to use measures that can capture

non-linear dependences, such as the mutual information

(MI). Similarly, one may consider using the conditional

mutual information (CMI) [16] or partial mutual informa-

tion (PMI) [17] to remove the effects of other confound-

ing variables. In addition to the direct calculation of the

sample similarity matrix by applying a similarity measure

to the high-dimensional gene expression data, sometimes

it is helpful to visualize the gene expression data and

investigate the sample similarities after dimension reduc-

tion. Popular dimension reduction methods include

principal component analysis (PCA), t-stochastic neigh-

bor embedding (t-SNE) [18], and multidimensional

scaling (MDS) [19].

GENE-LEVEL ANALYSIS: GENE

EXPRESSION DYNAMICS

RNA-seq technologies have enabled the measurement

and comparison of genome-wide gene expression patterns

across different samples without the restriction of known

genes, which are required by microarray experiments.

Profiling gene expression patterns is the key to investigat-

ing new biological processes in various tissues and cells

of different organisms. A common and important question

in a large cohort of biological studies is how to compare

gene expression levels across different experimental

conditions, time points, tissue and cell types, or even

species. When a biological study concerns two different

biological conditions, differential gene expression (DGE)

analysis is useful for comparing RNA-seq samples of the

two conditions. When the number of biological condi-

tions far exceeds two, though DGE analysis can still be

used to compare samples in a pairwise manner, a more

useful way is to simultaneously measure the transcrip-

tome similarity of multiple samples, as we have described

in the previous Section: Sample-Level Analysis: Tran-

scriptome Similarity.
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Differential gene expression analysis

The main approach to comparing two biological condi-

tions is to find “differentially expressed” (DE) genes. A

gene is defined as DE if it is transcribed into different

amounts of mRNA molecules per cell under the two

conditions [20]. However, since we do not observe the

true amounts of mRNA molecules, statistical tests are

principled approaches that help biologists understand to

what extent a gene is DE.

It is commonly acknowledged that normalization is a

crucial step prior to DGE analysis due to the existence of

batch effects, which could arise from different sequencing

depths or various protocol-specific biases in different

experiments [21]. The reads per kilobase per million

mapped reads (RPKM) [22], the fragments per kilobase

per million mapped reads (FPKM) [23], and the

transcripts per million mapped reads (TPM) [24] are the

three most frequently used units for gene expression

measurements from RNA-seq data, and they remove the

effects of total sequencing depths and gene lengths. The

main difference between RPKM and FPKM is that the

former is a unit based on single-end reads, while the latter

is based on paired-end reads and counts the two reads

from the same RNA fragment as one instead of two. The

difference between RPKM/FPKM and TPM is that the

former calculates sample-scaling factors before dividing

read counts by gene lengths, while the latter divides read

counts by gene lengths first and calculates sample-scaling

factors based on the length-normalized read counts. If

researchers would like to interpret gene expression levels

as the proportions of RNAmolecules from different genes

in a sample, TPM has been suggested as a better unit than

RPKM/FPKM [25]. Even though in these units, gene

expression data may still contain protocol-specific biases

[26], and further normalization is often needed. There are

two main categories of normalization methods: distribu-

tion-based and gene-based. Distribution-based normal-

ization methods aim to make the distribution of all or most

gene expression levels similar across different samples,

and such methods include the quantile normalization [27],

DESeq [28], and TMM [29]. Gene-based normalization

methods aim to make non-DE genes or housekeeping

genes have the same expression levels in different

samples, and such methods include a method by Bullard

et al. [21] and PoissonSeq [30]. For a comprehensive

comparison of the assumptions and performance of these

normalization methods, we refer readers to Refs.

[20,21,31].

How to form a proper statistical hypothesis test is the

core question in the development of a DGE method. Most

existing methods use the Poisson distribution [32] or the

Negative Binomial (NB) distribution [28,33,34] to model

the read counts of an individual gene in different samples

(Figure 2A and D). In our discussion here, we focus on

the NB distribution because it is commonly used to

account for the observed over-dispersion of RNA-seq

read counts. Throughout this section, we consider two

biological conditions k = 1, 2, each with Jk samples. Yk,ij
denotes the read count of gene i in the j-th sample of

condition k. The basic assumption is that

Yk,ij~NBðmean=skj�ki; dispersion=fiÞ, (1)

where skj is the size factor of the j-th sample of condition

k, �ki is the true expression level of gene i under condition
k, and fi is the dispersion of gene i. It is necessary to

consider the size factor skj because it accounts for varying

numbers of sequenced reads in various samples. The

dispersion parameter fi controls the variability of the

expression levels of gene i across biological samples. The

estimation of the parameters skj, �ki, and fi is the key step

to investigating the differential expression of gene i

between the two conditions. Bayesian modeling is often

used, and prior distributions and relationships of skj, �ki,

and fi are often assumed. Note that assuming skj being

independent of gene i simplifies the problem, but it can be

advantageous to calculate gene-specific factors sk,ij to

account for technical biases dependent on gene-specific

GC contents or gene lengths [35]. The DGE analysis is

carried out by testing

H0 : �1i=�2i vs: H1 : �1i≠�2i (2)

for each gene i.

Starting from the model (Equation (1)), most methods

include six steps. First, they estimate �ki and fi for each

gene. Under the NB distribution, the dispersion parameter

characterizes the mean-variance relationship, consistent

with the observation that genes with similar true

expression levels exhibit similar variances [33,35].

When the sample sizes are small (Figure 2C and F), one

may consider using shrinkage estimation of fi’s to

borrow information across genes or to incorporate prior

knowledge, for the purpose of obtaining more robust

results [36]. Second, they construct a test statistic based

on the estimators to reflect the mean difference between

the two conditions. Third, they derive the null distribution

of the test statistic under H0. Fourth, they calculate the

observed value of the test statistic for each gene. Fifth,

they convert the observed values of the test statistic into p-

values based on the null distribution. Sixth, they perform

multiple-testing correction on the p-values to determine a

reasonable threshold, and the genes with p-values under

that threshold would be called as DE.

For example, edgeR [33] first estimates the dispersion

parameter using a conditional maximum likelihood, and it

then develops a test analogous to the Fisher’s exact test.

DESeq2 [35] adds a layer to the model by estimating
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(�2i – �1i) using a generalized linear model with a

logarithmic link function, Yk,ij as the response variable,

and the condition as a binary predictor (i.e., whether the

condition k = 2). This generalized linear model setup can

easily incorporate the information of experimental design

as additional predictors. In the testing step, DESeq2

transforms the problem into testing if the condition

predictor has significant effects on the logarithmic fold

change of gene expression, which is equivalent to testing

whether �2i – �1i = 0. EBSeq [37] and ShrinkSeq [38] are

also based on the model (Equation (1)), but under a

Bayesian framework they use hyper-parameters to borrow

information across genes, and they directly calculate the

posterior probability of a gene being differentially expressed,

i.e., Pð�1i≠�2ijY1,i1, :::, Y1,iJ1 , Y2,i1, :::, Y2,iJ2Þ.

There are other DGE methods that do not assume the

NB distribution as in the model (Equation (1)) but take a

different approach by assuming that log(Yk,ij) follows a

Normal distribution, which has much more tractable

mathematical theory than count distributions (such as the

NB distribution) have. For example, the voom method

[39] estimates the mean-variance relationship of log(Yk,ij)

and generates a precision weight for each observation.

Then voom inputs log(Yk,ij) and precision weights into the

limma empirical Bayes analysis pipeline [40], which is

designed for microarray data and has multiple modeling

advantages: using linear modeling to analyze complex

experiments with multiple treatment factors, using

quantitative weights to account for variations in the

precision of different observations, and using empirical

Figure 2. Illustration of read counts as samples drawn from unobservable populations. (A) The population read count distribution of a

hypothetical gene 1 under conditions c1 and c2, based on the NB model. The two population distributions have the same mean

parameter but different dispersion parameters. (B and C) The observed read counts of gene 1 are independent samples (B: with large

sample sizes; C: with small sample sizes) drawn from the two unobservable distributions. When the sample size is small, a statistical

test about whether the two samples have the same population mean will possibly lead to a false positive result (gene 1 found as a DE

gene). (D) The population read count distribution of a hypothetical gene 2 under conditions c1 and c2, based on the NBmodel. The two

population distributions have different mean parameters but the same dispersion parameter. (E and F) The observed read counts of

gene 2 are independent samples (E: with large sample sizes; F: with small sample sizes) drawn from the two unobservable

distributions. When the sample size is small, a statistical test about whether the two samples have the same population mean will

possibly lead to a false negative result (gene 2 found as a non-DE gene).
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Bayes methods to borrow information across genes.

Another method sleuth [41] is applicable to finding both

differentially expressed genes and transcripts between

two conditions. Here we describe sleuth in the context of

DGE analysis. Sleuth uses a linear model with log(Yk,ij) as

the response variable, and it decomposes the variance of

log(Yk,ij) into three components: the variance explained

by the condition predictor (whose coefficient is the

parameter of interest and indicates differential expression

if non-zero), the variance of “biological noise” (which

accounts for the variance of true gene expression across

samples of the same condition), and the variance of

“inferential noise” (which accounts for the additional

variance of observed gene expression due to the

uncertainty in gene expression estimation). Sleuth

assumes both the “biological noise” and the “inferential

noise” follow independent zero-mean Gaussian distribu-

tions. For every gene, sleuth estimates the variance of the

“inferential noise” by bootstrapping RNA-seq reads to

estimate the variance of the expression estimates of that

gene. Accurate estimation of the variance of the

“inferential noise” allows better estimation of the null

distribution of the test statistic, i.e., the estimator of the

coefficient of the condition predictor, in the third step,

thus leading to more accurate estimates of the p-values

and false discovery rates.

Remark 1. A common scenario is that a study only

includes a small number of RNA-seq replicates [42].

Even though most methods introduced in this section are

technically applicable to data with as few as two replicates

per condition, there is no guarantee of good performance

for these methods with a small number of replicates. In

fact, it was observed that many methods did not have a

good control on false discovery rates (FDRs) under this

scenario [42] (Figure 2). We suggest users carefully check

themselves or consult a statistician if the assumptions of a

method are reasonable for their study before using the

method, as a way to reduce the chance of misusing statistics.

Remark 2. Comparisons of DGE methods show that

none of the methods is optimal in all circumstances, and

methods can produce very different results (regarding

both the ranking and number of DE genes) on the same

dataset [4,31]. In some applications, users are more

concerned about the ranking of DE genes than the

resulting p-values of genes, especially when setting a

reasonable threshold on the p-values is difficult. In other

applications where thresholding on p-values is required to

control the probability that a gene is falsely discovered as

DE, users need to address the multiple-testing issue, as

testing for tens of thousands of genes simultaneously

could lead to a large number of false discoveries even at a

small p-value threshold. Common approaches to address

the multiple-testing issue include the Bonferroni correc-

tion [43], the Holm-Bonferroni method [44], and the

Benjamini-Hochberg FDR correction [45], with a

decreasing level of conservatism. The first two methods

aim to control the family-wise error rate (the probability

of making one or more false discoveries), while the third

method aims to control the expected proportion of false

discoveries among the discoveries.

Remark 3. In studies where researchers are interested in

temporal dynamics of transcriptomes, RNA-seq data are

produced at multiple time points of the same tissue or cell

type. To identify the genes whose expression levels along

the time course change significantly between two

conditions, a previous approach maSigPro [46] is based

on a linear model where gene expression level is modeled

as the response variable, while time points and conditions

are considered as predictors. The identification of DE

genes is then formulated as the problem of testing whether

the condition variable has a non-zero coefficient for each

gene. Another previous work based on microarray data

provided a two-sample multivariate empirical Bayes

statistic (MB statistic) for replicated microarray time

course data [47]. The MB statistic can be used to test the

null hypothesis that the expected temporal expression

profiles of one gene under two conditions are the same,

and it is thus a criterion to rank genes in the order of

evidence of non-zero mean difference between two

conditions, incorporating the correlation structure of

time points, moderation, and replication.

Gene co-expression network analysis

A gene co-expression network (GCN) is an undirected

graph, where nodes correspond to genes, and edges

connecting the nodes denote the co-expression relation-

ships between genes. GCNs can help people learn the

functional relationships between genes and infer and

annotate the functions of unknown genes. To the best of

our knowledge, the first GCN analysis on a genome-wide

scale across multiple organisms was completed in 2003,

enabled by the availability of high-throughput microarray

data [48]. One of the most commonly used GCN analysis

methods, WGCNA, was initially developed for micro-

array data but can also be used on normalized RNA-seq

data [49]. It is widely applied to gene expression datasets

to detect gene clusters and modules and to investigate

gene connectivity by analyzing correlation networks.

Here we introduce the GCN methods based on the

framework proposed in [50]. We denote the gene

expression matrix as XN�J , where the N rows represent

genes, and the J columns represent samples. The N genes

are considered as N nodes in the co-expression network.

The first step is to construct a symmetric adjacency matrix

AN�N , where Aij is a similarity score in the range from 0 to

1 between genes i and j. Aij measures the level of

concordance between gene expression vectors X i. and
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X j., the i-th and j-th rows of X : As discussed in the

Section of Sample-level Analysis: Transcriptome Simi-

larity, the similarity measure can be calculated based on

the correlation coefficients, the TROM measure, or the

mutual information measures, depending on the type of

gene co-expression relationships of interest in the

analysis. The elements in the adjacency matrix only

consider each pair of genes when evaluating their

similarity in expression profiles. However, it is important

to consider the relative connectedness of gene pairs with

respect to the entire network in order to detect co-

expression gene modules. Therefore, one needs to

calculate the topological overlap matrix TN�N , where

Tij is the topological overlap between nodes i and j. One

such example used in previous studies is [51]:

Tij=

XN

k=1
AikAkj þ Aij

min  nXN

k=1
Aik ,
XN

k=1
Ajk  oþ 1 –Aij

:

The final distance between nodes i and j is defined as

dij=1 – Tij. Clustering methods can then be applied to

search for gene modules based on the resulting distance

matrix. The identified gene modules are of great

biological interest in many applications. For example,

the modules can serve as a prioritizer to evaluate

functional relationships between known disease genes

and candidate genes [52]. Gene modules can also be used

to detect regulatory genes and study the regulatory

mechanisms in various organisms [53].

TRANSCRIPT-LEVEL ANALYSIS:

TRANSCRIPT RECONSTRUCTION AND

QUANTIFICATION

An important use of RNA-seq data is to recover full-

length mRNA transcript structures and expression levels

based on short RNA-seq reads. This application involves

two major tasks. The first task, identification of novel

transcripts in RNA-seq samples, is commonly referred to

as transcript/isoform reconstruction, discovery, assembly,

or identification. This is one of the most challenging

problems in this area due to the large search space of

candidate isoforms (especially for complex genes) and

inadequate information contained in short reads (Figure

3A). The second task, estimation of the expression of

known or newly discovered transcripts, is usually referred

to as transcript/isoform quantification or abundance

estimation. In recent years, it is a common practice to

combine the two tasks into one step, and many popular

computational tools simultaneously perform transcript

reconstruction and quantification [54]. This is usually

achieved by estimating the expression levels of all the

candidate isoforms with penalty or regularity constraints,

Figure 3. Illustration of data and modeling issues in transcript-level RNA-seq analysis. (A) Taken this 4-exon gene as an example,

the observed RNA-seq reads are sequenced from fragments of the true but unobservable isoforms. The read length is fixed in each

experiment, but the fragment lengths can vary. Since only the two ends of each fragment are sequenced as paired-end reads, this

leads to information loss in RNA-seq experiments. (B) Given the paired-end reads mapped to the 4-exon gene (one end mapped to

the first exon and the other end mapped to the fourth exon), the inferred fragment length could be different when assuming different

isoform origins of the read. (C) An example Bayesian framework to estimate the population isoform proportions � of a gene given D

samples. �ð1Þ, :::, �ðDÞ are considered as the realization of � inD samples. Z
ðdÞ
i denotes the isoform origin of read r

ðdÞ
i in sample d. Only

the reads r
ðdÞ
i ’s are observed information, other random variables are hidden, and parameters need estimation.
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and the resulting isoforms with non-zero estimated

expression are treated as reconstructed isoforms. There-

fore, we introduce these two tasks together in this review,

as they can be tackled by the same statistical framework in

many existing tools. We focus on the basic models that are

commonly used by multiple methods, while selectively

introducing characteristics of individual methods. These

models are generally annotation-based and assume that a

reference genome is available for the organism of interest.

The transcript reconstruction and quantification are

performed separately for individual genes, so the

following discussion applies to one gene. Throughout

this section, we index the isoforms of a gene as {1, 2, ...,

J}. In the reconstruction setting, J is the total number of

candidate isoforms to be considered; in the quantification

setting, J is the number of annotated (or newly

discovered) isoforms to be quantified. We index the

exons of the gene as {1, 2, ..., I}. Suppose that a total of n

(single-end or paired-end) reads are mapped to the gene,

and they are denoted as R = {r1, r2, ..., rn}. The goal of

most methods is to estimate Θ=ð�1, �2, :::, �J Þ
T , where

�j ¼ fraction of isoform j

           ¼ Pða random read is from isoform jÞ:
(3)

Likelihood-based methods

The first type of transcript discovery and quantification

methods estimates transcript abundance by maximizing

the likelihood or the posterior based on a statistical model.

These methods are flexible and can be easily modified to

incorporate prior biological information into the posterior

to improve quantification accuracy. The statistical models

are further divided into three categories: region-based,

read-based, and fragment-based models.

Region-based models summarize the read counts based

on the genomic regions of interest, such as exons and

exon-exon junctions. Suppose that S is the index set that

denotes all the regions of interest. Read counts can be

summarized as X=fXsjs∈Sg, where Xs is the total

number of reads mapped to region s. The basic model

assumes that Xs follows a Poisson distribution with

parameter ls. Given the structures of isoforms and their

compatibility with the regions, it is reasonable to assume

ls as a linear function of the �j’s: ls=
P

J
j=1 asj�j. The

likelihood function can then be derived, and the task of

estimatingΘ reduces to a maximum likelihood estimation

(MLE) problem:

LðΘjXÞ=∏
s∈S

e – lsl
Xs
s

Xs!
=∏
s∈S

expf –
PJ

j=1asj�jgð
PJ

j=1asj�jÞ
Xs

Xs!
,

Θ̂=ð�̂1,�̂2,:::,�̂J Þ
T
= argmax

Θ

logLðΘjXÞ: (4)

The first isoform quantification method [55] uses a

region-based model.

In contrast to region-based models, read-based methods

directly use the likelihood as a product of the probability

densities of individual reads instead of first summarizing

reads into region counts.

LðΘjRÞ=∏
n

i=1

pðrijΘÞ

=∏
n

i=1

X

J

j=1

pðrijisoform  jÞ�j

=∏
n

i=1

X

J

j=1

pðsijisoform  jÞpð‘ijjisoform  jÞ�j,

(5)

where si is the starting position and ‘ij is the read length

(for single-end reads) or fragment length (for paired-end

reads) of read ri if it belongs to isoform j (Figure 3B).

While many methods do not explicitly state it, they

assume that the si and ‘ij are independent in the above

model. If the two ends of read ri are mapped to the same

exon or two neighboring exons, its corresponding

fragment length can be determined and remains the

same for all its compatible isoforms. Otherwise, the

corresponding fragment length ‘ij of read ri could be

different for a different compatible isoform j (Figure 3B).

Even though each read has the same weight in the

likelihood model, the reads that are mapped to two non-

neighboring exons play a critical role in the detection of

splicing junctions and the reconstruction of full-length

transcripts. Cufflinks [56], eXpress [57], RSEM [24], and

Kallisto [58] all adapted or extended the above model in

their quantification step, and they mainly differ in how

they model p(si |isoform j) and p(‘ij |isoform j) to

incorporate sequencing bias adjustment. One feature

distinguishing Kallisto from the other methods is that

Kallisto speeds up the processing by pseudoaligning the

reads and circumventing the computation costs of exact

alignment of individual bases. To estimate Θ by

maximizing the likelihood in Equation (5), the expecta-

tion-maximization (EM) algorithm [59] is the standard

optimization algorithm.

Some other methods, including WemIQ [60], Salmon

[61], iReckon [62], and MSIQ [63], introduce hidden

variables to denote the isoform origins of reads and use

these variables to simplify the form of the likelihood

function. Suppose that the isoform origins of reads

R=fr1, :::, rng are denoted as Z=ðZ1, Z2, :::,ZnÞ
T ,

where Zi=j if read ri comes from isoform j. Then the joint

probability density of R and Z can be written as

pðR, Z jΘÞ=∏
n

i=1

pðri, ZijΘÞ

=∏
n

i=1

X

J

j=1

½pðrijisoform jÞ�j�
IfZi=jg: (6)
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This model formulation is especially useful when one

would like to estimate Θ under the Bayesian framework

(Figure 3C), as what has been done in MISO [64], Salmon

[61], and MSIQ [63]. Prior knowledge on Θ can be

incorporated via modeling the prior distribution ofΘ, and

Θ would be estimated as the maximum-a-posteriori

(MAP) estimator. As shown in Figure 3C, another

advantage of the Bayesian framework is that the model

can be easily extended to incorporate multiple RNA-seq

samples and borrow isoform abundance information

across samples [63].

A more recent isoform quantification method alpine

[65] belongs to the third fragment-based category. Alpine

is specifically designed to adjust for multiple sources of

sequencing biases in isoform quantification. It considers

all potential fragments with lengths within the middle of

the fragment length distribution, at all possible positions

within every isoform. For each fragment, alpine counts

the number of reads compatible with it. Then alpine

models the fragment counts using a Poisson generalized

linear model, whose predictors are bias features including

the length, the relative position, the read start sequence

bias, the GC content and the presence of long GC

stretches within every fragment. Alpine estimates the read

start sequence biases using the variable length Markov

model (VLMM) proposed by Roberts et al. [66] and

implemented in Cufflinks [56]. After estimating bias

parameters, alpine outputs bias-corrected isoform abun-

dance estimates. The Poisson parameter ls for a potential

fragment s is assumed to be ls=
XJ

j=1
asj�j, similar to

what is assumed in region-based models. Hence, �j’s are

estimated based on the bias-corrected estimates l̂s’s.

The above approaches, however, would not lead to

accurate isoform reconstruction results when directly used

to discover new isoforms, because the number of

candidate isoforms can be huge when the number of

exons is large. A common practice is to add penalty terms

before maximizing the objective function, i.e., the

likelihood or the posterior. The regularization aims to

enforce sparsity on the estimated Θ̂, whose non-zero

entries indicate the discovered isoforms. Two such

reconstruction methods are iReckon [62] and NSMAP

[67].

Regression-based methods

The second type of statistical methods for isoform

discovery and quantification is regression-based. These

methods formulate the isoform quantification problem as

a linear or generalized linear model and treat the region-

based read count (or proportion) as the response variable,

candidate isoforms as predictor variables, and isoform

abundances as coefficients (parameters) to be estimated.

Regression-based methods include rQuant [68], SLIDE

[69], IsoLasso [70], and CIDANE [54].

The basic model is a linear model with region-based

read count proportions as the responses. As for the design

matrix, IsoLasso uses a binary matrix to denote the

compatibility between the isoforms and genomic regions

(i.e., a value of 1 indicating that an isoform and a region

are compatible, and 0 otherwise), while the other three

methods consider a conditional probability matrix, for

which the read proportions are modeled as:

Xs

n
=

X

J

j=1

P  ða  random  read  falls  into  region

  sjisoform  jÞ  P  ðisoform  jÞ þ εs

=

X

J

j=1

Fsj�j þ εs,    s∈S,
(7)

where εs represents independent random noise with mean

0. As in the likelihood-based methods, the probability Fsj

depends on the structure of region s and the length of

isoform j. Especially when region s spans alternative

splicing junctions (e.g., region s skips the middle exon but

includes the two end exons), the estimation accuracy of

Fsj is critical in the modeling. Then the estimation task

reduces to a penalized least-squares problem

Θ̂= argmin
Θ³0

X

S

s=1

Xs

n
–

X

J

j=1

Fsj�j

 !2

þ penalty, (8)

where the penalty term is only needed for isoform

discovery and often excluded for isoform quantification.

For example, IsoLasso sets the penalty term as

l
XJ

j=1

n�j

Lj
, where Lj is the length of isoform j, while

SLIDE uses l
XJ

j=1

�j

mj

, where mj is the number of exons

in isoform j. For both methods, l is a tuning parameter to

control the level of regularization. IsoLasso selects l

based on the resulting number of isoforms with non-zero

estimated expression, while SLIDE uses a stability

criterion [71].

Remark 4. There are isoform discovery methods that

reconstruct mRNA transcripts based on deterministic

graph methods. Examples include a de novo approach

Trinity [72], and reference genome-based approaches

Scripture [73], Cufflinks [23], and Stringtie [74], which

all construct splice graphs based on aligned reads and then

use various criteria to parse the constructed graph into

transcripts in a deterministic way, without resorting to

statistical models.

Remark 5. Despite many methods developed for

isoform quantification, not all of them discuss the
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estimation uncertainty of isoform abundance levels. Even

though the point estimates of expression levels have led to

new scientific discoveries in many biological studies, it is

important to consider estimation uncertainty, especially

when the differential expression analysis is of interest, or

when some candidate isoforms are highly similar in

structures (related to the collinearity issue in linear model

estimation). One way to evaluate the uncertainty in

Bayesian methods is to construct posterior or credible

intervals of isoform abundance levels [63,75]. In regres-

sion-based methods, it is possible to calculate the standard

errors of the abundance estimates (the coefficients in

regression models). However, we have to note that

assumptions, which are not always practical, are needed

for uncertainty estimation. This explains why hypothesis

tests about the same population abundance levels can give

different p-values when they use different assumptions.

Remark 6. There have been many efforts to quantify

transcripts for better accuracy based on multiple RNA-seq

samples (especially biological replicates), thanks to

reduced sequencing costs and the rapid accumulation of

publicly available RNA-seq samples. Model-based meth-

ods include CLIIQ [76], MITIE [77], FlipFlop [78], and

MSIQ [63]. These methods generalize the models

designed for isoform quantification based on a single

sample, and their results show that aggregating the

information from multiple samples can achieve better

accuracy in isoform abundance estimation. It has been

noted in MSIQ [63] that it is important to consider the

possible heterogeneity in the quality of different samples

to obtain robust and accurate estimation results.

Remark 7. Current statistical methods differ in their

perspectives to formulate the isoform quantification

problem, the trade-offs between the complexity and

flexibility of models, and the approaches to adjust for

various sources of sequencing biases and errors. Because

of the complexity of transcript-level analysis and the

noise and biases in RNA-seq samples, it is impossible to

identify a method that has superior performance on all real

datasets. We suggest that users consider their preferences

on the precision and recall rates in isoform discovery

problems, and evaluate the assumptions of different

methods for RNA-seq read generation and bias correc-

tion, before selecting the appropriate computatinonal

method. For a computational comparison of mutiple

methods mentioned above, please refer to Refs. [6,79].

EXON-LEVEL ANALYSIS: EXON

INCLUSION RATES IN ALTERNATIVE

SPLICING

Since transcript-level analysis of complex genes in

eukaryotic organisms remains a great challenge [79],

there are approaches focusing on exon-level signals,

seeking to study alternative splicing based on exons and

exon-exon junctions instead of full-length transcripts.

When transcriptomic studies focus on the exon-level, a

primary step is usually to estimate the percentage spliced

in (PSI or Ψ, [64]) of an exon of interest. Our discussion

below applies to an individual exon. Considering two

isoforms, one includes the exon and the other skips the

exon, the goal of model-based methods is to estimate

Ψ=exon’s inclusion rate

¼
fraction of the inclusion isoform

fraction of the inclusion isoform þ fraction of the exclusion isoform

=

Pða random read is from the inclusion isoformÞ

Pða random read is from the inclusion isoformÞ þ Pða random read is from the exclusion isoformÞ
:

(9)

A direct estimator of PSI is

Ψ̂=

CI

LI
CI

LI
þ

CE

LE

,

where CI denotes the number of reads supporting the

inclusion isoform (i.e., reads spanning the upstream

splicing junction, the exon of interest, and the down-

stream splicing junction), and CE denotes the number of

reads supporting the exclusion isoform (i.e., reads

spanning parts of the upstream and downstream exons

but skipping the exon of interest). LI and LE denote the

lengths or the adjusted lengths (after accounting for

constraints on read and isoform lengths, i.e., isoform

lengths–read length) of the inclusion and exclusion

isoforms, respeetively.

To evaluate the estimation uncertainty, methods

including MISO [64], SpliceTrap [80], and rMATS [81]

use different statistical models. Both MISO and Splice-

Trap construct models similar to the model (Equation (6))

under the Bayesian framework, withΨ as the parameter of

interest. Bayesian confidence intervals of Ψ can then be

obtained based on its posterior distribution. rMATS

integrates the information from multiple replicates

through the following hierarchical model
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CIk jΨk � Binomialðn=CIk þ CEk , p=f ðΨkÞÞ,

logitðΨkÞ � Normalð�=logitðΨÞ, �2Þ, (10)

where CIk (CEk) is the number of reads supporting

inclusion (exclusion) isoform in replicate k (k = 1, 2, ...,

K); Ψk is the PSI of the exon of interest in replicate k; Ψ

and �2 are the mean and variance of PSI in the biological

condition of interest; f is a function to normalize Ψk based

on the effective length of the exon. Since both MISO and

rMATS can estimate Ψk and the uncertainty of Ψ̂k , it

follows that they can detect differential exon usage

between two biological conditions through statistical

testing.

Remark 8. The above discussion mainly focuses on the

scenario where only two alternative isoforms are

involved, and does not extend easily to more complex

alternative splicing patterns with more than two alter-

native splice forms. A proposed remedy is DiffSplice

[82], which identifies alternative splicing modules

(ASMs) from the splice graph to study splicing patterns

that may involve multiple exons. However, one limitation

of DiffSplice is that it does not address the estimation

uncertainty of the expression levels of ASMs. DEXSeq

[83] is another method that studies differential exon

usage, but it focuses more on exon-level expression and

less on splice junctions.

Remark 9. There is a trade-off in alternative splicing

studies concerning whether to use transcript-level or

exon-level information. Full-length transcripts provide

global information on splicing patterns that directly lead

to knowledge on protein isoforms, but accurate quanti-

fication of transcripts suffer from the limited information

in short RNA-seq reads. On the other hand, exon-level

analysis results in the more accurate quantification of

individual splicing events, but limits the scope of studies

to local genomic regions. As mentioned in the Section of

Transcript-level Analysis: Transcript Reconstruction And

Quantification, the accumulation of multiple RNA-seq

samples and the increasingly large databases of annotated

transcripts [84] might provide a solution to this dilemma:

combining information from multiple samples with prior

knowledge on transcripts to assist the reconstruction and

quantification of full-length isoforms from short RNA-seq

reads.

OUTLOOK

RNA-seq has become the standard experimental method

for transcriptome profiling, and its application to

numerous biological studies have led to new scientific

discoveries in various biomedical fields. We have

summarized the key statistical considerations and meth-

ods involved in sample-level, gene-level, transcript-level,

and exon-level RNA-seq analyses. Despite the fact that

continuous efforts on the development of new tools have

improved the accuracy of analyses at all levels, challenges

posted by relatively short RNA-seq reads remain in

studying full-length transcripts, making it difficult to fully

understand the dynamics of mRNA isoforms and their

protein products. In complex transcriptomes, probabilistic

models have limited power in distinguishing different but

highly similar transcripts. It has been noted that

identification of all constituent exons of a gene is not

always successful, and in cases where these exons are

correctly reported, it is challenging to assemble them into

complete transcripts with high accuracy [79]. Given the

current read lengths in NGS, we emphasize the

importance of jointly using multiple samples (i.e.,

technical or biological replicates) to aggregating informa-

tion on alternative splicing and sequencing noise. Naïve

pooling or averaging methods have been shown inade-

quate in the multiple-sample analysis [63], and statistical

discussion on this topic is still insufficient. On the other

hand, new sequencing technologies such as PacBio [85]

and Nanopore [86,87] sequencing technologies can

produce longer reads with average lengths of 2–3 kb

[88]. A primary barrier of the current long-read sequen-

cing technologies is their relatively high error rates and

sequencing costs [89]. One current approach to take

advantage of these new technologies is to combine the

information in next-generation short reads and third-

generation long reads in isoform analysis [88].

To demonstrate the efficiency of statistical methods

developed for RNA-seq data, method developers must

show the reproducibility and interpretability of these

methods. As we have discussed in Remarks 2 and 7, there

is hardly a method that is superior in every application.

However, a useful method should at least demonstrate its

advantages under specific assumptions or on a particular

type of datasets. Meanwhile, no matter how complicated a

statistical model is, its general framework and logical

reasoning should be interpretable to users (e.g., biolo-

gists). Also, comparison of different methods on bench-

mark data can be beneficial for the development of new

methods. Experimentally validated benchmark data for

RNA-seq experiments are still limited on the genome-

wide scale.

Aside from the analysis tasks introduced and discussed

in this review article, RNA-seq is also widely applied to

other research problems like RNA-editing analysis

[90,91], non-coding RNA discovery and characterization

[92,93], expression quantitative trait loci (eQTL) map-

ping [94], and prediction of disease progression [95], with

interesting statistical questions involved. Transcriptomic

data can also be integrated with genomic and epigenomic

data to advance our understanding of gene regulation and

other biological processes [96]. In recent years, the
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emerging single-cell RNA sequencing (scRNA-seq)

technologies enable the investigation of transcriptomic

landscapes at the single-cell resolution, bringing RNA-

seq analyses to a new stage [97]. In contrast to scRNA-seq

data, the RNA-seq data we have reviewed in this article

are now referred to as bulk RNA-seq data, where the data

are generated from RNA molecules in multiple cells in a

batch. The analysis of scRNA-seq data is complicated by

excess zero counts, the so-called dropouts due to the low

amounts of mRNA sequenced within individual cells.

Therefore, current usage of scRNA-seq data focuses on

gene-level analysis, and frequently discussed statistical

topics include clustering [98], dimension reduction [99],

and imputation [100]. Since the signal-to-noise ratio in

scRNA-seq data is much lower than that in bulk RNA-

seq, many models developed for bulk RNA-seq data

cannot be directly applied to scRNA-seq data, calling for

the development of new computational and statistical

tools. With the ongoing efforts to build the Human Cell

Atlas [101], new scRNA-seq and other single-cell level

data (e.g., imaging data) will help researchers more

thoroughly understand human cell types and their

molecular mechanisms. People can also refer to The

Human Cell Atlas White Paper for the detailed discussion

of statistical challenges in analyzing these data [102].
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