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Abstract 

 
By using fractional calculus and the circuit-averaging technique, the modeling and analysis of a Buck converter with fractional 

order inductor and fractional order capacitor in discontinuous conduction mode (DCM) operations is investigated in this study. The 
equivalent averaged circuit model of the fractional order Buck converter in DCM operations is established. DC analysis is conducted 
by using the derived DC equivalent circuit model. The transfer functions from the input voltage to the output voltage, the duty cycle 
to the output voltage, the input impedance, and the output impedance of the fractional order Buck converter in DCM operations are 
derived from the corresponding AC-equivalent circuit model. Results show that the DC equilibrium point, voltage ratio, and all 
derived transfer functions of the fractional order Buck converter in DCM operations are affected by the inductor order and/or 
capacitor order. The fractional order inductor and fractional order capacitor are designed, and PSIM simulations are performed to 
confirm the correctness of the derivations and theoretical analysis. 
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I. INTRODUCTION 
 

The establishment of an accurate model for a DC–DC 
converter is the key step in power electronics analysis and 
design. A few suitable methods have been proposed in open 
literature [1]–[3]. For example, to investigate nonlinear 
phenomena such as chaos, period-doubling bifurcation, border 
collisions, and Hopf bifurcation in a pulse-width 
modulated-controlled DC–DC converter, a discrete map of the 
DC–DC converter is established [1]. The main idea of this 
discrete map is to solve the differential equations in each 
operation state of the DC–DC converter and then sample and 
collect the values of the circuit variables at a specific instant. 
According to the characteristics of DC–DC converters (i.e., the 
switching frequency is higher than the inherent frequency), the 
averaged method has been proposed to model DC–DC 
converters to investigate dynamical behavior in low frequency 

regions. The averaged method includes the state space 
averaged method [2] and circuit-averaging technique [3]. The 
averaged method is popular in the field of DC–DC converters 
because this method can be used in the complex frequency 
domain [4], [5]. However, all of the above results are obtained 
under the condition that the real inductor and capacitor in the 
DC–DC converter are considered integer order and are 
described by integer calculus.  

Given the recent developments in integer calculus and the 
large number of discoveries on the fractal dimensions of nature 
and science/technology fields, fractional calculus and its 
corresponding applications have attracted considerable 
research interest and many excellent results have been obtained 
[6]–[16]. Open literature shows that the fractional order model, 
which is derived by using fractional calculus, is more accurate 
than the integer order model, which is derived by using integer 
calculus, in describing the real dynamical behavior of systems. 
For example, Reyes-Melo et al. [6] indicated that the dielectric 
relaxation phenomena in polymeric materials can be clearly 
described by using a fractional order model. Meral et al. [7] 
confirmed that the essential properties of viscoelastic materials 
can be precisely reflected by using a fractional order model. 
Recent research on the modeling of real inductors and 
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capacitors shows that the nature of these two circuit elements 
are fractional orders and that these elements should be modeled 
by using fractional calculus [8]–[16]. For example, for the real 
inductor, Westerlund [8] indicated that the real inductor is 
fractional order in nature, that is, the magnetic process should 
be described by using a fractional order model to satisfy its 
causality. Westerlund [8] also measured the fractional order 
inductor of the air core coil, which is equal to 0.97. Tenreiro 
Machado et al. [9] indicated that a fractional order inductor 
with different orders can be developed based on the skin effect. 
For the real capacitor, Jonscher [10] and Bohannan [11] 
showed that an integer order capacitor cannot exist in nature 
because the form of its impedance will violate causality. 
Westerlund et al. [12] experimentally measured the order of the 
fractional order capacitor under different dielectrics and finding 
that the fractional order of the capacitor is 0.9776 for 
polyvinylidenefluoride, 0.9821 for metalized paper, and 0.9978 
for polycarbonate. Jesus et al. [13] developed a fractional order 
capacitor with different orders by choosing different fractal 
structures, such as the curve of Koch, the carpet of Sierpinski, 
and the curves of Hilbert. Petráš [14] applied the fractional 
order inductor and fractional order capacitor to design a circuit 
that realizes the fractional Chua’s circuit successfully; the 
experimental results are in good agreement with the 
simulations. Thus, the real inductor and capacitor should be 
modeled by using fractional calculus to describe their real 
electrical characteristics.  

A question naturally occurs to researchers and engineers 
who use integer calculus to derive the integer order model and 
describe the dynamical behavior of a Buck converter: why are 
the results of the derived integer order model of the Buck 
converter in good agreement with the circuit simulations or 
experiments? The main reason is that the inductor and 
capacitor orders in the market are near to one; thus, the integer 
order model can be used to describe its dynamical behavior 
approximately. These approximations will provide the wrong 
results if the inductor and capacitor orders are slightly far away 
from one, for example, the different inductor orders in [9] and 
the capacitor orders at 0.59 and 0.42 in [13]. Thus, the Buck 
converter should be modeled by using fractional calculus. In 
other words, the real Buck converter should be called as the 
fractional order Buck converter. By using fractional calculus 
and the circuit-averaging technique, this study investigates the 
modeling and analysis of the fractional order Buck converter in 
discontinuous conduction mode (DCM) operations. 

The rest of the paper is organized as follows. Section II 
discusses the circuit operations and averaged circuit model of 
the fractional order Buck converter in DCM operations. 
Sections III and IV presents the DC and small signal analysis, 
respectively. Section V shows the design of the realization 
forms for the fractional order inductor and fractional order 
capacitor, as well as the validation of the effectiveness of the 
theoretical analysis by PSIM circuit simulations. Finally,  
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Fig. 1. Fractional order Buck converter and its typical time- 
domain waveforms in DCM operation: (a) circuit schematic and 
(b) inductor current. 

 
Section VI concludes. 
 

II. CIRCUIT OPERATION AND AVERAGED CIRCUIT 
MODEL 

 

The circuit schematic of the fractional order Buck converter 
and its typical time domain waveforms in DCM operations are 
shown in Figs. 1(a) and 1(b), respectively. The fractional order 
inductor is denoted by Lα, where α is its fractional order. Hence, 
two parameters describe the fractional order inductor, namely, 
inductance and inductor order a. The fractional order capacitor 
is denoted by Cβ, where b is its fractional order, and is 
described by two parameters, namely, capacitance and 
capacitor order b. The fractional order Buck converter contains 
the switch S and diode Di. vin is the input voltage, and R is the 
load. 

The expression of the fractional order inductor of the 
relationship between its voltage across (vL) and its current 
through (iL) in the time and complex frequency domains are 
described in [8, 17]. 
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The expression of the fractional order capacitor of the 
relationship between its voltage across (vC) and its current 
through (iC) in the time and complex frequency domains are 
described in [8, 17]. 
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Fig. 1(b) shows that the inductor current iL equals zero 
within d3T. So, three operation states exist in DCM operations: 
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d1T, d2T, and d3T, which are different from the operation states 
of CCM operations. Thus, the above two points should be 
considered when using the circuit-averaging technique to 
model the fractional order Buck converter in DCM operations.  

Assume that áiLñ, áiSñ, áv0ñ, ávinñ, and ávDiñ are the average 
values of iL, iS, v0, vin, and vDi, respectively; IL, IS, V0, Vin, and D1 
are the DC values of áiLñ, áiSñ, áv0ñ,ávinñ, and d1, respectively; L̂i , 

Ŝi , 0v̂ , înv , and 1̂d  are the small AC variations of áiLñ, áiSñ, 

áv0ñ, ávinñ, and d1, respectively. Thus, áiLñ, áiSñ,áv0ñ, ávinñ, and d1 
can be represented by the corresponding DC values plus 
superimposed small AC variations if the AC variations are 
small in magnitude compared with the corresponding DC 
values, that is: 

  0 0 0

1 1 1

ˆ

ˆ

ˆ
ˆ

ˆ

L L L

S S S

in in in

i I i

i I i
v V v
v V v

d D d

ìá ñ = +
ï
á ñ = +ï
ïá ñ = +í
ïá ñ = +ï
ï = +î

with  0 0

1 1

ˆ

ˆ

ˆ
ˆ
ˆ

L L

S S

in in

i I

i I
v V
v V

d D

ì
ï
ï
ï
í
ï
ï
ï
î

=

=
=
=

=

.           (3) 

Figs. 1(a) and 1(b) show that the switch S is ON and the 
diode Di is OFF within d1T. The voltage vL is equal to the input 
voltage vin minus the output voltage v0. Note that the input 
voltage vin and output voltage v0 can be replaced by their 
averaged value because the amplitude of their ripple is 
significantly small [3]. Thus, we obtain the following: 

0L ind i v v
dt L

a

a
a

á ñ - á ñ
= .                (4) 

According to the fractional calculus [17], the peak value of 
the current iL can be calculated as follows: 
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Therefore, the averaged value of the inductor current iL can 
be derived as follows: 
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The current through switch S is equal to the current iL within 
d1T and is zero within d2T and d3T. Thus, the averaged value of 
the current through switch S is expressed as follows: 
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From Eqs. (5), (6), and (7), the inductor order has a 
significant effect on currents iLp, áiLñ, and áiSñ because all of 
these currents contain the inductor order a.  

The voltage across diode Di is equal to the input voltage vin 
within d1T, is zero within d2T, and is v0 within d3T. Thus the 
averaged voltage across diode Di is expressed as follows: 

Di 1 1 2 0(1 )inv d v d d vá ñ = á ñ + - - á ñ .         (8) 
The voltage across the inductor equals vin − v0 within d1T, is 

−v0 within d2T, and is zero within d3T. Thus, the averaged 
voltage across the inductor is expressed as follows: 
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Fig. 2. Averaged circuit model for the fractional order Buck 
converter in DCM operation. 

 

1 0 2 0( )L inv d v v d vá ñ = á ñ - á ñ - á ñ .         (9) 
However, according to the voltage second balance, the 

averaged value of the voltage across the inductor equals zero, 
that is, ávLñ = 0. Thus, the following equation can be obtained: 
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By integrating Eq. (10) into Eqs. (6) and (8), the expressions 
concerning áiLñ and ávDiñ can be simplified as follows: 
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Di 0v vá ñ = á ñ .              (12) 
Thus, the averaged circuit model for the fractional order 

Buck converter in DCM operations can be described (Fig. 2). 
By using Eq. (3) into Eqs. (6) and (7) and omitting 

high-order small signal terms, Eqs. (6) and (7) can be 
changed into the following formulas, respectively: 
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The DC and small signal analysis of the fractional order 
Buck converter in DCM operations are provided in the 
following two sections. The circuit parameters used in this 
study are as follows: vin = 6 V, Cβ = 470 mF, Lα = 100 mH, D1 

= 0.2, R = 20 W, T = 10 ms, 0 < α < 1, and 0 < β < 1. 
 

III. DC ANALYSIS 
According to the averaged circuit model for the fractional 

order Buck converter in DCM operations (Section II), the 
corresponding DC circuit model can be obtained by 
substituting the averaged values in Fig. 2 into their 
corresponding DC values. According to Caputo’s fractional 
derivate [17], the branch circuit of the fractional order  
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Fig. 3. DC equivalent circuit model for the fractional order Buck 
converter in DCM operations. 

 
capacitor is open because its current is zero. Thus, the DC 
equivalent circuit model for the fractional order Buck 
converter in DCM operations can be obtained (Fig. 3). 

The DC value of iL can be easily derived by removing the 
small AC variations from Eq. (13), that is: 
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The following inequality can be derived from the condition 
for the Buck converter in DCM operations [18], that is, IL ³ 
V0/R: 
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Fig. 3 shows that IL equals V0/R. Thus, the following 
equation is obtained: 
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Therefore, the voltage ratio M can be derived as follows: 
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Accordingly, the respective expressions for V0 and IL can 
be rewritten as follows: 
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Thus, V0, IL, M, and the DCM condition are all affected by 
the inductor order because they all include this item. Fig. 4 
shows the critical resistors about the boundary condition 
under different inductances, with a = 0.8 and a = 0.7. The 
DCM region increases with decreasing inductor order. Thus, 
the fractional order Buck converter easily operates in DCM 
operations with decreasing inductor order. 

Fig. 5 shows the calculated voltage ratio M under different 
inductances with a = 0.8 and a = 0.7. Under the same 
inductor order a, the voltage ratio M decreases with 
increasing inductance of the fractional order inductor. 
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Fig. 4. Calculated results for the critical resistors under different 
inductances with a = 0.8 and a = 0.7. 
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Fig. 5. Calculated results for the voltage ratio M under different 
inductances with a = 0.8 and a = 0.7. 

 
However, under the same inductance, the voltage ratio M 
increases with decreasing inductor order. If a = 1 (the 
inductor is integer order), the expressions for IL, V0, and M 
and the boundary condition for DCM operations are the same 
as in [3]. 

  

IV. SMALL SIGNAL ANALYSIS 
The small signal equivalent circuit model for the fractional 

order Buck converter can be obtained by substituting the 
average values in Fig. 2 into the corresponding small signal AC 
items in the complex frequency domain (Fig. 6).  

According to circuit theory and Fig. 6, the following 
equation can be derived: 
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order Buck converter in DCM operation. 
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The small signal of ˆ ( )Li s  and ˆ ( )Si s  can be easily derived 
by removing the DC values from Eqs. (13) and (14), 
respectively: 
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By using Eqs. (22) into (21) and simplifying the equation, 
the expression for 0ˆ ( )v s  can be derived as follows: 
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Thus, the transfer function from the input voltage to the 
output voltage can be derived by setting the duty cycle 
variation to zero. 
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The transfer function from the duty cycle to the output 
voltage can be derived by setting the input voltage variation 
to zero. 
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The input impedance of the fractional order Buck converter 
in DCM operations can be derived by calculating the input 
voltage variations over the current through the switch S 
variations at a duty cycle variation of zero. 
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The output impedance of the fractional order Buck 
converter in DCM operations can be derived by setting both 
the input voltage variation and duty cycle variation to zero.  
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Fig. 7. Bode diagrams of Gvv(s) and Gvd(s) under different 
inductor orders and capacitor’s orders. (a) Gvv(s) and (b) Gvd(s). 

 
Thereafter, the definition of the output impedance is used to 
derive the formulas. 
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The above four transfer functions contain the inductor and 
capacitor orders. Thus, all functions are significantly affected 
by these two parameters. If a, b = 1 (the inductor and capacitor 
are integer order), the above four transfer functions are the 
same as in [3]. Only the Bode diagrams of Gvv(s) and Gvd(s) 
under different inductor orders and capacitor orders are 
discussed in this study.  

By using a, b = 0.8 and a, b = 0.7 and the other parameter 
values shown in Section II, the corresponding Bode diagrams 
of Gvv(s) and Gvd(s) are plotted in Fig. 7 according to the 
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Fig. 8. Fractional order inductor and its approximate circuit 
model. 

 
definition of the Bode diagram for the fractional order system 
[19]. The magnitudes and phases in these two cases (a, b = 0.8 
and a, b = 0.7) are very different. 

V. PSIM SIMULATION FOR CONFIRMATION 
As mentioned in the Introduction, all real inductors and 

capacitors are considered integer orders. Thus, no established 
circuit models exist for the fractional order inductor and 
fractional order capacitor in current popular circuit simulation 
software, such as PSIM. Thus, to confirm the correctness of 
the above theoretical analysis, building a circuit model for the 
fractional order inductor and fractional order capacitor is 
necessary to construct the fractional order Buck converter. 
The chain fractance [17] and Oustaloup’s approximation [20] 
are used to establish the approximate circuit models for these 
two fractional order circuit elements. PSIM software, which 
is widely used in simulating power electronics and motor 
drives [21–22], is used to simulate the fractional order Buck 
converter. 

The dynamical behavior of the fractional order inductor 
can be described by using the approximate circuit model in 
Fig. 8. When we need La = 100 μH with a = 0.8, the resistors 
and inductors in Fig. 8 can be calculated by making the 
formulas from the input impedance of the approximate circuit 
model for the fractional order inductor equal to the formulas 
from Oustaloup’s approximation. The calculated results are 
as follows: R11 = 238.5 W, R12 = 11.4 W, R13 = 1.1 W, R14 = 118 
mW, R15 = 12 mW, R16 = 1.27 mW, R17 = 130 mW, R18 = 13.6 
mW, R19 = 1.4 mW, R110 = 0.17 mW, L11 = 3.2 mH, L12 = 2.56 mH, 
L13 = 4.4 mH, L14 = 7.72 mH, L15 = 13.6 mH, L16 = 24 mH, L17 = 
42.3 mH, L18 = 74.5 mH, and L19 = 131 mH.  

When La = 100 μH with a = 0.7, the calculated results for 
the resistors and inductors in Fig. 8 are as follows: R11 = 36. 
2W, R12 = 3.03 W, R13 = 0.4 W, R14 = 56 mW, R15 = 7.7 mW, R16 

= 1.06 mW, R17 = 146 mW, R18 = 20 mW, R19 = 2.76 mW, R110 = 
0.44 mW, L11 = 0.555 mH, L12 = 0.8 mH, L13 = 1.8 mH, L14 = 4.2 
mH, L15 = 9.9 mH, L16 = 23.1 mH, L17 = 54.2 mH, L18 = 127 mH, 
and L19 = 296 mH. 

Only the Bode diagrams of Lasa for La = 100 μH with a = 
0.8 from the theoretical analysis and PSIM simulations are 
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Fig. 9. Bode diagrams of Lasa for La = 100 μH with a = 0.8 
based on PSIM simulations and theoretical analysis. 
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Fig. 10. Fractional order capacitor and its approximate circuit 
model. 
 

plotted in Fig. 9. The theoretical analysis is in good 
agreement with the PSIM simulations. Therefore, substituting 
the corresponding fractional order inductor with this 
approximate circuit model is reasonable. 

The dynamical behavior of the fractional order capacitor 
can be described by using the approximate circuit model in 
Fig. 10. When we need Cb = 470 μF with b = 0.8, the resistors 
and capacitors in Fig. 10 can be calculated by making the 
formulas from the input impedance of the approximate circuit 
model for the fractional order capacitor equal to the formulas 
from Oustaloup’s approximation. The calculated results are 
as follows: R21 = 4.16 mW, R22 = 33 mW, R23 = 0.32 W, R24 = 3 
W, R25 = 30 W, R26 = 289 W, R27 = 2794 W, R28 = 27 kW, R29 = 
260 kW, R210 = 22 MW, C11 = 31 mF, C12 = 65.7 mF, C13 = 115 
mF, C14 = 203 mF, C15 = 358 mF, C16 = 630 mF, C17 = 1 mF, C18 

= 1.96 mF, C19 = 3.46 mF, and C110 = 2.63 mF.  
When we need Cb = 470 μF with b = 0.7, the calculated 

results for the resistors and capacitors in Fig. 10 are as 
follows: R21 = 25.6 mW, R22 = 152 mW, R23 = 1.11 W, R24 = 8 
W, R25 = 59 W, R26 = 427.6 W, R27 = 3109 W, R28 = 22.6 kW, 
R29 = 164.1 kW, R210 = 7.86 MW, C11 = 4.3 mF, C12 = 12.4 mF, 
C13 = 29 mF, C14 = 67.6 mF, C15 = 158 mF, C16 = 370 mF, C17 =  



1014                     Journal of Power Electronics, Vol. 13, No. 6, November 2013 
 

-20

0

20

40

60

M
ag

ni
tu

de
 (d

B)

 

 

10
1

10
2

10
3-135

-90

-45

0

Ph
as

e 
(d

eg
)

Bode Diagram of 1/(C
b
sb)

Frequency  (Hz)

PSIM simulations
Theoretical analysis

 

Fig. 11. Bode diagrams of 1/(Cb sb) for Cb = 470 μF with b = 0.8 
from the PSIM simulations and theoretical analysis. 

 
 

867 mF, C18 = 2 mF, C19 = 4.755 mF, and C110 = 6.35 mF. 
Only the Bode diagrams of 1/(Cbsb) for Cb = 470 μF with b 

= 0.8 from the theoretical analysis and PSIM simulations are 
plotted in Fig. 11. The theoretical analysis is in good 
agreement with the PSIM simulations. Therefore, substituting 
the corresponding fractional order capacitor with this 
approximate circuit model is reasonable. 

The circuit model for the fractional order Buck converter 
can be constructed by using the above approximate circuit 
models. The corresponding Bode diagrams of Gvv(s) and Gvd(s) 
from the theoretical analysis and PSIM simulations under a, 
b = 0.8 and a, b = 0.7 can be obtained (Fig. 12). Note that the 
Bode diagrams of Gvv(s) and Gvd(s) from the PSIM 
simulations are calculated from the original switch model of 
the fractional order Buck converter, and no average model is 
required. The results of the PSIM simulations are in basic 
agreement with the theoretical analysis, except for some 
discrepancy caused by the approximate circuit models for the 
fractional order inductor (Fig. 8) and fractional order 
capacitor (Fig. 10). 

 

VI. CONCLUSIONS 
By using DC and small signal analyses for the fractional 

order Buck converter in DCM operations, the DC values IL and 
V0, voltage ratio M, and boundary condition for DCM 
operations are found to contain the inductor order, and all 
derived transfer functions include the inductor and capacitor 
orders. The theoretical calculation results for the boundary 
condition for DCM operations and voltage ratio M show that 
the inductor order has a major effect on both of them; that is,  
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Fig. 12. Bode diagrams of Gvv(s) and Gvd(s) from the PSIM 
simulations and theoretical analysis: (a) Gvv(s), (b) Gvd(s). 

 
 

the DCM operation region increases with decreasing inductor 
order, the voltage ratio M increases with decreasing inductor 
order under the same inductance. The theoretical analysis and 
PSIM simulations for the Bode diagrams of Gvv(s) and Gvd(s) 
show that both inductor order and capacitor order play an 
important role in the dynamical behavior of the fractional Buck 
converter in DCM operations. Therefore, if we directly 
establish the integer order transfer functions instead of the 
fractional order transfer functions in describing the fractional 
order Buck converter in DCM operations, the obtained results 
will be incorrect. In other words, the fractional order transfer 
functions of the fractional Buck converter in DCM operations 
must be established to describe its real dynamical behavior. 
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