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Abstract—Utilizing the U-joint is the most usual and 

familiar way to connect rotating shafts, which are at an 

angle with each other. Although, this mechanical coupling 

has various advantages, converts a constant input velocity to 

a fluctuating output one. Consequently, this produces 

resonance conditions in the power transmission system of 

vehicles. In this study, the vibrations of drivetrains are 

considered to examine the system torsional behaviors. Here, 

the derived mathematical model is investigated by means of 

Floquet theory. Furthermore, the acquired results are 

validated analytically by applying the frequency analysis. In 

order to examine the influence of different parameters on 

the vibrations, the unstable zones are identified and 

analyzed. In addition, the effects of joint angle and shaft 

length are investigated. The obtained model is useful to 

simulate the torsional behaviors of various two-axis power 

transmission systems and identify the resonance conditions.  

 

Index Terms—rotary systems, analysis, system modeling, 

vibration 

 

I. INTRODUCTION 

A well-known purpose of rotating shaft systems is in 

the transfer of torque and power between two objects in 

different rotary systems [1-7]. There are several 

mechanisms, which allow move transfer under some 

limitations depending on the distance and angle between 

the driver and driven shafts. Applying the universal joint 

is a classical solution that used in many mechanisms and 

systems in several industries [8]. Nowadays, this non-

constant velocity joint is applied as a key component of 

several powertrain systems, for example, in on-road and 

off-road vehicles, rail cars, robotics, shipping industries, 

and other power transmission systems [9, 10].  

Universal joints are a type of couplings that permit the 

shaft fixed on them to bend in almost any directions. This 
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mechanical coupling is composed of a pair of hinges 

located close and perpendicular to each other, linked by a 

cross shaft. Generally, in rotary machines, U-joints are 

used between intersecting axes and are common due to 

their excellent features such as high torque and operating 

angle capacity, effective cost, high reliability and 

simplicity [10]. Although the first shaft has a constant 

input speed, there will be a fluctuating output speed. As a 

result, the driveline is stimulated and there are many 

unstable areas in the system [4, 11]. Recently, some 

researchers have been considered the torsional 

oscillations transmitted from the flywheel to the 

drivetrain, which induce a plethora of noise, vibration and 

harshness concerns in Front Wheel Drive (FWD) vehicles 

[12-16]. Moreover, torsional vibrations in Rear Wheel 

Drive (RWD) cars, where the nonlinear behavior of the 

non-constant velocity U-joint plays a significant role, 

must be analyzed. Using finite element analysis (FEA) 

can be beneficial to model and investigate the drivelines. 

Recently lateral vibrations of a driveline interconnected 

by two U-joints have been examined to determine the 

bending motions and harmonic resonances of the systems 

[17]. Furthermore, transverse oscillations of a multi-body 

system have been studied to obtain the natural 

frequencies and mode shapes of the system, where the 

lumped mass shafts have been linked with multiple 

hinges [18]. Jayanaidu et al. [19] have numerically 

optimized the design and structure of a drive shaft 

connected with two couplings by using software ANSYS. 

In addition, optimization of system parameters was the 

main concept of some multi-joint machines that simulated 

via different FE models [20, 21].  

All the mentioned works prepare a solid motivation to 

investigate torsional vibrations of driveline systems via 

the finite element method. In almost all of these studies, 

the characteristics of rotating shafts have been estimated 

by massless or lumped mass systems. In general, by using 

a FE model, prediction of unstable regions of drivelines is 

possible. To the best knowledge of the authors, 
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simulation of the powertrains by considering the shaft 

inertia via analytical schemes has not been carried out yet. 

Therefore, we provide a mathematical model for shaft 

systems, which is useful to consider numerous rotary 

systems. In driveline shafts, the whole mechanism is 

physically stimulated via an angular periodically 

fluctuating excitation that can be accounted as internal 

stimulation. In this model, the working angle of universal 

coupling has no limitations except geometric constraint at 

90
o
. It means that mathematical relations are valid for any 

angled shafts and the presented FE model is general. Note 

that some mentioned relations for the transfer speed of U-

joints, which are almost linear, are acceptable just for 

small angles. In this research, the equations of motion 

consist of a set of Mathieu type equations. Moreover, the 

system stability has been analyzed via numerical Floquet 

theory. Finally, the results prove the importance of 

considering the continuous model and successful 

application of the finite element method in the analysis of 

drivelines. 

II. MODEL 

A. Development of Model 

The presented power transmission system, which 

consists of elastic rotating shafts, is simulated by means 

of a distributed parameter model. The system is driven by 

an input speed that transfers from an electric motor (Fig. 

1). However, each shaft is aligned; they are in angle () 

with each other, so have been linked via a mechanical 

coupling. Let each shaft has mass density ρi, polar area 

moment of inertia Ii, shear modulus Gi, Rayleigh damping 

coefficients of inertia and stiffness ai and bi, respectively, 

vectors of nodal torsional coordinates of the first and 

second shaft are and , respectively, mass matrix M, 

stiffness matrix K, angular velocity i, torque Tin i and 

length li. It should be noted that a universal coupling has 

three main parts, two yokes, and a crosspiece. The 

following assumptions are made to reduce the behavior of 

the driveline system to the presented model: 

i. Each shaft is uniform and symmetric across its 

axis. 

ii. The shaft system is only loaded in the torsion. 

iii. The U-joint does not have any clearance and 

friction. 

iv. The yoke mass can be modeled via a solid disk 

(Jd). 

v. The crosspiece mass is negligible regarding the 

parts-mass. 

vi. The input angular speed (0) of the system is 

constant. 

B. Equations of Motion 

The torsional equations of motion can be derived 

analytically from a combination technique. Herein, 

equations of motion for dynamics of each shaft can be 

written as  

(1) 

 

 

1 1 1

1 1

1 1 1 1 1

1

1 1

1

1

,

d

in

I l J

G I
a I l b

l

G I
T

l







  
      

 

T

1 2p 2p

1 1

1 2p

Μ u u θ

Μ K θ

K θ u
 

 

(2) 

  
 

2 2 2 2

2 2

2 2 2 2 2 2 2

2

2 2

2 2

2

.

d

in

I l J

G I
a I l b

l

G I
T

l





 

  
      

 

T T

1 1 2q+1

2q+1

Μ v v v φ

Μ K φ

K φ v
 

Note that the shafts are taken as separate parts with p 

and q equal-length elements. The unit vectors (ui and vi) 

in addition to the mass and stiffness matrices are 

introduced as (p and q =1) 
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It is worth mentioning that based on the sixth 

assumption, θ0=0. Moreover, the left and right ends of the 

driving shaft are fixed and free, respectively. However, 

the driven shaft is a free-free rotating shaft in such a 

configuration.  
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Figure 1. Schematic of prepared model for the power transmission 

systems 

 

The relation of velocity ratio of U-joint (1) is 

nonlinear and stated as [10] 
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The equations can be linearized as 
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C. Equations with Dimensionless Parameters 

It is more convenient to write the governing equations 

in dimensionless form. To this end, the torsional 

coordinate’s derivatives with respect to non-dimensional 

time are recomputed accordingly 
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and the following dimensionless parameters are 

introduced as 
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In the following, the torsional coordinate’s derivations 
of some parameters are calculated 

(17) 
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The equations of motion for torsional vibrations of the 

presented powertrain system model can now be expressed 

as 

(18) 
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Finally,

 

the matrix–vector form of the whole system 

can be written as
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III. ANALYSIS 

Equation (20) is for the governing equations of 

torsional motion of the model. A display of the Eq. (20), 

which is more convenient for stability analysis, can be 

given as 
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In this work, the dynamic stability of the system is 

investigated point-by-point by means of a numerical 

method [22]. It is able to determine the stability areas and 

resonance conditions of a shaft system with parametric 

excitation.  

It is clear that the location of instability regions 

(resonance areas) on different stability figures depends on 

the natural frequencies of the shaft system. In such 

excited systems, the parametric resonance zones can be 

given by 
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IV. RESULTS AND DISCUSSIONS 

In order to verify the results, the obtained outputs will 

be compared. The analytical results are obtained by 

substituting the frequencies in Eq. (26) and the numerical 

results are obtained by Floquet theory. 

A. Analytical Results 

In Table 1, the values of the four first natural 

frequencies are mentioned to carry out the frequency 

analysis. The parametric resonance zones related to the 

fundamental frequencies of driveline are reported in 

Table 2 in detail. 

The analysis of dynamic stability is carried out via the 

numerical Floquet theory. Fig. 2 illustrates the results of 

stability analysis where the shaded points show the 

unstable points. The vertical axis displays the coupling 

angle  in rad, and the horizontal axis depicts the non-

dimensional angular velocity .  

TABLE I. TORSIONAL NATURAL FREQUENCIES OF THE SHAFT SYSTEM 

BASED ON THE MODEL 

Natural frequencies Value  

First  0.786 

Second  2.395 

Third  4.389 

Fourth  7.048 

TABLE II. CALCULATED LOCATIONS OF FIRST ORDER RESONANCES 

BASED ON FREQUENCY ANALYSIS 

 

Res. Harmonic Sub-

harm. 

Comb. 

Res. 

Sum-

type      

Diff.-

type 

11  0.393 0.786 
121

  1.591 0.805 

21  1.198 2.395 
131

  2.588 1.802 

31  2.195 4.389 
141

  3.917 3.131 

41  3.524 7.048 
231  3.392 0.997 

   

241  4.722 2.327 

   

341  5.719 0.665 

 

Certain instability regions, which are previously 

calculated analytically, are labeled in Fig. 2. Fig. 2 

demonstrates that the results as reported in Table II, are in 
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an excellent agreement with the numerical ones. As a 

result, a more accurate investigation, which shows the 

effect of other modes, can be performed.  

One of the most remarkable factors that has been 

evaluated here is the system geometry. The system 

geometry includes the joint angle and the shaft length. 

These factors normally affect the stability significantly 

and should be checked. The results are charts, which 

include a pair of the present model parameters and show 

the system stability.  

B. Joint Angle 

In order to evaluate the effect of the joint angle at 

different geometries, two different lengths are considered 

for the shafts. Therefore, the length of the second shaft is 

not equal to the first one (Fig. 3). Generally, by increasing 

the angle from zero (where no excitation exists), the 

unstable zones extend and become wider. It is observed 

that different types of instability regions are revealed. The 

resonances, which are associated with lower vibrational 

mode, have more clarity. Usually, the peaks 

corresponding to higher system natural frequencies occur 

in high misalignment (e.g. ΩH,22 and ΩS,22). Furthermore, 

by increasing the angle of misalignment (the angle 

between intersecting shaft axes), new unstable areas 

emerge that are not practically important. On the other 

hand, there are unstable areas close together at high 

angles; hence, they are not clearly identifiable. 

By comparison, between Figs. 3a, 3b and 2, it can be 

observed that as the driven shaft length increases, the 

peaks shift toward a lower velocity that should be 

considered in the design. It is because the resonance 

conditions are related to the system frequencies. As a 

result, increasing the second shaft length leads to an 

increase in the equivalent length of the whole system.  By 

analyzing graphs, it can be deduced that increasing the 

driven shaft length can have a stabilizing effect. In other 

words, by decreasing l2, unstable regions will be in a 

wider range of velocity and even at higher velocities, 

there are several resonance conditions. 

C. Shaft Length 

Fig. 4 exhibits another stability diagram in which the 

coupling joint angle  is fixed. In this diagram, the 

vertical axis shows the ratio of the second to the first 

shaft length at different angles. Here, the qualitative 

analysis is more important than quantitative analysis. 

By analysing graph, it can be found that the system 

geometry, including joint angle and shaft length, has 

apparent influences on resonance zones. Moreover, this 

parameter variation leads to changes in the natural 

frequencies (because the zones are not parallel to the 

vertical axis), that shift the peaks of resonance zones 

toward the left. It is the result of increasing the 

convergence of natural frequencies.  

Another significant issue in Fig. 4 is that the 

displacement of unstable areas is gradually decreased by 

increasing the length ratio. In other words, the parallelism 

of the instability zones with the vertical axis is further in 

the top of the diagram. Moreover, as the driving shaft 

length increased, the unstable areas will be developed 

especially at higher velocity range. By comparison of 

Figs. 4a and 4b, it can be seen that by increasing the joint 

angle, the shaded zones will become wider and even 

some unstable areas will emerge, which should be 

considered in the analysis. The other results are the same 

as mentioned in the discussions of Fig. 3. 

V. CONCLUSION 

In this study, an excited drivetrain was modeled 

mathematically and the resonance conditions were 

investigated. The studied machine includes two rotating 

shafts connected by an ideal massless U-joint. Here, the 

system torsional equations of motion consist of a set of 

differential equations. Furthermore, the numerical results 

have been shown in the stability diagrams graphically. 

Finally, the instability conditions were analyzed 

quantitative and qualitative. The results are as follows: 

 

 
Figure 2. Comparison of numerical and analytical results (the term  represents the joint angle in radian) 
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Figure 3. Effect of joint angle () and shaft length on the stability, a: l2 = 0.7 l1, b: l2 = 1.5 l1 

 

 

Figure 4. Effect of shaft length on the stability, a:  = 0.4 rad, b:  = 0.8 rad 

 

 Increasing the input velocity and joint angle causes 

less stability in general. Moreover, by increasing the 

joint angle, new unstable zones appear especially at 

some large angles. 

 Increasing the length ratio (driven shaft length) and 

joint angle makes the instability areas wider.  

 By changing the system geometry, stabilizing the 

system is possible, which should be considered in the 

design, modeling, and operation of such systems.  

 The model is useful to consider the behaviors of 

various power transmission systems and identify 

different types of resonance conditions. 
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