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MODELING AND ANALYSIS OF SPACECRAFT POWER SYSTEMS

X Bo Hyung Cho

(ABSTRACT)

A comprehensive large-scale power system modeling is developed to fa-

cilitate the design and analysis of present and future spacecraft power

systems. A two-port coupling method is utilized to provide a modularity

in model building and analysis of the system. The modular approach allows

the model to be flexible, verifiable and computationally efficient. A

methodology for the system level analysis is presented with the ability

to focus on the performance characteristics of an arbitrary component or

subsystem. The system performance parameters are derived explicitly in

terms of the two—port hybrid g-parameter representation of the component

or subsystem, and impedances of its terminating subsystems. From this,

the stability of the system is analytically determined and the subsystem

interaction criteria is observed. Also presented is a model development

from the empirical data employing the complex curve fitting technique.

The technique is especially powerful for large scale system modeling and

analysis where certain components and subsystems are viewed as black boxes

with measurable terminal characteristics. The technique can also be used

to realize a reduced order model of a complex subsystem.

The Direct Energy Transfer (DET) spacecraft power system is modeled
Z

to demonstrate the versatility of the comprehensive system model by per-



forming various DC, small-signal and large-signal analyses. Of partic-

ular interest is the analysis of the large—signal behavior of the

nonlinear solar array system by employing the state-plane method. The

analysis of the solar array system operation focused on the transition

mode between the shunt mode and the battery discharging mode is presented.

The subsystem interaction problems in the local component and global

system are illustrated. A methodology for the design and trouble-shooting

of a system dealing with the interaction problems using the g-parameters

is described. Finally, a system level analysis of the DET system using

an empirical data modeling technique is performed.
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Chapter 1

INTRODUCTION

The ever increasing demand on spacecraft power systems for improved

efficiency and reliability, smaller size and lighter weight, coupled with

lcontinuous growth in dimension and complexity of the spacecraft's” pay-

loads, has focused attention on a major deficiency - the ability to de-

sign, test, and trouble-shoot large scale power systems.

During the past several decades, numerous efforts have been made to

develop new and more powerful techniques for modeling and analysis of

spacecraft power components (equipments) and subsystems. However, when

the components and subsystems are interconnected to form a complex system,
A

it is quite difficult to predict the total system response even though

the behavior of individual components may be well understood and docu-

mented. This is due to many undesired interactions that exist among

highly nonlinear components. The need of a comprehensive power system

modeling tool is, therefore, most critical since the elaborate design

verification through integrated systems hardware testing is prohibitively

expensive or often impossible. This is particularly true in the future

space station system since, due to the large dimension and complexity,

the complete system can only be assembled in space. Therefore, a com-

prehensive computer model that can actually predict a system°s local and

global behaviors is most critical for the success of future missions.

Considering the size and complexity of todays spacecraft power

l
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processing systems, the digital computer is perhaps the only viable tool

for system modeling and simulation. Two general classes of power system

modeling programs appear in the literatures. These are :

�
Generalized circuit and system analysis models.

�
Dedicated models of specific systems.

The generalized circuit analysis models, as a class, are represented

by programs such as SPICE, SCEPTRE, SYSCAP, ICAP, ASTAP and a number of

others. All have similarities in that they offer a set of typical device

modules which are assembled into a network of interconnecting nodes. This

class of computer programs shares a common drawback, such that with an

increasing number of components, the memory requirements increase dra-

matically. By use of dynamic memory management it may be possible to

analyze a large-scale system, but only at the cost of a geometric increase

in computation time. The labor involved in model—building is rather ex-

tensive and the resulting model, in general, lacks flexibility for future

modifications. Furthermore, the analysis capability of these canned

programs is limited and usually not effective for design aid or

trouble-shooting.

Dedicated models of specific power systems have been used successfully

but only on a limited basis. Typically this class of model is capable

only of DC analysis. Execution speed and cost of such programs tend to

be much less than that for generalized circuit and system routines [1].
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Therefore, a comprehensive power system model must be capable of per-

forming various analyses - DC, small signal and large signal transient.

The model should have the following attributes :

�
flexible for future modification of component models and system con-

figuration,

�
accurate to provide sufficient details about the behavior of indi-

vidual components for design and troubleshooting,

° verifiable whenever equipment or subsystem experimental testing is

possible,

�
efficient to minimize computer core memory and computation time.

One way to develop a model with such attributes is to modularize var-

ious components of the power system. In Chapter 2, a methodology for

modeling and analysis of a large scale power systmu is presented. A

two-port subsystem coupling method is utilized and its interconnection

law is defined. A system analysis technique is described that defines

the total system as being a doubly terminated two-port network for an

arbitrary subsystem. The system performance parameters are derived ex-

plicitly as functions of the two-port g—parameters of the subsystem (or

component) and impedances of its terminating subsystems.
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In Chapter 3, modeling of various components of the spacecraft power

system is presented. Each component is modeled as an unterminated two-

port. For each nonlinear component, the time-domain simulation model and

the linearized small signal model are developed. The transfer function

models of the g-parameter of individual component and the small signal

lperformance parameters of the terminated component are derived. ”Using

the component models developed in Chapter 3, a sample system model - the

direct energy transfer (DET) spacecraft power system is developed. The °

system model building with the host software system and its analysis ca-

pabilities are described in Chapter 4.

Using the DET system model, various types of system level analyses are

performed in Chapters S through 7. In Chapter 5, various modes of oper-

ation of the DET system are described. The large signal behavior of the

nonlinear solar array power system is analyzed using the state—plane

method. The system behavior near the solar array maximum power point is

discussed.

The operation of a battery discharger circuit and the design consid-

erations suitable for a wide range of operations (i.e., from the no-load

to full load) of a feedback compensator are described. The complete

system mode of operation including the transition mode between the shunt

mode and the battery discharging mode is illustrated.

In Chapter 6, subsystem interaction problems are illustrated. The

local and global interactions are described and a methodology for the

design and trouble-shooting of a system dealing with the interaction

I

problems is presented. One of the most attractive approaches for modeling

.4
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and analysis of complex large scale systems is the empirical data modeling

technique. In chapter 7, empirical data modeling employing a complex

curve fitting technique is presented. The system level analysis using

this technique is performed by defining an arbitrary subsystem as a black

box for which the curve fitted analytical model is realized from the em-

pirical data. The complex curve fitting technique is extended to derive

a reduced order model for a high order subsystem. Conclusions are pre-

sented in Chapter 8.



Chapter 2

METHODOLOGY OF MODELING AND ANALYSIS OF

SPACECRAFT POWER SYSTEMS

2.1 Introduction

This chapter discusses a modeling and analysis methodology of large

scale systems. Section 2.2 uses the modular concept that a large scale

system may be defined as an interconnection of many individual subsystems.

This idea is particularly attractive for spacecraft power systems con-

sisting of many individual components since each component may be supplied

by a different vendor where performance parameters and design information

are documented as a stand alone equipment (component). By defining

standardized interconnection laws between each component, a system can

be analyzed and synthesized using the information of the individual com-

ponent modules. In Section 2.3 the terminal characteristics of a singly

and doubly terminated two-port subsystem are derived as transfer function

models for a system linear analysis. In Section 2.4, based on the model

representation derived in Section 2.3, system stability is analyzed. This

section further addresses the compatibility and incomparability of indi-

vidual components in terms of their terminal characteristics and the

interconnection schemes. Performance degradations and system instability

as a result of undesired component interactions are illustrated. Con-

clusions are presented in Section 2.5.

6
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2.2 Modeling approach of large scale systems

As discussed in Chapter l, defining a complete spacecraft power system

entirely in terms of circuit elements is not feasible. A practical ap-

proach is to consider that a large scale system can be defined by the

interconnection of many smaller subsystems. The system dynamics, there-

fore, stem from the individual subsystems and their interconnection laws

that identify the signal flows among them. Due to the complexity of the

individual components and their interconnection scheme it is usually very

difficult to predict the system°s overall behavior. A desirable analysis

or synthesis procedure for a large scale system is the separation of these

two levels (component and system). One thus prefers an analysis or syn-

thesis procedure to be based, on one hand, on
“lggal"

subsystems and, on

the other hand, on the "global" interconnection laws.

In order to utilize the modular concept, each component should be

modeled as an unterminated two-port network because the terminal charac-

teristics of both source and load are unknown until the complete system

is configured. The interconnection law should not only describe accu-

rately the signal flows between the subsystems but also be standardized.

There exist several kinds of two-port representations such as impedance,

admittance, chain, and hybrid matrices. The impedance or admittance ma-

trices cannot be used as a standard interconnection law because their

inputs and outputs are in alternate forms. The chain matrix is not as

flexible as the hybrid matrix because it only characterizes a system in

uni—direction. For example, the chain matrix can describe port·l of a

two-port subsystem as a function of its load (which may be connected in
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cascade in n two-port subsystems) that is connected at port-2 as shown

in Eq.(2.l).

e 1 e nl _ 2

1fl:I1lM)):hHlf1 fz" (2.1)

where the subscripts and superscripts represent the port numbers and the

.1:11 .
J component, respectively.

However, quite often, it is necessary to analyze a two-port subsystem

as functions of both its source and load. Thus, the information flow can

be obtained in both directions. Fig.2.1 illustrates the interconnection

law for unterminated modules. Each component, in general, receives two

inputs vl and iz from the preceding and following modules, and provides

two outputs il and V2 to the adjacent modules. The terminal character-

istics of each component are described by the matrix equation called

"hybrid g-parameters" in Eq.(2.2).

il $11 $12 V1

V2 $21 $22 iz (L2)

For modeling a two-port, one can always define the output and input var-

iables as shown in Fig.2.l. For example, a single stage LC low-pass

filter can be modeled with state equations as shown in Fig.2.2. Since

these unterminated two-port components have the same interconnection law,
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they can be interconnected arbitrarily to form a system.

Having identified the two~port component coupling approach, efforts

have been made to find a software system which can be adapted to multi-

port component modeling and system integration. The program EASYS de-

veloped by Boeing Computer Service has been selected as the host software

system.

The EASYS software [2] provides a modular approach to dynamic system

model building and analysis. It was chosen particularly for its effective

means of assembling complex component modules into a system. Predefined

component modules can be stored in the EASYS component library. The

component modules can have several input and output ports and, in each

port, information can flow into and out of the port. All detailed con-

nections of signal paths between component blocks are programmed with

minimal user intervention. More details about the EASYS program will be

described in Section 4.2.

For a large scale spacecraft power system, the large signal performance

evaluation is invariably limited to tactics closely identified with

time-domain simulation techniques. The actual operating point trajecto—

ries or transient responses due to the large signal disturbances can be

simulated by a digital computer. In this way, the existence of unstable

solutions can be observed along with peak values and actual waveforms.

Thus, the model development of each nonlinear component of a spacecraft

power systems involves two separate models, the large signal time-domain

simulation model and the small signal linearized model.



12

For time—domain simulation, the EASY5 numerical integration routine

calculates current values of the states and output variables for each

component from the input values. It then passes along the output values

according to the interconnection law. There are seven different types

of numerical integration routines available in EASY5. Each offers dif-

ferent numerical stability and computational efficiency dependent on the

type of nonlinearity of a system. To examine the approximate large signal

behavior of a system analytically, rather than by time-domain simulation,

one may simplify the system focusing on a particular component of inter-

est. For instance, the large signal behavior of the solar array system°s

operating point can be analyzed by simplifying the system to a second

order nonlinear system as illustrated in Chapter S.

For the small signal linear analysis, various types of classical linear

system theories can be adapted. The methodology of large scale system

analysis is described in the following sections.

2.3 Two·port transfer function models

To analyze the two-port component or subsystem in Fig.2.l, one needs

to identify the G-matrix in Eq.(2.2). From Eq.(2.2), the g-parameters

can be described in the form of transfer functions. As Fig.2.3 illus-

trates, each parameter can be identified by using an appropriate

sinusoidal current or Voltage excitation. lt is important to notice that

the g—parameters are identified in terms of measurable (observable)

quantities, thus the model can be verified. This modeling technique is

particularly useful when the component is best treated as a black box due
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to its complexity or unknown nature. The empirical data of the two-port

g-parameters can easily be obtained, from which an analytical closed-form

model is realized employing the complex curve fitting technique. The

empirical data modeling approach will be discussed in Chapter 7.

The two-port modeling approach allows one to analyze the complete

system with a focus on the local behavior of a particular component or

subsystem. As far as the two-port subsystem is concerned, the entire

system can be considered as a doubly terminated two-port system as il-

lustrated in Fig.2.4. The quantities ZS and ZL are the source and load

impedances seen by the two-port subsystem. Notice that the equivalent

circuit may be obtained by replacing the generator and ZS by its Norton

equivalent in the circuit. As shown in Fig.2.4 four important parameters

can be realized in terms of the two port g-parameters ZS and ZL.

g21‘ZL
GV =

A + zZL - ZS. G gll.ZS. L (2.3)

g1l°g22 + g12‘g21 ' ZL

gzl (2-4)

gll + AG / ZL
Yi:-———

1 +
g22

/ ZL (2.5)

g22 ' AG Zs

1 - gll. S
(2.6)
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where

AG = gllg22 ' g12g2l

These parameters play important roles in the analysis of the system dy-

namics especially the interactions among the various subsystems.

2.4 System analysis approach using the transfer function models

One of the major concerns in analyzing the large scale spacecraft power

system deals with undesired interactions among components and subsystems.

As a system becomes more complex, many undesired interactions occur and

they create a large degree of uncertainty in the system response and

stability even though each component may be well-behaved and understood.

Using the presently existing modeling techniques it may be possible to

simulate the entire system by a digital computer. However, the results

obtained from the computer simulation often do not provide physical in-

sight and thus give very little design information for future design

changes and trouble-shootings. Based on the modeling approach described

in Section 2.3 the system can be analyzed with an emphasis on either the

local behavior or the global behavior. The analysis allows one to

trouble-shoot the interaction problem at any system level.

From Eqs.(2.3) and (2.4) the stability of the total system can be di-

rectly analyzed by investigating the poles of the transfer function GV

and Gi. However, since GV and Gi may be of complex form, interactions

among ZS, ZL, and the two-port subsystem may not be easily obtainable.
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Instead, one can investigate the source and load interaction problems

using the quantities Yi and Z0 in Eqs.(2.S) and (2.6), as illustrated in

Fig.2.S.

The line transfer functions in Fig.2.5 can be written as follows.

From Fig.2.5a,

V2 ZL 1 1
}{L:——-—::—-§—-.

*1vs Zo + ZL 1 + ZO/ZL l + TL (2.7)

and from Fig.2.5b,

vl 1/Yi 1 1
HS:-l—:—i�:-—-ii-t;.—.

VS l/Yi + ZS 1 + ZS.Yi l + TS (2.8)

Eqs.(2.7) and (2.8) shows that the system characteristic equation is 1 +

TS = 0 or 1 + TL = 0, respectively. Hence, the system is stable if the

quantity TS in Eq.(2.7) or TL in Eq.(2.8) satisfies the Nyquist criterion

that is, the system is stable if the number of counterclockwise

encirclements of the point (-1,0) in s—plane of the polar plot of T's is

equal to the number of the right-half plane (RHP) poles in T. This

statement still may be too general unless the number of RHP poles in TS

or TL are identified. If we assume that the elements in Eqs.(2.7) and

(2.8) are all stable quantities, i.e. no RHP poles, then the Nyquist
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criterion can be restated as; the system is stable if the polar plot of

TS or TL does not encircle the point (-1, 0).

To analyze the interaction problems of a two-port with ZS and ZL, it

is necessary to check the above assumption that the quantities ZS, ZL,

Yi and Zo are all stable (i.e., no RHP poles). If any of these are un-

stable then an interaction has already occurred with an unstable quantity

and the analysis should trace back until the point of the undesired

interaction is found. To do this consider Fig.2.6 which elaborates the

system in Fig.2.&. The quantities in Eqs.(2.3) through (2.6) of the
jth

component can be expressed in terms of the preceding (j-lth) and the

following
(j+lth)

components.

J: J'l
Zs Zo

(2.9)

j
=

j+1 (2.10)ZL 1 / Yi l

From Eqs.(2.5) and (2.6),

J_ JJ J, J·1
j gzz AG .ZS gzz AG.ZO

Z°=
1- jzj

=
1- jzj“1 (211)gll°S g1l'o ‘

.1 .1.1 .1 J+l
j gll + AG /ZL gll + AG.Yi

Y.=1 1 1 1 1+11 + gzz .ZL 1 + g22 .Yi (2.12)

From Eqs.(2.9) through (2.12) the stabilities of ZS, ZL, Yi and ZO for
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any two-port can easily be checked and the possible undesired interaction

points detected. For instance, the stability of output impedance of the

jth
component

Zoj
can be determined from Eq.(2.l1) by applying the Nyquist

criterion to the product of -g1lj and Zoj·l. Since each unterminated

component (g-parameters) is assumed to be stable and if
Zoj

is unstable

while Zoj-1 is stable, then the undesired interaction occurs between the

jth
component and its source impedance Zsj. The same argument holds for

the load interactions such that if Yij is unstable while Yij+1 is stable

then the undesired interaction occurs between the
jth

component and its

load impedance
ZLj.

In other words, the stability of the doubly termi-

nated two-port component can be established as follows. First, using

Eqs.(2.9) through (2.12) the stability of ZS and ZL must be examined then

using Eqs.(2.ll) and (2.12) the stability of Yi and ZO (singly terminated

two-port) can be determined. If Yi and ZO are stable, which implies ZS

and ZL are also stable, then the stability of the doubly terminated two-

port system can be established by applying the Nyquist criterion to TS

and TL in Eqs.(2.7) and (2.8).

2.5 Conclusions

In this chapter the proposed modeling and analysis techniques of large

scale systems were discussed. A two-port subsystem coupling method is

utilized such that a system is broken into manageable pieces. Each com-

ponent is modeled as an unterminated two-port and the system is configured

according to the interconnection law.
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The stability of a linearized large scale system can be analyzed with

a focus on either local or global behavior. The analysis not only de-

termines the stability of the total system but also identifies the unde-

sired interactions which occur at various component levels. Thus, the

design criteria for components and their integration can be established.

The modular approach allows one to pinpoint the undesired interaction

point to assist in trouble-shooting. The modular approach also allows

the analysis to be performed with well-defined physical quantities (i.e.,

impedances) which are also observable and measurable both analytically

and empirically. The analysis technique is based on well-known classical

linear circuit theory, two-port network theory and Nyquist theory so that

any practicing engineer can utilize the technique for design, analysis

and trouble—shooting a large-scale system. Various types of the system

level analyses for the Direct Energy Transfer spacecraft system are per-

formed in Chapters S through 7.



Chapter 3

SPACECRAFT COMPONENTS MODHJNG AND ANALYSE

3.1 Introduction

Components of spacecraft power systems are inherently nonlinear. As

a result, their behaviors due to large signal and small signal disturb-

ances can be quite different. For the analysis of the small signal dy-

namics, such as stability, input/output impedances, and

audiosusceptibility, the model can be developed by linearizing the non-

linear components about an operating point under the small signal as-

sumptions. These small signal models are very useful since all of the

well established linear system theories can be applied. Also their ana-

lytical closed forms provide useful information for designing the system.

However, the small-signal models can not predict the large-signal behav-

ior such as stability in large, initial Start·up and step transients, and

other nonlinear modes of operation (i.e., protection, saturation, etc.).

Therefore, it is necessary to generate a small signal model and large

signal model for these nonlinear components to analyze the following

performance categories: dg, small signal ac, and large signal transient

responses.

It is desirable that various components in the spacecraft power system

be modeled with maximum flexibility, using any one of the following rep-

resentations: state eguations, transfer functions, empirical data, and

combinations of those. One may choose one of these modeling techniques

23
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best suited for a particular component. For instance, quite often a

component can be virtually a black box due to either complexity or unknown

nature, then empirical data modeling is the only resort. For a component

of piecewise linear nature, such as switching converters, the state space

modeling is most convenient. For a linear component, the transfer func-

tion. model often suits best because it provides more design insight.

Integrating these component models in different forms can be done with

minimum user's intervention employing the host software system EASY5.

Details for the system modeling are discussed in Chapter 4.

As described in Chapter 2, characteristics of the g-parameters for each

component should be analyzed as an unterminated two-port network. The

system level analysis can then be carried out based on the g—parameters

of individual components. In this chapter, modeling and analysis of the

following spacecraft components are discussed.

�
Switching regulator - Section 3.2

�
Solar array · Section 3.3

�
Shunt regulator - Section 3.4

�
Filter / cable - Section 3.5

�
Payload · Section 3.6
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3.2. Switching regulator modeling

Because of high efficiency, small size and light weight, switching

regulators are widely used in spacecraft power systems. Switching regu-

lators can be characterized, as shown in Fig.3.1, by the three basic

functional blocks: power stage, analog feedback controller, and digital

signal processor.

The power stage consists of energy storage elements and switches.

Transfer of the input power to the load is controlled by the duty ratio

of the switch (transistor). The analog feedback controller usually con-

tains an error amplifier and a compensation network. For a single loop

control it senses the output (load Voltage), and for a multiple loop

control it senses the output and states (i.e., load Voltage, inductor

current, capacitor Voltage). The digital signal processor includes a ramp

generator, a comparator, and latches. It takes the control Voltage from

the analog feedback and converts to the pulse width modulated (PWM) signal

which controls the switches in the power stage switch.

Switching regulators are inherently nonlinear and discrete. The power

stage has several different topological modes controlled by the

switch(es) whose switching time is PWM controlled by the feedback con-

troller. The state equations, in general, cannot be solved unless the

system is linearized about an operating point. The linearized model can

be used to analyze the small signal behavior about an operating point

using the relatively simple linear system analysis techniques such as Bode

plots, root locus, etc.
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Since there exist many different types of power stage topologies and

control methods, the large signal behaviors of a regulator depend largely

on the type of power circuit topology and control. Thus, for maximum

flexibility, it is best to develop models for each functional block as

independent modules. A regulator can then be configured by collecting

appropriate pre-defined modules for each functional block. Also any of

these block modules can be freely replaced with alternatives, it provides

maximum flexibility in building a variety of regulators. Development of

each functional block are as follows.

3.2.1 Power stage modeling ·

Generally, three different circuit topologies exist in the course of

a complete switching cycle. A converter is characterized by three sets

of state equations during a switching cycle as follows

x = Alx + Blu

A
y = Clx + Elu , for interval dnlTS (3.1)

x = Azx + Bzu ,

y = Czx + Ezu , for interval dn2Ts (3.2)

x = A3x + B3u ,

y = C3x + E3u , for interval dn3Ts (3.3)
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Here x is the state vector, u the input vector and TS the switching pe-

riod. Ai and Bi (i=l,2,3) are square matrices which describe the three

circuit topologies and the effects of the input vector u. The switch duty

ratio is represented by the fractional quantity dnl, and dnl + duz + dn3

= l. These three matrix equation can be combined into one by using the

three switching functions shown in Fig.3.2. With use of these switching

functions, a single state equation suffices to describe the converter as

in Eq.(3.4).

. 3
x = Z [A.x + B.u]d.(t) ,

i=l 1 1 1

3
y = Z [Cix + Eiu]di(t) , i = 1,2,3 (3.4)

i=l

where di's are either 0 or l depending on the specific time interval in·

volved.

Eq.(3.4) is not only discrete but also nonlinear because di(t) is a

function of the state vector x and the input vector u. The power stage

model showing in Eq.(3.4) is directly implemented with the appropriate

switching function for the time-domain model. The intervals defined above

include the possible inductor current discontinuous conduction mode

(DCM). For the continuous conduction mode (CCM), there are only two

switching intervals, dnlTS and d¤2TS. In the time-domain model, these

two different modes of operation (DCM or CCM) are naturally determined

depending on circuit parameter values and input and output requirements.
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However, the small signal models for CCM and DCM are quite different be-

cause of the additional constraints of the state,

di
= 0

dt (3.5)

and .

i = f(¤„Y,d¤l,L,TS) (3-6)

Therefore, it is necessary to include a step to determine whether the

converter is operated in CCM or DCM for the small—signal model by checking

the boundary condition between these two modes. From Eq.(3.4), the small

signal power stage model can be generated as follows.

Linear small signal modeling of switching converter power stage

For the small signal model, there exist various types of techniques

such as state space averaging [3], discrete—averaging [4] and discrete

technique [5]. Among these, the state space averaging technique is chosen

for this study because it is simple and provides physical insight into

the system, thus it is better suited especially for large system analysis.

The small signal modeling in this section will be carried out for the case

of the constant frequency controlled regulator operating in the CCM. The

fundamentals of the state-space averaging are reviewed as follows.

Averaging: First the switching functions di(t) are averaged as shown

in Fig.3.3. For the CCM where d¤3 = 0, let the averaged values of the
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switching functions be

dl(t) = d

—

=

�—

='d2(t) 1 dl(t) d (3.7)

Both dynamic and static equations for the two (in CCM) switched intervals

in Eq.(3.4) are averaged by summing the equations for each interval
dniTS

multiplied by the averaged switching function di(t). It results in the

following continuous system which represents the average effect of the

circuit across the whole period TS.

�_

I, Ix — (Ald + Azd )x + (Bld + Bzd )u

y = (Cld + C7d°)x + (Eld + E2d')u (3.8)

where x and y represent the average state and output.

Perturbation : Suppose that the duty ratio changes from cycle to cy-

cle, that is, d = D + d where D is the steady state (dc) duty ratio and

d is a superimposed (ac) Variation, as shown in Fig.3.3. The notation

used throughout this section is that dc or steady state values are re-

presented by upper case letters, and perturbations by lower—case with

carets. The corresponding perturbations of other quantities can also be

expressed as



32

d(t)

1

I ' d· I ·
.1

IK I
”

'. __
jD
.¤Ü·—-—I "’

Ad(t)

I I Zi

0Figure 3.3 Averaging the switching functions

—··—·
: steady state

—
: perturbed small signal



33

d' = l - d = (1 — D) - d = D° - d

x = X + Ä, u = U + G, y = Y + y, (3,9)

Substituting these into the averaged equation (3.8), it becomes

é = AX + BU + A; + B8 + [(A1·A2)X + (Bl·B2)U]d

A AA

+ [(A1·A2)x + (Bl·B2)u]d

§ = CX + EU + C; + EG + [(Cl·C2)X + (El—E2)U]d

A /*"
+ [(Cl·C2)x + (E1·E2)u]d (3.10)

where

Z
I

=

IA DAI + D A2 , B DBl + D B2

_ I
=

IC — DCl + D C2 , E DE1 + D E2 (3.11)

The perturbed state-space description is nonlinear owing to the presence

of the product of the two time dependent quantities x and d.

Linearization: Let us now make the small signal assumption such that

A ^ A A
u d x y
·——

<< 1, -—· << 1, ·—- << 1, and
*—·

<< 1 (3.12)

U D X Y
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Using these small signal approximations, the nonlinear second order terms

in Eq.(3.l0) can be neglected, and the following linear time invariant

system is obtained:

SS = ASS + BG + P8

= C; + EG + Qd (3.13)

where

P = (A1 —
A2)X + (Bl - B2)U

Q = (C1 - C2)X + (El - E2)U (3.14)

By collecting the dc terms from Eq.(3.l0), the steady state solutions are

x = -A-1BU

Y = (-CA-IB + 1a)u (3*13)

The small signal solutions can be obtained by taking the Laplace transform

of Eq.(3.l3).

§ = Huxlu + Hdxä (3.16)

§ = Huylu + Hdy3 (3.17)
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where

Q
-1

··:· A = Hux = (SI ·A) B (3.18)

u d=0

2
-1

T A = Hdx = (SI ·A) P (3.19)
d u=O .

»
Y
-5- 8:0

= Huy = C Hux + E (3.20)

A

Y
——-

= H = C H + Q (3.21)
Ä G=0

dy dx

EqS.(3.16 - 3.17) describe the power stage of Switching converters with

unterminated input and output. The differences between the above model

and the conventional models for the load terminated case are illustrated

in the following example.

Example: Let us consider a boost converter, as shown in Fig.3.4. For

Simplicity, let us assume the Switch is ideal and RC = O, Rz = 0. The

two Switched models are as shown in Fig.3.5. For choice of State vector

xT
= [il V2], the state equations become:

i) interval dlTs ii) interval d2TS

1 1 1‘z
° ° r

‘r
°A1 = 0, Bl =

0 Ä-
A2 = -_L

0
, B2 =

0
_l

C C C
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Cl = C2 = I, El = E2 = O (3.22)

(Note that, for simplicity, the sign convention of the states and outputs

are purposely chosen so that the states are identical to outputs.)

From Eq.(3.l1) the averaged power stage coefficient matrices are

D' 10 L L 0

A = , B = C = I
D

’
1

’

**6* O O (3.23)

Using Eq.(3.15), the steady state solution is

I1
1

I2

Y:X: =
——

DI
V2 V1 (6.24)

The control coefficient matrices using Eq.(3.l4) become

-.‘li
P =

D L
Q = 0

I2 (3.25)
D'c ,

The small signal model for the power stage is obtained from Eqs.(3.l8)

through (3.21) and using (3.23) through (3.25) results in
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C 1

^
DIZ DI

Y 1 (3 26)
H
:-—-:-— °

UY
ii A

1 L__ ___ s
DI DIZ

I C V

§ 1 D D I2

H =
___

=
___ (3.27)

dy
E A V1 L I2

——— (1 +
———— s)

IZ ID D V1

where

A = 1 + sz/wol, wo = D' 1 JEE (3.28)

It is noticed that the open loop transfer functions in Eq.(3.26) and

(3.27) have infinite Q (with ideal elements), which clearly implies the

unterminated system. However, the control to output transfer function

in Eq.(3.27) carries the dc input information, V1 and I2. This is due

to earlier assumption that the model describes the behavior of the regu-

lator about a known steady state operating condition. From the state-

space averaged model, the A-matrix does not carry steady state information

while the control matrix P does. This may be seen more clearly in the

linear equivalent canonical circuit model in Fig.3.6 which can be gener-

ated either from the state-space equations or from the circuit averaging
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technique [3]. In the circuit model the control dependent sources e(s)

and j(s) are functions of the steady state input values while the effec-

tive filter transfer function, He(s), is still unterminated. Hence, if

a regulator is terminated with a resistive load RL, the same RL would

appear in e(s), j(s) and He(s). However, if a regulator is terminated

with a frequency dependent load ZL, only the steady state dc value of ZL

(i.e., RL or V2/I2) appears in e(s) and j(s) while He(s) is terminated

with ZL.

This can be shown from the load terminated open loop transfer func-

tions. For instance, the input Voltage to output Voltage transfer func-

tion becomes

r V2 1 1 1
[

HVL
$1 a=0, zL D' L S2 D'

6
(3.29)

(1+is+—)
�1 1D ZL wo

and the control to output Voltage transfer function is

1 -
-—L—- s

/~ D°2RV2 V1 L

H =-1-
=——�-l——l—————Ee(s)H(s)

dL
d ü=0, zL D'* L sz

° (3.30)
( 1 +

————-
s
+-———)

¤1 1D ZL wo

where RL = - V2 / I2
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The analysis of the complete regulator using the above results is pre-

sented in Section 3.4.

3.2.2 Analog feedback controller

The commonly used analog feedback controller is basically linear for

normal modes of operations. The controller can be modeled by either

transfer functions or state equations.

The transfer function model, in Eq.(3.31) provides more design insight

so that both analysis and synthesis of the controller can be done quite

easily. Pole-zero compensations of the closed loop system can be directly

implemented using the Bode plot technique.

wm ( 1 +
s/wzl

)( 1 + s/w22)

F(s)s
( 1 + s/wpl) (3.31)

However, the second order effects of the feedback, such as the steady

state switching ripple component, is lost.

Modeling with state equations can describe the circuit in more detail,

and can easily include the nonlinearities such as op—amp saturation, soft

starter and protection circuits. However, the circuit topology must be

pre-fixed and generally, the model requires more memory space. Also, the

model does not provide direct information about the location of poles and

zeros to facilitate design of feedback compensator.
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The choice of model depends on its objective. For design and frequency

domain analysis the transfer function model suits better; and for more

accurate time-domain analysis and simulation the state equation model may

be the better choice. The model developed for this study includes both

modeling techniques. .

Fig.3.7 illustrates a typical multiple loop controller for switching

regulators. The controller senses the state (inductor current) and output

(output voltage). The sum of the state and output compensators (Fx and

FY) is the control voltage, vc, as described in Eq.(3.32).

vc = - (Fx x + Fy y) (3.32)

The compensators for a regulator employing the inductor (or switch) cur-

rent and output voltage sensed feedback become

Fx = [ Fi 0 ], Fy = [ 0 FV ] (3.33)

3.2.3 Digital Signal Processor

The digital signal processor (DSP) converts the output control signal

vc from the analog feedback controller into discrete-time pulses to con-

trol the ON-OFF of the power switch. The DSP includes the threshold de-

tector (comparator), the ramp function and the latch circuit.



44

The threshold detector compares the input control signal, vc, and the

reference signal (either dc or the ramp) to generate the trigger signal

for the transistor OFF command. The latch circuit then generates the PWM

signal, d(t), as shown in Fig.3.2 to the power transistor. For the mul-

tiple loop control, the input control signal, vc, is the sum of the out-

puts of each feedback loop. In this case vc may include the ramp function

(from the inductor current or switch current feedback), then the external

ramp function can be optional, which quite often is needed to stabilize

the system operating more than 50% duty ratio. Fig.3.8 illustrates this

multiple loop case. For each different duty ratio control law such as

constant frequency, constant‘TOn and constant Toff, the DSP model should

be different. These different modules are stored in the component module

library, as in the case of power stage models.

For the small signal model, the transfer function from the control

signal vc to the duty cycle modulation d is obtained as in Eq.(3.34) using

the describing function technique.

d = FM·vC (3.34)

3.2.4 Switching regulator small signal modeling and analysis

Connecting the power stage, analog feedback controller and the digital

controller (Figs. 3.6, 3.7 and 3.8) together completes the small signal

regulator model as shown in Fig.3.9. This unterminated regulator is ready
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to be connected into a system. Analysis of the doubly terminated regu-

lator can be carried out using the g-parameters of the regulator, The

g-parameters can be derived either from the circuit model shown in Fig.3.9

or from the block diagram representation in Fig.3.lO. The block diagram

model in Fig.3.l0 which uses transfer functions can describe any type of

converter topology and associated controls. While the model shown in

Fig.3.9 is circuit oriented, and it does provide physical insight into

the system.

The closed loop transfer functions from the the input vector Ü to the

output vector y, the G—matrix of the regulator, can be directly derived

from the transfer function model in Fig.3.l0.

3i==[I + T
]—l

H - FM·H ·F ·[ [I + T ]-l H ] (3.35)
G

eq uy dy x x ux

where

- -1 _Teq—FM Hdy [py px[[1+Tx] pdx-py pM]] (3.36)

TX = Hdg Fx·FM (3.37)

Using the g-parameters in Eq.(3.35), performance parameters of the regu-

lator operating in the system such as stability, audiosusceptibility,

input and output impedances etc. can be derived as functions of impedances

of its terminating subsystems.
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Analysis of a complete regulator is illustrated in the following example

using the boost converter power stage derived in Section 3.2.1. For

simplicity, a single loop (output voltage feedback) control is used.

Example: Analysis of the boost regulator using the g-parameters

For single loop output feedback control, the compensators are

Fx = O, Fy = [ 0 FV ] (3.38)

and let the PWM gain be FM.

The closed loop input to output transfer functions in Eq.(3.35) becomes

-1
G = I + FM H F H 3.39[ dv Y] uv ( )

Using the results of the power stage equations in Section 3.2.1

(Eqs.(3.26) and (3.27)), the g-parameters in Eq.(3.39) are

1 FM I2 V1

g =--——-—(l+T)Cs+—--—(1-C——·s)Fll A (1+1*G) 1)'= G A ¤' 12 V (3.40)

1 1 FM I2 V1

g = —-(1+T)—-—·;Ls(l-C—s)F
12 A (1+1*G) D'

G
D' A ¤'° 12

V
(3.41)
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g = i..1 .L
21 A (1+TG)

D, (3.42)

g =
1 L S21 A (1+TG) D.; (3.43)

where
V

A = 1 + s=/AOZ (3.Aa)

FM V1 L I2

T =
————-—- (1 + ————— s) F

G
A D" D°V1

V
(6.6.6)

Here, 1 / A is the effective filter transfer function He(s). TG is the

loop gain defined at Point X for the unterminated regulator shown in

Fig.3.9. The stability of the unterminated regulator can be determined

using the quantity TG. The Bode plot technique can be used to check the

Nyquist stability criterion. Using Eqs.(3.40) through (3.45), the total

system can be treated as a doubly terminated two-port system focusing on

the switching regulator. The system analysis can then be carried out by

defining the source and load impedances seen by the regulator.

As described in Section 2.4, a doubly terminated regulator (two—port)

can be analyzed in two-steps. First, by considering the load terminated

regulator (one-port) with ideal source and then including the source

impedance ZS. These steps when compared to the expression for a doubly

terminated two-port system in Eqs.(2.3) and (2.4), provide more physical

insight into the system analysis especially for the interactions from
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either the source or the load to the regulator.

Singly (load) terminated regulator:

Suppose that the regulator is terminated by a load impedance of ZL,

which is frequency dependent with a dc value of RL, as shown in Fig.3.ll.

The line transfer function from V1 to V2 is

V2 $21 $21
GVL 6 1 + g /2 1 + T (3 46)

1 22 L L '

where the values of g-parameters are in Eqs.(3.40) through (3.43). _

Before we analyze Eq.(3.46), let us expand this equation for comparison

with the regulator terminated with resistive load RL. Knowing the steady

state operating condition (i.e., dc output power), the steady state input

values can be expressed in terms of the regulated dc output Voltage and

the dc output power.

2
'

=�
V1 V2 / D , I2 V2 / RL (3.47)

where
= zRL
_

V2 /
Pout

Expanding Eq.(3.46), the line Voltage transfer function becomes
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vz 1 1

vl D L S2 V2 L (3.48)

[1+-s+——]+[—(1-—s)FMFv]
I1 1 I I1DZL wa D DRL

term (1) term (2)

It should be noted that in Eq.(3.48) the term (1) includes ZL and the term

(2) includes RL. This again can be seen clearly from Fig.3.6 where the

effective filter in the power stage model (the term (1)) is now terminated

with ZL, while the control source is a function of the dc operating con-

dition (the term (2)).

If the load impedance, ZL, is complex frequency dependent, it is nei-

ther easy to obtain design insight nor to analytically determine the

stability of the regulator using Eq.(3.48). However, in Eq.(3.46), ZL

is factored out so that the stability of the regulator can be determined —

using the quantity TL. The load interaction criteria of the regulator

can also be examined from TL. For instance, if one assumes that gzl or

g22
is stable, then the Nyquist stability condition is simplified such

that the regulator is stable if TL does not encircle the point (-1,0).

The condition can easily be checked using the Bode plot technique. Fur-

thermore, under the above assumptions the sufficient condition for sta-

bility is simply lgzzl < |ZL| for all frequency.

Using Eq.(2.5), the input impedance Zi = 1 / Yi of the load terminated

regulator shown in Fig.3.ll can be derived as
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gll + AG / ZL Yeq
Yi:-_—-—1 E '—_"' (6.49)1 + g22 / ZL 1 + TL

The stability of the regulator can also be determined from Eq.(3.49) using

TL. Analysis of the doubly terminated regulator taking into account of

the source interactions can be carried out using Yi. Eq.(3.49) can be

expanded done as in the line transfer function in Eq.(3.48). At low

frequencies where AG and
g22

are vanishingly small and Yi becomes

-g1lIs*0, the input impedance characteristic is

1

Yi - -
D„2R

(3.50)

L

This exhibits the negative input resistance characteristic as expected

for all switching regulators.

Doubly terminated regulator:

Fig.3.12 shows the complete (doubly terminated) regulator system. The

performance parameters of the system are derived using the results from

the load terminated regulator as follows: first, the two line transfer

functions defined in Fig.3.l2 are expressed as

A

"2 ZS 1 1
G
:—:-—:-l-—-§—l-1

Sl
G Z + Z 1 + Z / Z 1 + T (3.51)
s s i s i S
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vz vl vz

Gs2 V
= Gsl GVL (3 -7)

s s l
'3“

where GVL is in Eq.(3.46)

From Eqs.(3.5l) and (3.52), the stability of the doubly terminated regu-

lator can be determined using TS. If GVL is stable, which implies Yi does

not have RHP poles, then the Nyquist stability condition can be checked

the by Bode plots of TS. Also, the source interactions to the regulator

can be examined using TS.

Secondly, the output impedances of the regulator can be defined as Zol

and ZO2 as shown in the figure. Zol is used for analyzing the inter-

actions between the regulator terminated with ZS and the external load.

ZOZ is used to characterize the regulator behavior due to the load dis-

turbance, such as transient analysis due to a step load.

$22 ' AG ZS
ZS1 =

1 _ Z (3.53)
$11 S

2°2 = 201 u 2L (3.54)

The analysis for the boost regulator example shows that, using the

g-parameters, singly or doubly terminated regulator performance parame-

ters can easily be obtained along with the interaction information between
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the regulator and its source and load. The analysis can be applied to

any two-port subsystem. Thus, one can focus on a particular subsystem

and its interactions with the remainder of a total system. Some examples

analyzing the source and load interactions of switching regulators are

discussed in detail in Chapter 6.
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3.3 Solar Array Modeling

Solar arrays made of silicon solar cells are the main source of elec-

trical power for spacecraft power systems. Because the individual silicon

cell used on these arrays is small and produce very little power, many

solar cells are connected in series and parallel combination to provide

necessary power to the spacecraft.

Several approaches have been proposed for modeling a solar array [6].

First, it is possible to model an array by an interconnection of indi-

vidual solar cells (individual cell model approach). Advantages of this

approach are: the parameters for the individual cell model are readily

obtained using established measurement and calculation procedures, also

the effects of parameter variation can be easily included. Shadowing

effects as well as cell faults can easily be inserted into the array.

However, the major disadvantage of this approach is that an extremely

large amount of computation time is required, which might easily exceed

the total computer capacity.

Another approach is to use a single cell model to simulate the entire

array (macro model approach). The major advantage to this approach is

its ability to minimize the computer time and memory space needed to an-

alyze array behavior. Parameters can be obtained by incorporating the

measurement/calculation of the individual cells and their interconnection

scheme, or simply by making terminal measurements of the array itself.

Neither of these methods takes much more effort than would be needed for

the individual cell model. One disadvantage to the macro model approach
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is the fact that a new set of macro model parameters needs to be developed

for each different array configuration. This tends to make the model less

flexible than is desired. Furthermore, shadowing and individual cell

faults cannot be easily included in the macro model without, again, a

redevelopment of model parameters.

An approach which uses a combination of the macro model and the indi-

vidual cell model could be very advantageous. This approach retains the

flexibility of the individual cell model approach while reducing the

necessary computer time and capacity. Any fault that occurs in an indi-

vidual cell can be simulated. Shadowing effects can be accounted for in

much the same way as would be done in the individual model. Sensitivity

of parameters can also be easily analyzed by varying individual cell pa-

rameters. The disadvantage of using the combination model is the need

to determine at least two sets of model parameters -- one set for the

group of individual cells and one set for the group of macro models.

The choice of modeling approaches depends on the particular modeling

objective(s). In the present study, the macro model approach shown in

Fig.3.l3 is used for performing an overall system analysis. With this

type of analysis it is presumed that the model of the solar array need

not have great detail.

3.3.1 Solar array DC model

For this study, two types of DC models are generated. One is the an-

alytical macro model and the other is the empirical data model. For the
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analytical solar array macro model, the standard solar cell DC model shown

in Fig.3.l4 is used [7]. It provides very good first order predictions

of the DC behavior of the silicon cell. A great deal of literature is

available for determining its parameter values. An analytical expression

that describes the terminal characteristics of the solar cell model in

Fig.3.l4 is

QVD VD
1 =1 -1 [exp(——)-1]-; (3.55)o s do KT Rsh

Based on the cell model, a solar array macro model is constructed by as-

sembling solar cells in parallel and series connections as shown in

Fig.3.l3. In Fig.3.l5, the resulting equivalent circuit model is illus-

trated where its elements are lumped parameters and are functions of the

number of cells in series, ns, and the number of parallel strings, np.

The analytical expression for the terminal I-V characteristic of the solar

array model in Fig.3.15 is then

QVD VD
. Io=I1p[IS'IdO[€Xp(*K?)'l]�·§·] (3.56)

where

D n n '
S P

From Eqs.(3.56) and (3.57) the solar array operating conditions are set

by the load power demand and shunt regulator limiting voltage. Other more

elaborate analytical DC models exist, such as multiple element models



62

Io

R
———>

S

+ +

'S
“

v V0 Rsh V¤

Figure 3.74 DC model of solar cell

n
v J. |Ü np Rs _ , U

+ .

Y Y Y

Y Y Y
nll .II IS vu

Y Y Y

Figure 3.75 DC macro model of solar array



. 63

which include second order effects [8]. Those multiple-element models

are used to model accurately the effects of distributed series resistance,

complex voltage dependencies and radiation. Due to the complexities of

the model it is not practical to incorporate these second order effects

in the system study.

The other model generated for this study is based on the empirical data

about the solar array terminal
l—V

characteristics. The solar array il-

lumination level and temperature are chosen as the dependent variables.

Based on four dimensional empirical data, both linear and high order in-

terpolation techniques are employed to define the array I-V character-

istic curve for any arbitrary temperature and illumination. Fig.3.16

shows the interpolated I-V characteristics based on two interpolated em-

pirical data curves for two different illumination levels. In these data,

temperature is assumed constant. Other dependent variables for the array

characteristics can be added, provided their effects can be accounted for

by the measurement. If the measurement data is available, this approach

is simple and accurate.

The solar array dc output resistance, ro is the tangential slope of

its terminal I~V characteristic.

AV
ro = - 2;

~

Io, Vo (3.58)

ro can be also analytically derived by replacing the diode in the solar

array dc model in Fig.3.15 by the nonlinear diode dynamic resistance rd.
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Differentiating the diode equation in Eq.(3.56) and substituting

Eq.(3.57), the value of rd at a particular solar array operating point

is obtained

Ü

Q QVD
r = n I — exp(;) _ _ (3.59)
d Io, Vo P do

kT kT
VD

_

Vo/ns
+ Rslo/Hp

Then the output resistance is

= l*6 Rs + ’d l Rsh (3.60)

The characteristic of the solar array I-V curve is mainly determined by

rd and its value widely Varies depending on the operating point.

3.3.2 Solar array small signal model

The standard small signal AC solar cell model is shown in Fig.3.l7.

Like the DC model, this model is simple and produces good first order

results. Various techniques are given in the literatures for determi-

nation of the model parameter values. For the first order AC model, the

parameters are dependent on output Voltage and current, cell temper-

atures, cell illumination, and physical cell dimension. It is, therefore,

necessary to take these dependencies into account when model parameters

are calculated. It is especially important to characterize the dynamic

resistance whose Value Varies widely with the operating point on the solar

array dc I-V characteristic. With a procedure similar to the DC model
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generation, an equivalent small signal macro model is developed as shown

in Fig.3.l8. For an array model, additional circuit elements should be

included to incorporate the cell interconnection. These parameter val-

ues, of course, depend on the physical construction of an array. In the

present model, they are described as lumped R, L, and C which are func-

tions of the number of cells in series and parallel, ns and np, respec-

tively.

From Fig.3.18, the output impedance is

Zo = Rs +
Req H ( 1 / Sceq )

(3.61)

where

Req =
Id H Rsh

Ceq = CT + CD

As mentioned in the previous section, the characteristic of the solar

array output impedance, Zo, varies widely depending on the its dc oper-

ating condition. This nonlinear output impedance coupled with a load

impedance, ZL, may result in a system instability as the dc operating

point is changed. This is particularly critical when ZL represents a

switching regulator. The constant power characteristic of switching

regulators coupled with the solar array I-V curve can create multiple

equilibrium points. Stability of each equilibrium point depends on the

dc operating region of the solar array. The detailed stability analysis

of the solar array operating point is presented in Section 5.2.
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3.4 Shunt regulator modeling

Shunt regulators are used to clamp the power bus Voltage during periods

when excess solar array power is available. There exist basically two

types of shunt regulator circuits, linear type and PWM type. Modeling

techniques for the PWM type have received a great deal of attention in

the last two decades. A discussion of the modeling and analysis of the

PWM regulator is contained in the section on Switching Regulator Modeling.

The shunt regulator configurations can also be categorized by their

functions, full shunt and partial shunt. In a full shunt configuration,

the shunt elements are placed in parallel with the load. In a partial

shunt configuration, the shunt elements only shunt part of the solar array

cells. Each solar array segment is tapped by a shunt element. In this

dissertation, the full shunt configuration is modeled.

Fig.3.l9 illustrates the simplified block diagram of a typical shunt

regulator. The basic circuit functions are as follows. A divided-down

sensed bus Voltage is compared to a reference Voltage. The error Voltage

is then amplified to control the current through the shunt elements. A

resistor of suitable Value (depending on the maximum design current for

the shunt) is used in the shunt current path to monitor the current that

is flowing through the shunt elements. Before the actual shunt circuit

is described, the linear analysis using the simplified circuit in Fig.3.l9

will be carried out in the following section.
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3.4.1 Linear analysis of the shunt regulator

Using the quantity Ysh, the transadmittance from the bus Voltage to

the shunt current, the impedance seen by the bus for the unterminated

shunt regulator is

Zf

ZB = ————————-——
S1 + ZS Ysh (3.61)

and the loop gain of the regulator is

TG = ZS Ysh (3.63)

The performance parameters for the doubly terminated regulator shown in

Fig.3.20 are derived as

ZS H (ZS H ZS)
ZB1

+ YSS (ZS H (ZS H ZL>1 (3-64)

T = YSS [ZS ll (ZS II ZL)]

1
:1

+ ZS/ (ZS || ZS) (3.65)

For the load (ZL) terminated regulator, the input impedance is
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Zf H ZL

1 + Ysh (zf M zL) (3.66)

and the loop gain of the load terminated regulator can be defined as

1
T = Y (z [ z ) = T ————————————

— L sh f L G
1 + Zf / ZL (3.67)

For the source (ZS) terminated regulator, the output impedance in Fig.3.20

is

Zf H ZS

1 + YSh(
zf M zs) (3.68)

and the loop gain of the source terminated regulator is

Ysh Zs

T = Y (z n z ) = ———————————-—
S Sh f S

1 + Z / Z (3.69)
S f

As described in [9], design and analysis of the unterminated shunt regu-

lator performance parameters in Eqs.(3.62) and (3.63) are fairly

straightforward. However, as Eqs.(3.64) through (3.69) show, stability

of the regulator depends on its terminating impedances. Since the source

impedance, ZS, is the output impedauce of the solar array, and the shunt

regulator is supposed to be operated in the constant Voltage region of

the solar array, where the magnitude of ZS is small, the source
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interaction is not as critical as the load interaction and is quite pre-

dictable using Eq.(3.69).

The load characteristics of the power conditioning equipment create

two areas of interaction concern in the stabilization of the shunt regu-

lator feedback loop. First, the resonance of the input filters required

the power conditioning equipment create a low impedance on the bus (ZL)

at the resonant frequency, which may cause an oscillation or an undesir-

able transient response. Secondly and more importantly, because the

typical load (equipment) for shunt regulator is (a) switching

regulator(s), the phase of the loop gain TL in Eq.(3.67) can be shifted

‘
more than 160° when its magnitude is still greater than unity due to the

negative input impedance characteristic of the switching regulator. This

fact established the need to have the output impedance of the shunt reg-

ulator, ZB and the load impedance, ZL, well defined over the bandwidth

of the loop gain.

3.4.2 Modeling of the shunt regulator circuit

A block diagram of an existing shunt regulator as shown in Fig.3.2l

has been modeled in detail. The computer model takes into account salient

dynamics and nonlinearities including op-amp feedback, op-amp saturation

and darlington cut-off. All diodes, including the transistor‘s base—to-

emitter junction, have an infinite reverse impedance. The first order

model is used for transistors with their parameter values (such as current

gain and base-emitter junction Voltage,
VBE)

as the user°s inputs. The

LC low-pass filter is added, which can be considered as the input filter
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and/or the cable impedance from the solar array to the shunt regulator.

It also allows preservation of the standard interconnection law providing

four terminal variables.

The analytical derivation of the transadmittance Ysh from Fig.3.2l

results

:
_

+
_Ysh [ Kl AS G1 G2 ] K2 K3 F (3 70)

where Kl is the sensed voltage divider factor, AS the error amplifier

transfer function, Gl and G2 the filter transfer functions, K2 the gain

from the base voltage of the darlington transistor to the base current

of the shunt elements, K3 the 12 sections of shunt elements, and F the

current gain of the shunt elements.

3.5 Filter / Cable Modeling

_ Spacecraft power components usually require both input and output

filters to decrease andiosusceptibility and to reduce switching current

ripple seen by the main bus. This is particularly important for switching

converters having pulsating input or output current. Power distribution

cables can also be realized in the filter model.

Fig.3.22 shows the single stage low pass filter configuration that can

be used for both filter and cable models. Other multiple stage filter

or n-section cable models can be constructed by cascading the model.

Parameter estimation can be quite difficult for a cable model. An at-
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attractive modeling approach using empirical data modeling of such com-

ponents is discussed in Chapter 7. From Fig.3.22, the tw0·pOIt g-

parameters are derived as follows.

G = --1--
·1 ZL

+Z1 Z1
Z Z_Z (3,7.,
L 1 2

where
Z1 = R2 + sL

22 = RT H ( RC + 1 1 sC )

3.6 Payload modeling

Due to the diversity of the spacecraft°s payloads, flexibility of the

modeling technique is very important. As described in Chapter 2, the

modeling techniques can use state equations, transfer functions, empir-

ical data, or a combination of these. For experimental data modeling,

the payload can be characterized by two types of data, frequency domain

and time domain. The frequency domain data can be further realized with

the analytical model by using the complex curve fitting technique. De-

tails of this approach are described in Chapter 7. The time-domain data

model can be obtained in tabular form when the payload is a time varying

function where the dependent variable is not directly a function of system

electrical operating conditions but of some external variables such as

temperature, light intensity, aging, etc.
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3.7 Conclusions

In this chapter, components of spacecraft power systems are modeled.

Each component is described with the two-port hybrid g—parameters and its

interconnection law.

A component level analysis is performed by means of unterminated,

singly terminated (one-port), and doubly terminated (two-port) component.

The important performance parameters such as line transfer functions,

input and output impedances and feedback loop gains for regulators are

derived in analytical closed forms in which the terminating elements, ZS

and ZL are explicitly factored out. Based on the derivations in this

chapter, the system level analysis focusing on the subsystem interactions

can easily be carried out as will be shown in Chapter 6.



Chapter 4

MODELJNG A DIRECT ENERGY TRANSFER POWER SYSTEM WVTH EASY5

4.1 Introduction

Based on the component models generated in Chapter 3, a complete system

can be configured by interconnecting the component models. The particular

spacecraft power system under investigation is a direct energy transfer

power system [10] which is described in Section 4.2. In Section 4.3,

system model building with the host software EASY5 and its analysis ca-

pabilities are described. '

Using the system model generated in this chapter, the capabilities of

the model are demonstrated in Chapter 5 through Chapter 7, by performing

various types of the system level analysis.

4.2 Direct energy transfer spacecraft power system

The system being modeled in this study is a direct energy transfer

(DET) system whereby the primary power source, a solar array, is coupled

through a main distribution bus directly to the spacecraft electrical

loads. The various power-conditioning components, as shown in Fig. 4.1,

are activated only as needed, thus requiring the system to process only

the amount of power needed to maintain the bus at the specified voltage

level. A system mode of operation is determined by the power system

control unit. The control unit continuously monitors appropriate signals

to activate the power conditioning equipment. The control unit provides

78
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signals that control the disposition of the solar array, battery and shunt

currents to maintain the bus Voltage regulation. When the bus Voltage

exceeds the specified level, the control signal activates the shunt reg-

ulator, and the excessive solar array power is absorbed by the shunt el-

ements. In this mode, the solar array also supplies the charging current

to the battery if it is necessary. When the bus Voltage becomes less than

the specified level, the battery discharging electronics are activated

and the load power is supplied by the solar array and the battery in

shared mode. The battery discharging current is controlled by the bus

Voltage.

In this study, modeling of the battery and the battery charging elec-

tronic are omitted, thus, the battery is treated as an ideal Voltage

source. A boost type switching regulator is used for the battery

discharger, which will be described in detail in Section 5.4. ~

The system modes of operation of the DET system are described in

Chapter 5. Since the system is configured by interconnection of various

components, complex interactions among components and subsystems may oc-

cur that can cause the total system to oscillate. In Chapter 6, Various

analyses are performed to demonstrate that the system can be unstable due

to the undesirable interactions among the individually well behaved com-

ponents.

4.3 EASY5 system model generation and analysis

Once all the necessary components are modeled, they are stored in EASY5

macro component library. As shown in Fig. 4.2, the EASY5 consists of two
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programs, and a library of predefined Standard Components. Predefined

Standard component models include many of the common effects found in

dynamic systems such as standard analog and discrete controllers (pro-

portional, integral, differential, etc.) transfer functions, nonlinear-

ities (relay, saturation, hysteresis and switches), linear state equation

model, etc.

Model generation: The EASY5 Model Generation program uses a block

diagram type of approach for constructing various system models. All

interconnections between the component models are accomplished by the

Model Generation program according to the user specified Model De-

scription Data. This is accomplished by matching the input and output

port quantities of each interconnection. Table 4.1 shows the Model De-

scription Data of the DET system. The program also produces a complete

list of input data that is required by each component to complete the

model description. The scalar and vector parameters and tabular data

required for the analysis are included in this list.

Analysis: Once a system model has been constructed, the Analysis

program performs various dynamics analyses according to the user provided

Analysis Data. The Analysis Data includes parameter values, initial

conditions of states, various analysis controls and analysis commands.

Among the various analysis controls in EASY5, it is important to note that

the INTEGRAL control allows one to perform the analysis at various levels

such as system, subsystem, or component. The analysis in the component

or subsystem level is done by °freezing° the states of the subsystem of
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#

* MODEL DESCRIPTION DATA OF THE DET SYSTEM
«

MACRO FILE NAME = DETI

*
MODEL DESCRIPTION
LOCATION = I, SA, INPUTS = FS(|I=I2)
LOCATION = 2, FS, INPUTS = MCI(S2=|2)
LOCATION = 22, SH, INPUTS = FS(V2=VI)
LOCATION = MI, BA, INPUTS = DQ(|I=|2)
LOCATION = M3, DO, INPUTS = BA(VG=VI), FS(V2=VC)
LOCATION = 6, FD, INPUTS = FS(V2=VI), MC2(S,2=|2)
LOCATION = II, MCI, INPUTS = SH(IH=SI), DQ(IL=S3),FD(II=SM)
LOCATION = 54, FSI, INPUTS = SRI(II=I2), FD(V2=VI)

LOCATION = 55, SRI, INPUTS = FSI(V2=VI), LOI(II=|2)

LOCATION = 56, LOI, INPUTS = SRI(V2=VI)
LOCATION = 57, FS2, INPUTS = SR2(II=I2), FD(V2=VI)

LOCATION = 58, SR2, INPUTS = FS2(V2=VI), LO2(V2=VI)
LOCATION = 59, LO2, INPUTS = SR2(V2=VI)
LOCATION = 73, PT, INPUTS = FD(V2=VI)
LOCATION = 63, MC2, INPUTS = FSI(II=SI), FS2(II=S3), PT(II=S¤)

END OF MODEL
PRINT
#
##**#**#***»»*uu**»##»#»«*#**#***#*###***»«
#

* SA : SOLAR ARRAY

* SH : SHUNT REGULATOR

* BA Z BATTERY

* DO : BATTERY DISCHARGER

* FS : SINGLE STAGE FILTER

* FD : TWO STAGE FILTER

* SR : SWITCHING REGULATOR
*

LO : PAYLOAD

* PT : DIRECT LOAD
* MC : SUMMER
»

hä*§******#N#*{****#**#***#******#*********

Table 4.7 EA$Y5 Model Description Data of the DET system
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little interest. This control feature is particularly useful when one

is interested in investigating behaviors of a component or a subsystem

in the presence of the entire system. A list of the analysis techniques

available through the Analysis program are given as follows.

�
Time history generation - nonlinear

simulation

l

�
Linear model generation with eigenvalue and

eigenvector calculations

�
Frequency response analysis

�
Root locus calculation

�
Steady state analysis

�
Stability margin calculations

�
Optimal controller synthesis



Chapter 5

ANALYSIS OF THE SOLAR ARRAY SYSTEM MODE OF OPERATION

5.1 Introduction

Solar arrays, as the primary power source for spacecraft, generates

its output electrical power relative to the illumination level. The op-

erating point of the solar arrays is determined by the power conditioning

equipment and the load characteristic. Secondary power conditioning

equipment consists of a shunt regulator, a battery bank and its charging

and discharging electronics. When the output power of the solar array

exceeds the load demand, a portion of the excess power is used to charge

the battery bank, the secondary power source, with a portion dissipated

in the shunt regulator. When the load power demand is higher than the
h

solar array output power, the battery bank supplies the excessive load

power through the battery discharging electronics. The power condition-

ing equipment not only balances the power of the system, but also regu-

lates the bus Voltage. Since the solar array output power varies over a

wide range according to the changes in the illumination level, several

modes of operation exist depending on the characteristics of the solar

array, the power conditioning equipment, and the load.

As described in Section 3.3.2, the solar array output characteristic

is nonlinear. This nonlinear source coupled with nonlinear load charac-

teristics may result in multiple equilibrium points under a given oper-

ating condition. The actual equilibrium state that the system resides

85
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on is determined by the stability nature of the equilibrium points and

the past history. Thus, it is necessary to analyze the stability of the

equilibrium points and to understand various modes of operation of the

system.

In Section 5.2, stability of the equilibrium points of a solar array

system with a nonlinear load characteristic is analyzed. The behavior of

different solar array operating points are plotted as trajectories on the

state plane. Stability and transient responses of the system operating

near the solar array maximum power point is considered in Section 5.3.

In Section 5.4, the operation during battery discharge is analyzed

including the transition mode from the shunt regulator active mode. In

the direct energy transfer (DET) system, the battery discharger directly

regulates the main bus voltage. Since the solar array output power varies

over a wide range, the battery discharge converter operates from no-load

to full load. Under light load, the converter operates in the discon-

tinuous conduction mode where the energy storage inductor current is re-

duced to zero during a portion of a switching cycle. The DC and dynamic

behaviors of a switching converter in the discontinuous conduction mode

are quite different than that of the continuous conduction mode. Modeling

of the discontinuous conduction mode employing the state space averaging

is described in Section 5.4. Since the battery discharger also functions

as the bus voltage regulator, the feedback compensator design for the

converter in both modes of operation are also discussed.

In Section 5.5, various modes of operation of the DET system are de-

scribed. Conclusions are presented in Section 5.5.
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5.2 Large signal behavior of the solar array operating point

Fig.5.l illustrates a solar array power system, in which the static

load line represents a typical buck type regulator load line character-

istic. The Voltage VR in the figure is the minimum solar array output

Voltage above which the converter is able to regulate its output Voltage.

When the converter is regulating, the solar array sees a constant power.

Note that the converter exhibits a negative resistance characteristic in

this mode. Below VR, the converter behaves as a resistive load to the

solar array.

As shown in Fig.5.l, there may exist three equilibrium points in the

system. The large signal behavior of a solar array operating point de-

pends on the stability nature of each equilibrium point. The qualitative

large signal analysis can be carried out by considering a second order

system shown in Fig.5.2. The solar array output and the load character-

istics are replaced by the nonlinear functions and the LC low—pass filter

in the model represents actual physical elements in the system such as

an input filter of the switching regulator or the cable impedance between

the solar array and the load.

Let us first consider the stability nature of each equilibrium point.

Defining the states x = [iL
vC]T,

the system state equations are

&=i(v-v)=i(-f(i)·v) (51)
dt L S C L L C '

&=-}—(i·i)=L(—f(v)·i) (52)
dt C L R C C L °
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Figure 5.2 Equivalent circuit model of the system in Fig.5.1
including LC filter
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where vs and iR are defined in Fig.5.2.

From Eqs.(5.l) and (5.2), the equilibrium points in Fig.5.2 are

Vc = 'HIL) ‘
(5.3)

IL = f(VC) (5.4)

The behavior of the trajectories in the neighborhood of an equilibrium

point can be found by linearizing Eqs.(5.l) and (5.2) about an equilibrium

point. The nature of these equilibrium points is analyzed by introducing

small perturbations about the equilibrium points.

ir. = 11.+12 (5.5)

vc = VC + vc (5.6)

where IL and VC represent the steady state quantities, and il and vc are

the small signal perturbations.

Substituting Eqs.(5.5) and (5.6) into (5.1) and (5.2) results in

diL 1
—-—

=
——

[ -f(I + i ) - ( V + v ) ] (5.7)

dt L L 2 C c

dvc 1
——— = —— [ -f(V + v ) — ( I + i ) ] (5.8)
dt C C c L 2



90

Expanding Eqs.(5.7) and (5.8) in a Taylor series about the equilibrium

points, the equations of the first order approximation are

f(IL + ig) = f(IL) + rs iz (5.9)

where

~

I =

f(1L)

S
di_ L IL

and similarly,

1
f(VC + vc) = f(VC) +·;; vc (5.10)

where
”

1 df(vC)

I

T: TT
L dvC VC

where rs and rL are the incremental resistances (tangential slope) of the

solar array output curve and the load line, respectively, at the equi-

librium points.

Employing Eqs.(5.3) through (5.10), Eqs.(5.7) and (5.8) can be simplified

as

dil ( 1/L ) ( -rS iz - vc )

dv}; (1/C ) ( iz ' (1/rr.) VC) (5.11)
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Note that the value of rs is the same as the output resistance at a point

on the solar array I-V curve as derived in Eq.(3.60). The system

eigenvalues are expressed as

X X =
1 Is 1 rS 1 4 rS

é
(5.12)1’

2
—' ·(—+——)+[(—+—·)“·—(l+—)]

2 L rLC L rLC LC rL

From Eq.(5.12), the stability of each equilibrium point can be determined

for given parameter values. For the load line shown in Fig.5.1, the

following results are observed.

In Region #1: rL > 0

The equilibrium point,
Pel

is stable and is either "node" (real) or

"focus" (complex).

In Region #2: rL < 0, |rS| < |rL|

X1 and X2 are both real but of opposite sign, and Point Paz is a

"saddle" and is unstable.

In Region #3: rL < 0, |rS| < |rL|

The stability of Point
Pe3

depends on the parameter values.

Since the normal mode of operation should be in Region #3, the values of

L and C in Fig.5.2 must be chosen to provide the stable equilibrium points

in this region and to allow further analysis. However, it must be noted
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that the equilibrium points in Region #1 are always stable and those in

region #2 are always unstable (saddle points) regardless of the parameter

values. The value of rs for each equilibrium point can be obtained using

Eq.(3.49). The value of rL in the constant power region is

övc PC
rL = =-«

. 2 ,

= -Sir VC, IR ir ir IR (5.13)

Approximate values of rs and rL can be found simply by drawing tangential

slopes to the solar array I—V curve and load line, respectively, for each

equilibrium point.

To construct a state plane trajectory the isoclines for each equilib-

rium point are derived using Eq.(5.11).

diz 1——— = O —� il = -·—— vc
dvc rs (5.14)

dig
1

Ä -> „
_)

: VC

dvc rL (5.15)

The results in Eqs.(5.14) and (5.15) are the tangential slopes to the

source and load curve at each equilibrium point, thus the trajectories

cross the solar array curve horizontally and the load line vertically.

Near the equilibrium points which have real eigenvalues, the trajectories
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follow the slope of the eigenvectors of the system, K.

X X =
L rs 1 rs 1 4 1, (5.16)

1’2 —'—(·—··—)+[(—·—)“·—]
2 L rLC L rLC LC

Using the above results, the state plane trajectories can be sketched.

Fig.5.3 illustrates the trajectories for the case where the equilibrium

point
Paß

is a stable node. As shown in the figure, the trajectories are

separated by the separatrix that has the slope K2 at Pez. The two

starting points Pl and P2 in Fig 5.3 approach. two entirely different

steady states, even though the initial states differ by only a small

amount.

For the solar array model used in this study the following cases are

set up for the computer simulations. As mentioned above, if we assume

that point
PG3

in Region #3 is stable then there can be four possible

cases:

i) Pel - node, P63 — node

ii) Pel - node, PQ3 - focus

iii) Pel - focus, Pe3 - node

iv) Pel - focus, Peg - focus

However, investigation of the cases i) and ii) are sufficient to under-

stand the behaviors of the system. The results from simulating these
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cases are shown in Fig.5.4a and 5.4b given the following system operating

conditions.

The solar array short circuit current,
ISS,

is 45.4lA, the open circuit

voltage, VGC, is 32.0V, and the maximum power is 1050 watts. The constant

power load line is set to 850 watts, and the boundary of Region #1 and

#2, VR, is 15V. The values of rs and rL at the equilibrium points in each

region are listed in the following table.

Pel Pe2
Pe3

IL 45.38 45.02 30.34

VC 12.03 17.31 28.02

rs 64.92 37.3 0.20

rL 0.025 -0.56 -1.47

The cases i) (Pe3 node) and ii)
(P63

focus) are shown in Fig.5.4a and

5.4b. The eigenvalues and the slope of the eigenvectors for the partic-

ular values of L and C are listed in the figure. In Fig.5.4, the

separatrix is clearly illustrated. It is obtained by adjusting the ini-

tial condition that is located near the line which has been estimated from

information about X2 at Paz. The trajectories from the initial points

in the left-hand side of the separatrix (Pl through P6) converge to Pel,

and those in the right-hand side of the separatrix (P7 through
P12)

to

Peg.

Since in Region #1 the system bus voltage is not regulated, the de-

sirable mode of operation should be in Region #3. This implies that there
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needs to limiting mechanism that prevents the operating point from set-

tling into Region #1 or a triggering method to move it to Region #3 even

if the operating point starts in Region #1. The limiting mechanism, by

means of battery will be described in the following section. A triggering

method is illustrated as follows.

Suppose that the operating point is at rest in Region #1. One way to

move this operating point into Region #3 is to decrease the load power

below the solar array curve so that the only one desired equilibrium point

exists. For the load line shown in Fig. 5.5, the equilibrium points as-

sociated with Region #1 and #2 have moved outside these regions, so that

they no longer exist. However, the behavior of the state trajectories

can be still seen by defining virtual equilibrium points,
Pel'

and Paz',

for which the slopes of the eigenvectors are also sketched.

Fig.5.6 shows the simulation result using the previous system for the

case i). In Fig.5.6a, the trajectory starts from an arbitrary initial

point, Pl and moves to P2 for a load power of 800 watts (Curve #1). As

the load power continuously decreases, the operating point moves along

the solar array curve until it reaches Curve #2. Further decrease in the

load power beyond this point moves the operating point from P3 to P4, then

to P5 for Curve #3. Fig.5.6b shows the time history of vc corresponding

the trajectory from Pl to P5. The above stability analysis for the system

in Fig.5.2 can be extended to following cases.

“System in the battery discharging mode: Fig.5.7 illustrates the

system in the battery discharging mode of operation. As it will be
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described in detail in the following section, the battery discharging

current can be expressed as a function of the bus Voltage with an output

admittance, 1/rB. The state equations are then,

diL 1
———

=
—— ( -f(iL) · VC ) (5.17)

dt L

dvc 1 1
·——— = —— ( i -

—— v - f(v ) ) (5.18)
dt C L rB C C

Following the same procedures as in the previous derivations, the state

equations near the equilibrium point are

diz ( 1/L ) ( -rS ig - vc )

dvc ( 1/C ) [ ig · [(1/rL)+(1/rB)] VC ] (5-19)

Then the eigenvalues are obtained as

x Ä =
T Ts 1 Ts 1 a Ts

é (5.20)l’
2

—
'(*+*)+[(*+——)2"*‘(l+—)]

2 L rEC L rEC LC rE

where

TE = TL H TB

Comparing Eqs.(5.12) and (5.20), the additional term, 1/rB, stabilizes

the system, and this can be explained as the system is operating on the
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stiff voltage source line.

System in the shunt mode: Fig.5.7 also can be used to illustrate

the system in the shunt mode of operation. In this mode of operation,

Eqs.(5.l7) and (5.18) are valid if the 1/rB term is replaced by the shunt

transadmittance, Ysh. Fig.5.8 shows the state plane trajectories and the

time history of the states, with and without the shunt regulator. lt

clearly shows the effect of the additional term described above such that

the system without the shunt regulator is quite oscillatory while that

with the shunt regulator has faster responses and the system appears to

have real valued eigenvalues.

5.3 Analysis of the system operating near the solar array maximum

power point.

To utilize the maximum available power from the solar array, several

approaches were proposed in [11] and [12] to place the operating point

as close to the solar array maximum power point as possible. However,

near the solar array maximum power point, the dynamic resistance of the

solar array is very sensitive to changes in the operating condition and,

consequently, may result in system open loop instability.

To derive the solar array maximum power point, one can differentiate

the constant power load line, Pa = VI, and set it to zero.

3Pa BI
—=V—+I=0 (5.21)
BV BV



104

8
3

8
:

8
3

.|

8
23

8
1

8
m10.00 16.00 22.00 28.® 34.00 40.00

vc 6

ui
$ W

8_-g 82

8
2’“
IIIII>

'

" ' ‘
. IIIIII
a0.®

Lw 2.® 3.w 4.CD 5.üJ

nmz 6

Figure 5.8 Comparison in the system response with and without the shunt

�-�—�-� .' with Shu/‘Ii'
-——- : without shunt



105

V 3V
—=·——

(5.22)
I 8I

Eq.(5.22) states that at the maximum power point, the constant power load

line, RL, is equal to the dynamic output resistance of the solar array,

Ro, as shown in Fig.S.9.

To analyze the behavior of an equilibrium point, one can use the solar

array small signal model depicted by Eq.(3.5). One of the system

eigenvalues at the equilibrium point is

1
,

Ceq ( 1 +
Req

/ IL )
(5.23)

where C and R are defined in Eq.(3.6l).
eq eq

From Eq.(5.23) , for rL < 0, the system is:

stable if |R€q| < |RL|, and

unstable if |Req| > IRLI
l

Here,
Req

represents the characteristic of the solar array output re-

sistance rs in Eq.(5.9).

In the stable region but near the maximum power point, M, the magni-

tudes of rs and rL are close together, and the eigenvalue is close to the

origin, which implies very poor transient response and stability margin.
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In this respect it is desirable to operate the system in a region where

|rS| << |rL|. This can be seen from the step transient response simu-

lation using the system model developed in Section 5.2 (Fig.5.2). Fig.l0a

shows the response of the step change in the load power from 800 watts

to 790 watts, and Fig.5.l0b from 1040 watts to 1030 watts which is close

to the maximum power point (1050 watt). Therefore, to design a controller

to utilize the maximum available power from the solar array, one must take

into consideration of the stability of the operating point and the tran-

sient behavior of the system. One way to overcome this problem is to

perhaps use the shunt regulator to dissipate some solar array power. In

this mode of operation, the system can be stabilized as shown in Section

5.2.

5.4 Analysis of the solar array system in the battery discharge mode.

The basic functional requirement of the battery discharger is to reg-

ulate the bus voltage when the solar array is incapable of meeting the

load demand. In this mode both the solar array and the battery function,

as power sources. Fig.5.ll shows the system operating in the battery

discharge mode. When the bus voltage drops below a certain magnitude,

the control signal activates the battery discharge converter in order to

maintain regulation of the bus voltage. The solar array then supplies

the current corresponding to this regulated bus voltage.

In the DET system, when the solar array output power decreases due to

the weakening of the illumination level, the battery discharger operates

from no-load condition through the converter discontinuous conduction



108

2

Q lt]

8
j Ü

8
E3
0.00 0.20 0.40 0.60 0.60 1.00

TIME $ ms.

.

N
Q V

2
;¤ 9

8
9
0.w 0.20 0.40 0. 0.80 Lw

TIME $ ms

Figure 5.70 Step load transient responses

(a) 800 to 790 watt step
fb) 7040 to 7030 watt step



109

'sa 's „

BATTERY

soma ¤�scaAa6Ea T vbmery
AaaAv T

CONVERTER

vc

"„«
E

Figure 5.77 System in the battery discharge mode



110

mode (DCM) of operation and ultimately to the continuous conduction mode

(CCM). Since the dc and ac dynamic behaviors of switching regulators for

the two modes of operation are quite different, the analysis and the

feedback controller design must take into consideration the two modes of

operation.

A particular battery discharge switching converter power stage used

in the DET system is shown in Fig.5.l2. The circuit basically operates

as a buck type regulator operating in push-pull mode. Since the terminal

Voltage of the battery is between 17 and 25 volts, an auto-transformer

is used to boost the Voltage to 28V. In this study, a simplified circuit

is used as shown in Fig.5.13a. The two sources in Fig.5.l3a represent

the transformer action between the power switches ON and OFF intervals.

The state space averaging technique is employed to analyze the con-

verter in the discontinuous conduction mode. As illustrated in Fig.3.2,

there exist three intervals d1TS, d2TS and d3TS. While the first inter-

Val, dlTS, (inductor charging) is dictated by the "ON" time of the

switching function and is a known quantity, the second interval, d2TS,

(inductor discharging) is yet unknown and depends in general on both the

length of the first interval and circuit parameters. However, d2TS can

be determined using the additional constraint in the discontinuous con-

duction mode described in Eqs.(3.S) and (3.6)

While the state space expression in Eq.(3.8) was sufficient to describe

the converter operating in continuous conduction mode, in discontinuous

conduction mode, the state equations for the three switched intervals in
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Eq.(3.8) do not describe the switching converter completely. Namely, the

instantaneous inductor current is restricted in its evolution such that

i(O) = i[(dl+d2)TS] = 0

i(t) = 0 for interval
d3TS

(5.24)

The state equations of Eq.(3.8) together with Eq.(5.24) completely de-

termine the behavior of the switching converter. Using ideal elements

in the circuit in Fig.S.l3a and ignoring load dynamics, three switched

networks in the discontinuous conduction mode are shown in Fig.5.l3b.

For the choice of the state vector x = [i v]T, the state space equations

of the three switched networks becomes:

x = A x + B v for interval d T
1 1 g 1 s

x = Azx + Bzvg for interval d2TS (5.25)

x = A3x + B3vg for interval d3TS

where

0 _ l_ O 0
Al=A2= L A3=

1
- 1. 0 - Ä.C CR CR

l
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(1+x) fi
Bl = L B2 = L B3 = 0

0 0 (5.26)

D D

In addition to this,

imax
i = -—-- (5.27)

2

Eqs.(5.2S) and (5.27) contain all that is needed to determine both dc and

ac small signal models. Let us first consider the steady state (dc)

model.

Steady state (dc} model analysis

Averaging Eq.(5.26), the following linear algebraic static equations

result.

0 —
Dl+D2 I Dl(1+¤)+nD2

L
+

L
V = 0

8D1+D2
- .i V 0 (5.28)

C CR

A � X + B · V = 0
8

Then the steady state solution of Eq.(5.28) is
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EL E M =
Dl(1+k) + kD2

Vg D1 + D2

V l
I =——- (5.29)

R (D1 + D2)

Hence, the dc conditions depend not only on D1 and R, as in the continuous

conduction mode, but also on D2. By use of the additional constraint in

the average of inductor current for (D1+D2)TS,

(1+k)V - V
1 = li. D1Ts (6.60)

2L

the dc conditions are completely determined with the known quantities D1

and R. For example, substitution of Eq.(5.30) into Eq.(S.28) results in

1 KTn KTH
é=

__ ____ ____ zD2
2

(
D1

D1 ) + [(
D1

D1 ) + 4tn(1+k)] (5.31)

where

tn E 2L / (R TS) ; normalized time constant.

The boundary condition between the two conduction modes is

D2 < 1 — D1 ; discontinuous conduction mode

D2 > 1 - D1 ; continuous conduction mode (5.32)
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Using Eqs.(5.3l), the critical Value of In can be determined by solving

D2=l-D1.

1 · D1

Incrit
=
l + ¤ + ¤(l - D1)/D1

(5'33)

Suppose now that the output Voltage is regulated with some proper feedback

circuit, then the dc Voltage gain M can be treated as a constant for a

fixed input Voltage. The duty ratio, D1, in the discontinuous conduction

mode can be derived as a function of M, or as a function of tn.

tnM(M-x) Q
D1 = ————--- (5.34)

1 + ¤ - M

Using the results in Eqs.(5.29) through (5.34), the dc behavior of the

battery discharger is illustrated in Fig.5.l4. In Fig.5.14a, the boundary

condition, tncrit, between the two modes is plotted as a function of D1.

The dc Voltage gain, M, as function of D1 for different Values of Tn is

shown in Fig.5.l4b.

Since the battery discharger operates from no-load condition to full-

load, it is important to understand the start-up behavior of the con-

verter. Suppose now that the solar array output power gradually

decreases. lnitially the battery discharging current is zero (i.e., tn=0)

and the duty ratio D1=0. As the solar array output power decreases, the

operating point moves along the solar array curve which causes the bus
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Voltage to drop, thus activating the battery discharger electronics via

an error amplifier. In this start—up mode, it is very important to design

a proper error amplifier circuit for the following reasons.

For the high gain controller, since the sensitivity of the dc Voltage

gain with respect to the duty ratio is Very high as shown in Fig.5.l4b,

any delay in the logic circuitry or the false triggering due to the noise

will cause a high frequency oscillation in the bus Voltage. While in a

low feedback gain system the controller may not act fast enough to regu-

late the bus Voltage, since the plant time constant of the output

capacitor and load resistance is Very slow. This may cause a large am-

plitude, low frequency oscillation It is especially critical when the

output Voltage of the battery discharger converter is set such that its

operation is close to the solar array maximum power point. Since the low

gain controller allows the bus Voltage to drop before the controller

starts correcting the error, it is possible that the system may move into

the unstable region as discussed previously. Another important concern

when designing the error amplifiers is that, since the battery discharger

operates from the discontinuous conduction mode to continuous conduction

mode, the error amplifier should be able to stabilize the system in both

modes. Thus, it is necessary to analyze the dynamic behavior of the

converter in the discontinuous conduction mode.

l
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Small-signal analysis: Perturbation and linearization of the averaged

equations of (5.25) and (5.27) result in the following ac dynamic model.

E 0=
L

+
L vg

G
Dl+D2 _ —l G 0C CR .

l
(1+¤)V - V ¤Vg - V
-—-g- ^ —-— ^ (6 35)+ L dl + L d2

I I

C C

with additional constraints

E=0 ($.66)
dt

I A (1+x)I A I Ai=—d+———l——v -—l——-v (5.37)
1+ V - V 1+ V — VD ( �<)

g g ( �<> 8.

Substituting the additional constraints from Eqs.(5.36) and (5.37) into

Eq.(5.35), the unknown modulation quantities dz and i can be determined

in terms of other known dc and ac quantities. Thus, the complete dynamic

model can be expressed as
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dv 1 (2M-K)-(K-M): A
C —— = -

———————————— v
dt R (1+:-M)(K-M)

M MD2+Dl+:Dl
^+

— —————-—-—*l-—-
v

R (l+¤-M)(x-M)(Dl+D2) 8

_ _ (5.38)
V

(D1+D2)(¤ M) D1
A

+ —— —————-———————— dl
R Dl(Dl+D2)(x—M)

It is now easy to obtain from (5.38) the two transfer functions of in-

terest

i : G
-———-D

G og 1 + S/W (5.39)
8 P

i : G
—-—M

al od 1 + S/wp (5.40)

where

G = 5.41og M ( )

(D1-(D1+D2)(x—M))(l+¤·M)

G =V (5.42)

od
- - -

2D1(Dl+D2)((2M m) (K M) )

1 (K-M)! - (2M—n)

w =
—— ————— (5.43)

p RC (1+x-M)(¤-M)
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The transfer function models are rather complicated for this particular

converter circuit, however, they are expressed in terms of well defined

constants which can easily be calculated. The qualitative interpreta-

tions of the results are as follows.

Eqs.(5.39) and (5.40) show that the transfer functions have a single

pole and no zero. Due to the additional constraint in Eq.(5.36), any

converter that can be described with two state variables of which one is

an inductor current, has a single pole system transfer functions in the

discontinuous conduction mode. Thus, the dynamic behavior of the con-

verter operating in the discontinuous conduction mode is completely dif-

ferent from that of the continuous conduction mode, in which the system

has a complex pole pair. Therefore, the feedback controller should com-

pensate the plant dynamics in both modes of operation. This is clearly

illustrated in the root locus diagram of the open loop converter as a

function of the load resistance in Fig.5.1S. Without a compensator, the

system eigenvalue is close to the origin, thus the system response should

be very slow in the discontinuous conduction mode as intuitively predicted

in the dc analysis. Decreasing the load resistance beyond Rcrit, the

converter will operate in the continuous conduction mode, and the open

loop eigenvalues become complex. In this range, the response is still

slow and oscillatory. A further decrease of the load resistance will move

the locus onto the circle with the radius of wo = /EÜ, and finally the

locus approaches to the real axis again.
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In order to verify the above analysis and to observe the effect of the

integrator in the DCM, the DET system is simulated employing the

compensators shown in Fig.5.17. Fig.5.18 shows the step load transient

response (from 1300W to 1400W) of the system when the battery discharger

operates in the continuous conduction mode. As shown in the figure, the

system behaves equally well for both compensators. In Fig.5.19, the load

power (iload) is gradually increasing and various modes are illustrated.

The system initially operates in the shunt mode until 0.6 ms, then it gets

into the dead band mode where the solar array solely supplies the load

power. The operating point moves along the solar array curve as the load

‘
power increases. The battery discharger employing the compensator with

the proportional gain (Fig.S.l6c) starts regulating the bus voltage at

t=lms as shown in Fig.5.19a. While that using the integrator starts to

operate at t=2ms and slowly increases to the regulation voltage as shown

in Fig.5.19b. As shown in this figure, the slow response in DCM of the

integrator type controller may cause the bus voltage to drop out of the

regulation range.

The results in Figs.5.l6 and 5.19 show that a compensator designed for

CCM mode of operation may not be suitable for DCM mode of operation, and

consequently, may result in a bus voltage oscillation or large voltage

droop due to a load transient. Design of a compensator for the boost or

buck-boost type converter must be done more carefully. This is because

such converters also have a single pole in the discontinuous conduction

mode, but, in the continuous conduction mode, there are a complex pole

pair and a right·half plane zero.
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5.5 Analysis of the solar array system modes of operation

The modes of operation of the DET system is described in this section.

In Fig.4.l the Central Control Unit (CCU) continuously monitors the bus

voltage and commands the system to operate in the battery discharging mode

when vbus is less than Vrb or in the shunt active mode when vbus is greater

than Vrs. When vbus is between Vrb and Vrs, there exists a "dead band"
l

at which the load power is equal to solar array output power. When the

system operates in the shunt active mode, any variation of the bus voltage

generates a proportional shunt current, ish. The shunt current together

with the load current sinks the solar array current and regulates the bus

voltage. When the system operates in the battery discharge mode, the bus

voltage is regulated by the battery discharger. The solar array current

is set by the bus voltage on its output I-V curve and the battery dis-

charging current is the difference between the solar array current and

the load current.

The system operating condition is subject to change due to constantly

varying load power consumption and the solar array power generations.

The entire DET system shown in Fig.4.1 is simulated to observe how the

system operating point moves from one mode to another. Fig.S.20 illus-

trates the case in which the solar array I-V characteristic varies ac-

cording to the illumination level. In this example, the illumination

level is set to be linearly time varying from Curve #1 (shunt active mode)

to Curve #4 (battery discharging mode) as illustrated in Fig.5.20.
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Figure 5.20 DET system mode of operation for the solar array
illumination level changes
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From Fig.5.20 and the simulation result in Fig.S.21, the system mode

of operation is described as follows: Starting from Curve #1 and the

corresponding operating point A, the operating point travels along the

shunt regulation line, VIS until the solar array power decreases to Curve

#2. In this mode, the shunt regulator is active and it absorbs the ex-

cessive current generated by the solar array through the shunt elements

(ish). Between Curve #2 and #3 the dead band mode exists where both the

shunt regulator and battery discharger are deactivated. Thus, the oper-

ating point travels along the load line from point B to C. Further de-

crease in the illumination level activates the battery discharger. The

operating point then follows the battery discharger regulation line, Vrb.

In this mode, the load power is supplied by the solar array and the bat-

tery.

Fig.5.22 illustrates the case where the load power is varying while

the solar array I-V curve is fixed. With the solar array curve fixed and

the load line below Curve #2, the operating point is set at Point A. As

the load power increases beyond Curve #2, the shunt regulator is deacti-

vated, and the operating point travels on the solar array curve until

Point B. Further increase in the load power beyond Curve #3 activates

the battery discharger, and the operating point moves along the battery

discharger regulation line to Point C.
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5.6 Conclusions

ln this chapter, various solar array system modes of operation in the

large signal sense are analyzed using the state plane method. The anal-

ysis shows that any equilibrium point in Region #2 of Fig.5.1 is unstable

with real eigenvalues. The state plane trajectories are separated by the

separatrix that passes through Region #2 and converges to either of the

two stable equilibrium points in Region #1 or #3. Thus the behavior of

the system is quite different on either sides of the separatrix. Since

only the equilibrium point in Region #3 is the desirable operating point,

a control method to move the operating point from Region #1 to Region #3

is discussed. The analysis also provides a guide line for the system

initial start-up condition that leads to the desired mode of operation.

The behavior of the operating point near the solar array maximum power

point is analyzed. As far as stability and transient response are con-

cerned, the equilibrium points near the maximum power point, in general,

are less commendable than in the region where the magnitude of the solar

array output resistance is small, or in the range of a stiffer Voltage

source.

Since the battery discharger in the DET system operates from the no-

load condition through the discontinuous conduction mode (DCM) to the

continuous conduction mode (CCM), the feedback compensator must be de-

signed carefully to ensure stability in both modes of operation. Various

compensators are compared. The results show that a proportional gain

control is most appropriate for the converter operating in the discon-
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tinuous conduction mode. It not only speeds up the system response but

also prevents system oscillation near the no—load condition. In the CCM

mode of operation, a phase lead type compensator is required to compensate

the excessive phase lag due to the complex pole.

The solar array system modes of operation including the shunt regula-

tor, battery and switching regulator load are described. The entire DET

system is simulated for a continuously varying illumination level and the

behavior of the system in various modes of operation are observed.



Chapter 6

SUBSYSTEM INTERACTION ANALYSIS

6.1 Introduction

One of the major difficulties in large scale system analysis involves

the subsystem interaction problems. As a system becomes more complex,

the interaction problems create a large degree of uncertainties to the

system response even though each component may be well understood and

documented. Thus, the total system analysis must include the interaction

analysis that allows one to predict the system level responses and to

trouble-shoot the system. The interaction analysis also provides design

information of a component or subsystem at the initial design phase and

for the future modification of the system.

As discussed in Chapter 2, the entire system can be considered as a

doubly terminated two�port network for a component or subsystem. Thus,

in general, the interaction problem can be defined as the interactions

among an undetermined component and its terminating subsystems. For the

component of interest, these terminating subsystems can be treated as the

source and load impedances. The system performance parameters such as

stability, audiosusceptibility, etc., are then dependent on the charac-

teristics of these terminating subsystems.

Based on the analysis in Chapter 2, the interaction problems in

spacecraft power systems are illustrated using the switching regulator

examples.

136
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Regarding the interaction problem the switching regulator is one of

the most critical components in the spacecraft power systems. This is

because the switching regulator°s feedback loop gain characteristic de-

pends largely on the characteristics of connected source and load

impedances. Also, its power stage energy storage elements, L and C,

generate resonance in the system that can cause peaking of the input or

output impedance and give an undesired interaction. It is especially

critical in the source interaction case because of the negative input

impedance characteristic of switching regulator at low frequencies.

As stated in Chapter 3, it is better to consider the load and source

interactions separately to obtain analytical insight into the system.

In Section 6.2, the load interaction problem is discussed using an ideal

source. In Section 6.3, a source interaction criteria is investigated

with a load terminated stable regulator. Conclusions are presented in

Section 6.4.

6.2 Load interaction analysis

Characteristics of the payloads for switching regulators, in many

practical systems, are not simple resistive loads, but are complex and

frequency dependent. Including the dynamics (additional states) of the

loads into the state-space expressions of the switching regulator makes

analytical derivations very cumbersome. Also the results can not provide

physical insight into the system and the analytical interpretation of the

results may be lost.
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In order to examine the interactions between a switching regulator and

its load, the performance parameters of a load terminated regulator should

be derived as a function of the load terminal characteristic. Fig.6.1

illustrates the linear equivalent canonical circuit model for an unter-

minated switching regulator and load, ZL. From the figure, the loop gain

k
of the load terminated regulator, TG, can be derived as a function of

the g-parameters, the loop gain of the unterminated regulator, TG, and

load impedance, ZL. However, the expression for Tg is still too complex

to obtain any analytical insight, i.e., the stability of the regulator.

Instead, as described in Section 3.2.5, Eqs.(6.1) and (6.2) provide an

analytical closed form expression, from which the performance parameters

of the regulator can be expressed as well defined quantities, load

impedance, ZL, and output impedance of the unterminated regulator, gzz.

V2 $21 $21

vl 1 + gzz/ZL 1 + TL (6.1)

Y
eq

Y: ;-——-

i (6.2)1 + $22 / ZL

where
Yeq = - (

gll
+ AG / ZL )

For the small signal analysis, the g—parameter for an unterminated regu-

lator can easily be obtained from the known steady state output power.
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Thus, using the gqz and ZL, stability of the regulator can be determined

by applying the Nyquist criterion to the quantity TL = gz?/ZL. Under the

assumption of both gzz and ZL being stable, which implies TL does not have

RHP poles, the Bode plot technique can be used to check the stability of

the regulator. Thus, from the above assumption, the sufficient condition

for the stability of the regulator is simply
|g22|

< |ZL|.

To illustrate the load interaction problem, supposed that a payload

is characterized as a simple LCR load as shown in Fig.6.2. The load

impedance, ZL is then

1 + s/(QLwL) + sz/wL2

Z = (R + R ) -———————————-—-——————-
L L S 1 + 6 (6.3)

P

where

1 (RL+Rs) 1
w = '“"“' =

--—— for R << R R << R
L L p

’
L s ,/LLCL (RL+Rp) /LLCL (6.4)

1 RL+Rp 1 1
QL = L-

L + C R +R R + R R
=
-__~

L R + C(R +R 6 5wL
L

L[(
L
p)

s L
p] wL L/

L s
p) ( ' )

1
w =

————-——————— (6.6)
p C(RL+Rp) s

To illustrate this case, a single-loop (output Voltage) feedback con-

trolled buck regulator is designed. The unterminated closed·loop output
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impedance, gzz can be directly obtained from the canonical circuit model

in Fig.6.l.

Zeo

$22 = _“'“"'
1 +TG (6.7)

where

Zeo
= (R€+sLe)H(RC+ gc) ; open loop output impedance (6.8)

TG = e(s) He(s) FM FV(s) ; loop gain of the unterminated regulator (6.9)

1 + s/wz

He(s) =
—————-—-————-———-——- ; effective filter transfer function
l +
S/(QOwo>(6.10)

1 [Le 1 1
w = Q =

·—— —————
w =

———
(6.11)o /LeC , o C Re+RC

’
z CRC

for the buck regulator,

Le = L, Re = RZ, e(s) = V2 / D (6.12)

Parameter values used for ZL are LL = 5uH, RS = 5mQ and Rp = 10mQ.

In Fig.6.3, the locus of the critical eigenvalue as function of CL of ZL

is plotted. As the value of CL increases, the locus approaches the im-

aginary axis and finally cause the regulator to become unstable. The

interaction criteria can be observed from the comparison of the magnitude
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of gzz and ZL as shown in Fig.6.4. For the larger value of CL, wp in

Eq.(6.6) becomes smaller and QL in Eq.(6.5) becomes larger, thus more

interaction occurs between
g22

and ZL. Fig.6.5 shows the loop gain Tg

defined at Point X for the corresponding values of CL in Fig.6.4. lt also

includes Tg for a resistive load, RL (i.e. LL=0, CL=0). As the value

of CL increases the bandwidth of the loop gain decreases and the phase

margin also decreases, and the system becomes unstable for CL = 500 pF.

As commonly exercised, a filter capacitor is added between the power

supply and equipment (load). This can cause system instability as il-

lustrated in the previous example. Equipment that require a more com-

plicated input filter create a larger degree of uncertainty of the system

stability. Also, the load interaction problem is more critical when a

regulator supplies the power for equipment that requires a low Voltage

and a high current. Two-port modeling allows one to trouble-shoot the

system and to obtain design guide lines of the input filter for the

equipment.
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6.3 Source interaction analysis

The source interaction problem of switching regulators was first de-

scribed between an input filter and a regulator [13]. The conclusion can

easily be extended to a general cascade configuration where a preceding

block is viewed as a source impedance to the following block which is a

switching regulator. This interaction analysis can be further extended

to a parallel configuration as in the DET system. Fig.6.6 shows the

system in which switching regulators are sharing a common bus. The source

block represents the solar array, the shunt regulator or the battery

discharger, cable impedances and filters.

As described in the previous section, it is very difficult to analyt-

ically characterize the performance parameters of the regulator including

dynamics of the source. However, using Eq.(6.13), the source interaction

can easily be analyzed similar to the load interaction analysis.

vl 1/Yi 1 l

HS I T I
TIT

I
T T 6vs 1/ i S 1 S. i S ( .13)

In this case, the parameters to be used for the analysis are the input

impedance of the load terminated regulator, Zi, and the source impedance

seen by the regulator, ZS.

In the parallel configuration shown in Fig.6.6, one can. define two

types of interactions: local and global. The local interaction is the

interaction between the source impedance seen by
jth

regulator,
Zsj

and
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its input impedance, Zij. The global interaction is the interaction be-

tween the source and load impedances seen by the main bus, ZSB and ZLB.

For the source interaction, let us assume that each interacting quantity

(Zsj,
Zij,

ZSB,
ZLB)

is individually stable, otherwise the subsystem(s)

is(are) already unstable before we consider this interaction problem.

From Eq.(6.13), the system is stable if the polar plot of TS does not

encircle (·l,0) point under the above assumptions. Thus, the condition

|TS| < 1 ensures the above stability criterion. As the number of regu-

lators increases the stability condition moves in the worse direction and

may cause instability of the system because of the negative input

impedance characteristic of the regulators.

Let us consider first the undesired interaction that occurs to a local

jth
switching regulator. The source impedance seen by the

jth
regulator,

Zsj
is the parallel combination of the output impedance of the source

block, ZSB, and the input impedance of all other switching regulators,

ZLj,
as described in Eqs.(6.l4) and (6.15).

Ysj = YS + YLj, Zsj = 1 / Ysj (6.14)

n
YLj = Z Yik (6.15)

k=1
k¢j

To see how other regulators might affect the stability of the
jth

regu-

lator, let us examine the summing effect of these impedances at low fre-

quencies. Since, at low frequencies, switching regulators have the
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negative input impedance characteristic, so as
ZLj,

and the magnitude of

ZLj
is supposed to be larger than that of ZSB for a stable design, the

magnitude of the equivalent source impedance seen by the
jth

regulator,

|Zsj| decreases as the number of regulators increases. This shows that

a stable system can become unstable if more switching regulators are added

to the main bus. _

An undesired interaction in the global sense can occur when a large

number of converters share the same DC bus which is not a stiff Voltage

source. In this case the magnitude of the load impedance seen by the bus

|ZLB|, which again is negative at low frequency, decreases as the number

of regulators increases as shown in Eq.(6.16).

n

YLB =
E Yik , ZLB = l / YLB (6.16)
k-1

When the |ZLB| is of the same order of magnitude as the IZSBI an undesired

interaction can occur. In this case the entire bus may oscillate. In

this case, the local interaction may not be directly observable from the

impedance comparison between Zsj and
Zij,

because Zsj may be already un-

stable due to the global interaction thus it may have RHP poles.

The following cases are generated to illustrate the undesired inter-

action problems described above.

First, a stable system in Fig.6.6 is constructed with only one

switching regulator (S.R.#l - Buck regulator with input filter). Fig.6.7

shows the step load responses where the load power of S.R.#1 steps up from
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140 to 200 watts at lms. The system eigenvalues calculated under the

steady-state condition are listed in Table 6.1. The results of both small

signal analysis and time domain simulation show that the system is locally

and globally stable.

Next, a stable switching regulator (S.R.#2 - same structure as that

of S.R.#1 except with different parameter values) is designed. The loop

gain and step load transient responses of S.R.#2 with an ideal source are

shown in Fig.6.8.

Now, the S.R.#2 is connected to the bus, in parallel with S.R.#l, and

the transient analysis of the first case (Fig.6.7a) is repeated. Fig.6.9a

shows that the new system is very oscillatory. The system eigenvalues

as shown in Table 6.2 indicate a lower frequency oscillation of the bus

voltage. Similarly, by comparing the input impedance
Ziz

of S.R.#2 and

the source impedance ZS2 seen by S.R.#2 as shown in Fig.6.9b, the

oscillatory nature of the system can be predicted. Since the two

impedance curves are overlapping in Fig.6.9b, the stability predicted

with the individual regulator in Fig.6.8b is no longer valid because of

a parallel interaction.

To illustrate the undesired interactions in the global sense, let us

consider four well-behaved switching regulators sharing a common bus.

In this case identical switching regulators are used. The system is

stable with a single regulator as Table 6.3a indicates. However, the

system becomes unstable with four regulators in parallel as shown in Table

6.3b. Fig.6.l0 compares the source impedance, ZSB, and the total load

impedance,
ZLB,

seen by the bus and reveals the undesired interactions.
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(a) Step load transient response —
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(b) Loop gain characteristic
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15 EIGENVALUES

REAL IMAGINARY

-692.671 +- 489.278
-708.619 0.000000E+00
-784.905 0.000000E+00
-4046.70 +- 4464.83
-10033.1 0.000000E+00
-13675.9 +- 112464.
-14876.1 0.000000E+00
-500394. +-0.316578E+08
-522133. +- 660439
�.102681E+07 0.000000E+00

Table 6.7 The eigenvalues of the system for the responses in Fig.6.7

21 EIGENVALUES

REAL IMAGINARY

-87.937 +- 2514.21
-592.471 0.000000E+00
-808.237 0.000000E+00
-971.228 0.000000E+0O
-4047.86 +- 4465.36
-6164.15 0.000000E+00
-10033.1 0.000000E+00
-12460.7 +- 110556.
-14876.1 0.000000E+00
-22909.5 0.000000E+00
-157168. 0.000000E+00
-250118. +-0.223800E+08
-500391. +-0.316579E+08
-522131. +- 660434.
—.102681E+07 0.000000E+00

Table 6.2 The eigenvalues of the system for the responses in Fig.6.9
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15 EIGENVALUES 33 EIGENVALUES

REAL IMAGINARY REAL IMAGINARY

-670.571 +- 127.77 168.22üU
+—

909.¤17
-705.9UO 0.000000E+00 -3¤2.1ü9 0.000000E+00
-982.262 0.000000E+00 -855.722 0.000000E+00
-3Uh7.72 +- 3670.9N -855.722 0.000000E+00
-7H11.92 +- 12070.5 -855.722 0.000000E+00
-11¤902. 0.000000E+00 -1218.23 0.000000E+00
-233717. 0.000000E+00 -3U63.95 +- 3681.63
-2713¤8. +- 18ü089. -¤083.17 +- 7396.58
-907316. 0.000000E+00 -ü083.17 +- 7396.58
-.2¤9996E+08 +-0.9997U5E+09 -U083.17 +- 7396.58

-1793u.Ü +- 16539.5
-11N106. 0.000000E+00
-11U106. 0.000000E+00

. -11¤106. 0.000000E+00
-11832U. 0.000000E+00
-233717. 0.000000E+00
-259219. +- 179965.
-907316. 0.000000E+00
-.2U9996E+08 +-0.999695E+09
-.2¤9996E+08 +-o.999696s+69
-.2¤9996E+08 +-0.999695E+09
-.2¤9996E+08 +-0.999895E+U9

Table 6.3 Eigenvo/ues of the system

(0) with single switching regu/otor
(b) with four switching regulators
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However, by comparing the source impedance, Zsl, and the input impedance,

Zil, seen by the individual regulators, the presence of the undesired

interaction to an individual regulator is not obvious. From Eq.(6.l3),

the sufficient condition for stability is [Zi] > IZSI under the assumption

that both Zi and ZS are stable. ln this case, the source impedance, ZS1,

seen by S.R.#1 is unstable (has RHP poles) because the undesired inter-

action already occured between ZSB and ZLI. Thus, even though |Zil| >

|ZSj| for all frequencies as shown in Fig.6.10, the system is unstable.

This reveals that the analysis must be done at both the local regulator

level and the system level.

6.4 Conclusions

The subsystem interaction criteria are investigated at component,

subsystem, and system levels by comparing the impedances at an interacting

point.

Both the load and the source interaction problems are illustrated using

the switching regulator examples. The performance of the regulator de-

pends upon the dynamic characteristics of the payload. As demonstrated

in this chapter, a single filter capacitor between the regulator and

equipment (load) can cause system instability due to the load interaction.

The load interactions can be investigated using the output impedance of

the unterminated twO·pOrt subsystem (component),
g22,

and its load

impedance, ZL.
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For a spacecraft power system that uses many switching regulators in

parallel on the bus, such as the DET system, the interaction problem

should be examined both at the local regulator level and the system level.

Also, the analysis shows that as the number of regulators increases, the l

margin of stability of the system tends to diminish due to the parallel

interactions.



Chapter 7 ·

EMPIRICAL DATA MODELING AND ANALYSIS

7.1 Introduction

As discussed in Chapter 2, defining mathematical models through ex-

perimental testing of an actual system (or scaled model) is, generally,

least intensive in modeling effort and the empirical data model is accu-

rate in predicting the overall system behavior. In general, experimental

data serves two major functions: model Verification and model develop-

ment. If a theoretical model has been developed, at some point its va-

lidity must be checked with actual experimental test data to have a high

level of confidence in its predictive capabilities. Also, some systems

defy refined theoretical treatment due to the lack of an assessment of

certain parameter values, thus, experimentation is the only effective

means of obtaining models with acceptable accuracy. In this chapter,

model development based on empirical data is discussed and extended for

the reduced order model realizations of a complex system.

In Section 7.2, model development from the frequency response data and

its applications are described. Algorithms for identification of model

parameters identification are reviewed in Section 7.3. In Section 7.4,

model development and analysis using the DET system are presented. Con-

clusions are presented in Section 7.5.

“
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7.2 Model development from frequency response data

Typical methods for linear system identification using empirical data

are based on frequency, step, and impulse responses. Most of these

methods apply to a linear process, but they may also be applicable to the

linearized form of nonlinear systems if the input disturbance levels are

kept low. Among these, frequency-response identification provides the

most accurate model realization for the system stability. Since gener-

ation of the sinusoidal input signal and measurement of its responses,

i.e. audio susceptibility, feedback loop gain, impedances, etc., are not

foreign to power system design engineers, the frequency response tech-

nique is more attractive than others.

Using an automatic network analyzer that includes a multi-channel

bandpass tracking filter for gain and phase measurements and a bui1t—in

sinusoidal function generator synchronized with the tracking filter, ac-

curate frequency response data of the system can easily be obtained.

Where a model of an existing subsystem is to be constructed, empirical

data can be obtained that characterize the input-output properties. Based

on the set of empirical data a mathematical relation can be established

that reproduces the same input-output behavior as that of the actual

subsystem without regard to the physical structure of the subsystem.

The empirical data modeling technique can be used for the following

applications.
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Model development from experimental data:

For certain components or subsystems, such as a complex payload, cable,

etc., it is often quite difficult to develop an analytical model. Under

such circumstance the component or subsystem is viewed as a black box.

The port characteristics of the black box can be experimentally measured

by exciting an appropriate terminal with a sinusoidal source. From the

experimental data, in the form of the frequency response, an analytical

transfer function model can be developed using the complex curve fitting

technique. The required transfer function model to represent properly

the input-output characteristics of a black box will be described in the

following section.

Reduced order model realization:

The model development from frequency data using the complex curve

fitting technique can also be applied to reduce the order of complexity

of the system. The technique is particularly powerful for large scale

system modeling and analysis. For a large scale power system, computer

· simulation of an entire system can be very time consuming and memory ca-

pacity often exceeded. It is desirable that the entire system be broken

into smaller subsystems so that an available computer system and software

can be adapted. Each subsystem can then be simulated by the computer,

or experimentally measured to obtained the frequency response data. From

either the analytical or the empirical data a reduced order model can be

realized using the complex curve fitting technique. As long as a reduced

order transfer function model fits the original data reasonably well the
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dynamic performances of the reduced order subsystem should match well with

that of the original system. This technique allows the overall system

to be realized with a reduced order model. More importantly, it aids in

the trouble-shooting and design of a component or a subsystem in a large

scale system. Using this technique, attention can be focused on the

"troubled" equipment or subsystem in greater detail while treating the

rest of the system with a reduced order model to take into account any

possible interactions.

7.3 Review of the existing complex curve fitting algorithms

As described in the previous section, the purpose of the frequency

response approach is to develop a transfer function model from the two

sets of data, the amplitude ratio and the phase difference of the input

and output. While methods for fitting curves to empirical data are a well

known part of classical mathematics, the need to fit two curves (amplitude

and phase) simultaneously over a wide range of frequencies requires a

somewhat different treatment from the classical approaches. Several

methods documented in the literatures are reviewed in this section.

One of the earliest methods by Levy [14] that dealt with the funda-

mentals of complex curve fitting is briefly reviewed here. This method

requires that the measured frequency response be given in terms of its

real and imaginary parts:

Qo
. . .(aw) = F(J<~¤) E R(w) + 1 1(w) (7-1)
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Let the fitted analytical model be

I —
AO + A1(jw) + A2(jw)’ + ...

B0 + Bl(jw) + B2(jw)2 + ...

. a + jwß N(w)
E --————- E -————- (7.2)

o + jwt D(w)

The error of fitting, s(w) is then

N(w)
=(w) = F(jw) · G(jw) = F(jw) -

——— (7-3)
D(w)

To minimize the square of the error, s(w) (conventional least-square

method), a set of simultaneous nonlinear equations results, whose sol-

ution is difficult. Instead, a new error function is defined by multi-

plying D(w) into Eq.(7.3)

s' = D(w) s(w) = D(w)F(w) - N(w) E a(w) + j b(w) (7.4)

Then the cost function for m+l points of frequency data is defined as

m
J = E [

a’(wk)
+
b“(wk)

] (7.5)

k=0
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To minimize the cost function J with respect to the coefficient vector,

_ T
p — [AO ... Am B0 ... Bm] , set

GJ
——-

= 0 (7.6)
ap

Eq.(7.6) leads to the linear algebraic equation

Xp=Q ' (7-7)

where
X = nxn coefficient matrix, n = m+1

Q = nxl constant vector

Finally, the solution for the model coefficient is

_ -1
p — X Q (7.8)

This algorithm is simple allowing a standard library function for the

matrix inversion routine to be directly adapted. However, this technique

has some serious deficiencies. If the transfer function has to be de-

termined for frequencies extending several decades, the matrix X has a

"rank deficiency". In other words, the elements of the matrix X are such

that lower frequency values have very little influence. Thus, large er-

rors can be introduced at low frequencies. If the poles in G(jw) vary

widely throughout the experimental points a good fitted model cannot be

obtained.
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To overcome the deficiencies, an iterative procedure is introduced in

[15] that eliminates the weighting problem in the above method. This

method improves the above algorithm by modifying Eq.(7.4) such that

‘(“k) D(“k)L F(j“k) D(wk)L N(wk)L (7.9)
g"(w):l..:;..—l.:k

D(wk)L-1 D(wk)L-1 D(wk)L-1

where the subscript L corresponds to the iteration number. As D(w) is

not known initially, it is assumed to be 1. The coefficients are obtained

by minimizing the sum of [sk]! at all the data points. This algorithm

fits the data much better over a wider frequency range than the algorithm

in [14] and the iterations tend to converge rapidly.

A more recent effort in [16] uses a conjugate gradient search technique

[17] to minimize the nonlinear cost function

ä
_

2

J = f [ F(jw) - A(w)
eJ8(w)

[ dw
0

lll . 1

=
. _ J6(w ) _

E
[ F(Jwk) A(wk) e k [

(wk+1
wk_l) (7.10)

k—0

In this algorithm, the model is allowed to be characterized by a gain,

real poles and zeros, and complex poles and zeros with the damping ratios.

It also allows for dead time in the model, which is not possible in the

previous methods [14] and [15]. A FORTRAN program listed in [16] is
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implemented in the host software for this study.

Curve fitting results, in general, are quite satisfactory as will be

seen in the following section. However, the results (or the number of

iterations required for the error to be in the specified bound) depend

on the initial guess of the coefficients which is especially critical when

one uses a wrong sign for the initial guess.

7.4 Empirical data modeling and analysis of power systems

As mentioned in Section 7.2, the required model for a subsystem depends

on the modeling objectives. Whether a subsystem is considered as a black

box or is realized as a reduced order model, the subsystem to be modeled

can be defined in the system as either an one-port or two-port model.

0ne—port modeling:

To analyze the behavior of a component or subsystem whose load or

source characteristic is unknown or is to be realized as a reduced order

model, the load or source subsystem can be defined as an one-port network.

In this case, only one transfer function model (impedance) is needed to

represent the subsystem. From the frequency response data of the

impedance obtained from either experimental measurement or computer sim-

ulation of the circuit model, an analytical model can be developed using

the complex curve fitting technique. The system performance parameters

such as stability, audiosusceptibility and impedances can be analyzed

using the curve fitted model. Time histories including step transient
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responses of the system can be simulated. The step transient analysis,

however, is valid for a small disturbance level. The curve fitted ana-

lytical model also allows one to analyze the source and load interaction

problems.

To illustrate one—port modeling, the following cases are considered

using the DET system shown in Fig.4.l.

First, assume that the switching regulator subsystem, S.R.#l, is a

black box that can be viewed as one of the loads on the main bus line.

The black box can then be characterized by its input impedance,
Zil,

which

can easily be measured experimentally. An analytical transfer function

model is then developed that represents S.R.#l as shown in Fig.7.l. Curve

fitted results of Zil data using the 3rd order model is shown in Fig.7.2.

Using this model, the behavior of the system (i.e., the bus Voltage) due

to the disturbances at the source or at the other load (S.R.#2) can be

examined. To show the results of one of the aforementioned analyses,

Fig.7.5 and 7.6 compare the transfer functions from the solar array output

Voltage, VS, to the bus voltage, VB, and to the output Voltage of S.R.#2,

voz, between the system with the actual circuit model and that with the

curve fitted model. As the curve fitted result in Fig.7.2 predicted, the

system responses are almost identical between the two system.

Secondly, model the subsystem of the total load on the bus line from

empirical data as shown in Fig.7.3. The frequency response data of the

load impedance seen by the bus,
ZLB,

is obtained either by experimental

measurement or by computer simulation to realize a reduced order model.

The actual circuit model which is a
16th

order model and curve fitted
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results of
ZLB

data using the
4th

order model is shown in Fig.7.4. Using

this model, the behavior of the bus Voltage can be examined as in the

previous case. Stability of the solar array equilibrium point can be

analyzed in detail. Also, the performance parameters such as the loop

gain characteristic of the shunt regulator can be analytically deter-

mined. Fig.7.5 also includes the frequency response from the solar array

output Voltage, VS, to the bus Voltage, VB, for this case. Again the.

result matches extremely well with the original system.

�-

Two-port modeling:

As mentioned in Chapter 3, modeling of the distribution cable is Very

difficult. To characterize such a component it is necessary to view it

as an unterminated two-port network and model its terminal character-

istics. Thus, in this case, four sets of frequency response data are

needed to identify the four elements in the G-matrix. As described in

Fig.2.2 of Chapter 2, port-1 is excited by a Voltage source for
gll

and

gzl,
and port-2 by a current source for

glz
and gzz. Since the hybrid

g-parameters can be converted to the open circuit z-parameters or short

circuit y-parameters, as shown in Eq.(7.l1), appropriate experimental

measurements can easily be obtained.

'1 212 'AYzlly22G
= = (7.11)

E li hi L
zll zll y22 y22
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The G-matrix model fully characterizes the two-port black box. The model

is connected to the system according to the interconnection law which

results in a doubly terminated two-port system.

As shown in Fig.7.7, the two—port cable/filter model in the DET system

is modeled using empirical data. The frequency responses in Figs.7.S and

7.6 using these fitted models again match very well with the exact model.

7.5 Conclusions

In this chapter, empirical data modeling and analysis of power systems

is discussed. The analytical transfer function model of a one-port and

two-port black box can be developed based on the measured frequency re-

sponse of port characteristics.

A reduced order modeling technique is also implemented using the com-

plex curve fitting method. This technique allows the elimination of

non-dominating poles and zeros as well as poles and zeros in close prox-

imity, which can be ignored for all practical purposes. The reduced order

model greatly facilitates analysis and trouble—shooting of complex

spacecraft power system and with much improved computational efficiency.



Chapter 8

CONCLUSONS

The principal objective of this dissertation is the development of a

comprehensive large scale power system modeling that facilitates the de-

sign and analysis of present and future spacecraft power systems. Meth-

odologies of model building and analysis of large scale power system are

presented.

The principal goal is accomplished by utilizing the modular concept

such that the total system is configured by interconnecting individual

component modules. The hybrid g-parameter two-port subsystem coupling

method is employed as the standard interconnection law. This provides
l

bi-directional information flow among components so that the maximum

flexibility can be achieved in system model building. The flexibility

in model building gives more than convenience but the success of the

system level modeling depends largely on it due to the difficulties in-

volved in large scale system modeling as stated in Chapter 1. The modular

approach also allows the system performance parameters to be expressed

as both analytically and empirically measurable quantities. Thus, the

model can be verified at various component levels. Also, since the system

performance parameters such as stability, audiosusceptibility, impedance

characteristics, etc. are derived with a focus on either local or global

behavior, the model allows one to predict and trouble-shoot the undesired

interactions that often occur among various subsystems.

174
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The success of the system level model building reduces the uncertain-

ties in the model to the component level which implies the accuracy of

the system model depends now on that of component models. As stated in

Chapter 1, behaviors of individual components of spacecraft power system

are mostly well understood and new and more powerful techniques for com-

ponent level modeling are currently under development. In this study,

existing component modeling techniques are adapted to develop untermi-

nated component models (two·input, two—output). Each model consists of

large signal time-domain model and small signal model. The large signal

model simulates the actual behavior of the system including various non-

linearities in the practical circuit. The small signal model character-

izes dynamics of the system about a steady state operating condition.

The integration of the component models is done by the host software

system, EASY5, which was identified from the preliminary study of appli-

cable existing software systems, as the most suitable general purpose

program. It provides maximum flexibility in component model building such

that each component can be modeled with state differential or difference

equations, transfer functions, empirical data and combination of these.

The comprehensive analysis of a spacecraft power system, the secondary

goal of the study, is performed using the Direct Energy Transfer (DET)

power system as an example. Also, the large signal behavior of the gen-

eral solar array spacecraft power system is analyzed.

The nonlinear solar array output characteristic coupled with a con-

stant power load is shown to result in multiple equilibrium points. The

state plane analysis shows that the equilibrium points in the region where
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the solar array behaves as a constant current source are unstable. There

exists a separatrix in this region which separates the state plane tra-

jectories into two distinct patterns that ultimately lead to two quite

discernible operating points. However, only one, corresponding to the

solar array constant Voltage source region, is the desirable system op-

erating point. Thus, the system's initial start·up condition must be set

in such a way that it leads to the desired operating point.

The behavior of the operating point near the solar array maximum power

point is analyzed. Regarding stability and transient response, system

operation in this region is less commendable than in the region where the

solar array behaves as a stiffer Voltage source. One way of improving

dynamics of a system that utilizes the solar array maximum available power

is to dissipate some power in a shunt circuit. This makes the source

characteristic a stiff Voltage source.

Since the battery discharger in the DET system operates over a range

from a no-load condition through the discontinuous conduction mode (DCM),

to the continuous conduction mode (CCM), the feedback compensator of the

battery discharger regulator must be designed carefully to ensure the

stability for all conditions. A proportional gain control is most ap-

propriate for a converter operating in DCM to speed up the system re-

sponse. In CCM, a phase lead type compensator is required to compensate

the excessive phase lag from the complex pole. Thus, integrator is not

suitable for a compensator in the battery discharger regulator because

of the power stage open loop pole near the origin.
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One of the major difficulties in large scale power system analysis is

the subsystem interaction problem. The unterminated two-port component

modeling allows one to investigate the interactions at the component,

subsystem and system level viewed from either the source or the load.

For a spacecraft power system that uses many switching regulators

lconnected in parallel on a common bus, such as in the DET system, inter-

actions should be examined both at the local level and the system level.

Analysis shows that as the number of regulators increases, the margin of

stability of the system tends to diminish due to the parallel inter-

actions.

As stated in Chapter 7, due to the lack of an assessment of certain

parameter values in some spacecraft component models, experimentation is .
l

the only effective means of obtaining models with acceptable accuracy.

Employing the complex curve fitting technique, the analytical transfer

function model of a one-port and two-port black box is developed based

on the measured frequency response of the port characteristics. If the

fitted model reasonably matches (over the frequency range of interest)

_ the frequency response of the black box, the two subsystems are expected

to be dynamically equivalent. This is verified by performing a system

level analysis using both the fitted model and the actual model for a

subsystem .

A reduced order modeling technique is also implemented using the com-

plex curve fitting method. This technique enables one to eliminate non-

dominating poles and zeros as well as poles and zeros in close proximity

which can be ignored for all practical purposes. The reduced order model
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greatly facilitates the analysis and trouble-shooting of a complex

spacecraft power system with much improved computational efficiency.
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